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Abstract
Let H be a class of boolean functions and consider a composed class H′ that is derived from H
using some arbitrary aggregation rule (for example, H′ may be the class of all 3-wise majority-
votes of functions in H). We upper bound the Littlestone dimension of H′ in terms of that of H.
As a corollary, we derive closure properties for online learning and private PAC learning.

The derived bounds on the Littlestone dimension exhibit an undesirable exponential depen-
dence. For private learning, we prove close to optimal bounds that circumvents this suboptimal
dependency. The improved bounds on the sample complexity of private learning are derived algo-
rithmically via transforming a private learner for the original class H to a private learner for the
composed classH′. Using the same ideas we show that any (proper or improper) private algorithm
that learns a class of functions H in the realizable case (i.e., when the examples are labeled by
some function in the class) can be transformed to a private algorithm that learns the class H in the
agnostic case.

1. Introduction

We study closure properties for learnability of binary-labeled hypothesis classes in two related set-
tings: online learning and differentially private PAC learning.

Closure Properties for Online Learning. Let H be a class of experts that can be online learned
with vanishing regret. That is, there exists an algorithm A such that given any sequence of T
prediction tasks, the number of false predictions made by A is larger by at most R(T ) = o(T ) than
the number of false predictions made by the best expert inH.

Consider a scenario where the sequence of tasks is such that every single expert in H predicts
poorly on it, however there is a small unknown set of experts h1, . . . , hk ∈ H that can predict
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CLOSURE PROPERTIES FOR PRIVATE CLASSIFICATION AND ONLINE PREDICTION

well by collaborating. More formally, there is an aggregation rule G : {0, 1}k → {0, 1} such
that the combined expert G(h1, . . . , hk) exhibits accurate predictions on a significant majority of
the tasks. For example, a possible aggregation rule G could be the majority-vote of the k experts.
Since we assume that the identities of the k experts are not known, it is natural to consider the class
H′ = {G(h1, . . . , hk) : hi ∈ H}, which consists of all possible G-aggregations of k experts from
H. We study the following question:

Question 1 Can the optimal regret with respect toH′ be bounded in terms of that ofH?

The Littlestone dimension is a combinatorial parameter that determines online learnability (Lit-
tlestone, 1987; Ben-David et al., 2009). In particular, H is online learnable if and only if it has a
finite Littlestone dimension d <∞, and the best possible regretR(T ) for online learningH satisfies

Ω(
√
dT ) ≤ R(T ) ≤ O(

√
dT log T ). (1)

Furthermore, if it is known that if one of the experts never errs (a.k.a the realizable setting), then the
optimal regret is exactly d.1 (The regret is called mistake-bound in this context.)

Thus, the above question boils down to asking whether the Littlestone dimension of H′ is
bounded by a function of the Littlestone dimension of H. One of the two main results in this
work provides an affirmative answer to this question (Theorem 3).

We next discuss a variant of this question in the setting of Differentially Private (DP) learning.
The two settings of online and DP-learning are intimately related (see, e.g., Bun et al. (2020);
Abernethy et al. (2017); Joseph et al. (2019); Gonen et al. (2019)). In particular, both online learning
and DP-learning are characterized by the finiteness of the Littlestone dimension (Littlestone, 1987;
Ben-David et al., 2009; Bun et al., 2015; Alon et al., 2019; Bun et al., 2020).

Closure Properties for Differentially Private Learning. Imagine the following medical sce-
nario: consider a family H of viruses for which there is an algorithm A that can learn to diagnose
any specific virus h ∈ H given enough labeled medical data. Further assume that A has the desired
property of being a differentially private learning algorithm as defined by (Kasiviswanathan et al.,
2011); that is, it is a PAC learning algorithm in which the privacy of every patient whose data is
used during training is guarded in the formal sense of differential privacy (Dwork et al., 2006b).

Assume that an outbreak of a deadly disease h′ has occurred in several locations all over the
world and that it is known that h′ is caused by some relatively small, yet unknown group of viruses
from H. That is, our prior information is that there are unknown viruses h1, . . . , hk ∈ H for a
relatively small k such that h′ = G(h1, . . . , hk) for some rule G. For example, G could be the OR
function in which case h′ occurs if and only if the patient is infected with at least one of the viruses
h1, . . . , hk.

It would be highly beneficial if one could use the algorithm A to diagnose h′ in an automated
fashion. Moreover, doing it in a private manner could encourage health institutions in the different
locations to contribute their patients’ data. This inspires the following question:

Question 2 Can one use the algorithm A to privately learn to diagnose h′? How does the sample
complexity of this learning task scale as a function of G?

1. More precisely, there is a deterministic algorithm that makes no more than d mistakes, and for every deterministic
algorithm there is a (realizable) input sequence on which it makes at least d mistakes. For randomized algorithms a
slightly weaker lower bound of d/2 holds with respect to the expected number of mistakes.
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CLOSURE PROPERTIES FOR PRIVATE CLASSIFICATION AND ONLINE PREDICTION

Differential Privacy, Online Learning, and the Littlestone Dimension. Question 2 and Ques-
tion 1 are equivalent in the sense that both online learning and DP-learning are characterized by the
finiteness of the Littlestone dimension (Littlestone, 1987; Ben-David et al., 2009; Bun et al., 2015;
Alon et al., 2019; Bun et al., 2020).

Note however that unlike the bounds relating the Littlestone dimension to online learning, which
are tight up to logarithmic factors (see (1)), the bounds relating the Littlestone dimension and DP-
learning are very far from each other; specifically, if d denotes the Littlestone dimension of H then
the lower bound on the sample complexity of privately learning H scales with log∗ d (Bun et al.,
2015; Alon et al., 2019), while the best known2 upper bound scales with exp(d) (Bun et al., 2020).

Thus, while our solution to Question 1 yields an affirmative answer to Question 2, the implied
quantitative bounds are far from being realistically satisfying. Specifically, every finite H is learn-
able with privacy using O(log |H|) samples (Kasiviswanathan et al., 2011), and so if H is finite
and not too large, the bounds implied by the Littlestone dimension are not meaningful. We there-
fore focus on deriving effective bounds for private learning, which is the content of Theorem 5 (see
Theorem 29 for a precise statement).

Littlestone Classes. It is natural to ask which natural hypothesis classes have bounded Littlestone
dimension. First, it holds that Ldim(H) ≤ log|H| for every H, so for finite classes the Littlestone
dimension scales rather gracefully with their size.

There are also natural infinite Littlestone classes: for example, let the domain X = Fn be an
n-dimensional vector space over some field F and let H ⊆ {0, 1}X consist of all affine subspaces
of V of dimension ≤ d. It can be shown here that Ldim(H) = d. (For example, the class of
all lines in R100 has Littlestone dimension 1.) A bit more generally, any class of hypotheses that
can be described by polynomial equalities of a bounded degree has bounded Littlestone dimension.
(Observe that if one replaces “equalities” with “inequalities” then the Littlestone dimension may
become unbounded, however the VC dimension remains bounded (e.g. halfspaces).) This can be
further generalized to classes that are definable in stable theories, which is a deep and well-explored
notion in model theory. We refer the reader to Chase and Freitag (2019), Section 5.1 for such
examples.

1.1. Main Results

Let G : {0, 1}k → {0, 1} be a boolean function and let H1, . . . ,Hk ⊆ {0, 1}X be hypothesis
classes. Denote by G(H1, . . . ,Hk) the following class G(H1, . . . ,Hk) = {G(h1, . . . , hk) : hi ∈
Hi}. For example, if G(x1, x2) = x1 ∧ x2 then G(H1,H2) = H1 ∧ H2 = {h1 ∧ h2 : hi ∈ Hi} is
the class of all pairwise intersections/conjunctions of a function fromH1 and a function fromH2.

Theorem 3 (A Closure Theorem for the Littlestone Dimension) Let G : {0, 1}k → {0, 1} be a
boolean function, letH1, . . . ,Hk ⊆ {0, 1}X be classes, and let d ∈ N such that Ldim(Hi) ≤ d for
every i ≤ k. Then,

Ldim(G(H1, . . . ,Hk)) ≤ Õ(22kk2d),

where Õ conceals polynomial factors in log k and log d.

2. The lower bound is tight up to polynomial factors (Kaplan et al., 2020a), however the upper bound is not known to
be tight: for example, as far as we know, it is possible that the sample complexity of private learning scales linearly
with VC(H) + log∗(Ldim(H)).
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In particular, if Ldim(Hi) < ∞ for all i ≤ d then Ldim(G(H1, . . . ,Hk)) < ∞. Consequently,
if each of the Hi’s is online learnable then G(H1, . . . ,Hk) is online learnable. We comment that
if the aggregating function G is simple then one can obtain better bounds. For example, if G is
a majority-vote, a k-wise OR, or a k-wise AND function then a bound of Õ(k2 · d) holds. (See
Appendix A.2.1.)

Another combinatorial parameter that arises in the relationship between online and DP learning
is the threshold dimension: a sequence x1, . . . , xk ∈ X is threshold-shattered by H if there are
h1, . . . , hk ∈ H such that hi(xj) = 1 if and only if i ≤ j for all i, j ≤ k. The threshold dimension,
T (H), is the maximum size of a sequence that is threshold-shattered byH. The threshold dimension
plays a key role in showing that DP learnable classes have a finite Littlestone dimension (Alon
et al., 2019). A classical theorem by Shelah (1978) in model theory shows that the Littlestone and
the threshold dimensions are exponentially related.3 In particular Ldim(H) < ∞ if and only if
T (H) <∞. (See Theorem 8 in the preliminaries section.) We prove the following closure theorem
in terms of the threshold dimension.

Theorem 4 (A Closure Theorem for the Threshold Dimension) Let G : {0, 1}k → {0, 1} be a
boolean function, let H1, . . . ,Hk ⊆ {0, 1}X be classes, and let t ∈ N such that T (Hi) < t for
every i ≤ k. Then,

T
(
G(H1, . . . ,Hk)

)
< 24k4k·t.

Moreover, an exponential dependence in t is necessary: for every t ≥ 6 there exists a class H such
that T (H) ≤ t and

T
(
{h1 ∨ h2 : h1, h2 ∈ H}

)
≥ 2bt/5c.

Note that the bounds in Theorem 3 and Theorem 4 escalate rapidly with k (the arity of G) and
with t. It will be interesting to determine tight bounds.

Closure of Private Learning. By Alon et al. (2019); Bun et al. (2020), Theorem 3 also implies
closure properties for DP-learnable classes. However, the quantitative bounds are even worse: not
only do the bounds on the Littlestone dimension of G(H1, . . . ,Hk) escalate rapidly with k, also the
quantitative relationship between the Littlestone dimension and DP-learning sample complexity is
very loose, and the best bounds exhibit a tower-like gap between the upper and lower bounds. For
example, if the class of functionsH is finite and its Littlestone dimension is ω(log log |H|), then the
bound of Theorem 3 is most likely to be much worse than the generic application of the exponential
mechanism, whose sample complexity is the logarithm of the size of the class. We therefore explore
the closure properties of differentially-private learning algorithms directly and derive the following
bound.

