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Abstract
Gradient descent is arguably one of the most popular online optimization methods with a wide array
of applications. However, the standard implementation where agents simultaneously update their
strategies yields several undesirable properties; strategies diverge away from equilibrium and regret
grows over time. In this paper, we eliminate these negative properties by considering a different
implementation to obtain O (1/T) time-average regret via arbitrary fixed step-size. We obtain this
surprising property by having agents take turns when updating their strategies. In this setting, we
show that an agent that uses gradient descent with any linear loss function obtains bounded regret –
regardless of how their opponent updates their strategies. Furthermore, we show that in adversarial
settings that agents’ strategies are bounded and cycle when both are using the alternating gradient
descent algorithm.

(a) Player strategies cycle around the max-
min equilibrium.

(b) Agent 1’s regret remains bounded
while oscillating back and forth.

Figure 1: 125 Iterations of Alternating Gradient Descent-Ascent applied in a zero-sum game with initial
condition (x01, x

0
2) = (35, 35), A = [1] and learning rate η1 = η2 = 1/2.

c© 2020 J.P. Bailey, G. Gidel & G. Piliouras.



FINITE REGRET AND CYCLES VIA ALTERNATING GRADIENT DESCENT-ASCENT

1. Introduction

Zero-sum games and more generally max-min optimization are amongst the most well studied set-
tings in game theory. Dating back to classic work of von Neumann (1928), which initiated the field
of game theory as a whole, it is well understood that zero-sum games admit a “solution”. The safety
level that each agent can guarantee for themselves, if they were forced to commit to their strategies
first, is exactly equal to the best case payoff they will get if they play second, with full information,
against a rational opponent. This fact that the ordering of the agents does not matter is captured by
arguably the most famous aphorism in game theory, max-min is equal to min-max.

Despite the classically resolved issue of equilibrium computation in zero-sum games, the ques-
tion of analyzing dynamics in zero-sum games is much less understood. Possibly, the most well
known result in the area is that regret minimizing dynamics converge in a time average sense to
max-min equilibria (e.g., Freund and Schapire (1999)). However, up until recently, the day-to-day
behavior of standard classes of online learning dynamics were not understood. For example, does
the day-to-day behavior converge to equilibrium, does it diverge away from it, or does it cycle at a
fixed distance from it? The answer to the above questions turns out to be, Yes, Yes and Yes! Or, to
be more precise, the answer depends critically on the choice of the dynamics.

When studying dynamics in continuous-time, e.g., the continuous-time-analogue of Multiplica-
tive Weights Update, replicator dynamics, the dynamics ”cycle” around at a constant Kullback-
Leibler divergence from equilibrium as shown by Piliouras and Shamma (2014). In fact, this re-
sult generalizes for all continuous-time variants of all Follow-the-Regularized Leader (FTRL) al-
gorithms (Mertikopoulos et al., 2018). Moreover, these dynamics have bounded (total/aggregate)
regret in arbitrary games. This is an impressive level of regularity and predictability of the dynam-
ics, which despite not being equilibrating, allow us to make strong predictions about their day-to-day
behavior. Behind this clockwork kind of regularity lies the fact that these dynamics are Hamiltonian
(Bailey and Piliouras, 2019a). As in the case, e.g., of planetary orbits, or a pendulum, there is a lot
of hidden structure in the motion, laws that bind and control the evolution of all particles.

Unfortunately, this level of regularity comes at a cost of using a continuous-time model. This
is of course a simplifying modelling assumption. It does not capture the reality of how games, eco-
nomic competition is played out in practice. More importantly, it fails to capture the reality of some
modern engineering applications, such as Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014), where online training algorithms compete against each other to improve two (oppos-
ing) AI algorithms. Hopefully, we could just naively discretize the aforementioned dynamics and
their behavior would for the most part stay intact. Unfortunately, this is far from the truth.

Bailey and Piliouras (2018) first proved that for all Follow-the-Regularized-Leader algorithms
(e.g. Gradient Descent or Multiplicative Weights) diverge away from the Nash equilibrium in zero-
sum games. This is a robust finding that holds regardless of the step-size that the agents are using,
even if the agents are using different or shrinking step-sizes, or even if they are using different
dynamics (i.e., mix-and-match regularizers). The proof by picture is as follows: If gradient descent-
ascent in continuous-time moves along a Euclidean ball centered at the equilibrium then the naive
discretization takes a discrete, non-negligible step along the tangent. Hence, the distance (radius)
from the equilibrium grows and we keep moving away from the equilibrium. Even more distress-
ingly, not only are equilibria unstable but furthermore the dynamics are formally chaotic as small
perturbations of initial conditions are amplified exponentially fast (Cheung and Piliouras, 2019). In
a nutshell, by discretizing gradient descent, moving from a differential equation to an actual imple-
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mentable algorithm, all system regularity is lost. The discrete and continuous-time behavior may
only differ by a little bit in each step, but these errors snowball quickly.

Given the instability of the naive, standard discretization of gradient descent, several other al-
gorithms have been suggested which converge provably to Nash equilibria in zero-sum games such
as the extragradient method (Korpelevich, 1976) and its variants (Gidel et al., 2019a; Mertikopou-
los et al., 2019), optimistic mirror descent (Rakhlin and Sridharan, 2013; Daskalakis et al., 2018;
Daskalakis and Panageas, 2018) and some other methods using negative momentum or second order
information (Gidel et al., 2019b; Balduzzi et al., 2018; Abernethy et al., 2019).

