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Abstract

Adversarially robust classification seeks a classifier that is insensitive to adversarial perturbations
of test patterns. This problem is often formulated via a minimax objective, where the target loss
is the worst-case value of the 0-1 loss subject to a bound on the size of perturbation. Recent work
has proposed convex surrogates for the adversarial 0-1 loss, in an effort to make optimization more
tractable. In this work, we consider the question of which surrogate losses are calibrated with
respect to the adversarial 0-1 loss, meaning that minimization of the former implies minimization
of the latter. We show that no convex surrogate loss is calibrated with respect to the adversarial 0-1
loss when restricted to the class of linear models. We further introduce a class of nonconvex losses
and offer necessary and sufficient conditions for losses in this class to be calibrated.

Keywords: surrogate loss, classification calibration, adversarial robustness

1. Introduction

In conventional machine learning, training and testing instances are assumed to follow the same
probability distribution. In adversarially robust machine learning, test instances may be perturbed
by an adversary before being presented to the predictor. Recent work has shown that seemingly
insignificant adversarial perturbations can lead to significant performance degradations of otherwise
highly accurate classifiers (Goodfellow et al., 2015). This has led to the development of a number
of methods for learning predictors with decreased sensitivity to adversarial perturbations (Xu et al.,
2009; Xu and Mannor, 2012; Goodfellow et al., 2015; Cisse et al., 2017; Wong and Kolter, 2018;
Raghunathan et al., 2018a; Tsuzuku et al., 2018).

Adversarially robust classification is typically formulated as empirical risk minimization with an
adversarial 0-1 loss, which is the maximum of the usual 0-1 loss over a set of possible perturbations
of the test instance. This minimax optimization problem is nonconvex, and recent work, reviewed
in Section 4, has proposed several convex surrogate losses. However, it is still unknown whether
minimizing these convex surrogates leads to minimization of the adversarial 0-1 loss.

In this work, we examine the question of which surrogate losses are calibrated with respect to
(wrt) the adversarial 0-1 loss. A surrogate loss is said to be calibrated wrt a target loss if minimiza-
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(a) Ramp loss (8 = 0.5) (b) Hinge loss (8 = 0.5)

Figure 1: The best linear classifier under each loss. The shift parameter /3 for a surrogate loss is defined in Section 8. The
£2-balls associated to each instance indicate adversarial perturbations with radii 0.1. The yellow balls indicate instances
vulnerable to perturbations, in that they are within 0.1 of the decision boundary. In this example, 1.2% of instances are
vulnerable under the ramp loss, while 24.8% of instances are vulnerable under the hinge loss.

tion of the excess surrogate risk (over a specified class of decision functions) implies minimization
of the excess target risk. Employing the calibration function perspective of Steinwart (2007), we
show that no convex surrogate loss is calibrated wrt the adversarial 0-1 loss when restricted to the
class of linear models (Section 6). Intuitively, this is because convex losses prefer predictions close
to the decision boundary on average when P(Y = +1|X) =~ %, while predictions that are too close
to the decision boundary should be penalized in adversarially robust classification. We also provide
necessary and sufficient conditions for a certain class of nonconvex losses to be calibrated wrt the
adversarial 0-1 loss (Section 7), and provide excess risk bounds that quantify the relationship be-
tween the excess surrogate and target risks. These calibrated losses attain robustness by penalizing
predictions that are too close to the decision boundary. To our knowledge, this is the first work
to formally analyze the adversarial 0-1 loss by calibration analysis. Our analysis depends on the
fact that the adversarially robust 0-1 loss equals the horizontally shifted (non-robust) 0-1 loss when
restricted to linear models (Proposition 1). In summary, we argue against the use of convex losses
in adversarially robust classification (with linear models), and calibrated nonconvex losses serve as
good alternatives.

Our results demonstrate that adversarial robustness requires different surrogates than other no-
tions of robustness. For example, symmetric losses such as the sigmoid and ramp losses are robust
to label noise (Ghosh et al., 2015), but not calibrated wrt the adversarial 0-1 loss. Figure 1 illustrates
the results of learning a linear classifier with respect a shifted ramp loss, which is calibrated wrt the
adversarial 0-1 loss, and a shifted hinge loss, which is not (these losses are discussed in detail later).
While the hinge loss yields a classifier with smaller misclassification rate wrt the conventional 0-1
loss, this classifier is quite sensitive to small perturbations of the test instances. The classifier learned
by the ramp loss, on the other hand, makes fewer errors when subjected to adversarial perturbations.