Theorem 5 (A Closure Theorem for Private Learning (informal)) Let G : {0, 1}k → {0, 1}
be a boolean function. Let H1, . . . ,Hk ⊆ {0, 1}X be classes that are (ε, δ)-differentially private
and (α, β)-accurate learnable in the PAC model with sample complexity mi respectively. Then,

3. The threshold dimension may be interpreted as a combinatorial abstraction of the geometric notion of margin. Under
this interpretation, Shelah’s result may be seen as an extension of the classical Perceptron’s mistake-bound analysis
by Rosenblatt (1958).
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G(H1, . . . ,Hk) is (ε, δ)-private and (α, β)-accurate learnable with sample complexity

Õ

(
k∑
i=1

mi

)
· poly(k, 1/ε, 1/α, log(1/β)).

The exact quantitative statement of the results appears in Theorem 29. We remark that closure
properties for pure differentially-private learning algorithms (i.e., when δ = 0) are implied by the
characterization of (Beimel et al., 2019b). Similarly, closure properties for non-private PAC learn-
ing are implied by the characterization of their sample complexity in terms of the VC dimension
and by the Sauer-Shelah-Perles Lemma (Sauer, 1972). However, since there is no tight charac-
terization of the sample complexity of approximate differentially-private learning algorithms (i.e.,
when δ > 0), we prove Theorem 5 algorithmically by constructing a (non-efficient) learning al-
gorithm for G(H1, . . . ,Hk) from private learning algorithms for H1, . . . ,Hk. For approximate
differentially-private learning, closure properties were not known even for simple compositions.
For example, Beimel et al. (2019a) and Kaplan et al. (2020b) showed how to privately learn halfs-
paces in a discrete space Xd with sample complexity poly(d, 2log∗ |X|), however, privately learning
intersection of two halfspaces with sample complexity poly(d, 2log∗ |X|) was not known prior to our
results.

Agnostic Learning. Beimel et al. (2015) proved that any proper private learning algorithm in the
realizable case4 can be transformed into an agnostic5 private learning algorithm, with only a mild
increase in the sample complexity. We show that the same result holds even for improper private
learning (i.e., when the private learning algorithm can return an arbitrary hypothesis).

Theorem 6 (Private Learning Implies Agnostic Private Learning) For every 0<α, β, δ < 1,
every m ∈ N, and every concept class H, if there exists a (1, δ)-differentially private (α, β)-
accurate PAC learner for the hypothesis class H with sample complexity m, then there exists an
(O(1), O(δ))-differentially private (O(α), O(β + δn))-accurate agnostic learner for H with sam-
ple complexity

n = O

(
m+

1

α2

(
VC(H) + log

1

β

))
.

Furthermore, if the original learner is proper, then the agnostic learner is proper.6

We obtain this result by showing that a variant of the transformation of (Beimel et al., 2015)
also works for the improper case; we do not know if the original transformation of (Beimel et al.,
2015) also works for the improper case. Our analysis of the transformation for the improper case is
more involved than the analysis for the proper case.

4. That is, when the examples are labeled by some h ∈ H.
5. That is, when the examples are labeled arbitrarily and the goal is to find a hypothesis whose error is close to the

smallest error of a hypothesis inH.
6. By standard subsampling techniques (Kasiviswanathan et al., 2011; Beimel et al., 2014), for every ε < 1 we can get

an (ε, δ)-differentially agnostic private PAC learner by multiplying the sample complexity by a factor of O(1/ε).
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1.2. Technical Overview

1.2.1. CLOSURE FOR LITTLESTONE DIMENSION

Our proof of Theorem 3 exploits tools from online learning. It may be instructive to compare Theo-
rem 3 with an analogous result for VC classes: a classical result by Dudley (1978) upper bounds the
VC dimension ofG(H1, . . . ,Hk) by Õ(d1 + · · ·+dk), where di is the VC dimension ofHi. The ar-
gument uses the Sauer-Shelah-Perles Lemma (Sauer, 1972) to bound the growth-rate (a.k.a. shatter
function) of G(H1, . . . ,Hk) by some nd1+···+dk : indeed, if we let n = VC(G(H1, . . . ,Hk)), then
by the definition of the shatter function, 2n ≤ nd1+···+dk , which implies that n = Õ(d1 + · · ·+ dk)
as stated. It is worth noting that a notion of growth-rate as well as a corresponding variant of the
Sauer-Shelah-Perles Lemma also exist for Littlestone classes (Bhaskar, 2017; Chase and Freitag,
2018). However we are not aware of a way of using it to prove Theorem 3.

We take a different approach. We first focus on the case where G is a majority-vote. That is,
the class H = G(H1, . . . ,Hk) consists of all k-wise majority-votes of experts hi ∈ Hi. We bound
the Littlestone dimension of H by exhibiting an online learning algorithm A that learns H in the
mistake-bound model with at most Õ(k2 · d) mistakes. The derivation of A exploits fundamental
tools from online learning such as the Weighted Majority Algorithm by Littlestone and Warmuth
(1989) and Online Boosting (Chen et al., 2012; Beygelzimer et al., 2015; Brukhim et al., 2020).

Then, the bound for a general G : {0, 1}k → {0, 1} is obtained by expressing G as a formula
that only uses majority-votes and negations gates. The exponential dependence in k in the final
bound is a consequence of the formula-size that can be exponential in k. We do not know whether
this exponential dependence is necessary.

1.2.2. CLOSURE FOR THRESHOLD DIMENSION

Our proof of Theorem 4 is combinatorial. First, note that an inferior bound follows from Theo-
rem 3, using the fact that the Littlestone and threshold dimensions are exponentially related (see
Theorem 8). However this approach yields a super-exponential bound on T (G(H1, . . . ,Hk)).

The bound in Theorem 4 follows by arguing contra-positively that if T (G(H1, . . . ,Hk)) is large
then T (Hi) is also “largish” for some i ≤ k. Specifically, if T (G(H1, . . . ,Hk)) ≥ exp(t exp(k))
then T (Hi) ≥ t for some i ≤ k. This is shown using a Ramsey argument that asserts that any
large enough sequence x1, . . . , xn that is threshold-shattered by G(H1, . . . ,Hk) must contain a
relatively large subsequence that is threshold-shattered by one of the Hi’s. Quantitatively, if n ≥
exp(t exp(k)) then there must be a subsequence xj1 , . . . , xjt that is threshold-shattered by one of
theHi’s.

This upper bounds T (G(H1, . . . ,Hk)) by some exp(t exp(k)), where t = maxi T (Hi). It is
worth noting that, in contrast with Theorem 3, an exponential dependence here is inevitable: we
prove in Theorem 4 that for any t there exists a class H with T (H) ≤ t such that T ({h1 ∨ h2 :
h1, h2 ∈ H}) ≥ exp(t). This lower bound is achieved by a randomized construction.

1.2.3. PRIVATE LEARNING IMPLIES AGNOSTIC PRIVATE LEARNING

We start by describing the transformation of (Beimel et al., 2015) from a proper private learning
algorithm of a class H to an agnostic proper private learning algorithm for H. Assume that there
is a private learning algorithm A for H with sample complexity m. The transformation takes a
sample S of size O(m) and constructs all possible behaviors, denoted by H , of functions in H
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on the points of the sample. By the Sauer-Shelah-Perles Lemma, the number of such behaviors is

at most
(

e|S|
VC(H)

)VC(H)
. Then, it finds using the exponential mechanism a behavior h′ ∈ H that

minimizes the empirical error on the sample. (The exponential mechanism is a differentially-private
algorithm that is guaranteed to identify a hypothesis with small empirical error when the number
of possible hypotheses is relatively small as in our case.) Finally, the transformation relabels the
sample S using h′ and applies A on the relabeled sample. If A is a proper learning algorithm then,
by standard VC arguments, the resulting algorithm is an agnostic algorithm for H. The privacy
guarantees of the resulting algorithm are more delicate, and it is only O(1)-differentially private,
even ifA is ε-differentially private for a small ε. (The difficulty in the privacy analysis is that the set
of behaviors H is data-dependent. Therefore, the privacy guarantees of the resulting algorithm are
not directly implied by those of the exponential mechanism, which assume that the set of possible
outcomes is fixed and data-independent.)

WhenA is improper, we cannot use VC arguments to argue that the resulting algorithm is an ag-
nostic learner. We rather use the generalization properties of differential privacy (proved in (Dwork
et al., 2015; Bassily et al., 2016; Rogers et al., 2016; Feldman and Steinke, 2017; Nissim and Stem-
mer, 2017; Jung et al., 2020)): if a differentially private algorithm has a small empirical error on
a sample chosen i.i.d. from some distribution, then it also has a small generalization error on the
underlying distribution (even if the labeling hypothesis is chosen after seeing the sample). There
are technical issues in applying these results in our case that require some modifications in the
transformation.

1.2.4. CLOSURE FOR DIFFERENTIALLY PRIVATE LEARNING

We prove Theorem 5 by constructing a private algorithmAClosureLearn for the classG(H1, . . . ,Hk)
using private learning algorithms for the classes H1, . . . ,Hk. Algorithm AClosureLearn uses the
relabeling procedure (the one that we use to transform a private PAC learner into a private agnostic
learner) in a new setting.

The input to AClosureLearn is a sample labeled by some function in G(H1, . . . ,Hk). The algo-
rithm finds hypotheses h1, . . . , hk in steps, where in the i’th step, the algorithm finds a hypothesis
hi such that h1, . . . , hi have a completion ci+1, . . . , ck to a hypothesis G(h1, . . . , hi, ci+1, . . . , ck)
with small error (assuming that h1, . . . , hi−1 have a good completion).

Each step ofAClosureLearn is similar to the algorithm for agnostic learning described above. That
is, in the i’th step, AClosureLearn first relabels the input sample S using some h ∈ Hi in a way that
guarantees completion to a hypothesis with small empirical error. The relabeling h is chosen using
the exponential mechanism with an appropriate score function. The relabeled sample is then fed to
the private algorithm for the class Hi to produce a hypothesis hi and then the algorithm proceeds
to the next step i + 1. As in the algorithm for agnostic learning, the proof that the hypothesis
G(h1, . . . , hk) returned by the algorithm has a small generalization error is easier when the private
algorithms forH1, . . . ,Hk are proper, and it is more involved if they are improper.

Organization. Definitions and background results are provided in Section 2. The complete proofs
appear in the appendix in two parts. Closure properties for Littlestone classes is proved in Ap-
pendix A. The effective bounds for private learning (i.e., agnostic learning and closure) are given in
Appendices B to D. We note that each of these parts can be read independently of the other.
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2. Preliminaries

This section is organized as follows: Section 2.1 contains basic definitions and tools related to the
Littlestone dimension and Section 2.2 contains basic definitions and tools related to private learning.