Going back to the picture of simultaneous gradient descent-ascent as a tangent to a ball centered
at equilibrium, these approaches alter the dynamics, so that the discrete-step is now facing the
interior of the ball, more like a chord than a tangent, decreasing the distance from equilibrium and
forcing convergence in the long run.

We take a different approach when it comes to discretizing the system dynamics. We ask, as
von Neumann did for equilibrium computation, does the ordering of the agents matter? What if
the min and max agents did not update their behavior simultaneously but instead they took turns.
This is actually common practice in training neural networks as no extra memory is needed to hold
the previous state/parameters of any network. Even for economic competition in markets, this is
a rather reasonable model with firms taking turns responding to the last move of the competition.
Could it be that this standard alternating gradient descent-ascent implementation recovers some of
the impressive regularities of the continuous-time model and if so to what extent?

Our Contributions. Optimization/Regret. We study the behavior of gradient descent with fixed
step-size in unconstrained two-agent (zero-sum) games. In a twist on the standard theory of online
learning, we consider agents that take turns updating their strategies. We establish that if an agent
uses gradient descent with arbitrary fixed step-size when agents are sequentially updating their
strategies, then she obtains bounded regret (Theorem 1) as depicted in Figure 1(b). Moreover,
Theorem 1 holds regardless of how her opponent updates his strategies and therefore the result
immediately extends to non-zero-sum games. We establish this surprising property by showing
that an agent’s distance from optimality changes proportionally to her payoff in any given iteration
(Lemma 1). This allows us to compute both the regret and utility of an agent with only knowledge
of the first and last strategy she used, regardless of how her opponent updates his strategies. The
bound on regret quickly follows by considering the worst-case final strategy.

Game Theory. We further explore the asymptotic properties of alternating gradient descent
specifically in the setting of zero-sum games. We show that when agents use gradient descent se-
quentially that the strategies approximately cycle (Theorem 3) as depicted in Figure 1(a). More for-
mally, alternating gradient descent admits Poincaré recurrence in the setting of two-agent zero-sum
games. Theorem 3 is established in two parts: First, we show that the alternating gradient descent
algorithm approximately preserves the distance to the equilibrium (Theorems 5 and 6) therefore
implying bounded orbits. This proof relies on directly finding an exact invariant energy function
capturing all agent strategies (Theorem 4). Second, we show that the algorithm preserves volume
when updating a measurable set of strategies. Together, these two properties imply recurrence. We
remark that, Gidel et al. (2019b) first showed that alternating play exhibits bounded orbits. How-
ever, we provide a new proof technique that is potentially generalizable to other geometries, provide
a clear interpretation in terms of energy conservation and parameters of the game and optimization
technique, and uncover an invariant energy function for agent strategies.
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2. Preliminaries

A two-agent zero-sum game consists of two agents N = {1, 2} where agent i selects a strategy
from Rki . Utilities of both agents are determined via a payoff matrix A ∈ Rk1×k2 and linear payoff
vectors bi ∈ Rki . Given that agent i selects strategy xi ∈ Rki , agent 1 receives utility 〈b2, x2〉 +
〈x1, Ax2〉+ 〈x1, b1〉 and agent 2 receives utility −〈b2, x2〉 − 〈x1, Ax2〉 − 〈x1, b1〉. Naturally, both
agents want to maximize their payout resulting in the following max-min problem:

max
x1∈Rk1

min
x2∈Rk2

〈b2, x2〉+ 〈x1, Ax2〉+ 〈x1, b1〉 (Bilinear Zero-Sum Game)

2.1. Gradient Descent with Simultaneous Play

In many applications of game theory, agents know neither the payoff matrix nor their opponent’s
strategy. Instead, agents repeatedly play the zero-sum game while updating their strategies itera-
tively. One of the most common methods for updating strategies is the gradient descent algorithm.
In gradient descent, an agent looks at her payout in the previous iteration and then updates her previ-
ous strategies by moving in a most beneficial direction. In the setting of (Bilinear Zero-Sum Game),
this corresponds to

xt+1
1 = xt1 + η1(Ax

t
2 + b1) and xt+1

2 = xt2 − η2(Aᵀxt1 + b2). (SimGD)

where ηi corresponds to agent i’s step-size or learning rate. The larger the step-size, the more
rapidly an agent responds to information from previous iterations. Gradient descent is often imple-
mented with time variant step-sizes – most commonly with ηti ∈ Θ(1/

√
t) where agents become

less responsive over time. However, in this paper we focus on fixed step-sizes.
In this formulation, agents simultaneously update their strategy. That is, xt1 and xt2 are played

at the same time. As a result, the cumulative utility of (SimGD) (or any simultaneous update algo-
rithm) for agent 1 after T iterations is

∑T
t=0

(〈
b2, x

t
2

〉
+
〈
xt1, Ax

t
2

〉
+
〈
xt1, b1

〉)
.