The rest of this paper is organized as follows. Section 3 formalizes notation and the problem.
Related work on robust learning and calibration analysis is reviewed in Section 4. Technical details
of calibration analysis are reviewed in Section 5. Section 6 describes the nonexistence of convex
calibrated surrogate losses, while Section 7 presents general calibration conditions for a certain
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class of nonconvex losses. Section 8 applies our theory to several convex and nonconvex losses,
and presents excess risk bounds for the calibrated nonconvex losses. Section 9 shows simulation
results to verify that calibrated losses achieve target excess risk close to zero under the robust 0-1
loss. Conclusions are stated in Section 10.

2. Notation

Let |||, for a vector x € R? be the £,-norm, namely, ||z||, = i/ Zgzl |x;|P. Let Bg(r) C{ve
R? | ||lv|l, < 7} be the d-dimensional £,-ball with radius r. The set {1,...,n} is denoted by [n].
The indicator function corresponding to an event A is denoted by 1 4;. We define the infimum over
the empty set as +oo. Denote h = ¢ for a function h : S — Rand ¢ € Rif h(x) = cforall x €
dom(h), where dom(h) denotes the domain of a function h, and h # ¢ otherwise. For a function
h:S — R, we write h** : § — R for the Fenchel-Legendre biconjugate of h, characterized by
epi(h**) = coepi(h), where €0 S is the closure of the convex hull of the set S, and epi(h) is the
epigraph of the function h: epi(h) = {(z,t) | # € S, h(z) < t}. A function h : S — R is said to
be quasiconcave if for all z1,x2 € Sand A € [0, 1], A(Az1 + (1 — A)z2) > min{h(z1), h(x2)}.

Let X & BY(1) be the feature space, Y © {£1} be the binary label space, and F C RY be
a function class. We consider symmetric F, that is, —f € F for all f € F. We write F,; C R?
for the space of all measurable functions. Let £ : Y x X x F — R>( be a loss function. Then, we
write Ry(f) & Ex ) [€(Y, X, f)] for the (-risk of f € F. If £ can be represented by {(y, z, f) =
¢(yf(x)) with some ¢ : R — R>p forany y € Y, z € X, and f € F, ¢ is called a margin-based
loss function. We define the ¢-risk of f € F for a margin-based loss ¢ by

def

Ro(f) = Ex oY f(X))] = ExEyx[o(Y f(X))], (D

where Ex and Ey|y mean the expectation over P(X) and P(Y'|.X), respectively. We can rewrite
def

(1) as Ry (f) = Ex[Co(f(X),P(Y = +1|X))] with Cy(a, n) = nd(e) + (1 = n)¢(—c). We call

Cy (v, m) the class-conditional ¢-risk (p-CCR). The minimal ¢-risk R}, ~ < inf fer Ry(f)is called
def

the Bayes (¢, JF)-risk, and the minimal ¢-CCR on F is denoted by C 7(n) = infaear Cyla, ),
where Ar = {a = f(z) | f € F,x € X}. We refer to Ry(f) — R}, 7 as the (¢, F)-excess risk.

We occasionally use the abbreviation ACy #(c, 1) = Cy(cr, 1) — Cs. ().

3. Surrogate Losses for Adversarial Robust Classification

In supervised binary classification, a learner is asked to output a predictor f : X — R that minimizes
the classification error P{Y f(X) < 0}, where I is the unknown underlying distribution. This can
be equivalently interpreted as the minimization of the risk E(x y)[fo1(Y, X, f)] wrt f, where

l , T, Lef
oy, ) 0 otherwise

{1 if yf(x) <0,

is the 0-1 loss. Letting ¢o; (o) < L{a<oy» then £o1(y, z, f) = ¢o1(yf(z)). On the other hand, an
adversarially robust learner is asked to output a predictor f that minimizes the 0-1 loss while being
tolerant to small perturbations to input data points. Following existing literature (Xu et al., 2009;
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Tsuzuku et al., 2018; Bubeck et al., 2019), we consider ¢»-ball perturbations and define the goal as
the minimization of P{3A, € Bd(y)st. X + A, € X and Y f(X + A,) < 0}, where A, is a
perturbation vector and v € (0, 1) is a pre-defined perturbation budget. Equivalently, the goal of
adversarially robust classification is to minimize Ex y[(, (Y, X, f)] wrt f, where

1 if3A, € Bd(y)st. o+ A, € Xandyf(x + A,) <0,
0 otherwise.