2.1. Preliminaries on the Littlestone Dimension

The Littlestone dimension is a combinatorial parameter that characterizes regret bounds in online
learning (Littlestone, 1987; Ben-David et al., 2009). The definition of this parameter uses the
notion of mistake-trees: these are binary decision trees whose internal nodes are labeled by ele-
ments of X . Any root-to-leaf path in a mistake tree can be described as a sequence of examples
(x1, y1), . . . , (xd, yd), where xi is the label of the i’th internal node in the path, and yi = 1 if the
(i + 1)’th node in the path is the right child of the i’th node, and otherwise yi = 0. We say that a
tree T is shattered by H if for any root-to-leaf path (x1, y1), . . . , (xd, yd) in T there is h ∈ H such
that h(xi) = yi, for all i ≤ d. The Littlestone dimension of H, denoted by Ldim(H), is the depth
of the largest complete tree that is shattered byH.

Definition 7 (Subtree) Let T be labeled binary tree. We will use the following notion of a subtree
T ′ of depth h of T by induction on h:

1. Any leaf of T is a subtree of height 0.

2. For h ≥ 1 a subtree of height h is obtained from an internal vertex v of T together with a
subtree of height h− 1 of the tree rooted at v’s left child and a subtree of height h− 1 of the
tree rooted at v’s right child.

Note that if T is a labeled tree and it is shattered by the class H, then any subtree T ′ of it with the
same labeling of its internal vertices is shattered by the classH.

Threshold Dimension. A classical theorem of Shelah in model-theory connects bounds on 2-rank
(Littlestone dimension) to the concept of thresholds: let H ⊆ {0, 1}X be a hypothesis class. We
say that a sequence x1, . . . , xk ∈ X is threshold-shattered by H if there are h1, . . . , hk ∈ H such
that hi(xj) = 1 if and only if i ≤ j for all i, j ≤ k. Define the threshold dimension, T (H), as the
maximum size of a sequence that is threshold-shattered byH.

Theorem 8 (Littlestone Dimension versus Threshold Dimension (Shelah, 1978; Hodges, 1997))
LetH be a hypothesis class, then:

T (H) ≥ blog Ldim(H)c and Ldim(H) ≥ blog T (H)c.

2.2. Preliminaries on Private Learning

Differential Privacy. Consider a database where each record contains information of an indi-
vidual. An algorithm is said to preserve differential privacy if a change of a single record of the
database (i.e., information of an individual) does not significantly change the output distribution
of the algorithm. Intuitively, this means that the information inferred about an individual from the
output of a differentially-private algorithm is similar to the information that would be inferred had
the individual’s record been arbitrarily modified or removed. Formally:
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Definition 9 (Differential privacy (Dwork et al., 2006b,a)) A randomized algorithm A is (ε, δ)-
differentially private if for all neighboring databases S1, S2 ∈ Xm (i.e., databases differing in one
entry), and for all sets F of outputs,

Pr[A(S1) ∈ F ] ≤ exp(ε) · Pr[A(S2) ∈ F ] + δ, (2)

where the probability is taken over the random coins of A. When δ = 0 we omit it and say that A
preserves pure ε-differential privacy. When δ > 0, we use the term approximate differential privacy,
in which case δ is typically a negligible function of the database size m.

PAC Learning. We next recall the probably approximately correct (PAC) model of Valiant (1984).
A hypothesis c : X → {0, 1} is a predicate that labels examples taken from the domain X by either
0 or 1. We sometime refer to a hypothesis as a concept. A hypothesis class H over X is a set
of hypotheses (predicates) mapping X to {0, 1}. A learning algorithm is given examples sampled
according to an unknown probability distribution P over X , and labeled according to an unknown
target concept c ∈ H. The learning algorithm is successful when it outputs a hypothesis h that
approximates the target concept over samples from P . More formally:

Definition 10 The generalization error of a hypothesis h : X → {0, 1} with respect to a concept c
and a distribution P over X is defined as errorP(c, h) = Prx∼P [h(x) 6= c(x)]. If errorP(c, h) ≤ α
we say that h is α-good for c and P .

Definition 11 (PAC Learning (Valiant, 1984)) An algorithm A is an (α, β)-accurate PAC learner
for a hypothesis class H over X if for all concepts c ∈ H, all distributions P on X , given an
input of m samples S = (z1, . . . , zm), where zi = (xi, c(xi)) and each xi is drawn i.i.d. from P ,
algorithm A outputs a hypothesis h satisfying

Pr[errorP(c, h) ≤ α] ≥ 1− β,

where the probability is taken over the random choice of the i.i.d. examples in S according to P
and the random coins of the learner A. If the output hypothesis h always satisfies h ∈ H then A is
called a proper PAC learner; otherwise, it is called an improper PAC learner.

Definition 12 For an unlabeled sample S = (xi)
m
i=1, the empirical error between two concepts c, h

is errorS(c, h) = 1
m |{i : c(xi) 6= h(xi)}|. For a labeled sample S = (xi, yi)

m
i=1, the empirical error

of h is errorS(h) = 1
m |{i : h(xi) 6= yi}|.

The previous definition of PAC learning captures the realizable case, that is, the examples are
drawn from some distribution and labeled according to some concept c ∈ H. We next define ag-
nostic learning, i.e., where there is a distribution over labeled examples and the goal is to find a
hypothesis whose error is close to the error of the best hypothesis in H with respect to the distri-
bution. Formally, for a distribution µ on X × {0, 1} and a function f : X → {0, 1} we define
errorµ(f) = Pr(x,a)∼µ[f(x) 6= a].

Definition 13 (Agnostic PAC Learning) Algorithm A is an (α, β)-accurate agnostic PAC learner
for a hypothesis classH with sample complexity m if for all distributions µ on X×{0, 1}, given an

9
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input of m labeled samples S = (z1, . . . , zm), where each labeled example zi = (xi, ai) is drawn
i.i.d. from µ, algorithm A outputs a hypothesis h ∈ H satisfying

Pr

[∣∣∣∣errorµ(h)−min
c∈H
{errorµ(c)}

∣∣∣∣ ≤ α] ≥ 1− β,

where the probability is taken over the random choice of the examples in S according to µ and the
random coins of the learner A. If the output hypothesis h always satisfies h ∈ H then A is called a
proper agnostic PAC learner; otherwise, it is called an improper agnostic PAC learner.

The following bound is due to (Vapnik and Chervonenkis, 1971; Blumer et al., 1989).

Theorem 14 (VC-Dimension Generalization Bound) Let H and P be a concept class and a
distribution over a domain X . Let α, β > 0, and

m ≥ 80

α

(
VC(H) ln

(
16

α

)
+ ln

(
2

β

))
.

Suppose that we draw an unlabeled sample S = (xi)
m
i=1, where xi are drawn i.i.d. from P . Then,

Pr[∃c, h ∈ H s.t. errorP(h, c) > α ∧ errorS(h) < α/2] ≤ β.

The next theorem, due to (Vapnik and Chervonenkis, 1971; Anthony and Bartlett, 2009; An-
thony and Shawe-Taylor, 1993), handles (in particular) the agnostic case.

Theorem 15 (VC-Dimension Agnostic Generalization Bound) There exists a constant γ such
that for every domain X , every concept class H over the domain X , and every distribution µ over
the domain X × {0, 1}: For a sample S = (xi, yi)

m
i=1 where

m ≥ γ
VC(H) + ln( 1

β )

α2

and {(xi, yi)} are drawn i.i.d. from µ, it holds that

Pr
[
∃ h ∈ H s.t.

∣∣errorµ(h)− errorS(h)
∣∣ ≥ α] ≤ β.

Notice that in Theorem 15 the sample complexity is proportional to 1
α2 , as opposed to 1

α in
Theorem 14.

Private Learning. Consider an algorithm A in the probably approximately correct (PAC) model
of Valiant (1984). We say that A is a private learner if it also satisfies differential privacy w.r.t. its
training data.

Definition 16 (Private PAC Learning (Kasiviswanathan et al., 2011)) LetA be an algorithm that
gets an input S = (z1, . . . , zm), where each zi is a labeled example. Algorithm A is an (ε, δ)-
differentially private (α, β)-accurate PAC learner with sample complexity m for a class H over X
if

PRIVACY. Algorithm A is (ε, δ)-differentially private (as in Definition 9);

10
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UTILITY. Algorithm A is an (α, β)-accurate PAC learner for H with sample complexity m (as in
Definition 11).

Note that the utility requirement in the above definition is an average-case requirement, as the
learner is only required to do well on typical samples. In contrast, the privacy requirement is a
worst-case requirement that must hold for every pair of neighboring databases (no matter how they
were generated).

The following definition and lemma are taken from Bun et al. (2015).

Definition 17 (Empirical Learner) AlgorithmA is an (α, β)-accurate empirical learner for a class
H over X with sample complexity m if for every c ∈ H and for every sample S of size m that is
labeled by c, algorithm A outputs a hypothesis h ∈ H satisfying

Pr[errorS(c, h) ≤ α] ≥ 1− β.

Lemma 18 (Bun et al. (2015)) Suppose A is an (ε, δ)-differentially private (α, β)-accurate PAC
learner for a concept class H with sample complexity m. Let A′ be an algorithm, whose input
sample S contains 9m randomly labeled examples. Further assume thatA′ samples with repetitions
m labeled examples from S and returns the output of A on these examples. Then, A′ is an (ε, δ)-
differentially private (α, β)-accurate empirical learner for H with sample complexity 9m. Clearly,
if A is proper, then so is A′.

The Exponential Mechanism. We next describe the exponential mechanism of McSherry and
Talwar (2007). LetX be a domain andH a set of solutions. Given a score function q : X∗×H → N,
and a database S ∈ X∗, the goal is to chooses a solution h ∈ H approximately minimizing q(S, h).
The mechanism chooses a solution probabilistically, where the probability mass that is assigned to
each solution h decreases exponentially with its score q(S, h):

Algorithm 1 AExponentialMechanism

Input: parameter ε, finite solution set H , database S ∈ Xm, and a sensitivity 1 score function q
(i.e., |q(D)− q(D′)| ≤ 1 for every neighboring D,D′ ∈ Xm).

1. Randomly choose h ∈ H with probability exp(−ε·q(S,h)/2)∑
f∈H exp(−ε·q(S,f)/2) .

2. Output h.

Proposition 19 (Properties of the Exponential Mechanism) (i) The exponential mechanism is
ε-differentially private. (ii) Let ê , minf∈H{q(S, f)} and ∆ > 0. The exponential mechanism
outputs a solution h such that q(S, h) ≥ (ê+ ∆m) with probability at most |H| · exp(−ε∆m/2).

Kasiviswanathan et al. (2011) showed that the exponential mechanism can be used as a generic
private learner for a class H. Specifically, when used with the score function q(S, h) = |{i :
h(xi) 6= yi}| = m · errorS(h), the exponential mechanism outputs a “bad” hypothesis h ∈ H such
that errorS(h) > minf∈H{errorS(f)} + ∆ with probability at most |H| · exp(−ε∆m/2). This
results in a generic private proper-learner for every finite concept class H, with sample complexity
Oα,β,ε(log |H|).