2.2. Gradient Descent with Alternating Play

In many application of game theory, agents do not update their strategies until they see a change
in the system. In the case of two-agent games, this corresponds to agents updating their strategies
sequentially, i.e., agent 1 updates her strategy, then agent 2 updates his strategy, then agent 1 updates
her strategy and so on. In the setting of gradient descent, this corresponds to

xt+1
1 = xt1 + η1(Ax

t
2 + b1) and xt+1

2 = xt2 − η2(Aᵀxt+1
1 + b2). (AltGD)

Computing the total utility when agents alternate their updates is slightly different. Agent 1 plays
strategy xt1 against xt2 when agent 2 updates his strategy and plays xt+1

1 against xt2 when agent
1 updates her strategy. This results in the following cumulative utility after agent 1 updates her
strategy T times:

∑T−1
t=0

(
2 ·
〈
b2, x

t
2

〉
+
〈
xt+1
1 + xt1, Ax

t
2

〉
+
〈
xt+1
1 + xt1, b1

〉)
.

2.3. Problem Reduction

In this section we show that the vectors b1 and b2 in (Bilinear Zero-Sum Game) can be assumed,
without any loss of generality, to be zero. Such result requires the following assumption:

Assumption 1 (Bilinear Zero-Sum Game) has a solution (x∗1, x
∗
2).
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Under Assumption 1 the first order stationary conditions are

Aᵀx∗1 = −b2 and Ax∗2 = −b1 . (1)

Considering the changes of variable, x̃t1 = xt1 − x∗1 and x̃t2 = xt2 − x∗2, the equations (SimGD)
and (AltGD) can be simplified as,{

x̃t+1
1 = x̃t1 + η1Ax̃

t
2

x̃t+1
2 = x̃t2 − η2Aᵀx̃t1

and

{
x̃t+1
1 = x̃t1 + η1Ax̃

t
2

x̃t+1
2 = x̃t2 − η2Aᵀx̃t+1

1 .

These update schemes correspond to (SimGD) and (AltGD) applied to (Bilinear Zero-Sum Game)
where b1 and b2 are null. Thus in the rest of the paper, without any loss of generality, we will
consider the following max-min problem,

max
x1∈Rk1

min
x2∈Rk2

〈x1, Ax2〉 (Zero-Sum Game)

2.4. Regret

The standard way of measuring the performance of an algorithm is by a notion known as regret.
Regret compares the total utility gained by a fixed strategy x1 to the utility agent 1 receives by using
an algorithm. In the case of simultaneous updates, as in (SimGD), regret is formally given by〈

x1,

T∑
t=0

Axt2

〉
−

T∑
t=0

〈
xt1, Ax

t
2

〉
(Regret for Simultaneous Play)

where the second term corresponds to the utility agent 1 received by using (SimGD) and first term
corresponds to the utility she would of received if she played x1 on every iteration (assuming agent
2 still uses the strategies {xt2}Tt=0). In the case of constrained optimization, regret is typically

evaluated where x1 is the best fixed strategy, i.e., the optimizer of
〈
x1,
∑T

t=1Ax
t
2

〉
. However, in

unconstrained optimization there is rarely an optimizer to this expression.
When agents update sequentially, regret is computed slightly differently. As discussed in the

previous section, agent 1 sees the strategy xt2 twice – once when agent 1 updates and once when
agent 2 updates. As a result, agent 1’s regret when updating sequentially is〈

2x1,

T−1∑
t=0

Axt2

〉
−
T−1∑
t=0

〈
xt+1
1 + xt1, Ax

t
2

〉
. (Regret for Alternating Play)

Typically an algorithm is said to perform well if its regret is bounded above by a sublinear
function with respect to any fixed strategy. If regret grows at a rate of o(T ) with respect to a fixed
strategy, then the average regret grows as at a rate of o(1) and, in the limit, the algorithm performs
no worse on average as that fixed strategy. Moreover, in the zero-sum setting, the time-average
strategy converges to the set of Nash equilibria.
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2.5. Continuous-Time Gradient Descent: A Motivation for Alternating Play

The primary motivation for this paper is the continuous-time analogue of gradient descent. In par-
ticular, the integration technique used to obtain (AltGD) from the continuous-time analogue well
approximates continuous-time and therefore offer similar guarantees for behavior in the system.
The continuous-time analogue of (SimGD) and (AltGD) is

x1(t) = x1(0) + η1

∫ t

0
Ax2(s)ds and x2(t) = x2(0)− η2

∫ t

0
Aᵀx1(s)ds , (Cont.GD)

where ηi denotes the learning rate used by agent i. (SimGD) is obtained from (Cont.GD) via Euler
integration, i.e., xti is simply the first order approximation of xi(t) from the point xi(t− 1).

Mertikopoulos et al. (2018) showed that (Cont.GD) cycles around the equilibrium of the system
on convex orbits. Therefore, (SimGD) should diverge from the equilibrium since it is the first order
approximation of (Cont.GD). Indeed, this is first formally shown for a more general class of update
rules including gradient descent and multiplicative weights by Bailey and Piliouras (2018) and for
gradient descent in unconstrained bilinear games by Gidel et al. (2019b). Moreover, if agent 1 uses
(Cont.GD) and agent 2 uses any continuous update rule, then agent 1 obtains bounded regret even in
non-zero-sum games (Mertikopoulos et al., 2018). Therefore, (Cont.GD) obtains impressive regret
guarantees in games.