E’Y(yvxvf) déf{

We call this loss function £, the adversarially robust 0-1 loss, or the robust 0-1 loss for short.
The robust 0-1 loss is also a margin-based loss when restricted to the class of linear models

Fin = {z— 0"z |0 e R |02 = 1} € RY. Note that Fyy,, is symmetric.

Proposition 1 Foranyx € X,y € Y, and f € Fin, we have L. (y, v, f) = Ly ()<}

We include the proof in Appendix B for completeness though it is mentioned as a fact by Di-
akonikolas et al. (2019). Subsequently, when considering Fj;,, we work with the loss function
o () o l{a<+} and call ¢, the y-robust 0-1 loss. We will study calibrated surrogates wrt ¢»,
instead of /., and both are equivalent under the restricted function class Fi;,. We can view ¢ as a
shifted version of ¢g1.

In many machine learning problems, there are often dichotomies between optimization (learn-
ing) and evaluation. For instance, binary classification is evaluated by the 0-1 loss, while common
learning methods such as SVM and logistic regression minimize surrogates to the 0-1 loss. This
dichotomy arises because minimizing the 0-1 loss directly is known to be NP-hard (Feldman et al.,
2012). Much research has investigated surrogates ¢ satisfying

Ry(fi) =Ry 7 = 0= Ru(fi) = Ri r — 0, 2)

for all probability distributions and sequence of { f; };eny C F.
Our learning goal is to minimize the expected y-robust 0-1 loss on a given function class F:

inR . 3

min ¢, (f) )

In order to solve (3), we aim to characterize surrogate losses ¢ satisfying (2) with £ = £, and
F = Fiin. By Proposition 1, we have Ry (f) = Ry, (f) when F = Fiy.

4. Related Work

From the viewpoint of robust optimization (Ben-Tal et al., 2009; Bertsimas et al., 2011), adversari-
ally robust binary classification can be formulated as

minE max ¥ Y,)Z' , , 4)
fer x¥) L?eU(X) ( f)]

where ¢ is a loss function and U () is a user-specified uncertainty set. Our formulation of adversar-

ially robust classification (3) can be regarded as the special case ¢ = £y and U(x) = = + B(y).
Since the minimax problem (4) is generally nonconvex, it is traditionally tackled by minimizing

a convex upper bound. Lanckriet et al. (2002) and Shivaswamy et al. (2006) pick U(z) = {x ~
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(z,%;)} as an uncertainty set, where  ~ (Z, ;) means that = is drawn from a distribution that
has prespecified mean z, covariance Y, and arbitrary higher moments. Lanckriet et al. (2002) and
Shivaswamy et al. (2006) convexified (4) and obtained a second-order cone program. Xu et al.
(2009) studied the relationship between robustness and regularization, and showed that (4) with the
hinge loss and U (z) = x + B(v) is equivalent to £3-regularized SVM. Recently, Wong and Kolter
(2018), Madry et al. (2018), Raghunathan et al. (2018a), Raghunathan et al. (2018b), and Khim and
Loh (2019) examined (4) with the softmax cross entropy loss and () = = + B (v) when F is a
set of deep nets, and provided convex upper bounds of the worst-case loss in (4). However, no work
except Cranko et al. (2019) studied whether the surrogate objectives minimize the robust 0-1 excess
risk. Cranko et al. (2019) showed that no canonical proper loss (Reid and Williamson, 2010) can
minimize the robust 0-1 loss. Since canonical proper losses are convex, this result aligns with ours.
We show more general results via calibration analysis for (z) = = + B$(¥).

There are several other approaches to the robust classification such as minimizing the Taylor
approximation of the worst-case loss in (4) (Goodfellow et al., 2015; Gu and Rigazio, 2015; Sha-
ham et al., 2018), regularization on the Lipschitz norm of models (Cisse et al., 2017; Hein and
Andriushchenko, 2017; Tsuzuku et al., 2018), and injection of random noises to model parame-
ters (Lecuyer et al., 2019; Cohen et al., 2019; Pinot et al., 2019; Salman et al., 2019). It is not
known whether these methods imply the minimization of the robust 0-1 excess risk.

