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Abstract

We study a variant of the sparse PCA (principal component analysis) problem in the “hard” regime,
where the inference task is possible yet no polynomial-time algorithm is known to exist. Prior work,
based on the low-degree likelihood ratio, has conjectured a precise expression for the best possi-
ble (sub-exponential) runtime throughout the hard regime. Following instead a statistical physics
inspired point of view, we show bounds on the depth of free energy wells for various Gibbs mea-
sures naturally associated to the problem. These free energy wells imply hitting time lower bounds
that corroborate the low-degree conjecture: we show that a class of natural MCMC (Markov chain
Monte Carlo) methods (with worst-case initialization) cannot solve sparse PCA with less than the
conjectured runtime. These lower bounds apply to a wide range of values for two tuning parame-
ters: temperature and sparsity misparametrization. Finally, we prove that the Overlap Gap Property
(OGP), a structural property that implies failure of certain local search algorithms, holds in a sig-
nificant part of the hard regime.'

1. The Model

We consider the following variant of sparse PCA in the spiked Wigner model (also called principal
submatrix recovery). Let W be a GOE(n) matrix, i.e., n X n symmetric with off-diagonal entries
N(0,1/n) and diagonal entries N'(0,2/n), all independent aside from the symmetry W;; = Wj,.
Let = be an unknown k-sparse vector in {0,1}", i.e., exactly k entries are equal to 1. We are
interested in recovering x from the observation

Y = émx—r +W
k
where A > 0 is the signal-to-noise ratio. We study the problem in the limit n — oo, where the
parameters A = \,, and k = k,, may depend on n. We are primarily interested in the exact recovery
problem: we study algorithms which given Y, output x with high probability, i.e., probability tend-
ing to 1 as m — oo. Our regime of interest will be 1 < k < n. Throughout, we use the notation <
to hide factors of n°(!) (although in most cases, < will only hide logarithmic factors).

1. This paper is an extended abstract. The full version appears as arXiv preprint arXiv:2006.10689v1.
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2. Our Contributions

Prior work suggests the existence of a “hard regime” \/k/n < A < min{l, k/\/n} where ex-
act recovery is information-theoretically possible but no polynomial-time algorithm is known (see
e.g. Baik et al. (2005); Féral and Péché (2007); Amini and Wainwright (2008); Benaych-Georges
and Nadakuditi (2009); Johnstone and Lu (2009); Banks et al. (2018); Ding et al. (2019)). More
specifically, the work of Ding et al. (2019) suggests the following conjecture regarding a precise
expression for the best possible (sub-exponential) runtime throughout the hard regime.

Conjecture 1 Consider the sparse PCA problem as defined in Section 1. For any X in the “hard”

regime \/k/n < A < min{l, k/\/n}, any algorithm requires runtime exp (Q (%)) to achieve
exact recovery.

This prediction is made by Ding et al. (2019) (for a variant of our model where z; € {0,—1,1})
using the low-degree likelihood ratio (Hopkins and Steurer, 2017; Hopkins et al., 2017; Hopkins,
2018), which amounts to studying the power of algorithms based on low-degree polynomials. There
are known algorithms which achieve the matching runtime exp (O <%)) (Ding et al., 2019;
Holtzman et al., 2019). For instance, the following simple algorithm of Ding et al. (2019) proceeds
in two steps. The first step is to let ¥’ = " and solve, by exhaustive search, the optimization

AZn
problem
argmaxv' Yo (1)
UESk/
where S} is the space of k’-sparse vectors
S ={ve{0,1}" : |lvllo =K'}, ()

and the final step uses the optimizer v* to exactly recover x via a simple boosting procedure.
In this work we give evidence in support of Conjecture 1 by showing

e the existence of free energy wells (Ben Arous et al., 2018; Gamarnik and Zadik, 2017b, 2019;
Gamarnik et al., 2019) in the Gibbs measure (at various temperatures) associated with the
optimization problem (1),

e and the existence of the overlap gap property (Gamarnik and Zadik, 2017a,b; Gamarnik et al.,
2019; Gamarnik and Zadik, 2019; Zadik, 2019) in the space of feasible solutions of the opti-
mization problem (1),

for various choices of the tuning parameter &’. As explained in the full version of the present work, a
free energy well of depth D at inverse temperature /3 implies that a certain class of MCMC methods
with parameter [ requires time at least exp(€2(D)) to solve (1). Our main result can be stated
informally as follows.

Theorem (Main result, informal) Suppose A is in the “hard” regime \/k/n < A < min{1, k/\/n}
and that additionally, A < (k/ n)l/ 4. For any “informative” k' and any 3 > 0 (possibly depending
on n), there exists a free energy well of depth Q (%) and the overlap gap property holds, with
high probability.



FREE ENERGY WELLS AND OGP IN SPARSE PCA

Here “informative” k' refers to the condition, )\’Z—Qn < k' < A2n, which captures the k" values
for which solving the optimization problem (1) is actually useful in the sense that a near-optimal
solution can be used to exactly recover z via a simple boosting procedure. Our main result shows
that if the condition A < (k/n)'/* is satisfied then MCMC cannot improve the runtime of Ding
et al. (2019); Holtzman et al. (2019) for any choice of inverse temperature S and any (informative)
choice of misparametrization k’. The main weakness of the result is the condition A < (k/n)/4,
which is an artifact of the proof. However, in the relatively sparse regime k < n'/3, the condition
A < (k/n)'/* holds throughout the entire “hard” regime. Thus we obtain a complete refutation
of MCMC methods (across all 3 and k') throughout a large range of sparsity values (namely k <
nl / 3)'

Our results are actually somewhat stronger than what we have stated here: even when the con-
dition A < (k/n)'/* does not hold, the result still holds for some &’ values; in particular, it always
holds for all informative k' < k. One consequence of this is that it is not possible to speed up the
algorithm of Ding et al. (2019) by taking their choice of k' =~ /\l% (the smallest “informative” &/,

which in particular is less than k) and solving (1) via MCMC instead of exhaustive search.

Remark 2 In order for a computational hardness result to be most compelling, the class of algo-

rithms ruled out should capture the best known algorithms. This is indeed the case here in the sense
2

that there exists a choice of parameters, namely k' ~ /\k;—n and 3 = 0, for which MCMC (followed

n

by boosting) mimics the algorithm of Ding et al. (2019) and achieves the runtime exp (O (/\]“TQ) )

For this choice of parameters, MCMC is simply a random walk (ignoring the data 'Y’ ) on the space
k? ) ;

n with

high probability. A consequence is that for this choice of k' and 3, any free energy well has depth

of K'-sparse vectors, which will visit all states within time exp(O(k')) = exp (O (

O (%) and so our lower bound is tight. It is not clear whether MCMC with more natural param-

eters (e.g. k' = k) matches the above runtime, it might in fact be strictly worse. This highlights the
importance of allowing k' # k in our main result.
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