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Abstract
Motivated by cognitive radios, stochastic multi-player multi-armed bandits gained a lot of interest
recently. In this class of problems, several players simultaneously pull arms and encounter a collision
– with 0 reward – if some of them pull the same arm at the same time. While the cooperative case
where players maximize the collective reward (obediently following some fixed protocol) has been
mostly considered, robustness to malicious players is a crucial and challenging concern. Existing
approaches consider only the case of adversarial jammers whose objective is to blindly minimize the
collective reward.

We shall consider instead the more natural class of selfish players whose incentives are to
maximize their individual rewards, potentially at the expense of the social welfare. We provide the
first algorithm robust to selfish players (a.k.a. Nash equilibrium) with a logarithmic regret, when the
arm performance is observed. When collisions are also observed, Grim Trigger type of strategies
enable some implicit communication-based algorithms and we construct robust algorithms in two
different settings: the homogeneous (with a regret comparable to the centralized optimal one) and
heterogeneous cases (for an adapted and relevant notion of regret). We also provide impossibility
results when only the reward is observed or when arm means vary arbitrarily among players.
Keywords: Multi-Armed Bandits, Decentralized Algorithms, Cognitive Radio, Game Theory

1. Introduction

In the classical stochastic Multi Armed Bandit problem (MAB), a player repeatedly chooses among
K fixed actions (a.k.a. arms). After pulling arm k ∈ [K] := {1, . . . ,K}, she receives a random
reward in [0, 1] of mean µk. Her goal is to maximize her cumulative reward up to some horizon
T ∈ N. The performance of a pulling strategy (or algorithm) is assessed by the growth of regret, i.e.,
the difference between the highest possible expected cumulative reward and the actual cumulative
reward. Since the means µk are unknown beforehand, the player trades off gathering information on
under-sampled arms (exploration) vs. using her information (exploitation). Optimal solutions are
known in the simplest model (Lai and Robbins, 1985; Agrawal, 1995; Auer et al., 2002). We refer
to (Bubeck and Cesa-Bianchi, 2012; Lattimore and Szepesvári, 2018; Slivkins et al., 2019) for an
extensive study of MAB. This simple model captures many sequential decisions problems including
clinical trials (Thompson, 1933; Robbins, 1952) and online recommandation systems (Li et al., 2010)
and has therefore known a large interest in the past decades.

Another classical application of MAB is cognitive radios (Jouini et al., 2009; Anandkumar et al.,
2011). In this context, an arm corresponds to a channel on which a player decides to transmit and
the reward is its transmission quality. A key feature of this model, is that it involves several players
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using channels simultaneously. If several players choose the same arm/channel at the same time,
then they collide and receive a null reward. This setting remains somehow simple when a central
agent controls simultaneously all players (Anantharam et al., 1987; Komiyama et al., 2015), which
is far from being realistic. In reality, the problem is indeed completely decentralized: players are
independent, anonymous and cannot communicate to each other. This requires the construction of
new algorithms and the development of new techniques dedicated to this multiplayer bandit problem.
Interestingly, there exist several variants of the base problem, depending on the assumption made
on observations/feedback received (Avner and Mannor, 2014; Rosenski et al., 2016; Besson and
Kaufmann, 2018; Lugosi and Mehrabian, 2018; Magesh and Veeravalli, 2019).

More precisely, when players systematically know whether or not they collide, this observation
actually enables communication between players and a collective regret scaling as in the centralized
case is possible, as observed recently (Boursier and Perchet, 2019; Proutiere and Wang, 2019). Using
this idea, it is even possible to asymptotically reach the optimal assignment (Bistritz and Leshem,
2018; Tibrewal et al., 2019; Boursier et al., 2019) in the heterogeneous model where the performance
of each arm differs among players (Kalathil et al., 2014; Avner and Mannor, 2015, 2018). Liu et al.
(2019) considered the heterogeneous case, when arms also have preferences over players.

For the aforementioned result to hold, a crucial (yet sometimes only implicitly stated) assumption
is that all players follow cautiously and meticulously some designed protocols and that none of them
tries to free-ride the others by acting greedily, selfishly or maliciously. The concern of designing
multiplayer bandit algorithms robust to such players has been raised (Attar et al., 2012), but only
addressed under the quite restrictive assumption of adversarial players called jammers. Those try to
perturb as much as possible the cooperative players (Wang et al., 2015; Sawant et al., 2018, 2019),
even if this is extremely costly to them as well. Because of this specific objective, they end up using
tailored strategies such as only attacking the top channels.

We focus instead on the construction of algorithms with “good” regret guarantees even if one
(or actually more) selfish player does not follow the common protocol but acts strategically in order
to manipulate the other players in the sole purpose of increasing her own payoff – maybe at the
cost of other players. This concept appeared quite early in the cognitive radio literature (Attar et al.,
2012), yet it is still not understood as robustness to selfish player is intrinsically different (and even
non-compatible) with robustness to jammers, as shown in Section 2.2. In terms of game theory, we
aim at constructing (ε-Nash) equilibria in this repeated game with partial observations.

The paper is organized as follows. Section 2 introduces notions and concepts of selfishness-robust
multiplayer bandits and showcases reasons for the design of robust algorithms. Besides its state
of the art regret guarantees when collisions are not directly observed, Selfish-Robust MMAB,
presented in Section 3, is also robust to selfish players. In the more complex settings where only the
reward is observed or the arm means vary among players, Section 4 shows that no algorithm can
guarantee both a sublinear regret and selfish-robustness. The latter case is due to a more general
result for random assignments. Instead of comparing the cumulated reward with the best collective
assignment in the heterogeneous case, it is then necessary to compare it with a good and appropriate
suboptimal assignment, leading to the new notion of RSD-regret.

When collisions are always observed, Section 5 proposes selfish-robust communication protocols.
Thanks to this, an adaptation of the work of Boursier and Perchet (2019) is possible to provide a robust
algorithm with a collective regret almost scaling as in the centralized case. In the heterogeneous case,
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this communication – along with other new deviation control and punishment protocols – is also
used to provide a robust algorithm with a logarithmic RSD-regret.

Our contributions are thus diverse: on top of introducing notions of selfish-robustness, we provide
robust algorithms with state of the art regret bounds (w.r.t. non-robust algorithms) in several settings.
This is especially surprising when collisions are observed, since it leads to a near centralized regret.
Moreover, we show that such algorithms can not be designed in harder settings. This leads to the new,
adapted notion of RSD-regret in the heterogeneous case with selfish players and we also provide a
good algorithm in this case. These results of robustness are even more intricate knowing they hold
against any possible selfish strategy, in contrast to the known results for jammer robust algorithms.

2. Problem statement

In this section, we describe formally the model of multiplayer MAB and introduce concepts and
notions of robustness to selfish players (or equilibria concepts).

2.1. Model

We denote the transmission qualities of the channels by (Xk(t))1≤k≤K ∈ [0, 1], drawn i.i.d. according
to νk of expectation µk. In the following, arm means are assumed to be different and µ(i) denotes
the i-th largest mean, i.e., µ(1) > µ(2) > . . . > µ(K). At each round t ∈ [T ], all M players
simultaneously pull some arms, choice solely based only on their past own observations with
M ≤ K. We denote by πj(t) the arm played by player j, that generates the reward

rj(t) := Xπj(t)(t) · (1− ηπj(t)(t)),
where ηk(t) := 1

(
#{j ∈ [M ] | πj(t) = k} > 1

)
is the collision indicator.

The performance of an algorithm is measured in terms of regret, i.e., the difference between the
maximal expected reward and the algorithm cumulative reward after T steps1:

RT := T

M∑
k=1

µ(k) −
T∑
t=1

M∑
j=1

µπj(t)(t) · (1− ηπj(t)(t)).

In multiplayer MAB, three different observation settings are considered.

Full sensing: each player observes both ηπj(t)(t) and Xπj(t)(t) at each round.

Statistic sensing: each player observes Xπj(t)(t) and rj(t) at each round, e.g., the players first
sense the quality of a channel before trying to transmit on it.

No sensing: each player only observes rj(t) at each round.

Players are not able to directly communicate to each other, since it involves significant time
and energy cost in practice. Some form of communication is still possible between players through
observed collisions and has been widely used in recent literature (Boursier and Perchet, 2019;
Boursier et al., 2019; Tibrewal et al., 2019; Proutiere and Wang, 2019).

1. As usual, the fact that the horizon T is known is not crucial (Degenne and Perchet, 2016).
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2.2. Considering selfish players

As mentioned in the introduction, the literature focused on adversarial malicious players, a.k.a. jam-
mers, while considering selfish players instead of adversarial ones is as (if not more) crucial. These
two concepts of malicious players are fundamentally different. Jamming-robust algorithms must stop
pulling the best arm if it is being jammed. Against this algorithm, a selfish player could therefore
pose as a jammer, always pull the best arm and be left alone on it most of the time. On the contrary,
an algorithm robust to selfish players has to actually pull this best arm if jammed by some player in
order to “punish” her so that she does not benefit from deviating from the collective strategy.

We first introduce some game theoretic concepts before defining notions of robustness. Each
player j follows an individual strategy (or algorithm) sj ∈ S which determines her action at each
round given her past observations. We denote by (s1, . . . , sM ) = s ∈ SM the strategy profile of all
players and by (s′, s−j) the strategy profile given by s except for the j-th player whose strategy is
replaced by s′. Let Rewj

T (s) be the cumulative reward of player j when players play the profile s.
As usual in game theory, we consider a single selfish player – even if the algorithms we propose are
robust to several selfish players assuming M is known beforehand (its initial estimation can easily be
tricked by several players).

Definition 1. A strategy profile s ∈ SM is an ε-Nash equilibrium if for any s′ ∈ S and j ∈ [M ]:

E[Rewj
T (s′, s−j)] ≤ E[Rewj

T (s)] + ε.

This simply states that a selfish player wins at most ε by deviating from sj . We now introduce a
more restrictive property of stability that involves two points: if a selfish player still were to deviate,
this would only incur a small loss to other players. Moreover, if the selfish player wants to incur
some considerable loss to the collective players (e.g., she is adversarial), then she also has to incur a
comparable loss to herself. Obviously, an ε-Nash equilibrium is (0, ε)-stable.

Definition 2. A strategy profile s ∈ SM is (α, ε)-stable if for any s′ ∈ S, l ∈ R+ and i, j ∈ [M ]:

E[Rewi
T (s′, s−j)] ≤ E[Rewi

T (s)]− l =⇒ E[Rewj
T (s′, s−j)] ≤ E[Rewj

T (s)] + ε− αl.

2.3. Limits of existing algorithms.

This section explains why existing algorithms are not robust to selfish players, i.e., are not even
o(T )-Nash equilibria. Besides justifying the design of new appropriate algorithms, this provides
some first insights on the way to achieve robustness.

Communication between players. Many recent algorithms rely on communication protocols
between players to gather their statistics. Facing an algorithm of this kind, a selfish player would
communicate fake statistics to the other players in order to keep the best arm for herself. In case of
collision, the colliding player(s) remains unidentified, so a selfish player could modify incognito the
statistics sent by other players, making them untrustworthy. A way to make such protocols robust
to malicious players is proposed in Section 5. Algorithms relying on communication can then be
adapted in the Full Sensing setting.

Necessity of fairness An algorithm is fair if all players asymptotically earn the same reward a
posteriori and not only in expectation. As already noticed (Attar et al., 2012), fairness seems to be
a significant criterion in the design of selfish-robust algorithms. Indeed, without fairness, a selfish
player tries to always be the one with the largest reward a posteriori.
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For example, against algorithms attributing an arm among the top-M ones to each player
(Rosenski et al., 2016; Besson and Kaufmann, 2018; Boursier and Perchet, 2019), a selfish player
could easily rig the attribution to end with the best arm, largely increasing her individual reward.
Other algorithms work on the basis of first come-first served (Boursier and Perchet, 2019). Players
first explore and when they detect an arm as both optimal and available, they pull it forever. Such an
algorithm is unfair and a selfish player could play more aggressively to end her exploration before the
others and to commit on an arm, maybe at the risk of committing on a suboptimal one (but with high
probability on the best arm). The risk taken by the early commit is small compared to the benefit of
being the first committing player. As a consequence, these algorithms are not o(T )-Nash equilibria.