Other forms of robustness have also been considered in the literature. A number of exist-
ing works considered the worst-case test distribution. This line includes divergence-based meth-
ods (Namkoong and Duchi, 2016, 2017; Hu et al., 2018; Sinha et al., 2018), domain adapta-
tion (Mansour et al., 2009; Ben-David et al., 2010; Germain et al., 2013; Kuroki et al., 2019; Zhang
et al., 2019b), and methods based on constraints on feature moments (Farnia and Tse, 2016; Fathony
et al., 2016).

In addition to adversarial robustness, it is worthwhile to mention outlier and label-noise ro-
bustness. It is known that convex losses are vulnerable to outliers, thus truncation making losses
nonconvex is useful (Huber, 2011). In the machine learning context, Masnadi-Shirazi and Vascon-
celos (2009) and Holland (2019) designed nonconvex losses robust to outliers. On the other hand,
label-noise robustness, especially the random classification noise model, has been studied exten-
sively (Angluin and Laird, 1988), where training labels are flipped with a fixed probability. Long
and Servedio (2010) showed that there is no convex loss that is robust to label noises. Later, Ghosh
et al. (2015), van Rooyen et al. (2015), and Charoenphakdee et al. (2019) discovered a certain class
of nonconvex losses is a good alternative for label-noise robustness. In both outlier and label-noise
robustness, nonconvex loss functions play an important role as we see in adversarial robustness.

Calibration analysis has been formalized in Lin (2004), Zhang et al. (2004), Bartlett et al. (2006),
and Steinwart (2007), and employed to analyze not only binary classification, but also complicated
problems such as multi-class classification (Zhang, 2004; Tewari and Bartlett, 2007; Long and
Servedio, 2013; Avila Pires and Szepesvari, 2016; Ramaswamy and Agarwal, 2016), multi-label
classification (Gao and Zhou, 2011; Dembczynski et al., 2012), cost-sensitive learning (Scott, 2011,
2012; Avila Pires et al., 2013), ranking (Duchi et al., 2010; Ravikumar et al., 2011; Ramaswamy
et al., 2013), structured prediction (Hazan et al., 2010; Ramaswamy and Agarwal, 2012; Osokin
et al., 2017; Blondel, 2019), AUC optimization (Gao and Zhou, 2015), and optimization of non-
decomposable metrics (Bao and Sugiyama, 2020). Zhang et al. (2004), Ravikumar et al. (2011),
and Gao and Zhou (2015) figured out ad hoc derivations of excess risk bounds, while Bartlett et al.
(2006), Steinwart (2007), Scott (2012), Avila Pires et al. (2013), Avila Pires and Szepesviri (2016),
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Osokin et al. (2017), and Blondel (2019) used more systematic approaches. As for adversarially
robust classification, Zhang et al. (2019a, Theorem 3.1) applied the classical result of calibration
analysis on convex losses to upper bound the robust classification risk, resulting in a term requiring
numerical approximation in practice.

S. Calibration Analysis

Calibration analysis is a tool to study the relationship between surrogate losses and target losses.
This section is devoted to explaining the calibration function introduced in Steinwart (2007) and
specializing it to the current paper.'

Definition 2 For a loss 1) : R — R>¢ and a function class F, we say a loss ¢ : R — Rxq is
calibrated wrt (1, F), or (¥, F)-calibrated, if for any € > 0, there exists 6 > 0 such that for all
n € [0,1] and o € Ax, we have

Cola,m) < 5 2() +6 = Cylayn) < Cj #() +e. )

If ¢ is (¢, F)-calibrated, the condition (2) holds for any probability distribution on X" x ) (Stein-
wart, 2007, Theorem 2.8). Thus, consistency of a learner wrt the ¢-risk implies consistency wrt the
1p-risk.

Next, we introduce the calibration function (Steinwart, 2007, Lemma 2.16).

Definition 3 For a margin-based loss 1) and ¢, and a function class F, the calibration function of
¢ wrt (Y, F), or simply calibration function if the context is clear, is defined as

5(e)= inf inf Cy(a,n)—C: . Cy(a,m) — C* > e, 6
(€) nf il s(a,n) —Cy r(n) st Cy(a,m) —Cj 7(n) > € (6)

Note that §(¢) is nondecreasing for € > 0. The calibration function 0 (¢) is the maximal § satisfying
the CCR condition (5). Steinwart (2007) established the following two important results.