Unfortunately, continuous-time algorithms are difficult to run and online optimization typically
relies on discrete-time algorithms. Regrettably, standard discrete-time algorithms fall short relative
to their continuous-time analogues; it has long been believed that (SimGD) with fixed step-size
has linear regret and therefore offers no nice long-term guarantees. Recently, however, Bailey and
Piliouras (2019b) showed that (SimGD) with arbitrary fixed step-size also obtains Θ(

√
T ) regret in

bounded 2-dimensional zero-sum games and offered experimental evidence to suggest the result car-
ries over to higher dimensions. Stronger regret guarantees, i.e., o(

√
T ), are possible in discrete-time

game theoretic settings via a combination of decreasing step-sizes and tailored algorithms (Rakhlin
and Sridharan, 2013; Syrgkanis et al., 2015; Foster et al., 2016), however, even these improved
guarantees fall short of the bounded regret obtained by (Cont.GD).

Bailey and Piliouras (2019a) recently offered some insights on the shortcomings of (SimGD).
They showed that (Cont.GD) in different classes of games forms a Hamiltonian system – a common
dynamical system studied in mathematical physics that models energy preserving systems such as
ideal pendulums. In the case of zero-sum games, the conserved energy corresponds to the com-
bined norm of the strategies ||x1||2/η1 + ||x2||2/η2 partially explaining the cyclic behavior found by
Mertikopoulos et al. (2018). However, Euler integration is well-known to be a poor estimator of
Hamiltonian systems and it is therefore unsurprising that (Cont.GD) differs greatly from (SimGD).

To obtain behavior that is similar to (Cont.GD), we must use an integration technique that better
preserves the dynamics of the original system. Fortunately, there is a particular class of integrators
known as symplectic integrators that are well-known for their ability to approximate Hamiltonian
systems (Hairer et al., 2006). In particular, Hairer (2005) showed that symplectic integrators ap-
proximately preserve the energy of a Hamiltonian system for exponentially long periods of time
relative to the inverse of the fixed step-size. In the setting of Gradient Descent, that means that
we could approximately preserve the energy in (Cont.GD) for arbitrarily long periods of time by
applying a symplectic integrator with sufficiently small step-size.

Regrettably, many symplectic integrators would require agents to coordinate when updating
their strategies. By the very nature of a zero-sum game, this coordination would be unnatural and
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could only be applied in artificial settings such as GANS. (AltGD), however, is directly inspired
by combining (Cont.GD) with the symplectic integration technique known as Verlet integration
or leapfrogging. The resulting system does not require agents to coordinate, outside the fact that
agents have to alternate taking turns. This is in contrast with the more typical assumption of syn-
chronous/simultaneous play (e.g., (Syrgkanis et al., 2015; Foster et al., 2016)). A further contrast,
hindering direct comparisons is that this technique calls for a fixed step-size, as opposed to the stan-
dard decaying step-sizes. This choice is arguably advantageous as in many ML contexts we would
like to use a sufficiently large fixed step-size in order to reduce the training time as a vanishing
step-size with an increasing horizon would lead to a prohibitively slow training method.

By the work of Hairer (2005), we expect that (AltGD) with fixed step-size should behave sim-
ilarly to (Cont.GD) – at least for exponentially long periods of time relative to the step-size. In-
deed we actually show a stronger result; (AltGD) with a fixed step-size has the same guarantees
of (Cont.GD) forever. Specifically, if agent 1 uses (AltGD) with arbitrary fixed step-size then she
obtains bounded regret regardless of how her agent’s opponent updates. Moreover, if both agents
use (AltGD) then the quantity

(
||xt1||2/η1 + ||xt2||2/η2 +

〈
xt1, Ax

t
2

〉 )
is preserved and the strategies

{xt1, xt2}∞t=0 cycle for
√
η1η2 ≤ 2

‖A‖ , allowing step-sizes that do not vanish with an infinite horizon.
We proceed by proving bounded regret in Section 3 and recurrent behavior in Section 4.

3. Bounded Regret with Fixed Step-Size in Gradient Descent.

In this section, our focus we will be on the regret generated by an agent playing according to
(AltGD). Interesting, our result holds no matter how the opponent updates his strategy. This gen-
eral setting is particularly interesting because it is able to model an environment with only partial
information where the agents might even not know that they are playing a game.

Before stating the main theorem of this section, we present a lemma that provides an interpreta-
tion of each agent’s payoff in terms of energy fluctuation. The norm of an agent’s strategy, rescaled
by its step-size, can be seen as an energy that varies proportionally to its payoff.