11
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Generalization Properties of Differentially Private Algorithms. In this paper we use the fact
that differential privacy implies generalization (Dwork et al., 2015; Bassily et al., 2016; Rogers et al.,
2016; Feldman and Steinke, 2017; Nissim and Stemmer, 2017; Jung et al., 2020): differentially
private learning algorithms satisfy that their empirical loss is typically close to their population loss.
We use the following variant of this result, which is a multiplicative version that applies also to the
case that ε > 1 (as needed in this paper).

Theorem 20 (DP Generalization – Multiplicative version (Dwork et al., 2015; Bassily et al.,
2016; Feldman and Steinke, 2017; Nissim and Stemmer, 2017)) LetA be an (ε, δ)-differentially
private algorithm that operates on a database of S ∈ Xn and outputs a predicate test : X →
{0, 1}. Let P be a distribution over X and S be a database containing n i.i.d. elements from P .
Then,

Pr
S∈PXn,

test←A(S)

[
E

x∈PX
[test(x)] > e2ε

(∑
x∈S test(x)

n
+

10

εn
log

(
1

εδn

))]
< O

(
εδn

log( 1
εδn)

)
.

Organization

We refer the reader to the appendix for the technical sections of this paper.
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Appendix A. Closure of Littlestone Classes

In this section we study closure properties for Littlestone classes. We begin in Appendix A.1 with a
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unions. Then, in Appendix A.2 we prove our main results in this part (Theorems 3 and 4) that bound
the variability of the Littlestone and Thresholds dimension under arbitrary compositions.
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A.1. Closure Under Unions

We begin with two basic bounds on the variability of the Littlestone/Threshold dimension under
union. Note that here H1 ∪ H2 denotes the usual union: H1 ∪ H2 = {h : h ∈ H1 or h ∈ H2}.
These bounds are useful as they allows us to reduce a bound on the dimension of G(H1,H2) for
arbitraryH1,H2 to the case whereH1 = H2 (because G(H1,H2) ⊆ G(H,H) forH = H1 ∪H2).

Observation 21 (Threshold Dimension Under Union) Let H1,H2 ⊆ {0, 1}X be hypothesis
classes with T (Hi) = ti. Then,

T (H1 ∪H2) ≤ t1 + t2.

Moreover, this bound is tight: for every t1, t2, there are classes H1,H2 with Threshold dimension
t1, t2 respectively such that T (H1 ∪H2) = t1 + t2.

Proof For the upper bound, observe that if h1, . . . , hm ∈ H1 ∪H2 threshold-shatters the sequence
x1, . . . , xm then {hi : hi ∈ Hj} threshold-shatters {xi : hi ∈ Hj} for j ∈ {1, 2}. For the lower
bound, set X = [t1 + t2],H1 = {hi : i ≤ t1}, andH2 = {hi : t1 < i ≤ t1 + t2}, where hi(j) = 1
if and only if i ≤ j.

Proposition 22 (Littlestone Dimension Under Union) Let H1,H2 ⊆ {0, 1}X be hypothesis
classes with Ldim(Hi) = di. Then,

Ldim(H1 ∪H2) ≤ d1 + d2 + 1.

Moreover, this bound is tight: for every d1, d2, there are classes H1,H2 with Littlestone dimension
d1, d2 respectively such that Ldim(H1 ∪H2) = d1 + d2 + 1.

Proof There are several ways to prove this statement. One possibility is to use the realizable
online mistake-bound setting (Littlestone, 1987) and argue that H1 ∪ H2 can be learned with at
most d1 + d2 + 1 mistakes in this setting. We will present here an alternative inductive argument,
which may be of independent interest. Towards this end, it is convenient to define the depth of the
empty tree as −1, and that of a tree consisting of one vertex (leaf) as 0.

Consider a shattered tree T of depth d = Ldim(H1 ∪ H2) with leaves labelled H1 and H2

in the obvious way. Recall the notion of a subtree in Theorem 7, and let x ≤ Ldim(H1) be the
maximum depth of a complete binary subtree all whose leaves are H1 leaves, and y ≤ Ldim(H2)
the maximum depth of a subtree all whose leaves are H2-leaves. Similarly, let xL, yL denote the
maximum depth of a H1-subtree and a H2-subtree in the tree rooted at the left child of the root of
T , and let xR, yR be the same for the tree rooted at the right child.

It suffices to show that x+y ≥ d−1: clearly x ≥ max(xL, xR) and also x ≥ min(xL, xR) + 1
thus x ≥ (xL + xR)/2 + 1/2. Similarly y ≥ (yL + yR)/2 + 1/2, hence

x+ y ≥ xL + yL
2

+
xR + yR

2
+ 1

and this gives by induction on d (starting with d = 0 or 1) that x+ y ≥ d− 1 as required.
To see that this bound is tight, pick n ≥ d1 + d2 + 1 and set

H1 =
{
h : [n]→ {0, 1} :

∑
i

hi ≤ d1

}
and H1 =

{
h : [n]→ {0, 1} :

∑
i

hi ≥ n− d2

}
.
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Figure 1: An illustration of the tree shattered by H′ in the construction in Theorem 23. In this illustra-
tion blog kc equals 3.

One can verify that Ldim(Hi) = di, for i = 1, 2 and that Ldim(H1 ∪ H2) = d1 + d2 + 1, as
required (in fact, even the VC dimension ofH1 ∪H2 is d1 + d2 + 1).

Theorem 22 implies that Ldim(∪ki=1Hi) = O(k · d) provided that Ldim(Hi) ≤ d for al i, and
that this inequality can be tight when k = 2. Theorem 23 shows that for a larger k this bound can be
significantly improved to 3d+3 log k. This proposition demonstrates a difference with the threshold
dimension. Indeed, while the bound above scales logarithmically with k, in the case of the threshold
dimension a linear dependence in k is necessary: set X = [k · t],Hi = {hj : (i−1) · t < ji ≤ i · t},
where hi(j) = 1 if and only if i ≤ j. Thus, Ldim(Hi) = t for all i and Ldim(∪ki=1Hi) = k · t >>
t+ log k.

Proposition 23 (Littlestone Dimension Under Multiple Unions) Let H1, . . . ,Hk ⊆ {0, 1}X be
hypothesis classes with Ldim(Hi) ≤ d. Then,

Ldim(

k⋃
i=1

Hi) ≤ 3d+ 3 log k.

Moreover, this bound is tight up to a constant factor: for every k, there are classesH1, . . . ,Hk with
Ldim(Hi) ≤ d such that Ldim(∪iHi) ≥ d+ blog kc.

Proof We begin with the lower bound: pick any class H ⊆ {0, 1}X with Littlestone dimension d,
and let T be a tree of depth d that is shattered by H. Pick blog kc new points z1, . . . , zblog kc /∈ X ,
and extend the domain X to X ′ = X ∪ {z1, . . . , zblog kc}. DefineH′ ⊆ {0, 1}X′ by extending each
h ∈ H to the zi’s in each of the k′ = 2blog kc possible ways. (So, each h ∈ H has k′ copies in H′,
one for each possible pattern on the zi’s.) Thus, H′ is a union of k′ copies of H, one copy for each
boolean pattern on the zi’s. In particular,H′ is the union of k′ classes with Littlestone dimension d.
Also note that Ldim(H′) ≥ blog kc+ d, as witnessed by the tree that is illustrated in Figure 1.

The upper bound is based on a multiplicative-weights argument. Recall that the Littlestone
dimension equals the optimal number of mistakes performed by a deterministic online learner in
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the mistake-bound model (i.e. online learning when the sequence of input examples is labelled by
some h ∈ H). Thus, it suffices to demonstrate an online learner for ∪ki=1Hi that makes at most
3d + 3 log k mistakes. Pick for every Hi an online learner Ai that makes at most d mistakes on
input sequences consistent with Hi. We set the online learning algorithm A for H = ∪ki=1Hi to
be the Weighted Majority Algorithm of Littlestone and Warmuth (1989) with the k experts being
the algorithmsA1, . . . ,Ak. Now, consider an input sequence S = (x1, y1), . . . , (xT , yT ) consistent
withH. Thus, S is consistent withHi for some i ≤ k and thereforeAi makes at most dmistakes on
it. Thus, by the multiplicative weights analysis (see e.g. Corollary 2.1 in Littlestone and Warmuth
(1989)), the number of mistakes A makes on S is at most

log k + d log 1
β

log 2
1+β

,

where 0 ≤ β < 1 is multiplicative factor that discounts the weights of wrong experts. The upper
bound follows by setting β = 1/2.

A.2. Closure Under Composition

A.2.1. LITTLESTONE DIMENSION

Proof of Theorem 3. We will first show that for an odd k, the majority-vote G = MAJk satisfies

Ldim(MAJk(H1, . . . ,Hk)) ≤ Õ(k2 · d). (3)

(Recall that d = maxi{Ldim(Hi)}.) Then, we use this to argue that for any G,

Ldim(G(H1, . . . ,Hk)) ≤ Õ(22kk2d). (4)

We start with proving (3). Let H = ∪ki=1Hi and Hmaj = MAJk(H, . . . ,H). Since
MAJk(H1, . . . ,Hk) ⊆ Hmaj, it suffices to show that Ldim(Hmaj) ≤ Õ(k2d). We use online
boosting towards this end. Online boosting (in the realizable setting) is an algorithmic frame-
work that allows to transform a weak online learner for H with a non-trivial mistake-bound of
(1/2 − γ)T + R(T ), where R(T ) = o(T ) is a sublinear regret function, to a strong online learner
with a vanishing mistake-bound of O(R(T )/γ). Online boosting has been studied by several works
(e.g. Chen et al. (2012); Beygelzimer et al. (2015); Brukhim et al. (2020)). We use here the variant
given by Brukhim et al. (2020) (see Theorem 2 there)7.

We want to construct a weak learner forHmaj. Which weak learner to use? Recall that by Ben-
David et al. (2009) (see Equation (1)) there exists an agnostic online learning algorithm W for H
whose (expected) regret bound is

R(T ) = O(
√

Ldim(H)T log T ).

We claim that W is a weak learner forHmaj with mistake-bound

(1/2− 1/k) · T +R(T ). (5)

7. The bound in Theorem 2 in (Brukhim et al., 2020) contains an additional term that depends on N , the number of
copies of the weak learner that are used by the boosting algorithm. Since here we are only concerned with the number
of mistakes, we can eliminate this term by letting N →∞.
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To prove this, it suffices to show that for every sequence of examples (x1, y1), . . . , (xT , yT ) that is
consistent withHmaj there exists h ∈ H that makes at most (1/2− 1/k) · T mistakes on it. Indeed,
let h1, . . . , hk such that yt = MAJk(h1(xt), . . . , hk(xt)) for t ≤ T . Thus, on every example (xt, yt)
at most 1/2 − 1/k fraction of the hi’s make a mistake on it. By averaging, this implies that one of
the hi makes at most (1/2− 1/k)T mistakes in total, and (5) follows.