Proposition 4 (Lemma 2.9 in Steinwart (2007)) A surrogate loss ¢ is (Y,F)-calibrated if and
only if its calibration function ¢ satisfies 6(¢) > 0 for all € > 0.

Proposition 5 (Theorem 2.1§ in Steinwart (200?)) Let 6 : R>g — R>q lge the calibration func-
tion of ¢ wrt (1, F). Define 0 : R>g — R>q as 0(¢) = d(¢) if ¢ > 0 and 6(0) = 0. Then, for all
f € F, we have

5 (Ru(f) = Ry r) < Rolf) = R 7. )
where 6** denotes the Fenchel-Legendre biconjugate of d.

The relationship in (7) is called an excess risk transform. The excess risk transform is invertible iff
¢ is (1,F)-calibrated (Steinwart, 2007, Remark 2.14). In this case, we obtain the excess risk bound
Ry(f) =Ry 7 < () LRy (f) — R}, 7)- In the end, the calibration function can be used in two

1. We import toolsets from Steinwart (2007) because of two reasons: (i) Steinwart (2007) formalized calibration analy-
sis that is dependent on user-specified function classes, which is useful for our analysis on Fi,. (ii) Steinwart (2007)
gave a general form of the calibration function (6), while most of literature focuses on specific target losses.
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ways: Proposition 4 enables us to check if a surrogate loss is calibrated, and Proposition 5 gives
us a quantitative relationship between the surrogate excess risk and the target excess risk. Such an
analysis has been carried out in a number of learning problems as we mention in Section 4.

Next, we review an important result regarding convex surrogates for the non-robust 0-1 loss ¢g; .

Proposition 6 (Theorem 6 in Bartlett et al. (2006)) Ler ¢ be a convex surrogate loss. Then, ¢ is
calibrated wrt (po1,Fan) if and only if it is differentiable at 0 and ¢'(0) < 0.

As a result of Proposition 6, we know that many surrogate losses used in practice such as the hinge
loss, logistic loss, and squared loss are calibrated wrt (¢o1,Fall)-

Finally, we characterize the calibration function of an arbitrary surrogate loss ¢ wrt ¢.. Its proof
is deferred in Appendix B.

Lemma7 Let F C RY be a function class such that Ax O [—1,1]. For a surrogate loss ¢, the

(¢~,F )-calibration function is 6(¢) = inf, (o 1) 6(g,n), where

o0 ife > max{n, 1 —n},
5(e,m) = { it ACs.r(am) if2n—1] <e <max{n,1-n}, g
inf ACy r(aym) ife < |2n—1].

acAr:(2n—1)a<0or |a|<vy

Lemma 7 is used in the proofs and examples below. Note that Ax, = [—1,1] and Axr,, = R.

6. Convex Surrogates are Not (¢, F.;)-calibrated

Our first result concerns calibration of convex surrogate losses wrt the ~y-robust 0-1 loss.

Theorem 8 For any margin-based surrogate loss ¢ : R — Rx>q and function class F C RY such
that Ar O [—1,1], if ¢ is convex, then ¢ is not calibrated wrt (-, F).

Corollary 9 For any margin-based surrogate loss ¢ : R — R>q, if ¢ is convex, then ¢ is not
calibrated wrt (¢~, Fiin), nor is it calibrated wrt (¢-, Fan).

Proof (Sketch) Here we focus on function class ;. In the non-robust setup, Bartlett et al. (2006)
showed that a surrogate loss is calibrated wrt (¢o1,Fan) iff inf(9,_1)a<o Ce(a,n) (the minimum
¢-risk over ‘wrong’ predictions) is larger than inf,cr Cy(cv,n7) (the minimum ¢-risk over all pre-
dictions) for n £ % This means wrong predictions must be penalized more. In our robust setup, we
must penalize not only wrong predictions but also predictions that fall in the y-margin, i.e.,