Lemma 1 When agent 1 updates via (AltGD), the size of xt1 increases proportionally to agent 1’s
payoff since her update in iteration t. Formally,

||xt+1
1 ||2 − ||xt1||2

η1
=
〈
xt+1
1 + xt1, Ax

t
2

〉
. (2)

Similarly, when agent 2 updates via (AltGD), the size of xt2 increases proportionally to agent 2’s
payoff since his update in iteration t. Formally,

||xt+1
2 ||2 − ||xt2||2

η2
= −

〈
xt+1
1 , A(xt+1

2 + xt2)
〉
. (3)

Proof Recall the update rule for agent 1 that updates via (AltGD) is xt+1
1 = xt1 + η1Ax

t
2. Thus,

〈
xt+1
1 + xt1, Ax

t
2

〉
=

〈
xt+1
1 + xt1, x

t+1
1 − xt1

〉
η1

=
||xt+1

1 ||2 − ||xt1||2

η1
(4)

completing the first claim. The second follows by substituting −η2Aᵀxt+1
1 = xt+1

2 − xt2.
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From this lemma, an explicit bound on the regret of an agent that uses (AltGD) easily follows
independently of what update rule her opponent uses. This result, is a significant improvement in
comparison to the Θ(

√
T ) regret of (SimGD) and surprisingly matches the result on continuous-

time gradient descent provided by Mertikopoulos et al. (2018, Thm. 3.1).

Theorem 1 (Bounded Regret – i.e., O (1/T) Time-Average Regret) If agent 1 uses (AltGD) with
an arbitrary fixed step-size η1 in (Zero-Sum Game), then she obtains bounded regret with respect to
any fixed strategy x1 regardless of how her opponent updates his strategies.

Proof By Section 2.3, it suffices to show the result for (Zero-Sum Game). Following from Lemma 1,
Agent 1’s regret with respect to strategy x1 is〈

2x1,
T−1∑
t=0

Axt2

〉
−
T−1∑
t=0

〈
xt+1
1 + xt1, Ax

t
2

〉
=

〈
2x1, x

T
1 − x01

〉
η1

−
T∑
t=0

||xt+1
1 ||2 − ||xt1||2

η1
(5)

=

〈
2x1, x

T
1 − x01

〉
η1

− ||x
T
1 ||2 − ||x01||2

η1
(6)

=

〈
2x1 − xT1 , xT1

〉
−
〈
2x1 − x01, x01

〉
η1

(7)

≤
〈
x01 − 2x1, x

0
1

〉
+ ‖x1‖2

η1
(8)

since the expression xT1 7→
〈
2x1 − xT1 , xT1

〉
is maximized when xT1 = x1.

Theorem 2 If agent 1 uses (AltGD) in any bilinear game (zero-sum or otherwise) with an arbitrary
fixed step-size η1, then she obtains bounded regret with respect to any fixed strategy x1 regardless
of how her opponent updates.

Neither Lemma 1 nor Theorem 1 make reference to how the opponent updates nor agent 2’s
utility function and therefore Theorem 2 follows identically.

4. Recurrence and Bounded Orbits in Zero-Sum Games

After having shown, in the previous section, that agents that use (AltGD) have bounded regret we
would like to investigate the asymptotic properties of their strategies. It has been recently proved that
if each agent’s strategy are updated though (AltGD), then the energy of the system ‖xt1‖2/η1+‖xt2‖2/η2
is bounded above and below (Gidel et al., 2019b, Table 1). Thus, the strategies do not converge to the
Nash equilibrium of the game. This boundedness, might indicate a cyclic behavior of the strategies.
In the context of high dimensional dynamical system, this cyclic behavior is encompassed by the
notion of Poincaré recurrence. Intuitively, a dynamical system is Poincaré recurrent if almost all
trajectories return arbitrarily close to their initial position infinitely often.

Indeed, as shown in Figure 2, (AltGD) appears to cycle. In this section, we formally prove the
existence of Poincaré recurrence. Our analysis focuses on the strategies after both agents update –
i.e., {xt1, xt2}∞t=0 – as depicted by the blue triangles in Figure 2. It also straightforward to extend our
analysis to {xt+1

1 , xt2}∞t=0 (depicted by the red circles in Figure 2) through the same techniques.
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(a) Strategies “cycle” while approximating
||x1||2 + ||x2||2 = 60 with η1 = η2 =
1/2

(b) Strategies “cycle” while approximating
||x1||2 + 2||x2||2 = 60 with η1 =
2η2 = 1.

Figure 2: Initial strategy (x01, x
0
2) = (60, 0) updated with 50 iterations of (AltGD) with A = [1].

More formally, in order to work with this notion of Poincaré recurrence we need to define a
measure on Rd. In the following, we will use the Lebesgue measure `. We can thus define the
notion of a volume preserving transformation.

Definition 1 (Volume Preserving Transformation (Barreira, 2006)) A volume preserving trans-
formation is a measurable function T : Rd → Rd such that, for any open set A ∈ Rd, we have
`(A) = `(T−1(A)).

Note that `(A) may be infinite. This notion of volume preserving transformation can be more
generally defined on a orientable manifold. However, in this work, for simplicity, we will stick with
the less general Definition 1. We can thus, state the Poincaré recurrence theorem.

Theorem 3 (Poincaré Recurrence (Poincaré, 1890; Barreira, 2006)) If a transformation preserves
volume and has only bounded orbits then it is Poincaré recurrent, i.e., for each open set there exist
orbits that intersect this set infinitely often.

Furthermore, we can cover any region of Rk1+k2 by countably many balls of radius ε/2, and
apply the previous theorem to each ball. We conclude that almost every point returns to within an ε
of itself. Since ε > 0 is arbitrary, we conclude that almost every initial point is recurrent. Formally,
we will thus show the following corollary that states the (Poincaré) recurrence of (AltGD).