Now, by applying online boosting with W as a weak learner, we obtain an algorithm with a
mistake-bound of at most

O
(R(T )

1/k

)
= O

(
k
√

Ldim(H)T log T
)
.

Thus, since the Littlestone dimension characterizes the optimal mistake-bound, lettingD = Ldim(Hmaj),
we get that

(∀T ≥ D) : D ≤ O
(
k
√

Ldim(H)T log T
)
,

and in particular D ≤ O
(
k
√

Ldim(H)D logD
)

, which implies that

D ≤ Õ(k2Ldim(H))

≤ Õ(k2d+ k2 log k) (Theorem 23)

= Õ(k2d),

and finishes the proof of (3).
We next set out to prove (4). The idea is to represent an arbitrary G using a formula that only

uses majority-votes and negations. Let G : {0, 1}k → {0, 1} be an arbitrary boolean function. It is
a basic fact that G can be represented by a Disjunctive Normal Form (DNF) as follows:

G =
m∨
i=1

( k∧
j=1

zi,j

)
,

where each zi,j ∈ {xj ,¬xj}, and m ≤ 2k. Now, note that
k∧
j=1

zi,j = MAJ2k−1(zi,1, . . . , zi,k,0, . . . ,0︸ ︷︷ ︸
k−1

),

and similarly
m∨
i=1

( k∧
j=1

zi,j

)
= MAJ2m−1

( k∧
j=1

z1,j , . . . ,
k∧
j=1

zm,j ,1, . . . ,1︸ ︷︷ ︸
m−1

)
.

Thus, G(H1, . . . ,Hk) can be written as MAJ2m−1(H′1, . . . ,H′2m−1), where for i > m,H′i = {h0}
is the class that contains the all-zero function h0, and for i ≤ m,

H′i = MAJ2k−1(H′′i,1, . . . ,H′′i,2k−1)

such that each class H′′i,j is either Ht or its negation ¬Ht for some t ≤ k, or H′′i,j is the class {h1}
that contains the all-one function. We now apply (3) to conclude that Ldim(H′i) = Õ(k2d) for all
i ≤ m, and that

Ldim(G(H1, . . . ,Hk)) = Õ
(
m2(k2d)

)
= Õ(22kk2d)

as required.
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A.2.2. THRESHOLD DIMENSION

Proof of Theorem 3. We begin with the upper bound. Let T (G(H1, . . . ,Hk)) = n. It suffices
to show that if n ≥ 24k4k·t then there is i ≤ k such that T (Hi) ≥ t. By assumption, there are
x1, x2, . . . , xn ∈ X and functions hi,j ∈ Hj , for 1 ≤ i ≤ n, 1 ≤ j ≤ k such that

(∀i, j ≤ n) : G(hi,1, hi,2, . . . , hi,k)(xj) = 1 ⇐⇒ i ≤ j.

Construct a coloring of the edges of the complete graph on [n] by 4k colors as follows: for each
1 ≤ p < q ≤ n, the color of the edge {p, q} is given by the following ordered sequence of 2k bits:(

hp,1(xq), hp,2(xq), . . . , hp,k(xq),

hq,1(xp), hq,2(xp), . . . , hq,k(xp)
)
.

By Ramsey Theorem (Ramsey, 1930), if n ≥ (4k)2t·4k = 24k4k·t then there is a monochromatic set
A ⊆ [n] of size |A| = 2t.8 Denote the elements of A by

A = {i1 < j1 < i2 < j2 < · · · < it < jt},

and let u = (u1, . . . , uk), v = (v1, . . . , vk) such that the color of every pair in A is

(v1, v2, . . . , vk,

u1, u2, . . . , uk).

Thus, for every pair p, q ≤ d and every r ≤ k:

hip,r(xjq) =

{
vr p ≤ q
ur p > q.

We claim that u 6= v: indeed, xj1 , xj2 , xj3 , . . . , xjt is threshold-shattered by the functions

G(hi1,1, hi1,2, . . . , hi1,k), G(hi2,1, hi2,2, . . . , hi2,k), · · · , G(hid,1, hid,2, . . . , hit,k).

Thus,

p ≤ q =⇒ G(v) = G(hip,1, . . . , hip,k)(xq) = 1,

p > q =⇒ G(u) = G(hip,1, . . . , hip,k)(xq) = 0.

Therefore, v ∈ G−1(0) and u ∈ G−1(1) and in particular u 6= v. Pick an index r so that ur 6= vr.
Therefore, for every p, q ≤ t:

hip,r(xjq) =

{
vr p ≤ q
ur p > q,

and vr 6= ur.

This shows that either x1, . . . , xt is threshold shattered by Hr (if vr = 1, ur = 0), or xt, . . . , x1 is
thresholds shattered by Hr (if vr = 0, ur = 1); in either way, the threshold dimension of Hr is at
least t. This completes the proof of the upper bound.

8. We use here the following basic bound: if n ≥ cr·c, then for every coloring of the edges of the complete graph Kn

in c colors there exists a monochromatic set of size r. This follows, e.g. from Corollary 3 in Greenwood and Gleason
(1955).
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Lower Bound. We next prove the lower bound. Let m = 2bt/5c, and construct H ⊆ {0, 1}m
randomly as follows: H consists of 2m random functions

H = {f1, . . . , fm, g1, . . . , gm},

where for each i set fi(j) = gj(j) = 0 for j > i, and for j ≤ i, pick uniformly at random one
of fi, gi, set it to be 1 in position j and set the other to be 0 in position j. All of the above

(
m−1

2

)
random choices are done independently. By construction, {h1∨h2 : h1, h2 ∈ H} threshold-shatters
the sequence 1, 2, . . . ,mwith probability 1 and hence has threshold dimension at leastm. It suffices
to show that with a positive probability it holds that

T (H) ≤ 2k, (6)

where k = (2 + 1
logm) logm = 2bt/5c+ 1. Indeed, 2k = 4bt/5c+ 2 ≤ t whenever t ≥ 6.

We set out to prove (6). Consider the following event:

E := There exist no x1, . . . , xk ∈ [m], h1, . . . , hk ∈ H such that hi(xj) = 1 for all i, j ≤ k.

Note that E implies that T (H) ≤ 2k and therefore it suffices to show that Pr[E] > 0. Towards this
end we use a union bound: we define a family of “bad” events whose total sum of probabilities is
less than one with the property that if none of the bad events occurs then E occurs. The bad events
are defined as follows: for any pair of subsets A,B ⊆ [m] of size |A| = |B| = k, let BA,B denote
the event

BA,B := “For every i ∈ A there exists ri ∈ {fi, gi} such that ri(j) = 1 for all j ∈ B.”

Note that indeed ¬E implies BA,B for some A,B and thus it suffices to show that with a positive
probability none of the BA.B occurs. We claim that

Pr[BA,B] ≤ 2−k(k−1).

Indeed, for a fixed i ∈ A, the probability that one of fi, gi equals to 1 on all j ∈ B is at most 2−(k−1).
By independence, the probability that the latter simultaneously holds for every i ∈ A is at most
2−k(k−1). Thus, the probability that BA,B occurs for at least one pair A,B is at most(

m

k

)2

2−k(k−1) < 22k logm−k(k−1) ≤ 1,

where the last inequality holds because k = (2 + 1
logm) logm.

Appendix B. The Private Relabeling Procedure

In this section we describe a private relabeling procedure ARelabel (discussed in Section 1.1). This
procedure is used both for constructing a private agnostic learner and for proving closure of private
learning. We start by explaining the difficulties in designing the relabeling procedure and how we
overcome them. We then provide a formal description of the relabeling procedure in ARelabel and
prove that it can be used to construct a private algorithm that produces a hypothesis that has good
generalization properties; this is done by presenting an algorithm ARelabelAndLearn.
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LetH be a hypothesis class, and suppose that we have a differentially private learning algorithm
A forH for the realizable setting. That is, A is guaranteed to succeed in its learning task whenever
it is given a labeled database that is consistent with some hypothesis inH. Now suppose that we are
given a database S sampled from some distribution P on X and labeled by some concept c∗ (not
necessarily in H). So, S might not be consistent with any hypothesis in H, and we cannot directly
apply A on S. Heuristically, one might first relabel the database S using some function from H,
and then apply A on the relabeled database. Can we argue that such a paradigm would satisfy
differential privacy, or is it the case that the relabeling process “vaporises” the privacy guarantees of
algorithm A?

Building on a result of Beimel et al. (2015), we show that it is possible to relabel the database
before applying algorithm A while maintaining differential privacy. As we mentioned in the intro-
duction, the relabeling procedure of Beimel et al. (2015) instantiates the exponential mechanism in
order to choose a hypothesis h that is (almost) as close as possible to the original labels in S, uses
this hypothesis to relabel the database, and applies the given differentially private algorithm A on
the relabeled database to obtain an outcome f .

Now we want to argue that f has low generalization error. We known (by the guarantees of
the exponential mechanism) that the hypothesis h with which we relabeled S has a relatively small
empirical error on S (close to the lowest possible error). Via standard VC arguments, we also know
that h has a relatively small generalization error. Therefore, in order to show that the returned
hypothesis f has low generalization error, it suffices to show that errorP(f, h) is small. This might
seem trivial at first sight: Since asA is a PAC learner, and since it is applied on a database S labeled
by the hypothesis h ∈ H, it must (w.h.p.) return a hypothesis f with small error w.r.t. h. Is that
really the case?

The difficulty with formalizing this argument is thatA is only guaranteed to succeed in identify-
ing a good hypothesis when it is applied on an i.i.d. sample from some underlying distribution. This
is not true in our case. Specifically, we first sampled the database S from the underlying distribution,
then based on S, we identified the hypothesis h and relabeled S using h. For all we know, A might
completely fail when executed on such a database (not sampled in an i.i.d. manner).9 Therefore,
before applying A on the relabeled database, we subsample i.i.d. elements from it, and apply A on
this newly sampled database. Now we know that A is applied on an i.i.d. sampled database, and so,
by the utility guarantees of A, the hypotheses f and h are close w.r.t. the underlying distribution.
However, this subsampling step changes the distribution from which the inputs of A are coming
from. This distribution is no longer P (the original distribution from which S was sampled), rather
it is the uniform distribution on the empirical sample S. This means that what we get from the utility
guarantees of A is that errorS(f, h) is small. We need to show that errorP(f, h) is small.

If A is a proper learner, then f is itself in H, and hence, using standard VC arguments, the fact
that errorS(f, h) is small implies that errorP(f, h) is small. However, if A is an improper learner,
then this argument breaks because f might come from a different hypothesis class with a much
larger VC dimension.