inf Cy(c,n) > inf Cy(ca,n), 9
Inf Coler,m) > inf Cola,m) ©)
which is an immediate corollary of Proposition 4 and Lemma 7 and stated in part 3 of Lemma 12 in
Appendix B. Condition (9) becomes harder to satisfy as a data point gets more uncertain (n — %).
In the limit, we have inf <, ¢(a) + ¢(—a) > infuer ¢(a) + ¢(—a), meaning that the even part
of ¢ “should take larger values in || < -y than in the rest of a.” However, ¢(«) + ¢(—«) attains the
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Figure 3: Illustration of ¢()+¢(—a) = 2Cy (a, 5),
Figure 2: [llustration of ¢(a)+¢(—a) = 2C4 (a, 1), where ¢ i.s.the ramp loss with 8 = 0.3 and v = 0.5.
where ¢ is the hinge loss and v = 0.5. ¢(a) + ¢(—a) The condition ¢(7) + ¢(—7) > ¢(1) + ¢(—1) = 1
has the same minimizers in both || < ~ and |a| < 1. reflects the idea that predictions fall into the shaded

area (|| < «y) must be penalized more than the others.

infimum at o = 0 because ¢(«) + ¢(—«) is convex and even as long as ¢ is convex. Therefore, the
condition (9) would never be satisfied by convex surrogate ¢. This idea is illustrated in Figure 2. l

Hence, many popular surrogate losses such as the hinge, logistic, and squared losses are not
calibrated wrt (¢, Fan). We defer all proofs to Appendix B.

Note that convex losses can be calibrated wrt (¢~,F,1) under restricted distributions while
we are primarily interested in calibrated losses under all distributions (see Definition 2). Indeed,
Cy (v, ) would not be minimized in || < < unless 7 is close enough to . In other words, convex

losses may be calibrated wrt (¢-,F,11) under low-noise conditions (Mammen and Tsybakov, 1999).

7. Calibration Conditions for Nonconvex Surrogates

As seen in Section 6, convex surrogate losses that are calibrated wrt (¢-,,Fan) do not exist. This mo-

tivates a search for nonconvex surrogate losses. Nonconvex surrogates are used for outlier robust-

ness (Collobert et al., 2006; Masnadi-Shirazi and Vasconcelos, 2009; Holland, 2019) or label-noise

robustness (Ghosh et al., 2015; van Rooyen et al., 2015; Charoenphakdee et al., 2019). Bounded

monotone surrogates such as the ramp loss and the sigmoid loss are simple and common choices for

those purposes. In this section, we also look for good surrogates from bounded monotone losses.
First, we introduce an important notion that constrains our search space of loss functions.

Definition 10 We say a margin-based loss function ¢ : R — R is quasiconcave even if ¢(«) +
¢(—av) is quasiconcave. Such ¢ is called a quasiconcave even loss.

The name comes from the fact that any function h(x) may be uniquely expressed as the sum of its
even part W and odd part w This fact is also utilized to study the relationship
between loss functions and sufficiency (Patrini et al., 2016).

Next, we state our main positive result. Its proof is included in Appendix B.

Theorem 11 Let ¢ : R — R> be a surrogate loss. Assume that ¢ is bounded, nonincreasing, and
def

quasiconcave even. Let B = ¢(1) + ¢(—1) and assume ¢(—1) > ¢(1). Let F C RY be a function
class such that Ax O [—1,1]. Then,

1. ¢ is (¢o1,F)-calibrated.
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Figure 4: Surrogate losses. They are different from the traditional ones by horizontal translation of +3 (8 = 0.2 here).

2. ¢ is (¢, F)-calibrated if and only if ¢(y) + ¢(—v) > B.

Proof (Sketch of 2) As in the proof sketch of Theorem 8, (9) is needed for (¢.,.F)-calibration,
and ¢(a) + ¢(—a) “should take larger values in |o| < < than in the rest of a.” Quasiconcavity
of ¢(a) + ¢(—a) naturally implies this property with a non-strict inequality, and the condition
() + ¢(—v) > B ensures the strict inequality. Figure 3 illustrates it with the ramp loss. [ |

To the best our knowledge, this is the first characterization of losses calibrated to ¢.,. This result
is especially interesting when F = JFj;;, ensuring that a quasiconcave even surrogate ¢ such that
&(v) + &(—v) > B is (¢, Fiin)-calibrated.

We remark that ¢(v) + ¢(—vy) > B always holds when ¢ is bounded, nonincreasing, and
quasiconcave even (see part 4 of Lemma 13 in Appendix B). The strict inequality ¢(v)+¢(—v) > B
is necessary and sufficient for (¢-,Fin)-calibration.