3. Statistic sensing setting

In the statistic sensing setting whereXk and rk are observed at each round, the Selfish-Robust MMAB
algorithm provides satisfying theoretical guarantees.

3.1. Description of Selfish-Robust MMAB

Algorithm 1: Selfish-Robust MMAB

Input: T, γ1 := 13
14 , γ2 := 16

15

β ← 39; M̂, tm ← EstimateM (β, T )
Pull k ∼ U(K) until round γ2

γ1
tm // first waiting room

j ← GetRank (M̂, tm, β, T ) and pull j until round
(

γ2
γ21β

2K2 +
γ22
γ21

)
tm

Run Alternate Exploration (M̂, j) until T

A global description of Selfish-Robust MMAB is given by Algorithm 1. The pseudocodes of
EstimateM, GetRank and Alternate Exploration are respectively given by Protocols 1,
2 and Algorithm 2 in Appendix A due to space constraints.

EstimateM and GetRank respectively estimate the number of players M and attribute ranks
in [M ] among the players. They form the initialization phase, while Alternate Exploration
optimally balances between exploration and exploitation.

3.1.1. INITIALIZATION PHASE

Let us first introduce the following quantities:

• N j
k(t) = {t′ ≤ t | πj(t′) = k and Xk(t

′) > 0} are rounds when player j observed ηk.

• Cjk(t) = {t′ ∈ N j
k(t) | ηk(t′) = 1} are rounds when player j observed a collision.

• p̂jk(t) = #Cjk(t)/#Nj
k(t) is the empirical probability to collide on the arm k for player j.

During the initialization, the players estimate M with large probability as given by Lemma 1 in
Appendix A.1. Players first pull uniformly at random in [K]. As soon as #N j

k ≥ n for any k ∈ [K]

and some fixed n, player j ends the EstimateM protocol and estimates M̂ as the closest integer to
1 + log(1− ∑

k p̂
j
k(tM )/K)/ log(1− 1

K ). This estimation procedure is the same as the one of Rosenski
et al. (2016), except for the following features:

i) Collisions indicators are not always observed, as we consider statistic sensing here. For this
reason, the number of observations of ηk is random. The stopping criterion mink #N j

k(t) ≥ n
ensures that players don’t need to know µ(K) beforehand, but they also do not end EstimateM
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simultaneously. This is why a waiting room is needed, during which a player continues to pull
uniformly at random to ensure that all players are still pulling uniformly at random if some player is
still estimating M .

ii) The collision probability is not averaged over all arms, but estimated for each arm individually,
then averaged. This is necessary for robustness as explained in Appendix A, despite making the
estimation longer.

Attribute ranks. After this first procedure, players then proceed to a Musical Chairs (Rosenski
et al., 2016) phase to attribute ranks among them as given by Lemma 2 in Appendix A.1. Players
sample uniformly at random in [M ] and stop on an arm j as soon as they observe a positive reward.
The player’s rank is then j and only attributed to her. Here again, a waiting room is required to ensure
that all players are either pulling uniformly at random or only pulling a specific arm (corresponding
to their rank) during this procedure. During this second waiting room, a player thus pulls the arm
corresponding to her rank.

3.1.2. EXPLORATION/EXPLOITATION

After the initialization, players know M and have different ranks. They enter the second phase,
where they follow Alternate Exploration, inspired by Proutiere and Wang (2019). Player j
sequentially pulls arms inMj(t), which is the ordered list of her M best empirical arms, unless she
has to pull her M -th best empirical arm. In that case, she instead chooses at random between actually
pulling it or pulling an arm to explore (any arm not inMj(t) with an upper confidence bound larger
than the M -th best empirical mean, if there is any).

Since players proceed in a shifted fashion, they never collide when Mj(t) are the same for
all j. Having differentMj(t) happens in expectation a constant (in T ) amount of times, so that the
contribution of collisions to the regret is negligible.

3.2. Theoretical results

This section provides theoretical guarantees of Selfish-Robust MMAB. Theorem 1 first presents
guarantees in terms of regret. Its proof is given in Appendix A.2.1.

Theorem 1. The collective regret of Selfish-Robust MMAB is bounded as

E[RT ] ≤M
∑
k>M

µ(M) − µ(k)

kl(µ(k), µ(M))
log(T ) +O

(
MK3

µ(K)
log(T )

)
.

It can also be noted from Lemma 3 in Appendix A.2.1 that the regret due to Alternate Exploration

is M
∑

k>M
µ(M)−µ(k)

kl(µ(k),µ(M))
log(T ) + o(log(T )), which is known to be optimal for algorithms using

no collision information (Besson and Kaufmann, 2019). Alternate Exploration thus gives
an optimal algorithm under this constraint, if M is already known and ranks already attributed (as
the O(·) term in the regret is the consequence of their estimation).

On top of good regret guarantees, Selfish-Robust MMAB is robust to selfish behaviors as
highlighted by Theorem 2 (whose proof is deterred to Appendix A.2.5).

Theorem 2. Playing Selfish-Robust MMAB is an ε-Nash equilibrium and is (α, ε)-stable

with ε =
∑

k>M
µ(M)−µ(k)

kl(µ(k),µ(M))
log(T ) +O

(
µ(1)
µ(K)

K3 log(T )
)

and α =
µ(M)

µ(1)
.
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These points are proved for an omniscient selfish player (knowing all the parameters beforehand).
This is a very strong assumption and a real player would not be able to win as much by deviating
from the collective strategy. Intuitively, a selfish player would need to explore sub-optimal arms as
given by the known individual lower bounds. However, a selfish player can actually decide to not
explore but deduce the exploration of other players from collisions.

4. On harder problems
Following the positive results of the previous section (existence of robust algorithms) in the homo-
geneous case with statistical sensing, we now provide in this section impossibility results for both
no sensing and heterogeneous cases. By showing its limitations, it also suggests a proper way to
consider the heterogeneous problem in the presence of selfish players.

4.1. Hardness of no sensing setting

Theorem 3. In the no sensing setting, there is no profile of strategy s such that, for all problem
parameters (M,µµµ), E[RT ] = o(T ) and s is an ε(T )-Nash equilibrium with ε(T ) = o(T ).

Proof. Consider a strategy s verifying the first property and a problem instance (M,µµµ) where the
selfish player only pulls the best arm. Let µ′µ′µ′ be the mean vector µµµ where µ(1) is replaced by 0. Then,
because of the considered observation model, the cooperative players can not distinguish the two
worlds (M,µµµ) and (M − 1,µ′µ′µ′). Having a sublinear regret in the second world implies o(T ) pulls on
the arm 1 for the cooperative players. So in the first world, the selfish player will have a reward in
µ(1)T − o(T ), which is thus a linear improvement in comparison with following s if µ(1) > µ(2).

Theorem 3 is proved for a selfish players who knows the means µµµ beforehand, as the notion of
Nash equilibrium prevents against any possible strategy, which includes committing to an arm for
the whole game. The knowledge of µµµ is actually not needed, as a similar result holds for a selfish
player committing to an arm chosen at random when the best arm is K times better than the second
one. The question of existence of robust algorithms remains yet open if we restrict selfish strategies
to more reasonable algorithms.

4.2. Heterogeneous model

We consider the full sensing heterogeneous model, where player j receives the reward rj(t) :=

Xj
πj(t)

(t)(1− ηπj(t)) at round t, with Xj
k

i.i.d.∼ νjk of mean µjk. The arm means here vary among the
players. This models that transmission quality depends on individual factors such as the localization.

4.2.1. A FIRST IMPOSSIBILITY RESULT

Theorem 4. If the regret is compared with the optimal assignment, there is no strategy s such that,
for all problem parameters µµµ, E[RT ] = o(T ) and s is an ε(T )-Nash equilibrium with ε(T ) = o(T ).

Proof. Assume s satisfies these properties and consider a problem instance µµµ such that the selfish
player unique best arm j1 has mean µj(1) = 1/2 and the difference between the optimal assignment
utility and the utility of the best one assigning arm j1 to j is 1/3.

Such an instance is of course possible. Consider a selfish player j playing exactly the strategy
sj but as if her reward vector µjµjµj was actually µ′jµ′jµ′j where µj(1) is replaced by 1 and all other µjk by
0, i.e., she fakes a second world µ′µ′µ′ in which the optimal assignment gives her the arm j1. In this
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case, the sublinear regret assumption of s implies that player j pulls j1 a time T − o(T ), while
in the true world, she would have pulled it o(T ) times. She thus earns an improvement at least
(µj(1) − µ

j
(2))T − o(T ) w.r.t. playing sj , contradicting the Nash equilibrium assumption.

4.2.2. RANDOM ASSIGNMENTS

We now take a step back and describe “relevant” allocation procedures for the heterogeneous case,
when the vector of means µjµjµj is already known by player j.

An assignment is symmetric if, when µjµjµj = µiµiµi, players i and j get the same expected utility, i.e.,
no player is a priori favored2. It is strategyproof if being truthful is a dominant strategy for any
player and Pareto optimal if the social welfare (sum of utilities) can not be improved without hurting
any player. Theorem 4 is a consequence of Theorem 5 below.

Theorem 5 (Zhou 1990). For M ≥ 3, there is no symmetric, Pareto optimal and strategyproof
random assignment algorithm.

Liu et al. (2019) circumvent this assignment problem with player-preferences for arms. Instead of
assigning a player to a contested arm, the latter decides who gets to pull it, following its preferences.

In the case of random assignment, Abdulkadiroglu and Sonmez (1998) proposed the Random
Serial Dictatorship (RSD) algorithm, which is symmetric and strategyproof. The algorithm is rather
simple: pick uniformly at random an ordering of the M players. Following this order, the first player
picks her preferred arm, the second one her preferred remaining arm and so on. Svensson (1999)
justified the choice of RSD for symmetric strategyproof assignment algorithms. Adamczyk et al.
(2014) recently studied efficiency ratios of such assignments: if Umax denotes the expected social
welfare of the optimal assignment, the expected social welfare of RSD is greater than U2

max/eM
while no strategyproof algorithm can guarantee more than U2

max/M . As a consequence, RSD is
optimal up to a (multiplicative) constant and will serve as a benchmark in the remaining.

Indeed, instead of defining the regret in comparison with the optimal assignment as done in
the classical heterogeneous multiplayer bandits, we are going to define it with respect to RSD to
incorporate strategy-proofness constraints. Formally, the RSD-regret is defined as:

RRSD
T := TEσ∼U(SM )

[ M∑
k=1

µ
σ(k)
πσ(k)

]
−

T∑
t=1

M∑
j=1

µjπj(t)(t) · (1− ηπj(t)(t)),

with SM the set of permutations over [M ] and πσ(k) the arm attributed by RSD to player σ(k) when
the order of dictators is (σ(1), . . . , σ(M)). Mathematically, πσ is defined by:

πσ(1) = arg max
l∈[M ]

µ
σ(1)
l and πσ(k + 1) = arg max

l∈[M ]
l 6∈{πσ(l′) | l′≤k}

µ
σ(k+1)
l .

5. Full sensing setting

This section focuses on the full sensing setting, where both ηk(t) and Xk(t) are always observed as
we proved impossibility results for more complex settings. As mentioned before, recent algorithms
leverage the observation of collisions to enable some communication between players by forcing
them. Some of these communication protocols can be modified to allow robust communication.
This section is structured as follows. First, insights on two new protocols are given for robust
communications. Second, a robust adaptation of SIC-MMAB is given, based on these two protocols.
Third, they can also be used to reach a logarithmic RSD-regret in the heterogeneous case.

2. The concept of fairness introduced above is stronger, as no player should be a posteriori favored.
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5.1. Making communication robust

To have robust communication, two new complementary protocols are needed. The first one allows to
send messages between players and to detect when they have been corrupted by a malicious player. If
this has been the case, the players then use the second protocol to proceed to a collective punishment,
which forces every player to suffer a considerable loss for the remaining of the game. Such punitive
strategies are called “Grim Trigger” in game theory and are used to deter defection in repeated games
(Friedman, 1971; Axelrod and Hamilton, 1981; Fudenberg and Maskin, 2009).