Corollary 1 For
√
η1η2 ≤ 2

||A|| the (AltGD) dynamic in (Bilinear Zero-Sum Game) is Poincaré
recurrent. Moreover, for almost all initial conditions (x01, x

0
2) there exists an infinite sequence of

time periods τn such that the limn→∞(xτn1 , x
τn
2 ) = (x01, x

0
2).

To show Corollary (1), it suffices to show that (AltGD) has bounded orbits and that (AltGD)
preserves volume. In Section 4.1, we first show that the orbits are bounded if

√
η1η2 ≤ 2

||A|| , then
we show that volume is preserved regardless of the value of η1 and η2.
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(a) Strategies diverging in (SimGD). (b) Strategies preserving energy in
(AltGD).

Figure 3: Initial strategy (x01, x
0
2) = (40, 0) updated by 10 iterations of (SimGD) and (AltGD) with

A = [1], and η1 = η2 = 1/2. The circles denote {x : ||x1||2 + ||x2||2 = 402}.

4.1. Bounded Orbits and Volume Preservation of Alternating Play

In this section, we prove that if both agents follow (AltGD), then their strategies are bounded.
This result was first shown by Gidel et al. (2019b) using linear algebra arguments. However, in
this section, we provide the following improvements: a) We provide a new proof technique that
is potentially generalizable to other geometries – Gidel et al. (2019b)’s proof heavily relies on the
euclidean metric making it challenging to generalize to other geometries. b) For both the upper-
bound and the lower-bound, this new proof technique has a clear interpretation in terms of energy
conservation and provides an explicit dependence on the constants of the problem. c) We provide
an exact invariant function that captures all agent strategies.

The notion of conservation of energy we use in this section, is a perturbed version of the energy
used in the continuous case (see Figure 3(b) for an illustration). If both agents use (AltGD), the sum
of their energies plus agent 1’s current utility is constant.

Theorem 4 If both agents use (AltGD), we have that the following perturbed energy is constant,

||xt1||2

η1
+
||xt2||2

η2
+
〈
xt1, Ax

t
2

〉
=
||x01||2

η1
+
||x02||2

η2
+
〈
x01, Ax

0
2

〉
.

The proof of Theorem 4 appears in Appendix A.1. If both agents’ strategies are unidimentional,
Theorem 4 has a geometric interpretation: the orbit of the joint strategy {(xt1, xt2)}∞t=0 belongs to a
conic section determined by the equation (x1/√η1)

2 + (x2/√η2)
2 + a · x1x2 = 0 . We can show that

this conic section is an ellipse if and only if a2 − 4
η1η2
≤ 0. Thus, for

√
η1η2 ≤ 2

a , the strategies are
bounded. The eccentricity and the directions of the principal axis heavily depend on the values of
η1 and η2. In Figure 2, we observe these elliptic trajectories in the joint strategies space for different
values of the step-sizes. This geometric argument can be generalized to strategies belonging to
Rk1 × Rk2 using the singular vectors of A, however, for simplicity, we provide a result in terms of
weighted norms using a more concise proof.
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Theorem 5 (Bounded orbits) If both agents use (AltGD) in (Zero-Sum Game) with fixed step-sizes
such that

√
η1η2 ≤ 2

‖A‖ , we have that, for all t ≥ 0,

||xt1||2

η1
+
||xt2||2

η2
≤
〈
x01, Ax

0
2

〉
+
||x01||2
η1

+
||x02||2
η2

1−
√
η1η2‖A‖

2

. (9)

This theorem is enough to insure that (AltGD) has bounded orbits in order to satisfy the hypoth-
esis of Theorem 3. However, it is worth noting that with the same proof technique we can derive a
lower bound on a weighted sum of the norms of each agent’s strategies.

Theorem 6 If both agents use (AltGD) in (Zero-Sum Game) with ||x01||2 + ||x02||2 > 0 and fixed
step-sizes such that

√
η1η2 ≤ 2

‖A‖ , then their strategies are bounded away from the equilibrium
(0,0). Formally,

||xt1||2

η1
+
||xt2||2

η2
≥

2−√η1η2‖A‖
2 +
√
η1η2‖A‖

(
||x01||2

η1
+
||x02||2

η2

)
.

The proof of both theorems appear in Appendix A.2. It is straightforward to extend both proofs
to show that the distance to a Nash equilibrium is preserved in (Bilinear Zero-Sum Game) as well.

Together, Theorems 5 and 6 show that (AltGD) approximately preserves the energy ||x1||2/η1 +
||x2||2/η2 as depicted in Figures 2 and 3(b). The smaller η1η2 is, the closer to a circle the trajectories
are. This energy preservation does not occur for (SimGD) as illustrated in Figure 3(a).

Finally, the transformation (AltGD) is volume preserving (Def. 1) as depicted in Figure 4(b).
This is in contrast to (SimGD) which expands (see Fig. 4(a) and (Cheung and Piliouras, 2019)).

(a) Volume expands when strategies are
updated with (SimGD).

(b) Volume is preserved when strategies
are updated with (AltGD).