We additionally remark that the ramp loss and the sigmoid loss are (¢g1,Fa11)-calibrated (Bartlett
et al., 2006; Charoenphakdee et al., 2019). Note that these two losses are bounded, nonincreasing,
and quasiconcave even, hence (¢g1,Fi,)-calibrated.

8. Examples

Several examples of loss functions are shown in Figure 4. For each base surrogate ¢, we con-
sider the shifted surrogate ¢3(c) & $(a — ) with the horizontal shift parameter 3. The ramp,
sigmoid, modified squared losses are examples of nonconvex and quasiconcave even losses when
B > 0, while the hinge, logistic, and squared losses are examples of convex losses. We show
(¢~,Fiin)-calibration functions in this subsection.? As a result, we will see that the ramp, sigmoid,
and modified squared losses are calibrated with appropriate shift parameters. Detailed derivations

of the calibration functions and the proofs of quasiconcavity are deferred to Appendix C.

8.1. Ramp Loss

The ramp loss is ¢(e) = min {1, max {0,152} }. We consider the shifted ramp loss: ¢g(a) =

¢(a — ) = min {1,maX {O, 1762”& }} The (¢-,Fiin)-calibration function and its Fenchel-

Legendre biconjugate of the ramp loss are plotted in Figure 5. We can see that the ramp loss

2. We only rely on the fact that Fi;n O [—1, 1]. The results can be extrapolated to F such that F D [—1, 1].
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Figure 5: The calibration function of the ramp loss. The dashed line is 5.
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Figure 6: The calibration function of the sigmoid loss. A & ds(7) — os(—v) — (1) + d5(—1), A1 (s (v) +

def

ps(—v) — ¢p(1) — ¢p(—1)) /2, and o = (¢p(—1) — ds(—7))/Ao. The dashed line is 6**.

is calibrated wrt (¢-,F1in) when 0 < B < 2. Since the ramp loss is quasi-concave even when
B > 0, we also observe that the ramp loss is not calibrated when 8 = 0 because it is symmetric
loss (Charoenphakdee et al., 2019), that is, ¢g(cr) + ¢o(—«) = 1 for all o € R, which does not
satisty the condition ¢g(7) + ¢o(—y) > B = 1 in Theorem 2.

8.2. Sigmoid Loss

The sigmoid loss is ¢(a) = H% We consider the shifted sigmoid loss: ¢g(a) = 1+€+_ﬂ for
B > 0. The (¢,F1in)-calibration function is plotted in Figure 6. Thus, the sigmoid loss is (¢~,Fiin)-
calibrated when A; > 0, which is equivalent to 5 > 0. Again, we observe that the sigmoid loss

with 8 = 0 is not calibrated in the same way as the ramp loss because it is symmetric.

8.3. Modified Squared Loss

We make a bounded monotone surrogate ¢(a) = clip q(max{0,1 — a}?) by modifying the

squared loss, where clipy, ;(+) clips values outside the interval [a, b], and consider the shifted ver-
def

sion ¢g(c) = ¢(a — f3). The (¢, Fiin)-calibration function and its Fenchel-Legendre biconjugate
are plotted in Figure 7. We can deduce that the modified squared loss is calibrated wrt (¢, Fin) for
all 0 < B < 1. In contrast to the proceeding examples, the modified squared loss is not symmetric.

Moreover, the modified squared loss is (¢.,.F1in)-calibrated even if ¢ for 8 < 0 is not a quasi-
concave even loss. We plot two examples in Figure 8. As seen in the proof sketch of Theorem 11,
it is crucial that ¢5(a) + ¢g(—a) takes higher values in |a| < 7 than in |a| > 7. The modified
squared loss with —1 + % < B < 0 satisfies this property (see Figure 9).

10



ADVERSARIALLY ROBUST CLASSIFICATION CALIBRATION

J s 5 5
2(1 — B%)eo
N2
SUUTITR L (1 - B2)eo .
(1-?/2 U A S O PR .
B — —
(@B=0 B o< p<y @©ry<pB<1 @1<8

Figure 7: The calibration function of the modified squared loss. The dashed line is 6**. &g def %

¢p(a) + pg(—a)
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148 @

o ) ) Figure 9: Tlustration of ¢5 () + ¢5(—a) for
Figure 8: The calibration function of the modified squared loss when . modified squared loss when —1 + <
def

B<0.60= B2 +28+Landm = (2428 +9)/4(1 +7). B < 0.Here, 3= —0.2and v = 0.4.