5.1.1. BACK AND FORTH MESSAGING

Communication protocols in the collision sensing setting usually rely on the fact that collision
indicators can be seen as bits sent from a player to another one as follows. If player i sends a binary
message mi→j = (1, 0, . . . , 0, 1) to player j during a predefined time window, she proceeds to the
sequence of pulls (j, i, . . . , i, j), meaning she purposely collides with j to send a 1 bit (reciprocally,
not colliding corresponds to a 0 bit). A malicious player trying to corrupt a message can only create
new collisions, i.e., replace zeros by ones. The key point is that the inverse operation is not possible.

If player j receives the (potentially corrupted) message m̂i→j , she repeats it to player i. This
second message can also be corrupted by the malicious player and player i receives m̃i→j . However,
since the only possible operation is to replace zeros by ones, there is no way to transform back m̂i→j
to mi→j if the first message had been corrupted. The player i then just has to compare m̃i→j with
mi→j to know whether or not at least one of the two messages has been corrupted. We call this
protocol back and forth communication.

In the following, other malicious communications are possible. Besides sending false information
(which is managed differently), a malicious player can send different statistics to the others, while
they need to have the exact same statistics. To overcome this issue, players will send to each other
statistics sent to them by any player. If two players have received different statistics by the same
player, at least one of them automatically realizes it.

5.1.2. COLLECTIVE PUNISHMENT

The back and forth protocol detects if a malicious player interfered in a communication and, in that
case, a collective punishment is triggered (to deter defection). The malicious player is yet unidentified
and can not be specifically targeted. The punishment thus guarantees that the average reward earned
by any player is smaller than the average reward of the algorithm, µ̄M := 1

M

∑M
k=1 µ(k).

A naive way to punish is to pull all arms uniformly at random. The selfish player then gets the
reward (1−1/K)M−1µ(1) by pulling the best arm, which can be larger than µ̄M . A good punishment
should therefore pull arms more often the better they are.

During the punishment, players pull each arm k with probability 1−
(
γ

∑M
l=1 µ̂

j
(l)

(t)

Mµ̂jk(t)

) 1
M−1 at least,

where γ = (1− 1/K)M−1. Such a strategy is possible as shown by Lemma 13 in Appendix B.
Assuming the arms are correctly estimated, i.e., the expected reward a selfish player gets by pulling

k is approximately µk(1− pk)M−1, with pk = max
(

1−
(
γ µ̄Mµk

) 1
M−1 , 0

)
.

If pk = 0, then µk is smaller than γµ̄M by definition; otherwise, it necessarily holds that µk(1−
pk)

M−1 = γµ̄M . As a consequence, in both cases, the selfish player earns at most γµ̄M , which

9
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involves a relative positive decrease of 1 − γ in reward w.r.t. following the cooperative strategy.
More details on this protocol are given by Lemma 21 in Appendix C.3.

5.2. Homogeneous case: SIC-GT

In the homogeneous case, these two protocols can be incorporated in the SIC-MMAB algorithm
of Boursier and Perchet (2019) to provide SIC-GT, which is robust to selfish behaviors and still
ensures a regret comparable to the centralized lower bound.

Boursier et al. (2019) recently improved the communication protocol by choosing a leader and
communicating all the information only to this leader. A malicious player would do anything to be
the leader. SIC-GT avoids such a behavior by choosing two leaders who either agree or trigger the
punishment. More generally with n + 1 leaders, this protocol is robust to n selfish players. The
detailed algorithm is given by Algorithm 3 in Appendix C.1.

Initialization. The original initialization phase of SIC-MMAB has a small regret term, but it is
not robust. During the initialization, the players here pull uniformly at random to estimate M as in
Selfish-Robust MMAB and then attribute ranks the same way. The players with ranks 1 and 2
are then leaders. Since the collision indicator is always observed here, this estimation can be done in
an easier and better way. The observation of ηk also enables players to remain synchronized after
this phase as its length does not depend on unknown parameters.

Exploration and Communication. Players alternate between exploration and communication
once the initialization is over. During the p-th exploration phase, each arm still requiring exploration
is pulled 2p times by every player in a collisionless fashion. Players then communicate to each leader
their empirical means in binary after every exploration phase, using the back and forth trick explained
in Section 5.1.1. Leaders then check that their information match. If some undesired behavior is
detected, a collective punishment is triggered.

Otherwise, the leaders determine the sets of optimal/suboptimal arms and send them to everyone.
To prevent the selfish player from sending fake statistics, the leaders gather the empirical means of
all players, except the extreme ones (largest and smallest) for every arm. If the selfish player sent
outliers, they are thus cut out from the collective estimator, which is thus the average of M − 2
individual estimates. This estimator can be biased by the selfish player, but a concentration bound
given by Lemma 17 in Appendix C.2.1 still holds.

Exploitation. As soon as an arm is detected as optimal, it is pulled until the end. To ensure fairness
of SIC-GT, players will actually rotate over all the optimal arms so that none of them is favored.
This point is thoroughly described in Appendix C.1. Theorem 6, proved in Appendix C, gives
theoretical results for SIC-GT.

Theorem 6. Define α = 1−(1−1/K)M−1

2 and assume M ≥ 3.

1. The collective regret of SIC-GT is bounded as

E[RT ] ≤ O
( ∑
k>M

log(T )

µ(M) − µ(k)
+MK2 log(T ) +M2K log2

( log(T )

(µ(M) − µ(M+1))2

))
.

2. Playing SIC-GT is an ε-Nash equilibrium and is (α, ε)-stable with

ε = O
( ∑
k>M

log(T )

µ(M) − µk
+K2 log(T ) +MK log2

( log(T )

(µ(M) − µ(M+1))2

)
+
K log(T )

α2µ(K)

)
.

10
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5.3. Semi-heterogeneous case: RSD-GT

The punishment strategies described above can not be extended to the heterogeneous case, as the
relevant probability of choosing each arm would depend on the preferences of the malicious player
which are unknown (even her identity might not be discovered). Moreover, as already explained
in the homogeneous case, pulling each arm uniformly at random is not an appropriate punishment
strategy3. We therefore consider the δ-heterogeneous setting, which allows punishments for small
values of δ as given by Lemma 24 in Appendix D.3. The heterogeneous model was justified by the
fact that transmission quality depends on individual factors such as localization. The δ-heterogeneous
assumption relies on the idea that such individual factors are of a different order of magnitude than
global factors (as the availability of a channel). As a consequence, even if arm means differ from
player to player, these variations remain relatively small.

Definition 3. The setting is δ-heterogeneous if there exists {µk; k ∈ [K]} such that for all j and k,
µjk ∈ [(1− δ)µk, (1 + δ)µk].

In the semi-heterogeneous full sensing setting, RSD-GT provides a robust, logarithmic RSD-regret
algorithm. Its complete description is given by Algorithm 4 in Appendix D.1.

5.3.1. ALGORITHM DESCRIPTION

RSD-GT starts with the exact same initialization as SIC-GT to estimate M and attribute ranks
among the players. The time is then divided into superblocks which are divided into M blocks.
During the j-th block of a superblock, the dictators ordering4 is (j, . . . ,M, 1, . . . , j − 1). Moreover,
only the j-th player can send messages during this block.

Exploration. The exploring players pull sequentially all the arms. Once player j knows her M
best arms and their ordering, she waits for a block j to initiate communication.

Communication. Once a player starts a communication block, she proceeds in three successive
steps as follows:

1. she first collides with all players to signal the beginning of a communication block. The other
players then enter a listening state, ready to receive messages.

2. She then sends to every player her ordered list of M best arms. Each player then repeats this
list to detect the potential intervention of a malicious player.

3. Finally, any player who detected the intervention of a malicious player signals to everyone the
beginning of a collective punishment.

After a communication block j, every one knows the preferences order of player j, who is now in
her exploitation phase, unless a punishment protocol has been started.

Exploitation. While exploiting, player j knows the preferences of all other exploiting players.
Thanks to this, she can easily compute the arms attributed by the RSD algorithm between the
exploiting players, given the dictators ordering of the block.

Moreover, as soon as she collides in the beginning of a block while not intended (by her), this
means an exploring player is starting a communication block. The exploiting player then starts
listening to the arm preferences of the communicating player.

3. Unless in the specific case where µj(1)(1− 1/K)M−1 < 1
M

∑M
k=1 µ

j
(k).

4. The ordering is actually (σ(j), . . . , σ(j − 1)) where σ(j) is the player with rank j after the initialization. For sake of
clarity, this consideration is omitted here.

11
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5.3.2. THEORETICAL GUARANTEES

Here are some insights to understand how RSD-GT reaches the utility of the RSD algorithm,
which are rigorously detailed by Lemma 25 in Appendix D.3. With no malicious player, the
players ranks given by the initialization provide a random permutation σ ∈ SM of the players and
always considering the dictators ordering (1, . . . ,M) would lead to the expected reward of the RSD
algorithm. However, a malicious player can easily rig the initialization to end with rank 1. In that
case, she largely improves her individual reward w.r.t. following the cooperative strategy.

To avoid such a behavior, the dictators ordering should rotate over all permutations of SM , so
that the rank of the player has no influence. However, this leads to an undesirable combinatorial M !
dependency of the regret. RSD-GT instead rotates over the dictators ordering (j, . . . ,M, 1, . . . , j−1)
for all j ∈ [M ]. If we note σ0 the M -cycle (1 . . .M), the considered permutations during a
superblock are of the form σ ◦ σ−m0 for m ∈ [M ]. The malicious player j can only influence the
distribution of σ−1(j): assume w.l.o.g. that σ(1) = j. The permutation σ given by the initialization
then follows the uniform distribution over Sj→1

M = {σ ∈ SM | σ(1) = j}. But then, for any
m ∈ [M ], σ ◦ σ−m0 has a uniform distribution over Sj→1+m

M . In average over a superblock, the
induced permutation still has a uniform distribution over SM . So the malicious player has no interest
in choosing a particular rank during the initialization, making the algorithm robust.

Thanks to this remark and robust communication protocols, RSD-GT possesses theoretical
guarantees given by Theorem 7 (whose proof is deterred to Appendix D).

Theorem 7. Consider the δ-heterogeneous setting and define r =
1−( 1+δ

1−δ )
2
(1−1/K)M−1

2 and
∆ = min

(j,k)∈[M ]2
µj(k) − µ

j
(k+1).

1. The RSD-regret of RSD-GT is bounded as: E[RT ] ≤ O
(
MK∆−2 log(T ) +MK2 log(T )

)
.

2. If r > 0, playing RSD-GT is an ε-Nash equilibrium and is (α, ε)-stable with

• ε = O
(
K log(T )

∆2 +K2 log(T ) + K log(T )
(1−δ)r2µ(K)

)
,

• α = min
(
r
(

1+δ
1−δ

)3
√

log(T )−4M√
log(T )+4M

, ∆
(1+δ)µ(1)

,
(1−δ)µ(M)

(1+δ)µ(1)

)
.

6. Conclusion

We introduced notions of robustness to selfish players and provided impossibility results in hard
settings. With statistic sensing, Selfish-Robust MMAB gives a rather simple robust and efficient
algorithm, besides being optimal among the class of algorithms using no collision information. On
the other hand when collisions are observed, robust algorithms relying on communication through
collisions are possible. Thanks to this, even selfish-robust algorithms can achieve near centralized
regret in the homogeneous case, which is not intuitive at first sight. In the heterogeneous case, a new
adapted notion of regret is introduced and RSD-GT achieves a good performance with respect to it.

RSD-GT heavily relies on collision observations and future work should focus on designing
a comparable algorithm in both performance and robustness without this feature. The topic of
robustness to selfish players in multiplayer bandits still remains largely unexplored and leaves open
many directions for future work. In particular, punishment protocols do not seem possible for general
heterogeneous settings and the existence of robust algorithms for any heterogeneous setting remains
open. Also, stronger notions of equilibrium can be considered such as perfect subgame equilibrium.
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Appendix A. Supplementary material for Section 3

This section provides a complete description of Selfish-Robust MMAB and the proofs of
Theorems 1 and 2.