Figure 4: A collection of strategies (a cat) updated by 0, 4, . . . , 24 iterations of (SimGD) and
(AltGD) with x1, x2 ∈ R, A = [1], and η1 = η2 = 1

5 .

Theorem 7 (Volume Preservation) (AltGD) is volume preserving for any step-sizes and any mea-
surable set of initial conditions.

This theorem results from the fact that the Jacobian of the operator of (AltGD) is block triangular
with identity matrices on the diagonal. The full proof appears in Appendix A.3. The Poincaré
Recurrence of (AltGD) (Corollary 1) directly follows from Theorem 5 and 7.
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5. Extensions to Follow-The-Regularized Leader Algorithms

Many of the approaches and ideas we discuss within this paper extend to the more general set
of Follow-The-Regularized Leader (FTRL) algorithms, e.g., multiplicative weights and gradient
descent. It is straightforward to extend Theorem 7 to show that alternating play in FTRL preserve
volume with respect to the cumulative payoff vectors yt+1

1 = yt1 + η1Ax
t
2 and yt+1

2 = yt2− η2Aᵀxt1
even when the set of feasible strategies are bounded. Moreover, by Bailey and Piliouras (2019a),
the continuous-time version of FTRL is a Hamiltonian system where the energy corresponds to the
Fenchel-coupling between cumulative payoff vectors and the Nash equilibrium. By Hairer (2005),
alternating play will approximately preserve the energy of this Hamiltonian system for exponential
time. Thus, it is likely that other variants of FTRL implemented with alternating play have bounded
orbits, demonstrate Poincaré recurrence, and have bounded regret even when the strategy space is
bounded. (AltGD) in the unbounded case is special however; it’s energy perturbation is simply
proportional to the utility obtained in the most recent iteration (Theorem 4).

6. Conclusion

We study a natural implementation of gradient descent dynamics in unconstrained zero-sum games.
In this implementation, the max and min agent take turns updating their strategies after observing
the behavior of their opponent. This dynamic has remarkable properties. First, agents have bounded
regret. In fact, this is true not only in zero-sum games but in any general game and online optimiza-
tion setting. Moreover, in the max-min optimization setting the agents’ strategies remain bounded
for all time and the dynamics preserve volume. In combination these last two properties imply re-
currence, i.e., that the orbits cycle back infinitely often arbitrarily close to their initial conditions.
Such advantageous properties were formerly only known for continuous-time dynamics (e.g., (Pil-
iouras and Shamma, 2014; Mertikopoulos et al., 2018)) and moreover are not true for simultaneous
gradient descent-ascent updates, which is divergent away from equilibrium (Bailey and Piliouras,
2018) and in fact, formally chaotic (Cheung and Piliouras, 2019).

At its core, our approach is based on recent research advances that enable connections be-
tween traditionally separate areas such as game theory, online optimization, Hamiltonian dynamics
and numerical analysis. Specifically, Bailey and Piliouras (2019a) show a formal interpretation of
continuous-time dynamics in games as Hamiltonian systems. Based on this connection, and the
numerous advantageous properties of the continuous-time dynamics, it makes sense to discretize
them in a way that mimics the continuous dynamics. Instead of Euler integration, more elaborate
tools have been developed, e.g., symplectic integrators that satisfy the volume preserving property
of Hamiltonian dynamics as well as other advantageous properties, e.g., approximate energy preser-
vation (see Hairer et al. (2006); Hairer (2005)). Alternating gradient descent-ascent, is directly
inspired by a symplectic integration technique known as leapfrogging (Verlet integration) and is
thus bringing this point of view to game dynamics.

We hope that this link will allow for the development of new exciting results. One application
of particular promise is the understanding of the empirical success of CFR+ (Tammelin, 2014;
Bowling et al., 2015) in poker. CFR+ is a variant of Counter Factual Regret minimization (CFR)
(Zinkevich et al., 2008) with better empirical performance. A key change of CFR+ is switching
from simultaneous updates to alternating updates. So far, there has been no theoretical justification
of why such a change should significantly improve performance. We provide the first such result
and pave the path for formal arguments for CFR+.
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Appendix A. Proof of Theorems and Lemmas

A.1. Proof of Theorem 4

Theorem 4 If both agents use (AltGD), we have that the following perturbed energy is constant,

||xt1||2

η1
+
||xt2||2

η2
+
〈
xt1, Ax

t
2

〉
=
||x01||2

η1
+
||x02||2

η2
+
〈
x01, Ax

0
2

〉
.

Proof Combining (2) and (3) of Lemma 1 yields

||xt+1
1 ||2 − ||xt1||2

η1
+
‖xt+1

2 ‖2 − ‖xt1‖2

η2
=
〈
xt1, Ax

t
2

〉
−
〈
xt+1
1 , Axt+1

2

〉
. (10)

The result then follows by summing (10) and cancelling out terms.