9. To illustrate this issue, suppose that the learnerA first checks to see if exactly half of the elements in its input sample
are labeled by 1 and exactly half of them are labeled by 0. If that it the case, then A fails. Otherwise, A identifies a
hypothesis f with small empirical error. When the input elements are correctly sampled (i.i.d. from some underlying
distribution) the probability that exactly half of them will be labeled as 0 is low enough such that A remains a valid
learning algorithm. However, if we first sample the elements, and then choose a hypothesis that evaluates to 1 on
exactly half of them, then this breaks the utility guarantees of A completely.
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To overcome this difficulty, we will instead relate errorS(f, h) and errorP(f, h) using the gen-
eralization properties of differential privacy. These generalization properties state that if a predicate
t was identified using a differentially private algorithm, then (w.h.p.) the empirical average of this
predicate and its expectation over the underlying distribution are close. More specifically, we would
like to consider the predicate (h⊕f)(x) = h(x) ⊕ f(x), which would complete our mission be-
cause the empirical average of that predicate on S is errorS(f, h), and its expectation over P is
errorP(f, h). However, while f is indeed the outcome of a differentially private computation, h is
not, and we cannot directly apply the generalization properties of differential privacy to this predi-
cate. Specifically, our relabeling procedure does not reveal the chosen hypothesis h.

We overcome this issue by introducing the following conceptual modification to the relabeling
procedure. Let us think about the input database S as two databases S = D◦T . In the relabeling
procedure we still relabel all of S using h. We show that (a small variant of) this relabeling proce-
dure still satisfies differential privacy w.r.t. D even if the algorithm publicly releases the relabeled
database T . This works in our favour because given the relabeled database T we can identify a
hypothesis h′ ∈ H that agrees with it, and by standard VC arguments we know that errorP(h, h′) is
small (since both h, h′ come from H). In addition, h′ is computed by post-processing the relabeled
database T which we can view as the result of a private computation w.r.t.D. Therefore, we can now
use the generalization properties of differential privacy to argue that errorD(f, h) ≈ errorP(f, h),
which would allow us to complete the proof. We remark that the conceptual modification of treating
S as two databases S = D◦T is crucial for our analysis. We do not know if the original relabeling
procedure of Beimel et al. (2015) can be applied when A is an improper learner.

In Algorithm 2 we formally describe ARelabel. We next provide an informal description of the
algorithm. LetH be a hypothesis class, and let q be a score function. Algorithm ARelabel takes two
input databases D,T ∈ (X × {0, 1})∗, where the labels in D and T are arbitrary. The algorithm
relabels D and T using a hypothesis h ∈ H with near optimal score q(D,h). The output of this
algorithm is the two relabeled databases D̃ and T̃ . Observe that algorithm ARelabel is clearly not
differentially private, since it outputs its input database (with different labels). Before formally
presenting algorithm ARelabel, we introduce the following definition.

Definition 24 Let X be a domain and let H be a class of functions over X . A function q : (X ×
{0, 1})∗ ×H → R has matched-sensitivity k if for every S ∈ (X × {0, 1})∗, every (x, y), (x′y′) ∈
X × {0, 1}, and every h, h′ ∈ H that agree on every element of S we have that∣∣q (S ∪ {(x, y)}, h)− q

(
S ∪ {(x′, y′)}, h′

)∣∣ ≤ k.
In words, a score function q has low matched-sensitivity if given “similar” databases it assigns

“similar” scores to “similar” solutions. Note that if a function q has matched-sensitivity 1, then in
particular, it has (standard) sensitivity (at most) 1.

Example 1 Let H be a concept class over X . Then, the score function q(S, h) that takes a labeled
database S ∈ (X × {0, 1})∗ and a concept h ∈ H and returns the number of errors h makes on S
has matched-sensitivity at most 1.

We next present an algorithm ARelabelAndLearn and analyze its properties. This algorithm ab-
stracts parts of the techniques we apply in the following sections, and is used for unifying the
proofs of privacy and correctness of in these two sections. We start with an informal descrip-
tion of algorithm ARelabelAndLearn. The algorithm first applies the relabeling algorithm ARelabel
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Algorithm 2 ARelabel

Global parameters:

• H is a concept class over a domain X ,

• q : (X × {0, 1})∗ × H → R is a score function with matched-sensitivity at most 1 (see
Definition 24), which given a labeled database assigns scores to concepts fromH,

Inputs: Labeled databases D,T ∈ (X × {0, 1})∗. We denote S = D◦T .

1. Let P = {p1, . . . , p`} be the set of all unlabeled points appearing at least once in S.

2. Let H = ΠH(P ) = {h|P : h ∈ H}, where h|P denotes the restriction of h to P (i.e., H
contains all patterns ofH when restricted to P ).

3. Choose h ∈ H using the exponential mechanism with privacy parameter ε=1, score func-
tion q, solution set H , and the database D.

4. Relabel S using h, and denote the relabeled databases as Sh = Dh◦T h. That is, if D =
(xi, yi)

d
i=1 then Dh = (xi, h(xi))

d
i=1, and similarly with T h.

5. Output Dh, T h.

and then applies a private algorithm to the relabeled database. For the analysis of our algorithms
in the sequence, ARelabelAndLearn also publishes part of the relabeled database. We prove that
ARelabelAndLearn guarantees differential privacy w.r.t. to the part of the database that it did not pub-
lish.

Algorithm 3 ARelabelAndLearn

Global parameters:

• H is a concept class over a domain X ,

• q : (X × {0, 1})∗ × H → R is a score function with matched-sensitivity at most 1, which
given a labeled database assigns scores to concepts fromH,

• A is a an (ε, δ)-differentially private algorithm.

Inputs: Labeled databases D,V,W ∈ (X × {0, 1})∗. We denote S = D◦V ◦W .

1. Execute ARelabel(D,V ◦W ) with score function q and hypothesis class H to obtain rela-
beled databases D̃, Ṽ , W̃ .

2. Let h be a hypothesis inH that is consistent with Ṽ .

3. Output A(S), Ṽ , h.

In Lemma 25, we analyze the privacy properties of algorithm ARelabelAndLearn.

Lemma 25 Let A be an (ε, δ)-differentially private algorithm and q be a score function with
matched-sensitivity 1. Then, for every V , algorithm

AVRelabelAndLearn(D,W ) = ARelabelAndLearn(D,V,W )
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is (ε + 3, 4eδ)-differentially private w.r.t. D◦W . In particular, A(ARelabel(D,T )) is (ε + 3, 4eδ)-
differentially private.

Proof Fix a database V , and letD1◦W1 andD2◦W2 be two neighboring databases. We assume that
D1◦W1 and D2◦W2 differ on their D portion, so that W1 = W2 = W and D1 = D ∪ {(p1, y1)}
and D2 = D ∪ {(p2, y2)}. The analysis for the other case is essentially identical. Consider the
executions of ARelabel on S1 = D1◦V ◦W and on S2 = D2◦V ◦W , and denote by H1, P1 and by
H2, P2 the elements H,P as they are in the executions of algorithm ARelabel on S1 and on S2.

Since S1 and S2 are neighbors, it follows that |P1 \ P2| ≤ 1 and |P2 \ P1| ≤ 1. Let K =
P1∩P2. Since every pattern in ΠH(K) has at most two extensions in ΠH(Ht), we get that for every
t ∈ {1, 2}.

|ΠH(K)| ≤ |ΠH(Pt)| ≤ 2|ΠH(K)|.

Thus, |H1| ≤ 2|H2| and similarly |H2| ≤ 2|H1|.
More specifically, for every t ∈ {1, 2} and every pattern h ∈ ΠC(K) there are either one or

two (but not more) patterns in Ht that agree with h on K. We denote these one or two patterns
by h(0)

t and h(1)
t , which may be identical if only one unique pattern exists. By the fact that q has

matched-sensitivity at most 1, for every t1, t2 ∈ {1, 2} and every b1, b2 ∈ {0, 1} we have that

|q(D1, h
(b1)
t1

)− q(D2, h
(b1)
t2

)| = |q(D ∪ {(p1, y1)}, h1)− q(D ∪ {(p2, y2)}, h2)| ≤ 1,

where the last inequality is because h(b1)
t1

and h(b2)
t2

agree on every point in D and because q has
matched-sensitivity at most 1.

For every h ∈ ΠH(K) and t ∈ {1, 2}, letwt,h be the probability that the exponential mechanism
chooses either h(0)

t or h(1)
t in Step (3) of the execution of ARelabel on Si. We get that for every

h ∈ ΠC(K),

w1,h ≤
exp(1

2 · q(D1, h
(0)
1 )) + exp(1

2 · q(D1, h
(1)
1 ))∑

f∈ΠH(P1) exp(1
2 · q(D1, f))

≤
exp(1

2 · q(D1, h
(0)
1 )) + exp(1

2 · q(D1, h
(1)
1 ))∑

f∈ΠH(K) exp(1
2 · q(D1, f

(0)
1 ))

≤
exp(1

2 · [q(D2, h
(0)
2 ) + 1]) + exp(1

2 · [q(D2, h
(1)
2 ) + 1])

1
2

∑
f∈ΠH(K)

(
exp(1

2 [q(D2, h
(0)
2 )− 1]) + exp(1

2 [q(D2, h
(1)
2 )− 1])

)
≤ 2e ·

exp(1
2 · q(D2, h

(0)
2 )) + exp(1

2 · q(D2, h
(1)
2 ))∑

f∈ΠH(P2) exp(1
2 · q(D2, f))

≤ 4e · w2,h.

We are now ready to conclude the proof. For every h ∈ ΠH(K), let It be the event that
the exponential mechanism chooses in Step (3) of the execution on St either h(0)

t or h(1)
t and ht

be the random variable denoting the pattern that the exponential mechanism chooses in Step (3)
of the execution on St conditioned on the event It. Observe that Sh0 and Sh1 are distributions
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on neighboring databases; thus, applying the differentially private A on them satisfies differential
privacy, i.e., for every possible sets of outputs F of A:

Pr
[
A
(
Sh11

)
∈ F

]
≤ eε Pr

[
A
(
Sh22

)
∈ F

]
+ δ.

Recall that algorithm ARelabelAndLearn returns three outcomes: the relabeled database V h, hy-
pothesis h that is consistent with V h, and the output of algorithm A. As h is computed from
V h, we can consider it as post-processing and ignore it, and assume for the the privacy analysis
that ARelabelAndLearn only has two outputs: V h and the output of algorithm A. Also recall that
the database V is fixed, and observe that once the hypothesis h is fixed (in Step (3) of algorithm
ARelabel), the relabeled database V h is also fixed. Furthermore, for every h ∈ ΠH(K) we have that
V h

(0)
t = V h

(1)
t , since h(0)

t and h(1)
t agree on all of V .

Let F ⊆ (X×{0, 1})∗×R be a set of possible outcomes for algorithmARelabelAndLearn, where
R is the range of algorithm A. For every h we denote

Fh =
{
r ∈ R : (V h, r) ∈ F

}
.