A.1. Thorough description of Selfish-Robust MMAB

In addition to Section 3, the pseudocodes of EstimateM, GetRank and Alternate Exploration
are given here. The following Protocol 1 describes the estimation ofM using the notations introduced
in Section 3.1.1.

Protocol 1: EstimateM
Input: β, T
tm ← 0

while mink #N j
k(t) < β2K2 log(T ) do

Pull k ∼ U(K); Update #N j
k(t) and #Cjk(t) ; tm ← tm + 1

end

M̂ ← 1 + round
(

log(1− 1
K

∑
k p̂

j
k(tM ))

log(1− 1
K )

)
// round(x) = closest integer to x

Return M̂, tm

Since the duration tjm of EstimateM for player j is random and differs between players, each
player continues sampling uniformly at random until γ2γ1 t

j
m, with γ1 = 13

14 and γ2 = 16
15 . Thanks to

this additional waiting room, Lemma 1 below guarantees that all players are sampling uniformly at
random until at least tjm for any j.

The estimation of M here tightly estimates the probability to collide individually for each arm.
This restriction provides an additional M factor in the length of this phase in comparison with
(Rosenski et al., 2016), where the probability to collide is globally estimated. This is however
required because of the Statistic Sensing, but if ηk was always observed, then the protocol from
Rosenski et al. (2016) would be robust.

Indeed, if we directly estimated the global probability to collide, the selfish player could pull only
the best arm. The number of observations of ηk is larger on this arm, and the estimated probability to
collide would thus be positively biased because of the selfish player.

Afterwards, ranks in [M ] are attributed to players by sampling uniformly at random in [M ] until
observing no collision, as described in Protocol 2. For the same reason, a waiting room is added to
guarantee that all players end this protocol with different ranks.

The following quantities are used to describe Alternate Exploration in Algorithm 2:

• Mj(t) =
(
lj1(t), . . . , ljM (t)

)
is the list of the empirical M best arms for player j at round t.

It is updated only each M rounds and ordered according to the index of the arms, i.e.,
lj1(t) < . . . < ljM (t).

• m̂j(t) is the empirical M -th best arm for player j at round t.

• bjk(t) = sup{q ≥ 0 | T jk (t)kl(µ̂jk(t), q) ≤ f(t)} is the kl-UCB index of the arm k for player j
at round t, where f(t) = log(t) + 4 log(log(t)), T jk (t) is the number of times player j pulled
k and µ̂jk is the empirical mean.
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Protocol 2: GetRank
Input: M̂, tjm, β, T
n← β2K2 log(T ) and j ← −1

for tjm log(T )/(γ1n) rounds do
if j = −1 then

Pull k ∼ U(M̂); if rk(t) > 0 then j ← k // no collision
else Pull j

end
Return j

Algorithm 2: Alternate Exploration

Input: M , j
if t = 0 (mod M) then Update µ̂j(t), bj(t), m̂j(t) andMj(t) = (l1, . . . , lM )
π ← t+ j (mod M) + 1
if lπ 6= m̂j(t) then Pull lπ // exploit the M − 1 best empirical arms
else
Bj(t) = {k 6∈ Mj(t) | bjk(t) ≥ µ̂

j
m̂j(t)

(t)} // arms to explore

if Bj(t) = ∅ then Pull lπ

else Pull

{
lπ with proba 1/2

k chosen uniformly at random in Bj(t) otherwise // explore

end

A.2. Proofs of Section 3

Let us define αk := P(Xk(t) > 0) ≥ µk, γ1 = 13
14 and γ2 = 16

15 .

A.2.1. REGRET ANALYSIS

This section aims at proving Theorem 1. This proof is divided in several auxiliary lemmas given
below. First, the regret can be decomposed as follows:

RT = Rinit +Rexplo, (1)

where



Rinit = T0

M∑
k=1

µ(k) − Eµ
[ T0∑
t=1

M∑
j=1

rj(t)
]

with T0 =

(
γ2

γ2
1β

2K2
+
γ2

2

γ2
1

)
max
j
tjm,

Rexplo = (T − T0)

M∑
k=1

µ(k) − Eµ
[ T∑
t=T0+1

M∑
j=1

rj(t)
]
.

Lemma 1 first gives guarantees on the EstimateM protocol. Its proof is given in Appendix A.2.2.
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Lemma 1. If M − 1 players run EstimateM with β ≥ 39, followed by a waiting room until γ2γ1 t
j
m,

then regardless of the strategy of the remaining player, with probability larger than 1− 6KM
T , for

any player:

M̂ j = M and
tjmα(K)

K
∈ [γ1n, γ2n],

where n = β2K2 log(T ).

When M̂ j = M and
tjmα(K)

K ∈ [γ1n, γ2n] for any cooperative player j, we say that the estimation
phase is successful.

Lemma 2. Conditioned on the success of the estimation phase, with probability 1 − M
T , all the

cooperative players end GetRank with different ranks j ∈ [M ], regardless of the behavior of other
players.

The proof of Lemma 2 is given in Appendix A.2.3. If the estimation is successful and all players
end GetRank with different ranks j ∈ [M ], the initialization is said successful.

Using the same arguments as Proutiere and Wang (2019), the collective regret of the Alternate
Exploration phase can be shown to be M

∑
k>M

µ(M)−µ(k)
kl(µ(M),µ(k))

log(T ) + o(log(T )). This result
is given by Lemma 3, whose proof is given in Appendix A.2.4.

Lemma 3. If all players follow Selfish-Robust MMAB:

E[Rexplo] ≤M
∑
k>M

µ(M) − µ(k)

kl(µ(M), µ(k))
log(T ) + o(log(T )).

Proof of Theorem 1. Thanks to Lemma 3, the total regret is bounded by

M
∑
k>M

µ(M) − µ(k)

kl(µ(M), µ(k))
log(T ) + E[T0]M + o(log(T )).

Thanks to Lemmas 1 and 2, E[T0] = O
(
K3 log(T )
µ(K)

)
, yielding Theorem 1.

A.2.2. PROOF OF LEMMA 1

Let j be a cooperative player and qk(t) be the probability at round t that the remaining player pulls k.
Define pjk(t) = P[t ∈ Cjk(t) | t ∈ N

j
k(t)]. By definition, pjk(t) = 1 − (1 − 1/K)M−2(1 − qk(t))

when all cooperative players are pulling uniformly at random. Two auxiliary Lemmas using classical
concentration inequalities are used to prove Lemma 1. The proofs of Lemmas 4 and 5 are given in
Appendix A.2.6.

Lemma 4. For any δ > 0,

1. P
[∣∣∣∣#Cjk(TM )

#Nj
k(TM )

− 1

#Nj
k(TM )

∑
t∈Nj

k(TM )
pjk(t)

∣∣∣∣ ≥ δ ∣∣∣ N j
k(TM )

]
≤ 2 exp(−#Nj

k(TM )δ2

2 ).

For any δ ∈ (0, 1) and fixed TM ,

18



SELFISH ROBUSTNESS AND EQUILIBRIA IN MULTI-PLAYER BANDITS

2. P
[∣∣∣∣#N j

k −
αkTM
K

∣∣∣∣ ≥ δαkTMK ]
≤ 2 exp(−TMαkδ

2

3K ).

3. P
[∣∣∣∣∑TM

t=1(1(t ∈ N j
k)− αk

K )pjk(t)

∣∣∣∣ ≥ δαkTMK ]
≤ 2 exp

(
−TMαkδ

2

3K

)
.

Lemma 5. For any k, j and δ ∈ (0, αkK ), with probability larger than 1− 6KM
T ,∣∣∣∣p̂jk(tjm)− 1

tjm

tjm∑
t=1

pjk(t)

∣∣∣∣ ≤ 2

√√√√ 6 log(T )

n
(

1− 2
√

3
2β2 (1 + 3

2β2 )
) + 2

√
log(T )

n
.

And for β ≥ 39:
tjmα(k)

K
∈
[

13

14
n,

16

15
n

]
.

Let ε = 2
√

6 log(T )

n
(

1−2
√

3
2β2

(1+ 3
2β2

)
)+2

√
log(T )
n and pjk = 1

tjm

∑tjm
t=1 p

j
k(t) such that with probability

at least 1− 6KM
T ,

∣∣p̂jk − pjk∣∣ ≤ ε. The remaining of the proof is conditioned on this event.

By definition of n, ε = 1
K f(β) where f(x) = 2

x

√
6

1−2
√

3
2x2

(1+ 3
2x2

)
+ 2/x. Note that f(x) ≤ 1

2e

for x ≥ 39 and thus ε ≤ 1
2Ke for the considered β.

The last point of Lemma 5 yields that tjm ≤ γ2
γ1
tj
′
m for any pair j, j′. All the cooperative players

are thus pulling uniformly at random until at least tjm, thanks to the additional waiting room. Then,

1

K

∑
k

(1− pjk(t)) = (1− 1/K)M−2(1− 1

K

∑
k

qk(t)) = (1− 1/K)M−1.

When summing over k, it follows:

1

K

∑
k

(1− pjk)− ε ≤
1

K

∑
k

(1− p̂jk) ≤ 1

K

∑
k

(1− pjk) + ε

(1− 1/K)M−1 − ε ≤ 1

K

∑
k

(1− p̂jk) ≤ (1− 1/K)M−1 + ε

M − 1 +
log(1 + ε

(1−1/K)M−1 )

log(1− 1/K)
≤

log
(

1
K

∑
k(1− p̂

j
k)
)

log(1− 1/K)
≤M − 1 +

log(1− ε
(1−1/K)M−1 )

log(1− 1/K)

M − 1 +
log(1 + 1

2K )

log(1− 1/K)
≤

log
(

1
K

∑
k(1− p̂

j
k)
)

log(1− 1/K)
≤M − 1 +

log(1− 1
2K )

log(1− 1/K)

The last line is obtained by observing that ε
(1−1/K)M−1 is smaller than 1

2K .

Observing that max
(

log(1−x/2)
log(1−x) ,−

log(1+x/2)
log(1−x)

)
< 1/2 for any x > 0, the last line implies:

1 +
log
(

1
K

∑
k(1− p̂

j
k)
)

log(1− 1/K)
∈ (M − 1/2,M + 1/2).
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When rounding this quantity to the closest integer, we thus obtain M , which yields the first part
of Lemma 1. The second part is directly given by Lemma 5.

A.2.3. PROOF OF LEMMA 2

The proof of Lemma 2 relies on two lemmas given below.

Lemma 6. Conditionally on the success of the estimation phase, when a cooperative player j
proceeds to GetRank, all other cooperative players are either running GetRank or in a waiting
room5, i.e., they are not proceeding to Alternate Exploration yet.

Proof. Recall that γ1 = 13/14 and γ2 = 16/15. Conditionally on the success of the estimation
phase, for any pair (j, j′), γ2γ1 t

j
m ≥ tj

′
m. Let tjr = tjm

γ1K2β2 be the duration time of GetRank for player

j. For the same reason, γ2γ1 t
j
r ≥ tj

′
r . Player j ends GetRank at round tj = γ2

γ1
tjm + tjr and the second

waiting room at round γ2
γ1
tj .

As γ2
γ1
tj ≥ tj′ , this yields that when a player ends GetRank, all other players are not running

Selfish-Robust MMAB yet. Because γ2
γ1
tjm ≥ tj

′
m, when a player starts GetRank, all other

players also have already ended EstimateM. This yields Lemma 6.

Lemma 7. Conditionally on the success of the estimation phase, with probability larger than 1− 1
T ,

cooperative player j ends GetRank with a rank in [M ].

Proof. Conditionally on the success of the estimation phase and thanks to Lemma 5, tjr = tjm
γ1K2β2 ≥

K log(T )
α(K)

. Moreover, at any round of GetRank, the probability of observing ηk(t) = 0 is larger

than
α(K)

M . Indeed, the probability of observing ηk(t) is larger than α(K) with Statistic sensing.
Independently, the probability of having ηk = 0 is larger than 1/M since there is at least an arm
among [M ] not pulled by any other player. These two points yield, as M ≤ K:

P[player does not observe ηk(t) = 0 for tjr successive rounds] ≤
(

1−
α(K)

M

)tjr
≤ exp

(
−
α(K)t

j
r

M

)
≤ 1

T

Thus, with probability larger than 1− 1
T , player j observes ηk(t) = 0 at least once during GetRank,

i.e., she ends the procedure with a rank in [M ].