S

8.4. Hinge Loss and Squared Loss

Here we consider the shifted hinge loss ¢5(a) = max{0,1 — o + [}, and the shifted squared loss
dp(a) = (1 — a + B)? as examples of convex losses. Their (¢-,Fiin)-calibration functions are
plotted in Figures 10 and 11, respectively, which tell us that the hinge and squared losses are not
(¢~,Fiin)-calibrated. This result aligns with Theorem 8.

9. Simulation

Learning Curve on Synthetic Data. We generate positive and negative data from N'([2 2], I5)
and N'(—[2 2] ", I3), respectively, and normalize with the maximum ¢2-norm among all data points.
This ensures that data points lie in the ¢2 unit ball. We generate 800 training and 200 test points.

Linear models f(x) = 6" 246 are used, where 0 and 6 are learnable parameters. As surrogate
losses, we use the ramp, sigmoid, logistic, and hinge losses, with shift parameter 3 = 0.2. Batch
gradient descent with the fixed step size 0.1 is used in optimization, and 1,000 steps are run for each
trial. After every parameter update, the parameters are normalized to ensure ||[§ 6] |2 = 1.

The robust 0-1 loss with v = 0.2 is used as the target loss. To compute the excess risk, the
Bayes risk for each surrogate loss and the robust 0-1 loss is numerically computed. The detail of
numerical approximation of the Bayes risks is explained in Appendix D. The surrogate and target
excess risks are shown in Figure 12. 20 trials are run for each data realization.

As you can see from Figure 12, optimization trajectories of calibrated surrogates (ramp and
sigmoid) have target excess risks close to zero, while those of convex surrogates (logistic and hinge)

11
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Figure 10: The calibration func- Figure 11: The calibration function of the squared loss. 770 = (1 +~ + 8)/2(1 + A),
tion of the hinge loss. def def
n2 = (2+ B)/2(1 4 B), and m = (no + n2)/2.

Table 1: The simulation results of the ~y-adversarially

robust 0-1 loss withy = 0.1 and 5 = 0.5. 50 trials are T :iagr;zd
conducted for each pair of a method and dataset. Stan- 10" | ==~ Logistic
dard errors (multiplied by 10*) are shown in parenthe- % | o
ses. Bold-faces indicate outperforming methods, cho-
sen by one-sided t-test with the significant level 5%.

target excess risk

Ramp Sigmoid Hinge Logistic o

Ovs1 0034(3) 0017(2) 0.087(12) 0.321(19)
Ovs2 0111(7)  0.133(10) 0.109(8)  0.281(19) S »
Ovs3 0107(7) 0.126(8)  0.120(9)  0.307 (18)
Ovs4 0.069(6) 0.093(12) 0.072(7) 0269 (21)
Ovs5 0233(21) 034025 023321 0.269 (16)

surrogate excess risk

Ovs6  0.129 (8) 0.167 (13)  0.127(8)  0.287 (22) Figure 12: 20 trials of optimization trajectories are
Ovs7 0.067 (6) 0.073 (6) 0.090 (9) 0.302 (18) shown with standard errors. The horizontal (vertical,
Ovs8 0.096(7)  0.123(12) 0.100(9)  0.263 (20) resp.) axis shows surrogate excess risk (excess risk of
Ovs9  0.082(6) 0.101 (8) 0.092 (3) 0.279 (22) the robust 0-1 loss, resp.) on test data.

fail. This observation supports our theoretical findings in Theorems 8 and 11. Different values of 3
were tried for the hinge and logistic losses, but the conclusions are not affected.

Benchmark Data. We compare the ramp, sigmoid, hinge, and logistic losses on MNIST. The re-
sults are shown in Table 1, where we see that nonconvex losses, especially the ramp loss, outperform
convex losses in terms of the robust 0-1 loss. Details and full results appear in Appendix D.

10. Conclusion

Calibration analysis was leveraged to analyze the adversarially robust 0-1 loss. We found that
no convex surrogate loss is calibrated wrt the adversarially robust 0-1 loss. We also established
necessary and sufficient conditions for a certain class of nonconvex surrogate losses to be calibrated
wrt the adversarially robust 0-1 loss, which includes shifted versions of the ramp and sigmoid losses.
An important open problem is to extend our calibration results to nonlinear classifier models.
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