A.2. Proofs of Theorems 5 and 6

Theorem 5 (Bounded orbits) If both agents use (AltGD) in (Zero-Sum Game) with fixed step-
sizes such that

√
η1η2 ≤ 2

‖A‖ , we have that, for all t ≥ 0,

||xt1||2

η1
+
||xt2||2

η2
≤
〈
x01, Ax

0
2

〉
+
||x01||2
η1

+
||x02||2
η2

1−
√
η1η2‖A‖

2

. (9)

Proof Starting from Theorem 4, we have that,

||xt1||2

η1
+
||xt2||2

η2
=
||x01||2

η1
+
||x02||2

η2
+
〈
x01, Ax

0
2

〉
−
〈
xt1, Ax

t
2

〉
(11)

≤ ||x
0
1||2

η1
+
||x02||2

η2
+
〈
x01, Ax

0
2

〉
+ ||xt1|| · ||Axt2|| (12)

≤ ||x
0
1||2

η1
+
||x02||2

η2
+
〈
x01, Ax

0
2

〉
+ ||A|| · ||x1|| · ||x2|| (13)

≤ ||x
0
1||2

η1
+
||x02||2

η2
+
〈
x01, Ax

0
2

〉
+

√
η1η2||A||

2

(
||xt1||2

η1
+
||xt2||2

η2

)
(14)

where (12) is the Cauchy-Schwarz inequality, (13) follows from the definition of the `2 matrix norm,
and (14) follows since (||x1||/

√
η1 − ||x2||/

√
η2)

2 ≥ 0. Rearranging terms yields (9).

Finally, to show that xti is bounded, observe that
√
η1η2 ≤ 2

||A|| ⇒ 1−
√
η1η2‖A‖

2 ≥ 0 and

||xt1||2 ≤
〈
x01, Ax

0
2

〉
+
||x01||2
η1

+
||x02||2
η2

1
η1
−
√

η2
η1

‖A‖
2

. (15)

Symmetrically,

||xt2||2 ≤
〈
x01, Ax

0
2

〉
+
||x01||2
η1

+
||x02||2
η2

1
η2
−
√

η1
η2

‖A‖
2

, (16)

thereby completing the proof of the theorem.
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Theorem 6 If both agents use (AltGD) in (Zero-Sum Game) with ||x01||2 + ||x02||2 > 0 and fixed
step-sizes such that

√
η1η2 ≤ 2

‖A‖ , then their strategies are bounded away from the equilibrium
(0,0). Formally,

||xt1||2

η1
+
||xt2||2

η2
≥

2−√η1η2‖A‖
2 +
√
η1η2‖A‖

(
||x01||2

η1
+
||x02||2

η2

)
.

Proof The proof follows identically to Theorem 5 after replacing the Cauchy-Schwarz inequality
−
〈
xt1, Ax

t
2

〉
≤ ||xt1|| · ||Axt2|| with the Cauchy-Schwarz inequality

〈
xt1, Ax

t
2

〉
≤ ||xt1|| · ||Axt2||.

By taking η1 and η2 sufficiently small and ||x01||2 + ||x02||2 > 0, the right hand side of 10 is positive
and (xt1, x

t
2) is bounded away from (0,0).

A.3. Proof of Theorem 7

To show this result, we make use of the following Theorem from (Rudin, 1987).

Theorem 8 (Rudin (1987) Theorem 7.26) Let X be an open set in Rk and T : X → Rk be an
injective differentiable function with continuous partial derivatives, the Jacobian of which is non-
zero for every x ∈ X . Then for any real-valued, compactly supported, continuous function f , with
support contained in T (X ),∫

T (X )
f(v)dv =

∫
X
f(T (x))|det(JT )(x)|dx. (17)

In particular, taking f(v) = 1, ∫
T (X )

dv =

∫
X
|det(JT )(x)|dx (18)

and T is volume preserving if T is continuous differentiable, injective, and |det(JT )| = 1.

Theorem 7 (Volume Preservation) (AltGD) is volume preserving for any step-sizes and any mea-
surable set of initial conditions.

Proof (AltGD) can be written as the following two-stage update where agent 1 first updates her
strategy:

x
t+1/2
1 = xt1 + η1Ax

t
2

x
t+1/2
2 = xt2

(Stage 1)

followed by agent 2 updating his strategy:

xt+1
1 = x

t+1/2
1

xt+1
2 = x

t+1/2
2 − η2Aᵀx

t+1/2
1 .

(Stage 2)

The red circles in Figure 2 refer to (Stage 1) while the blue triangles refer to (Stage 2). To show
(AltGD) is volume preserving, it suffices to show that (Stage 1) and (Stage 2) are volume preserving.
Both arguments are identical and we show the result only for (Stage 1).
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By Theorem 8, it suffices to show (Stage 1) is continuously differentiable, injective, and has a
Jacobian with determinant equal to one. Trivially, (Stage 1) is continuously differentiable. Next, we
show it is injective.

Suppose (yt1, y
t
2) map to the same (x

t+1/2
1 , x

t+1/2
2 ) when updated with (Stage 1), i.e.,

x
t+1/2
1 = xt1 +Axt2 = yt1 +Ayt2, (19)

x
t+1/2
2 = xt2 = yt2. (20)

Combining both equalities yields (xt1, x
t
2) = (yt1, y

t
2) and (Stage 1) is injective.

Next, we show that the determinant of the Jacobian in (Stage 1) is one. The Jacobian is

J1 =

[
Ik1 η1A
0 Ik2

]
(21)

and det(J1) = det(Ik1) · det(Ik2) = 1. (Stage 1) satisfies all three conditions and therefore is
volume-preserving thereby completing the proof of the theorem.
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