Proof of Lemma 2. Combining Lemmas 6 and 7 yields that the cooperative player j ends GetRank
with a rank in [M ] and no other cooperative player ends with the same rank. Indeed, when a player
gets the rank j, any other cooperative player has either no attributed rank (still running GetRank
or the first waiting room), or an attributed rank j′. In the latter case, thanks to Lemma 6, this other

5. Note that there is a waiting room before and after GetRank.
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player is either running GetRank or in the second waiting room, meaning she is still pulling j′.
Since the first player ends with the rank j, this means that she did not encounter a collision when
pulling j and especially, j 6= j′.

Considering a union bound among all cooperative players now yields Lemma 2.

A.2.4. PROOF OF LEMMA 3

Let us denote T j0 =
(

γ2
γ21β

2K2 +
γ22
γ21

)
tjm such that player j starts running Alternate Exploration

at time T j0 . This section aims at proving Lemma 3. In this section, the initialization is assumed to be
successful. The regret due to an unsuccessful initialization is constant in T and thus o(log(T )). We
prove in this section, in case of a successful initialization, the following:

E[Rexplo] ≤M
∑
k>M

µ(M) − µ(k)

kl(µ(M), µ(k))
log(T ) + o(log(T )). (2)

This proof follows the same scheme as the regret proof from Proutiere and Wang (2019), except
that there is no leader here. Every bad event then happens independently for each individual player.
This adds a M factor in the regret compared to the follower/leader algorithm6 used by Proutiere
and Wang (2019). For conciseness, we only give the main steps and refer to the original Lemmas in
(Proutiere and Wang, 2019) for their detailed proof.

We first recall useful concentration Lemmas which correspond to Lemmas 1 and 2 in (Proutiere
and Wang, 2019). They are respectively simplified versions of Lemma 5 in (Combes et al., 2015)
and Theorem 10 in (Garivier and Cappé, 2011).

Lemma 8. Let k ∈ [K], c > 0 and H be a (random) set such that for all t, {t ∈ H} is Ft−1

measurable. Assume that there exists a sequence (Zt)t≥0 of binary random variables, independent
of all Ft, such that for t ∈ H , πj(t) = k if Zt = 1. Furthermore, if E[Zt] ≥ c for any t, then:

∑
t≥1

P[t ∈ H | |µ̂jk(t)− µk| ≥ δ] ≤
4 + 2c/δ2

c2
.

Lemma 9. If player j starts following Alternate Exploration at round T j0 + 1:∑
t>T j0

P[bjk(t) < µk] ≤ 15.

Let 0 < δ < δ0 := mink
µ(k)−µ(k+1)

2 . Besides the definitions given in Appendix A.1, define the
following:

• M∗ the list of the M -best arms, ordered according to their indices.

• Aj = {t > T j0 | Mj(t) 6=M∗}.

• Dj = {t > T j0 | ∃k ∈Mj(t), |µ̂jk(t)− µk| ≥ δ}.

6. Which is not selfish-robust.
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• Ej = {t > T j0 | ∃k ∈M∗, b
j
k(t) < µk}.

• Gj = {t ∈ Aj \ Dj | ∃k ∈M∗ \Mj(t), |µ̂jk(t)− µk| ≥ δ}.

Lemma 10. E[#(Aj ∪ Dj)] ≤ 8MK2(6K + δ−2).

Proof. Similarly to Proutiere and Wang (2019), we have (Aj ∪ Dj) ⊂ (Dj ∪ Ej ∪ Gj). We can
then individually bound E[#Dj ], E[#Ej ] and E[#Gj ], leading to Lemma 10. The detailed proof is
omitted here as it exactly corresponds to Lemmas 3 and 4 in (Proutiere and Wang, 2019).

Lemma 11. Consider a suboptimal arm k and define Hjk = {t ∈ {T j0 + 1, . . . , T} \ (Aj ∪
Dj) | πj(t) = k}. It holds

E
[
#Hjk

]
≤ log T + 4 log(log T )

kl(µk + δ, µ(M) − δ)
+ 4 + 2δ−2.

Lemma 11 can be proved using the arguments of Lemma 5 in (Proutiere and Wang, 2019).

Proof of Lemma 3. If t ∈ Aj ∪ Dj , player j collides with at most one player j′ such that
t 6∈ Aj′ ∪ Dj′ .

Otherwise, t 6∈ Aj ∪ Dj and player j collides with a player j′ only if t ∈ Aj′ ∪ Dj′ . Also, she
pulls a suboptimal arm k only on an exploration slot, i.e., instead of pulling the M -th best arm. Thus,
the regret caused by pulling a suboptimal arm k when t 6∈ Aj ∪ Dj is (µ(M) − µk) and this actually
happens when t ∈ Hjk.

This discussion provides the following inequality, which concludes the proof of Lemma 3 when
using Lemmas 10 and 11 and taking δ → 0.

E
[
Rexplo] ≤ 2

M∑
j=1

E
[
#(Aj ∪ Dj)

]
︸ ︷︷ ︸

collisions

+
∑
j≤M

∑
k>M

(µ(M) − µ(k))E
[
#Hjk

]
︸ ︷︷ ︸

pulls of suboptimal arms

.

A.2.5. PROOF OF THEOREM 2

1. Let us first prove the Nash equilibrium property. Define E = [T0] ∪
( ⋃
j∈[M ]

(Aj ∪ Dj)
)

with the

definitions of T0,Aj and Dj given in Appendix A.2.4. Thanks to Lemmas 1 and 2, regardless of the
strategy of a selfish player, all other players successfully end the initialization after a time T0 with
probability 1−O(KM/T ). The remaining of the proof is conditioned on this event.

The selfish player earns at most µ(1)T0 during the initialization. Note that Alternate
Exploration never uses collision information, meaning that the behavior of the strategic player
during this phase does not change the behaviors of the cooperative players. Thus, the optimal strategy
during this phase for the strategic player is to pull the best available arm. Let j be the rank of the
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strategic player7. For t 6∈ E , this arm is the k-th arm ofM∗ with k = t + j (mod M) + 1. In a
whole block of length M in [T ] \ E , the selfish player then earns at most

∑M
k=1 µ(k).

Over all, when a strategic player deviates from Alternate Exploration, she earns at
most:

E[Rewj
T (s′, s−j)] ≤ µ(1)(#E +M) +

T

M

M∑
k=1

µ(k).

Note that we here add a factor µ(1) in the initialization regret. This is only because the true loss of
colliding is not 1 but µ(1). Also, the additional µ(1)M term is due to the fact that the last block of
length M of Alternate Exploration is not totally completed.

Thanks to Theorem 1, it also comes:

E[Rewj
T (s)] ≥ T

M

M∑
k=1

µ(k) −
∑
k>M

µ(M) − µ(k)

kl(µ(k), µ(M))
log(T )−O

(
µ(1)

K3

µ(K)
log(T )

)
.

Lemmas 2 and 10 yield that E[#E ] = O
(
K3 log(T )
µ(K)

)
, which concludes the proof.

2. We now prove the (α, ε)-stability of Selfish-Robust MMAB. Let ε′ = E[E ] +M . Consider
that player j is playing a deviation strategy s′ ∈ S such that for some other player i and l > 0:

E[Rewi
T (s′, s−j)] ≤ E[Rewi

T (s)]− l − (ε′ +M).

We will first compare the reward of player j with her optimal possible reward. The only way for the
selfish player to influence the sampling strategy of another player is in modifying the rank attributed
to this other player. The total rewards of cooperative players with ranks j and j′ only differ by at
most ε′ +M in expectation, without considering the loss due to collisions with the selfish player.

The only other way to cause regret to another player i is then to pull πi(t) at time t. This incurs a
loss at most µ(1) for player i, while this incurs a loss at least µ(M) for player j, in comparison with
her optimal strategy. This means that for incurring the additional loss l to the player i, player j must
suffer herself from a loss

µ(M)

µ(1)
compared to her optimal strategy s∗. Thus, for α =

µ(M)

µ(1)
:

E[Rewi
T (s′, s−j)] ≤ E[Rewi

T (s)]−l−(ε′+M) =⇒ E[Rewj
T (s′, s−j)] ≤ E[Rewj

T (s∗, s−j)]−αl

The first point of Theorem 2 yields for its given ε: E[Rewj
T (s∗, s−j)] ≤ E[Rewj

T (s)] + ε.

Noting l1 = l + ε′ +M and ε1 = ε+ α(ε′ +M) = O(ε), we have shown:

E[Rewi
T (s′, s−j)] ≤ E[Rewi

T (s)]− l1 =⇒ E[Rewj
T (s′, s−j)] ≤ E[Rewj

T (s)] + ε1 − αl1.

7. If the strategic player has no attributed rank, it is the only non-attributed rank in [M ].
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A.2.6. AUXILIARY LEMMAS

This section provides useful Lemmas for the proof of Lemma 1. We first recall a useful version of
Chernoff bound.

Lemma 12. For any independent variables X1, . . . , Xn in [0, 1] and δ ∈ (0, 1):

P

(∣∣∣∣ n∑
i=1

Xi − E[Xi]

∣∣∣∣ ≥ δ n∑
i=1

E[Xi]

)
≤ 2e−

δ2
∑n
i=1 E[Xi]
3 .

Proof of Lemma 4.

1. This is an application of Azuma-Hoeffding inequality on the variables 1(t ∈ Cjk(TM )) | t ∈ N j
k(TM ).

2. This is a consequence of Lemma 12 on the variables 1(t ∈ N j
k).

3. This is the same result on the variables 1(t ∈ N j
k)pjk(t) |Ft−1 where Ft−1 is the filtration

associated to the past events, using
∑TM

t=1 E[1(t ∈ N j
k)pjk(t)|Ft−1] ≤ TMαk

K .

Proof of Lemma 5. From Lemma 4, it comes:

• P
[
∃t ≤ T,

∣∣∣p̂jk(t)− 1

#Nj
k

∑
t′∈Nj

k
pjk(t

′)
∣∣∣ ≥ 2

√
log(T )

#Nj
k

]
≤ 2

T ,

• P
[
∃t ≤ T,

∣∣∣K #Nj
k

αkt
− 1
∣∣∣ ≥√6 log(T )K

αkt

]
≤ 2

T , (3)

• P
[
∃t ≤ T,

∣∣∣ Kαkt∑t′∈Nj
k
pjk(t

′)− 1
t

∑
t′≤t p

j
k(t
′)
∣∣∣ ≥√6 log(T )K

αkt

]
≤ 2

T .

Noting that
∑

t′∈Nj
k
pjk(t

′) ≤ #N j
k , Equation (3) implies:

P

∃t ≤ T, ∣∣∣∣ Kαkt ∑
t′∈Nj

k

pjk(t
′)− 1

#N j
k

∑
t′∈Nj

k

pjk(t
′)

∣∣∣∣ ≥
√

6 log(T )K

αkt

 ≤ 2

T
.

Combining these three inequalities and making the union bound over all the players and arms
yield that with probability larger than 1− 6KM

T :∣∣∣∣p̂jk(tjm)− 1

tjm

∑
t≤tjm

pjk(t)

∣∣∣∣ ≤ 2

√
6 log(T )K

αkt
j
m

+ 2

√
log(T )

#N j
k(tjm)

. (4)

Moreover, under the same event, Equation (3) also gives that

N j
k(tjm) ∈

[
αkt

j
m

K
−

√
6αkt

j
m log(T )

K
,
αkt

j
m

K
+

√
6αkt

j
m log(T )

K

]
.
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Specifically, this yields n ≤ αkt
j
m

K +

√
6αkt

j
m log(T )
K , or equivalently tjmαk

K ≥ n−2

√
3 log(T )

2

√
n+ 3 log(T )

2 .