Observe that for every h ∈ ΠC(K) we have that

F
h
(0)
1

= F
h
(1)
1

= F
h
(1)
2

= F
h
(2)
2

= Fh,

because h(0)
1 , h

(1)
1 , h

(0)
2 , h

(1)
2 agree on all points in V . We calculate,

Pr[ARelabelAndLearn (S1) ∈ F ] =
∑

h∈ΠH(K)

w1,h · Pr
[
ARelabelAndLearn (S1) ∈ F

∣∣∣It]
=

∑
h∈ΠH(K)

w1,h · Pr
[
A
(
Sh11

)
∈ Fh1

]
≤

∑
h∈ΠH(K)

4e w2,h ·
(
eε Pr

[
A
(
Sh22

)
∈ Fh2

]
+ δ
)

≤ eε+3 · Pr[B (S2) ∈ F ] + 4eδ.

The next claim proves that ARelabel returns a hypothesis whose score is close to the hypothesis
with smallest score in the classH.

Claim 26 Fix α and β, and let S = D◦T ∈ (X × {0, 1})∗ be a labeled database such that

|D| ≥ 2

α
ln

(
1

β

)
+

2 VC(H)

α
ln

(
e|S|

VC(H)

)
.

Consider the execution of ARelabel on S, and let h denote the hypothesis chosen on Step (3). With
probability at least (1 − β) we have that q(D,h) ≤ minc∈H{q(D, c)} + α|D|. In particular,
assuming that |D| ≥ |S|/2, it suffices that

|D| ≥ 4

α
ln

(
1

β

)
+

10 VC(H)

α
ln

(
20e

α

)
.
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Proof Note that by Sauer’s lemma,

|H| = |ΠH(P )| ≤
(

e|P |
VC(H)

)VC(H)

≤
(

e|S|
VC(H)

)VC(H)

.

As H contains all patterns of H restricted to S, the set H contains a pattern f∗ s.t. q(D, f∗) =
minc∈H{q(D, c)}. Hence, Proposition 19 (properties of the exponential mechanism) ensures that
the probability of the exponential mechanism choosing an h s.t. q(D,h) > minc∈H{q(D, c)} + α
is at most

|H| · exp(−α|D|
2

) ≤
(

e|S|
VC(H)

)VC(H)

· exp(−α|D|
2

),

which is at most β whenever |D| ≥ 2
α ln( 1

β ) + 2 VC(H)
α ln

(
e|S|

VC(H)

)
.

Let f denote the hypothesis returned by A and let h be a hypothesis consistent with the pattern
chosen on Step (3) of ARelabel. The next lemma relates the generalization error errorP(f, h) to the
empirical error errorD(f, h).

Lemma 27 Fix α and β, and let µ be a distribution on X×{0, 1} and P be the marginal distribu-
tion on unlabeled examples from X . Furthermore, let S = D◦V ◦W ∈ (X × {0, 1})∗ be database
sampled i.i.d. from µ such that

|V | ≥ O

VC(H) ln
(

1
α

)
+ ln

(
1
β

)
α

 ,

and

|D| ≥ O

VC(H) + ln
(

1
β

)
α2

 .

Consider the execution ofARelabelAndLearn on S, let h ∈ H be a hypothesis consistent with the pat-
tern chosen on Step (3) of ARelabel and assume that A outputs some hypothesis f . With probability
at least 1−O(β + δ|D|) we have that

errorP(f, h) ≤ O(errorD(f, h) + α).

Proof Let h be the third output of ARelabelAndLearn, i.e., a hypothesis from H that is consistent
with V h. Since h and h agree on V and |V | is big enough, by Theorem 14, with probability at least
1− β (over sampling V ),

errorP(h, h) ≤ α. (7)

Since |D| is big enough, by Theorem 15 (applied to H ⊕ H and the distribution µ that samples x
according to P and labels it with 0), with probability at least 1− β,

errorD(h, h) ≤ errorP(h, h) + α ≤ 2α. (8)
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We will now use the generalization properties of differential privacy to argue that errorP(f, h)
is small. By Lemma 25, algorithm ARelabelAndLearn is (O(1), O(δ))-differentially private w.r.t. the
database D. In addition, by post-processing the outcomes of ARelabelAndLearn (the hypotheses f
and h) we can define the following predicate test : X × {0, 1} → {0, 1} where test(x, y) = 1 if
h(x) 6= f(x), and test(x, y) = 0 otherwise. Now observe that

errorP(f, h) = Pr
x∼P

[h(x) 6= f(x)] = E
x∼P

[1{h(x) 6= f(x)}] = E
(x,y)∼µ

[test(x, y)]. (9)

Similarly,

errorD
(
f, h
)

=
1

|D|
∑

(x,y)∈D

1
{
h(x) 6= f(x)

}
=

1

|D|
∑

(x,y)∈D

test(x, y). (10)

Recall that test is the result of a private computation on the database D (obtained as a post-
processing of the outcomes of ARelabelAndLearn). Also observe that since ARelabelAndLearn is
(O(1), O(δ))-differentially private, it is in particular,

(
O(1), O

(
δ + β

|D|

))
-differentially private

for every choice of β and |D|. Hence, assuming |D| ≥ O
(

1
α log 1

β

)
, Theorem 20 (the generaliza-

tion properties of differential privacy) states that with probability at least 1−O(δ|D|+ β),

E
(x,y)∼µ

[test(x, y)] ≤ O

 1

|D|
∑

(x,y)∈D

test(x, y) +
1

|D|
log

(
1

δ|D|+ β

)
≤ O

 1

|D|
∑

(x,y)∈D

test(x, y) +
1

|D|
log

(
1

β

)
≤ O

 1

|D|
∑

(x,y)∈D

test(x, y) + α

 . (11)

So, by (9), (10), and (11), with probability at least 1−O(β + δ|D|)

errorP(f, h) ≤ O(errorD(f, h) + α). (12)

Thus, the next inequality, which concludes the proof, holds with probability 1−O(β + δ|D|).

errorP(f, h) = errorP(f, h) + errorP(h, h)

≤ O(errorD(f, h) + α) (by (7) and (12))

≤ O(errorD(f, h) + errorD(h, h) + α)

≤ O(errorD(f, h) + α) (by (8)).
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Appendix C. Private PAC Implies Private Agnostic PAC

In this section we show that private learning implies private agnostic learning (with essentially the
same sample complexity) even for improper learning algorithms. Algorithm APrivateAgnostic, the
agnostic algorithm for a classH, first applies algorithmARelabel on the data and relabels the sample
using a hypothesis inH that has close to minimal empirical error, and then uses the private learning
algorithm (after sub-sampling) to learn the relabeled database.

Algorithm 4 APrivateAgnostic

Inputs: A labeled sample S ∈ (X × {0, 1})m.
Auxiliary algorithm: A private learner A for the concept classH.

1. Partition S into S = D◦T , where |D| = |T | = |S|/2.

2. Execute ARelabel with input D,T and score function q(D,h) = |D| · errorD(h) to obtain
relabeled databases D̃, T̃ .

3. Execute a private empirical learner on D̃: Choose |D|/9 samples with replacements from
D̃. Denote the resulting database by Q and let f ← A(Q).

4. Return f .

Theorem 28 (Theorem 6 Restated) Let 0 < α, β, δ < 1, m ∈ N, and A be a (1, δ)-differentially
private (α, β)-accurate PAC learner for H with sample complexity m. Then, APrivateAgnostic is an
(O(1), O(δ))-differentially private (O(α), O(β+δn))-accurate agnostic learner forH with sample
complexity

n = O

(
m+

1

α2

(
VC(H) + log

1

β

))
.

Proof The privacy properties of the algorithm are straightforward. Specifically, by Lemma 18,
Step (3) the algorithm (applying A on a subsample from D̃) satisfies (O(1), O(δ))-differential pri-
vacy. Algorithm APrivateAgnostic is, therefore, O(1), O(δ))-differentially private by Lemma 25. In
particular, ifA is (1, 0)-differentially private thenAPrivateAgnostic is (O(1), 0)-differentially private.

As for the utility analysis, fix a target distribution µ over X × {0, 1}, and denote

∆ = min
c∈H
{errorµ(c)}.

Also let P denote the marginal distribution on unlabeled examples from X . Let S be a sample
containing n i.i.d. samples from µ, and denote S = D◦T where |D| = |T | = |S|/2. By Theo-
rem 15 (the agnostic VC generalization bound), assuming that |S| ≥ O

(
1
α2

(
VC(H) + ln 1

β

))
,

with probability at least 1− β (over sampling S), the following event occur.

Event E1 : ∀c ∈ H we have |errorµ(c)− errorD(c)| ≤ α.

We continue with the analysis assuming that this event occurs, and show that (w.h.p.) the hypothesis
f returned by the algorithm has low generalization error. Consider the execution ofAPrivateAgnostic

on S. In Step (2) we apply algorithm ARelabel to obtain the relabeled databases D̃, T̃ . Let h ∈ H
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be a hypothesis extending the pattern used by algorithm ARelabel to relabel these databases. By
Claim 26, assuming that |D| is big enough, with probability at least 1− β it holds that

errorD(h) ≤ min
c∈H
{errorD(c)}+ α. (13)

In this case, by Event E1 we have that

errorµ(h) ≤ errorD(h) + α ≤ min
c∈H
{errorD(c)}+ 2α ≤ min

c∈H
{errorµ(c)}+ 3α = ∆ + 3α. (14)

Recall thatA is executed on the database Q containing |D̃|/9 i.i.d. samples from D̃. By Lemma 18,
with probability at least 1− β, the hypothesis f chosen in Step (3) satisfies

errorD(f, h) = errorD̃(f) ≤ α. (15)

By Lemma 27 and (15) with probability at least 1−O(β + |D|δ)

errorP(f, h) ≤ O(errorD(f, h) + α) ≤ O(α). (16)

Finally, by (14) and (16)

errorµ(f) ≤ errorP(f, h) + errorµ(h) ≤ ∆ +O(α).

Appendix D. Closure of Private Learning

In this section we prove Theorem 29 – if H1, . . . ,Hk are privately learnable, then G(H1, . . . ,Hk)
is privately learnable.

Theorem 29 (Closure Theorem for Private Learning) Let G : {0, 1}k → {0, 1} be a boolean
function and H1, . . . ,Hk ⊆ {0, 1}X be classes that are (ε, δ)-differentially private and (α, β)-
accurate learnable by a possibly improper learning algorithms with sample complexitymi(α, β, ε, δ)
respectively. Then, G(H1, . . . ,Hk) is (O(1), O(δ))-private and (O(α), O(β + δm))-accurate
learnable with sample complexity

m = O

k3 VC(G(H1, . . . ,Hk)) + k2 ln
(
k
β

)
α2

+

k∑
i=1

mi

(α
k
,
β

k
, 1, δ

) .