Since n = β2K2 log(T ), this becomes tjmαk
K ≥ n(1 − 2

√
3

2β2K2

√
1 + 3

2β2K2 ) and Equation (4)
now rewrites into:∣∣∣∣p̂jk(tjm)− 1

tjm

∑
t≤tjm

pjk(t)

∣∣∣∣ ≤ 2

√√√√ 6 log(T )

n
(

1− 2
√

3
2β2K2 (1 + 3

2β2K2 )
) + 2

√
log(T )

n

Also, n ≥ αkt
j
m

K −
√

6 log(T )αkt
j
m

K for some k, which yields t
j
mαk
K ≤ n(1+ 3

β2K2 +2
√

3
2β2K2

√
1 + 3

2β2K2 ).

This relation then also holds for
tjmα(K)

K . We have therefore proved that:

n

(
1− 2

√
3

2β2

√
1 +

3

2β2

)
≤
tjmα(k)

K
≤ n

(
1 +

3

β2
+ 2

√
3

2β2

√
1 +

3

2β2

)
.

For β ≥ 39, this gives the bound in Lemma 5.

Appendix B. Collective punishment proof

Recall that the punishment protocol consists in pulling each arm k with probability at least pjk =

max
(

1 −
(
γ

∑M
l=1 µ̂

j
(l)

Mµ̂jk

) 1
M−1

, 0
)

. Lemma 13 below guarantees that such a sampling strategy is

possible.

Lemma 13. For pk = max
(

1−
(
γ
∑M
l=1 µ̂

j
(l)

Mµ̂jk

) 1
M−1

, 0
)

with γ = (1− 1/K)M−1:
∑K

k=1 pk ≤ 1.

Proof. For ease of notation, define xk := µ̂jk, x̄M :=
∑M
l=1 x(l)/M and S := {k ∈ [K] | xk > γx̄M} =

{k ∈ [K] | pk > 0}. We then get by concavity of x 7→ −x−
1

M−1 ,

∑
k∈S

pk = #S ×

(
1− (γx̄M )

1
M−1

∑
k∈S

(xk)
− 1
M−1

#S

)
, (5)

≤ #S ×

(
1−

(
γx̄M
x̄S

) 1
M−1

)
with x̄S =

1

#S

∑
k∈S

xk. (6)

We distinguish two cases.
First, if #S ≤ M , we then get Mx̄M ≥ #Sx̄S because S is a subset of the M best empirical

arms. The last inequality then becomes

∑
k∈S

pk ≤ #S

(
1−

(
γ

#S

M

) 1
M−1

)
.

25



SELFISH ROBUSTNESS AND EQUILIBRIA IN MULTI-PLAYER BANDITS

Define g(x) = γ
M − x(1− x)M−1. For x ∈ (0, 1]:

g(x) ≥ 0 ⇐⇒ γ

xM
≥ (1− x)M−1,

⇐⇒ 1−
( γ

xM

) 1
M−1 ≤ x,

⇐⇒ 1

x

(
1−

( γ

xM

) 1
M−1

)
≤ 1.

Thus, g( 1
#S ) ≥ 0 implies

∑
k∈S pk ≤ 1. We now show that g is indeed non negative on [0, 1].

x(1 − x)M−1 is maximized at 1/M and is thus smaller than 1
M (1 − 1/M)M−1, and using the fact

that 1
M (1− 1/M)M−1 ≤ γ

M for our choice of γ, we get the result for the first case.

The other case corresponds to #S > M . In this case, the M best empirical arms are all in S and
thus x̄M ≥ x̄S . Equation (6) becomes:∑

k∈S
pk ≤ #S

(
1− γ

1
M−1

)
≤ K(1− (1− 1/K)) = 1.

Appendix C. Supplementary material for SIC-GT

In this whole section, M is assumed to be at least 3.

C.1. Description of the algorithm

This section provides a complete description of SIC-GT. The pseudocode of SIC-GT is given in
Algorithm 3 and relies on several auxiliary protocols, which are described by Protocols 3, 4, 5, 6, 7,
8 and 9.

Protocol 5: ReceiveMean
Input: j, p
µ̃← 0
for n = 0, . . . , p do

Pull j
if ηj(t) = 1 then µ̃← µ̃+ 2−n

end
return µ̃ // sent mean

Protocol 6: SendMean
Input: j, l, p, µ̃
m← dyadic writing of µ̃ of length p+ 1,
i.e., µ̃ =

∑p
n=0mn2−n

for n = 0, . . . , p do
if mn = 1 then Pull l // send 1
else Pull j // send 0

end

Initialization phase. The purpose of the initialization phase is to estimate M and attribute ranks
in [M ] to all the players. This is done by Initialize, which is given in Protocol 3. It simply
consists in pulling uniformly at random for a long time to infer M from the probability of collision.
Then it proceeds to a Musical Chairs procedure so that each player ends with a different arm in [M ],
corresponding to her rank.
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Algorithm 3: SIC-GT
Input: T, δ
M, j ← Initialize (T,K) and punish← False
OptArms ← ∅, Mp ←M , [Kp]← [K] and p← 1
while not punish and #OptArms < M do

for m = 0, . . . ,
⌈
Kp2p

Mp

⌉
− 1 do

ArmstoPull← OptArms ∪
{
i ∈ [Kp]

∣∣ i−mMp (mod Kp) ∈ [Mp]
}

for M rounds do
k ← j + t (mod M) + 1 and pull i the k-th element of ArmstoPull
if T ji (p) ≤ 2p then Update µ̂ji // T ji pulls on i by j this phase
if ηi = 1 then punish← True // collisionless exploration

end
end
(punish,OptArms, [Kp],Mp)← CommPhase (µ̂j , j, p,OptArms , [Kp],Mp)
p← p+ 1

end

if punish then PunishHomogeneous (p)
else // exploitation phase

k ← j + t (mod M) + 1 and pull i, the k-th arm of OptArms
if ηi = 1 then punish← True

end

Protocol 3: Initialize
Input: T,K
ncoll ← 0 and j ← −1
for 12eK2 log(T ) rounds do Pull k ∼ U(K) and ncoll ← ncoll + ηk // estim. M

M̂ ← 1 + round
(

log
(

1− ncoll
12eK2 log(T )

)
/ log

(
1− 1

K

))
for K log(T ) rounds do // get rank

if j = −1 then
Pull k ∼ U(M̂); if ηk = 0 then j ← k

else Pull j
end
return (M̂, j)

Exploration phase. As explained in Section 5.2, each arm that still needs to be explored (those
in [Kp], with Algorithm 3 notations) is pulled at least M2p times during the p-th exploration phase.
Moreover, as soon as an arm is found optimal, it is pulled for each remaining round of the exploration.
The last point is that each arm is pulled the exact same amount of time by any player, in order to
ensure fairness of the algorithm, while still avoiding collisions. This is the interest of the ArmstoPull
set in Algorithm 3. At each time step, the pulled arms are the optimal ones and Mp arms that still
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Protocol 4: CommPhase
Input: µ̂j , j, p,OptArms, [Kp],Mp

punish← False
for K rounds do // receive punishment signal

Pull k = t+ j (mod K) + 1; if ηk = 1 then punish← True
end

µ̃jk ←

{
2−p

(
b2pµ̂jkc+ 1

)
with proba 2pµ̂jk − b2

pµ̂jkc
2−pb2pµ̂jkc otherwise

// quantization

for (i, l, k) ∈ [M ]× {1, 2} × [K] such that i 6= l do // i sends µ̃ik to l
if j = i then // sending player

SendMean (j, l, p, µ̃jk) and q ← ReceiveMean (j, p) // back and forth

if q 6= µ̃jk then punish← True // corrupted message

else if j = l then µ̃ik ← ReceiveMean (j, p) and SendMean (j, i, p, µ̃ik)
else Pull j // waiting for others

end
for (i, l,m, k) ∈ {(1, 2), (2, 1)} × [M ]× [K] do // leaders check info match

if j = i then SendMean (j, l, p, µ̃mk )
else if j = l then

q ← ReceiveMean (j, p); if q 6= µ̃mk then punish← True // info differ
else Pull j // waiting for leaders

end
if j ∈ {1, 2} then (Acc, Rej)← RobustUpdate (µ̃, p,OptArms , [Kp],Mp)
else Acc, Rej← ∅ // arms to accept/reject
(punish, Acc)← SignalSet (Acc, j, punish)
(punish, Rej)← SignalSet (Rej, j, punish)
return (punish,OptArms ∪ Acc, [Kp] \ (Acc ∪ Rej) ,Mp −#Acc)

Protocol 7: RobustUpdate
Input: µ̃, p,OptArms , [Kp],Mp

Define for all k, ik ← arg maxj∈[M ] µ̃
j
k and ik ← arg minj∈[M ] µ̃

j
k

µ̃k ←
∑

j∈[M ]\{ik,ik} µ̃
j
k and b← 4

√
log(T )

(M−2)2p+1

Rej← set of arms k verifying #{i ∈ [Kp] |µ̃i − b ≥ µ̃k + b} ≥Mp

Acc← set of arms k verifying #{i ∈ [Kp] |µ̃k − b ≥ µ̃i + b} ≥ Kp −Mp

return (Acc, Rej)

need to be explored. The players proceed to a sliding window over these arms to explore, so that the
difference in pulls for two arms in [Kp] is at most 1 for any player and phase.

Communication phase. The pseudocode for a whole communication phase is given by CommPhase
in Protocol 4. Players first quantize their empirical means before sending them in p bits to each leader.
The protocol to send a message is given by Protocol 6, while Protocol 5 describes how to receive the
message. The messages are sent using back and forth procedures to detect corrupted messages.
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Protocol 8: SignalSet
Input: S, j, punish
length_S← #S // length of S for leaders, 0 for others
for K rounds do // leaders send #S

if j ∈ {1, 2} then Pull length_S
else

Pull k = t+ j (mod K) + 1
if ηk = 1 and length_S 6= 0 then punish← True // receive different info
if ηk = 1 and length_S = 0 then length_S← k

end
for n = 1, . . . , length_S do // send/receive S

for K rounds do
if j ∈ {1, 2} then Pull n-th arm of S
else

Pull k = t+ j (mod K) + 1; if ηk = 1 then Add k to S
end

end
if #S 6= length_S then punish← True // corrupted info
return (punish, S)

Protocol 9: PunishHomogeneous
Input: p
if communication phase p starts in less than M rounds then

for M +K rounds do Pull j // signal punish to everyone
else for M rounds do Pull the first arm of ArmstoPull as defined in Algorithm 3

γ ← (1− 1/K)M−1 and δ = 1−γ
1+3γ ; Set µ̂jk, S

j
k, s

j
k, n

j
k ← 0

while ∃k ∈ [K], δµ̂jk < 2sjk(log(T )/njk)
1/2 + 14 log(T )

3(njk−1)
do // estimate µk

Pull k = t+ j (mod K) + 1

if δµ̂jk < 2sjk(log(T )/njk)
1/2 + 14 log(T )

3(njk−1)
then

Update µ̂jk ←
njk
njk+1

µ̂jk +Xk(t) and njk ← njk + 1

Update Sjk ← Sjk +X2
k and sjk ←

√
Sjk−(µ̂jk)2

njk−1

end

pk ←
(

1−
(
γ

∑M
l=1 µ̂

j
(l)

(t)

Mµ̂jk(t)

) 1
M−1

)
+

; p̃k ← pk/
∑K

l=1 pl // renormalize

while t ≤ T do Pull k with probability pk // punish

After this, leaders communicate the received statistics to each other, to ensure that no player sent
differing ones to them.
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They can then determine which arms are optimal/suboptimal using RobustUpdate given by
Protocol 7. As explained in Section 5.2, it cuts out the extreme estimates and decides based on the
M − 2 remaining ones.

Afterwards, the leaders signal to the remaining players the sets of optimal and suboptimal arms
as described by Protocol 8. If the leaders send differing information, it is detected by at least one
player.

If the presence of a malicious player is detected at some point of this communication phase, then
players signal to each other to trigger the punishment protocol described by Protocol 9.

Exploitation phase. If no malicious player perturbed the communication, players end up having
detected the M optimal arms. As soon as it is the case, they only pull these M arms in a collisionless
way until the end.
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C.2. Regret analysis

This section aims at proving the first point of Theorem 6, using similar techniques as in (Boursier
and Perchet, 2019). The regret is first divided into three parts:

RT = Rinit +Rcomm +Rexplo, (7)

where



Rinit = Tinit

M∑
k=1

µ(k) − Eµ
[ Tinit∑
t=1

M∑
j=1

rj(t)
]

with Tinit = (12eK2 +K) log(T ),

Rcomm = Eµ
[ ∑
t∈Comm

M∑
j=1

(µ(j) − rj(t))
]

with Comm the set of communication steps,

Rexplo = Eµ
[∑
t∈Explo

M∑
j=1

(µ(j) − rj(t))
]

with Explo = {Tinit + 1, . . . , T} \ Comm.

A communication step is defined as a round where any player is using the CommPhase protocol.
Lemma 14 provides guarantees about the initialization phase. When all players correctly estimate M
and have different ranks after the protocol Initialize, the initialization phase is said successful.

Lemma 14. Independently of the sampling strategy of the selfish player, if all other players follow
Initialize, with probability at least 1 − 3M

T : M̂ j = M and all cooperative players end with
different ranks in [M ].

Proof. Let qk(t) = P[selfish player pulls k at time t]. Then, for any cooperative player j during the
initialization phase:

P[player j observes a collision at time t] =

K∑
k=1

1

K
(1− 1/K)M−2(1− qk(t))

= (1− 1/K)M−2(1−
∑K

k=1 qk(t)

K
)

= (1− 1/K)M−1

Define p = (1− 1/K)M−1 the probability to collide and p̂j =

∑12eK2 log(T )
t=1 1η

πj(t)
=1

12eK2 log(T )
its estima-

tion by player j. The Chernoff bound given by Lemma 12 gives:

P
[∣∣p̂j − p∣∣ ≥ p

2K

]
≤ 2e−

p log(T )
e

≤ 2/T

If
∣∣p̂j − p∣∣ < p

2K , using the same reasoning as in the proof of Lemma 1 leads to 1 + log(1−p̂j)
log(1−1/K) ∈

(M − 1/2,M + 1/2) and then M̂ j = M . With probability at least 1 − 2M/T , all cooperative
players correctly estimate M .
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Afterwards, the players sample uniformly in [M ] until observing no collision. As at least an arm
in [M ] is not pulled by any other player, at each time step of this phase, when pulling uniformly at
random:

P[ηπj(t) = 0] ≥ 1/M.

A player gets a rank as soon as she observes no collision. With probability at least 1−(1−1/M)n,
she thus gets a rank after at most n pulls during this phase. Since this phase lasts K log(T ) pulls, she
ends the phase with a rank with probability at least 1− 1/T . Using a union bound finally yields that
every player ends with a rank and a correct estimation of M . Moreover, these ranks are different
between all the players, because a player fixes to the arm j as soon as she gets attributed the rank j.

Lemma 15 bounds the exploration regret of SIC-GT and is proved in Appendix C.2.1. Note that
a minimax bound can also be proved as done in (Boursier and Perchet, 2019).

Lemma 15. If all players follow SIC-GT, with probability 1−O
(
KM log(T )

T

)
,

Rexplo = O

(∑
k>M

log(T )

µ(M) − µ(k)

)
.

Lemma 16 finally bounds the communication regret.

Lemma 16. If all players follow SIC-GT, with probability 1−O
(
KM log(T )

T + M
T

)
:

Rcomm = O
(
M2K log2

(
log(T )

(µ(M) − µ(M+1))2

))
.

Proof. The proof is conditioned on the success of the initialization phase, which happens with
probability 1 − O

(
M
T

)
. Proposition 1 given in Appendix C.2.1 yields that with probability

1−O
(
KM log(T )

T

)
, the number of communication phases is bounded byN = O

(
log
(

log(T )
(µ(M)−µ(M+1))

2

))
.

The p-th communication phase lasts 8MK(p + 1) + 3K + K #Acc(p) + K #Rej(p), where
Acc and Rej respectively are the accepted and rejected arms at the p-th phase. Their exact
definitions are given in Protocol 7. An arm is either accepted or rejected only once, so that∑N

p=1 #Acc(p) + #Rej(p) = K. The total length of Comm is thus bounded by:

#Comm ≤
N∑
p=1

8MK(p+ 1) + 3K +K #Acc(p) +K #Rej(p)

≤ 8MK
(N + 2)(N + 1)

2
+ 3KN +K2

Which leads to Rcomm = O
(
M2K log2

(
log(T )

(µ(M)−µ(M+1))
2

))
using the given bound for N .
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Proof of Theorem 6. Using Lemmas 14, 15, 16 and equation (7) it comes that with probability
1−O

(
KM log(T )

T

)
:

RT ≤ O

∑
k>M

log(T )

µ(M) − µ(k)
+M2K log2

(
log(T )

(µ(M) − µ(M+1))2

)
+MK2 log(T )

 .

The regret incurred by the low probability event is O(KM2 log(T )), leading to Theorem 6.

C.2.1. PROOF OF LEMMA 15

Lemma 15 relies on the following concentration inequality.

Lemma 17. Conditioned on the success of the initialization and independently of the means sent by
the selfish player, if all other players play cooperatively and send uncorrupted messages, for any
k ∈ [K]:

P[∃p ≤ n, |µ̃k(p)− µk| ≥ B(p)] ≤ 4nM

T

where B(p) = 4
√

log(T )
(M−2)2p+1 and µ̃k(p) is the centralized mean of arm k at the end of phase p, once

the extremes have been cut out. It exactly corresponds to the µ̃k of Protocol 7.

Proof. At the end of phase p, (2p+1−1) observations are used for any player j and arm k. Hoeffding

bound then gives: P
[∣∣∣µ̂jk(p)− µk∣∣∣ ≥√ log(T )

2p+1

]
≤ 2

T . The quantization only adds an error of at

most 2−p, yielding for any cooperative player:

P

[∣∣∣µ̃jk(p)− µk∣∣∣ ≥ 2

√
log(T )

2p+1

]
≤ 2

T
(8)

Assume w.l.o.g. that the selfish player has rank M . Hoeffding inequality also yields:

P

∣∣∣∣ 1

M − 1

M−1∑
j=1

µ̂jk(p)− µk
∣∣∣∣ ≥

√
log(T )

(M − 1)2p+1

 ≤ 2

T
.

Since
∑M−1

j=1 2p(µ̃jk(p)− µ̂
j
k(p)) is the difference between M − 1 Bernoulli variables and their

expectation, Hoeffding inequality yields P
[∣∣∣ 1
M−1

∑M−1
j=1 (µ̃jk − µ̂

j
k(p))

∣∣∣ ≥√ log(T )
(M−1)2p+1

]
≤ 2

T and:

P

∣∣∣∣∣∣ 1

M − 1

M−1∑
j=1

µ̃jk(p)− µk

∣∣∣∣∣∣ ≥ 2

√
log(T )

(M − 1)2p+1

 ≤ 4

T
. (9)
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Using the triangle inequality combining equations (8) and (9) yields for any j ∈ [M − 1]:

P

∣∣∣ 1

M − 2

∑
j′∈[M−1]
j′ 6=j

µ̃jk(p)− µk
∣∣∣ ≥ 4

√
log(T )

(M − 2)2p+1

 ≤ P

[
M − 1

M − 2

∣∣∣ 1

M − 1

∑
j′∈[M−1]

µ̃jk(p)− µk
∣∣∣

+
1

M − 2

∣∣∣µ̃jk(p)− µk∣∣∣ ≥ 4

√
log(T )

(M − 2)2p+1

]

≤ P

∣∣∣ 1

M − 1

M−1∑
j=1

µ̃jk(p)− µk
∣∣∣ ≥ 2

√
log(T )

(M − 1)2p+1


+ P

[∣∣∣µ̃jk(p)− µk∣∣∣ ≥ 2

√
log(T )

2p+1

]
≤ 6

T
. (10)

Moreover by construction, no matter what mean sent the selfish player,

min
j∈[M−1]

1

M − 2

∑
j′∈[M−1]
j′ 6=j

µ̃jk(p) ≤ µ̃k(p) ≤ max
j∈[M−1]

1

M − 2

∑
j′∈[M−1]
j′ 6=j

µ̃jk(p).

Indeed, assume that the selfish player sends a mean larger than any other player. Then her mean
as well as the minimal sent mean are cut out and µ̃k(p) is then equal to the right term. Conversely if
she sends the smallest mean, µ̃k(p) corresponds to the left term. Since µ̃k(p) is non-decreasing in
µ̃Mk (p), the inequality also holds in the case where the selfish player sends neither the smallest nor
the largest mean.

Finally, using a union bound over all j ∈ [M − 1] with equation (10) yields Lemma 17.

Using classical MAB techniques then yields Proposition 1.

Proposition 1. Independently of the selfish player behavior, as long as the PunishHomogeneous
protocol is not used, with probability 1−O

(
KM log(T )

T

)
, every optimal arm k is accepted after at

mostO
(

log(T )
(µk−µ(M+1))

2

)
pulls and every sub-optimal arm k is rejected after at mostO

(
log(T )

(µ(M)−µk)2

)
pulls

during exploration phases.

Proof. The fact that the PunishHomogeneous protocol is not started just means that no corrupted
message is sent between cooperative players. The proof is conditioned on the success of the
initialization phase, which happens with probability 1−O

(
M
T

)
. Note that there are at most log2(T )

exploration phases. Thanks to Lemma 17, with probability 1 − O
(
KM log(T )

T

)
, the inequality

|µ̃k(p)− µk| ≤ B(p) thus holds for any p. The remaining of the proof is conditioned on this event.
Especially, an optimal arm is never rejected and a suboptimal one never accepted.
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First consider an optimal arm k and note ∆k = µk − µ(M+1) the optimality gap. Let pk be the

smallest integer p such that (M − 2)2p+1 ≥ 162 log(T )
∆2
k

. In particular, 4B(pk) ≤ ∆k, which implies
that the arm k is accepted at the end of the communication phase pk or before.

Necessarily, (M − 2)2pk+1 ≤ 2·162 log(T )
∆2
k

and especially, M2pk+1 = O
(

log(T )
∆2
k

)
. Note that the

number of exploratory pulls on arm k during the p first phases is bounded by M(2p+1 + p)8, leading
to Proposition 1. The same holds for the sub-optimal arms with ∆k = µ(M) − µk.

In the following, we keep the notation tk = c log(T )

(µk−µ(M))
2 , where c is a universal constant, such

that with probability 1−O
(
KM
T

)
, any arm k is correctly accepted or rejected after a time at most

tk. All players are now assumed to play SIC-GT, e.g., there is no selfish player. Since there is no
collision during exploration/exploitation (conditionally on the success of the initialization phase), the
following decomposition holds (Anantharam et al., 1987):

Rexplo =
∑
k>M

(µ(M) − µ(k))T
explo
(k) +

∑
k≤M

(µ(k) − µ(M))(T
explo − T explo

(k) ), (11)

where T explo = #Explo and T explo
(k) is the centralized number of pulls on the k-th best arm during

exploration or exploitation.

Lemma 18. If all players follow SIC-GT, with probability 1−O
(
KM log(T )

T

)
, it holds:

• for k > M , (µ(M) − µ(k))T
explo
(k) = O

(
log(T )

µ(M)−µ(k)

)
.

•
∑

k≤M (µ(k) − µ(M))(T
explo − T explo

(k) ) = O
(∑

k>M
log(T )

µ(M)−µk

)
.

Proof. With probability 1−O
(
KM log(T )

T

)
, Proposition 1 yields that any arm k is correctly accepted

or rejected at time at most tk. The remaining of the proof is conditioned on this event and the success
of the initialization phase. The first point of Lemma 18 is a direct consequence of Proposition 1. It
remains to prove the second point.

Let p̂k be the number of the phase at which the arm k is either accepted or rejected and let Kp be
the number of arms that still need to be explored at the beginning of phase p and Mp be the number
of optimal arms that still need to be explored. The following two key Lemmas are crucial to obtain
the second point.

Lemma 19. Under the assumptions of Lemma 18:

∑
k≤M

(µ(k) − µ(M))(T
explo − T explo

(k) ) ≤
∑
j>M

∑
k≤M

min(p̂(k),p̂(j))∑
p=1

(µ(k) − µ(M))2
p M

Mp
+ o(log(T )).