To prove Theorem 29, we presentAClosureLearn – a generic transformation of private learning al-
gorithmsA1, . . . ,Ak for the classesH1, . . . ,Hk respectively to a private learner forG(H1, . . . ,Hk).
This transformation could be applied to proper as well as improper learners, and to a learners that
preserves pure or approximate privacy. Given a labeled sample S of sizeN , algorithmAClosureLearn

finds hypotheses h1, . . . , hk in steps, where in the i’th step, the algorithm finds a hypothesis hi such
that h1, . . . , hi have a completion ci+1, . . . , ck to a hypothesis G(h1, . . . , hi, ci+1, . . . , ck) with
small error (assuming that h1, . . . , hi−1 have a good completion). In the i’th step, AClosureLearn

relabels the input sample S so that the relabeled sample is realizable by Hi. The relabeling h is
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chosen using ARelabel in a way that guarantees completion to a hypothesis with small empirical
error. That is, using an appropriate score-function in ARelabel (i.e., in the exponential mechanism),
it is guaranteed that for the hypotheses h1, . . . , hi−1 computed in the previous steps there are some
ci+1 ∈ Hi, . . . , ck ∈ Hk such that the function G(h1, . . . , hi−1, h, ci+1, . . . , ck) has a small loss
with respect to the original sample S. The relabeled sample is fed (after subsampling) to the private
algorithm Ai to produce a hypothesis hi and then the algorithm proceeds to the next step i+ 1.

Algorithm 5 AClosureLearn

Input: A labeled sample S ∈ (X × {0, 1})N , where N will be fixed later.
Auxiliary Algorithms: Private learners A1, . . . ,Ak for the classH1, . . . ,Hk respectively.

1. Partition S into k parts S = S1◦S2◦ · · · ◦Sk – the size of the Si will be determined later.

2. For every i ∈ [k]:

(a) Partition Si into Si = Di ◦ Ti, where |Di| = |Ti| = |Si|/2.

(b) Execute ARelabel with input D,T , hypothesis classHi, and score function

q(Si, z) = |Si| · min
ci+1∈Hi+1,...,ck∈Hk

errorSi(G(h1, . . . , hi−1, h, ci+1, . . . , ck)), (17)

to obtain relabeled databases D̃i, T̃i.

(c) Execute a private empirical learner on D̃i:

i. Choose |Di|/9 samples with replacements from D̃i. Denote the resulting
database by Q.

ii. Execute the private learner Ai on the sample Q with accuracy parameters
(α/k, β/k) and privacy parameters (ε = 1, δ). Let hi be its output.

3. Output c = G(h1, . . . , hk).

In Lemma 30, we analyze the privacy guarantees of AClosureLearn.

Lemma 30 Let ε < 1 and assume the algorithmsA1, . . . ,Ak are (1, δ)-private. Then,AClosureLearn

is (ε,O(δ))-differentially private.

Proof Fix i ∈ [k] and consider the i’th step of the algorithm. By Lemma 18, Step (2c) of algo-
rithm AClosureLearn (i.e., sub-sampling with replacement and executing a (1, δ)-private algorithm)
is (1, δ)-differentially private. Thus, by Lemma 25, Steps (2b)–(2c) of algorithm AClosureLearn

are (O(1), O(δ))-differentially private. Since each step is executed on a disjoint set of examples,
AClosureLearn is (O(1), O(δ))-differentially private.

In the next lemma we prove thatAClosureLearn is an accurate learner for the classG(H1, . . . ,Hk).

Lemma 31 Assume thatA1, . . . ,At are (1, δ)-differentially private (α/k, β/k)-accurate (possibly
improper) learning algorithms for H1, . . . ,Hk with sample complexity mi(α/k, β/k, 1, δ). If at
each iteration i

|Si| ≥ O

k2 VC(G(H1, . . . ,Hk)) + k ln
(
k
β

)
α2

+mi

(α
k
,
β

k
, 1, δ

) ,
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then with probability at least 1 − O(β + kδ|Si|) we have that errorP(c) ≤ O(α), where c is the
hypothesis returned by AClosureLearn on S.

Proof Let h1, . . . , hk be the hypotheses that AClosureLearn computes in Step (2c). We prove by
induction that for every i ∈ [k] with probability at least 1− O(i)·β

k +O(i · δ|Si|) there exist ci+1 ∈
Hi+1, . . . , ck ∈ Hk such that

errorP(G(h1, . . . , hi, ci+1, . . . , ck) ≤
O(i) · α

k
. (18)

The induction basis for i = 0 is implied by the fact that the examples are labeled by someG(c1, . . . , ck)
from G(H1, . . . ,Hk). For the induction step, assume that there are ci ∈ Hi, . . . , ck ∈ Hk such that

errorP

(
G(h1, . . . , hi−1, ci, ci+1, . . . , ck)

)
≤ O(i− 1) · α

k
.

We need to prove that with probability at least 1−O(1)·β
k −O(δ|Si|) there are c′i+1 ∈ Hi+1, . . . , c

′
k ∈

Hk such that

errorP(G(h1, . . . , hi−1, hi, c
′
i+1, . . . , c

′
k)) ≤

O(i) · α
k

.

Recall that each example in S, and hence in Si, is chosen i.i.d. from the distribution in P . Since

|Si| ≥ O

k2 VC(G(H1, . . . ,Hk)) + ln
(
k
β

)
α2

 , (19)

by Theorem 15 applied to G(H1, . . . ,Hk)⊕G(H1, . . . ,Hk), with probability at least 1− β
k (over

the sampling of Si) the following event occurs:

Event E1 : ∀c ∈ G(H1, . . . ,Hk) we have |errorP(c)− errorSi(c)| ≤ α
k .

We continue proving the induction step assuming that E1 occurs. The proof of the induction step is
as follows:

Since E1 occurs:

errorSi(G(h1, . . . , hi−1, ci, ci+1, . . . , ck))

≤ errorP(G(h1, . . . , hi−1, ci, ci+1, . . . , ck)) +
α

k

≤ (O(i− 1) + 1)α

k
. (20)

By the definition of H , there is h = hopt ∈ H that agrees with ci on Si, and therefore

q(Si, hopt) ≤ |Si|
(O(i− 1) + 1)α

k
.

By Claim 26, if

|Si| ≥ O
(
k

α
ln

(
k

β

)
+
kVC(|Hi|)

α
ln

(
k

α

))
, (21)
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then with probability at least 1− β
k , the exponential mechanism returns h ∈ H such that

q(Si, h) ≤ q(Si, hopt) + |Si|
α

k
≤ |Si|

(O(i− 1) + 2)α

k
.

We assume that the above event occurs, thus, the latter implies that there are c′i+1, . . . , c
′
k such that

errorSi(G(h1, . . . , hi−1, h, c
′
i+1, . . . , c

′
k)) ≤

(O(i− 1) + 2)α

k
. (22)

Since E1 occurs, by (22),

errorP(G(h1, . . . , hi−1, h, c
′
i+1, . . . , c

′
k)) ≤

α

k
+ errorSi(G(h1, . . . , hi−1, h, c

′
i+1, . . . , c

′
k))

≤ (O(i− 1) + 3)α

k
. (23)

Since

|Dh
i | ≥ 9mi

(α
k
,
β

k
, 1, δ

)
, (24)

Lemma 18 implies that Step (2c) ofAClosureLearn is an (αk ,
β
k ) empirical learner and, therefore, with

probability at least 1− β
k

errorDi(h, hi) = errorDh
i
(hi) ≤

α

k
. (25)

Again, we assume in the rest of the proof that the above event occurs. By Lemma 27, since

|Di| =
|Si|
2
≥ O

k2(VC(Hi) + ln
(
k
β

)
)

α2

 (26)

with probability at least 1− O(β)
k −O(δ|Di|)

errorP(h, hi) ≤ O
(

errorDi(h, hi) +
α

k

)
.

Thus, by (25), with probability at least 1− O(β)
k

errorP(h, hi) ≤ O
(

(O(i− 1) +O(1))α

k

)
. (27)

The latter, combined with (23), implies the induction step: with probability at least 1 − O(β)
k −

O(δ|Di|)

errorP(G(h1, . . . , hi−1, hi, c
′
i+1, . . . , c

′
k))

≤ errorP(G(h1, . . . , hi−1, h, c
′
i+1, . . . , c

′
k)) + errorP(h, hi)

≤ (O(i− 1) +O(1))α

k
=
O(i) · α

k
.
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By (19), (21), (24), and (26), the sample complexity |Si| the i’th step is

O

k2 VC(G(H1, . . . ,Hk)) + ln
(
k
β

)
α2

+
k

α
ln

(
k

β

)
+mi

(α
k
,
β

k
, 1, δ

)
+
k2(VC(Hi) + ln

(
k
β

)
)

α2


= O

k2 VC(G(H1, . . . ,Hk)) + k ln
(
k
β

)
α2

+mi

(α
k
,
β

k
, 1, δ

)
To conclude, by a union bound, AClosureLearn returns, with probability at least 1 − O(β +

δ
∑k

i=1 |Si|), a hypothesis G(h1, . . . , hk) with error less than O(α) with respect to the distribution
P .

Proof of Theorem 29. Proof Theorem 29 follows from Lemmas 30 and 31. Specifically, by
Lemma 31, to prove that AClosureLearn is (O(α), O(β + δm))-accurate it suffices that

k∑
i=1

|Si| ≥
k∑
i=1

O

(
k2 VC(G(H1, . . . ,Hk)) + k log( kβ )

α2
+mi

(α
k
,
β

k
, 1, δ

))
.

By Lemma 30, AClosureLearn is (O(1), O(δ))-differentially private.

Remark 32 Since each Ai is an (α, β)-accurate learning algorithm for the classH1,

mi

(
α

k
,
β

k
, 1, δ

)
= Ω

(
kVC(Hi)

α

)
.

Furthermore, by the Sauer-Shelah-Perles Lemma, VC(G(H1, . . . ,Hk) = Õ(
∑k

i=1 VC(Hi)). Thus,
the sample complexity of AClosureLearn is

Õ

(
k∑
i=1

mi

(
α

k
,
β

k
, 1, δ

))
· poly(k, 1/α, log(1/β)).

For constant k, α, β this is nearly tight. By using sub-sampling (see e.g., Kasiviswanathan et al.
(2011); Beimel et al. (2014)), we can achieve (ε,O(δ))-differential privacy by increasing the sample
complexity by a factor of O(1/ε). Furthermore, by using private boosting Dwork et al. (2010),
one can start with a private algorithm that is, for example, (1/4, β) accurate and get a private
algorithm that is (α, β) by increasing the sample complexity by a factor of O(1/α), and by simple
technique, one can boost β by increasing the sample complexity by a factor of O(log(1/β)). Thus,
we get an (ε,O(δ))-differentially private (α, β)-accurate learner forG(H1, . . . ,Hk) whose sample
complexity is

Õ
(∑k

i=1mi (1/4, 1/2, 1, δ)
)

ε
· poly(k, 1/α, log(1/β)).
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