Lemma 20. Under the assumptions of Lemma 18, for any j > M :

∑
k≤M

min(p̂(k),p̂(j))∑
p=1

(µ(k) − µ(M))2
p M

Mp
≤ O

(
log(T )

µ(M) − µ(j)

)
.

8. During the exploration phase p, any explored arm is pulled between M2p and M(2p + 1) times.
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Combining these two Lemmas with Equation (11) finally yields Lemma 15.

Proof of Lemma 19. Consider an optimal arm k. During the p-th exploration phase, either k has
already been accepted and is pulled M

⌈
Kp2p

Mp

⌉
times; or k has not been accepted yet and is pulled at

least 2pM , i.e., is not pulled at most M
(⌈

Kp2p

Mp

⌉
− 2p

)
times. This gives:

(µ(k) − µ(M))(T
explo − T explo

(k) ) ≤
p̂k∑
p=1

(µ(k) − µ(M))M

(⌈
Kp2

p

Mp

⌉
− 2p

)
,

≤
p̂k∑
p=1

(µ(k) − µ(M))M

(
Kp2

p

Mp
− 2p + 1

)
,

≤ p̂k(µ(k) − µ(M))M +

p̂k∑
p=1

(µ(k) − µ(M))(Kp −Mp)
M

Mp
2p.

We assumed that any arm k is correctly accepted or rejected after a time at most tk. This implies
that p̂k = o(log(T )). Moreover, Kp −Mp is the number of suboptimal arms not rejected at phase p,
i.e., Kp −Mp =

∑
j>M 1p≤p̂(j) and this proves Lemma 19.

Proof of Lemma 20. For j > M , define Aj =
∑

k≤M
∑min(p̂(k),p̂(j))

p=1 (µ(k) − µ(M))2
p M
Mp

. We

want to show Aj ≤ O
(

log(T )
µ(M)−µ(j)

)
with the considered conditions. Note T (p) = M(2p+1 − 1) and

∆(p) =
√

c log(T )
T (p) . The inequality p̂(k) ≥ p then implies µ(k) − µ(M) < ∆(p), i.e.,

Aj ≤
∑
k≤M

p̂(j)∑
p=1

2p∆(p)1p≤p̂(k)
M

Mp
=

p̂(j)∑
p=1

2p∆(p)M

≤
p̂(j)∑
p=1

∆(p)(T (p)− T (p− 1))

The equality comes because
∑

k≤M 1p≤p̂(k) is exactly Mp. Then from the definition of ∆(p):

Aj ≤ c log(T )

p̂(j)∑
p=1

∆(p)

(
1

∆(p)
+

1

∆(p− 1)

)(
1

∆(p)
− 1

∆(p− 1)

)

≤ (1 +
√

2)c log(T )

p̂(j)∑
p=1

(
1

∆(p)
− 1

∆(p− 1)

)
≤ (1 +

√
2)c log(T )/∆(p̂(j))

≤ (1 +
√

2)
√
c log(T )T (p̂(j))
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By definition, T (p̂(j)) is smaller than the number of exploratory pulls on the j-th best arm and is

thus bounded by c log(T )
(µ(M)−µ(j))2

, leading to Lemma 20.

C.3. Selfish robustness of SIC-GT

In this section, the second point of Theorem 6 is proven. First Lemma 21 gives guarantees for the
punishment protocol. Its proof is given in Appendix C.3.1.

Lemma 21. If the PunishHomogeneous protocol is started at time Tpunish by M − 1 players,
then for the remaining player j, independently of her sampling strategy:

E[Rewj
T |punish] ≤ E[Rewj

Tpunish+tp
] + α̃

T − Tpunish − tp
M

M∑
k=1

µ(k),

with tp = O
(

K
(1−α̃)2µ(K)

log(T )
)

and α̃ = 1+(1−1/K)M−1

2 .

Proof of the second point of Theorem 6 (Nash equilibrium). First fix Tpunish the time at which
the punishment protocol starts if it happens (and T if it does not). Before this time, the selfish player
can not perturb the initialization phase, except by changing the ranks distribution. Moreover, the
exploration/exploitation phase is not perturbed as well, as claimed by Proposition 1. The optimal
strategy then earns at most Tinit during the initialization and #Comm during the communication.
With probability 1−O

(
KM log(T )

T

)
, the initialization is successful and the concentration bound of

Lemma 5 holds for any arm and player all the time. The following is conditioned on this event.

Note that during the exploration, the cooperative players pull any arm the exact same amount of
times. Since the upper bound time tk to accept or reject an arm does not depend on the strategy of the
selfish player, Lemma 18 actually holds for the cooperative player, i.e., for any cooperative player j:

∑
k≤M

(
µ(k) − µ(M)

)(T explo

M
− T j(k)

)
= O

(
1

M

∑
k>M

log(T )

µ(M) − µk

)
, (12)

where T j(k) is the number of pulls by player j on the k-th best arm during the exploration/exploitation.
The same kind of regret decomposition as in Equation (11) is possible for the regret of the selfish
player j and especially:

R
explo
j ≥

∑
k≤M

(µ(k) − µ(M))

(
T explo

M
− T j(k)

)
.

However, the optimal strategy for the selfish player is to pull the best available arm during the
exploration and especially to avoid collisions. This implies the constraint T j(k) ≤ T

explo−
∑

j 6=j′ T
j′

(k).

Using this constraint with Equation (12) yields T explo

M − T j(k) ≥ −
∑

j 6=j′
T explo

M − T j
′

(k) and then

R
explo
j ≥ −O

(∑
k>M

log(T )

µ(M) − µk

)
,
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which can be rewritten as

Rew
explo
j ≤ T explo

M

M∑
k=1

µ(k) +O

(∑
k>M

log(T )

µ(M) − µk

)
.

Thus, for any strategy s′ when adding the low probability event of a failed exploration or initialization,

E[Rewj
tp+Tpunish

(s′, s−j)] ≤ (Tinit + #Comm + tp +O(KM log(T )))

+
E[Tpunish]− Tinit −#Comm

M

∑
k≤M

µ(k) +O

(∑
k>M

log(T )

µ(M) − µk

)
.

Using Lemma 21, this yields:

E[Rewj
T (s′, s−j)] ≤ (Tinit + #Comm + tp +O(KM log(T )))

+
E[Tpunish]− Tinit −#Comm

M

∑
k≤M

µ(k) +O

(∑
k>M

log(T )

µ(M) − µk

)

+ α̃
T − E[Tpunish]

M

M∑
k=1

µ(k).

The right term is maximized when E[Tpunish] is maximized, i.e., when it is T . We then get:

E[Rewj
T (s′, s−j)] ≤

T

M

∑
k≤M

µ(k) + ε,

where ε = O
(∑

k>M
log(T )

µ(M)−µk
+K2 log(T ) +MK log2

(
log(T )

(µ(M)−µ(M+1))
2

)
+ K log(T )

(1−α̃)2µ(K)

)
.

Proof of the second point of Theorem 6 (stability). Define E the bad event that the initialization is
not successful or that an arm is poorly estimated at some time. Let ε′ = TP[E ] + E[#Comm|¬E ] +

K log(T ). Then ε′ = O
(
KM log(T ) +KM log2

(
log(T )

(µ(M)−µ(M+1))
2

))
.

Assume that the player j is playing a deviation strategy s′ such that for some other player i and
l > 0:

E[Rewi
T (s′, s−j)] ≤ E[Rewi

T (s)]− l − ε′

First fix Tpunish the time at which the punishment protocol starts. Let us now compare s′ with the
individual optimal strategy for player j, s∗. Let ε′ take account of the communication phases, the
initialization and the low probability events.

The number of pulls by any player during exploration/exploitation is given by Equation (12)
unless the punishment protocol is started. Moreover, the selfish player causes at most a collision
during exploration/exploitation before initiating the punishment protocol, so the loss of player i
before punishment is at most 1 + ε′.

After Tpunish, Lemma 21 yields that the selfish player suffers a loss at least (1−α̃)
T−Tpunish−tp

M

∑M
k=1 µ(k),

while any cooperative player suffers at most T−Tpunish
M

∑M
k=1 µ(k).
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The selfish player then suffers after Tpunish a loss at least (1− α̃)((l−1)− tp). Define β = 1− α̃.
We just showed:

E[Rewi
T (s′, s−j)] ≤ E[Rewi

T (s)]−l−ε′ =⇒ E[Rewj
T (s′, s−j)] ≤ E[Rewj

T (s∗, s−j)]−β(l−1)+βtp

Moreover, thanks to the second part of Theorem 6, E[Rewj
T (s∗, s−j)] ≤ E[Rewj

T (s)] + ε with

ε = O
(∑

k>M
log(T )

µ(M)−µk
+ K2 log(T ) + MK log2

(
log(T )

(µ(M)−µ(M+1))
2

)
+ K log(T )

(1−α̃)2µ(K)

)
. Then by

defining l1 = l + ε′, ε1 = ε+ βtp + βε′ + 1 = O(ε), we get:

E[Rewi
T (s′, s−j)] ≤ E[Rewi

T (s)]− l1 =⇒ E[Rewj
T (s′, s−j)] ≤ E[Rewj

T (s)] + ε1 − βl1.

C.3.1. PROOF OF LEMMA 21.

The punishment protocol starts by estimating all means µk with a multiplicative precision of δ. This
is possible thanks to Lemma 22, which corresponds to Theorem 9 in (Cesa-Bianchi et al., 2019) and
Lemma 13 in (Berthet and Perchet, 2017).

Lemma 22. Let X1, . . . , Xn be n-i.i.d. random variables in [0, 1] with expectation µ and define
S2
t = 1

t−1

∑t
s=1(Xs − X̄t)

2. For all δ ∈ (0, 1), if n ≥ n0, where

n0 =

⌈
2

3δµ
log(T )

(√
9

1

δ2
+ 96

1

δ
+ 85 +

3

δ
+ 1

)⌉
+ 2 = O

(
1

δ2µ
log(T )

)
and τ is the smallest time t ∈ {2, . . . , n} such that

δX̄t ≥ 2St (log(T )/t)1/2 +
14 log(T )

3(t− 1)
,

then, with probability at least 1− 3
T :

1. τ ≤ n0,

2. (1− δ) X̄τ < µ < (1 + δ) X̄τ .

Proof of Lemma 21
The punishment protocol starts for all cooperative players at Tpunish. For δ = 1−γ

1+3γ , each player
then estimates each arm. Lemma 22 gives that with probability at least 1− 3/T :

• the estimation ends after a time at most tp = O
(

K
δ2µ(K)

log(T )
)

,

• (1− δ)µ̂jk ≤ µk ≤ (1 + δ)µ̂jk.
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The following is conditioned on this event. The last inequality can be reversed as µk
1+δ ≤ µ̂

j
k ≤

µk
1−δ . Then, this implies for any cooperative player j

1− pjk ≤

(
γ

(1 + δ)
∑M

m=1 µ(m)

(1− δ)Mµk

) 1
M−1

.

The expected reward that gets the selfish player j by pulling k after the time Tpunish + tp is thus

smaller than γ 1+δ
1−δ

∑M
m=1 µ(m)

M .
Note that γ 1+δ

1−δ = 1+γ
2 = α̃. Considering the low probability event given by Lemma 22 adds a

constant term that can be counted in tp. This finally yields the result of Lemma 21.

Appendix D. Supplementary material for RSD-GT

D.1. Description of the algorithm

This section provides a complete description of RSD-GT. Its pseudocode is given in Algorithm 4. It
relies on auxiliary protocols described by Protocols 3, 10, 11, 12, 13 and 14.

Initialization phase. RSD-GT starts with the exact same initialization as SIC-GT, which is given
by Protocol 3, to estimate M and attribute ranks among the players. Afterwards, they start the
exploration.

In the remaining of the algorithm, as already explained in Section 5.3, the time is divided into
superblocks, which are divided into M blocks of length 5K +MK +M2K. During the j-th block
of a superblock, the dictators ordering for RSD is (j, . . . ,M, 1, . . . , j − 1). Moreover, only the j-th
player can send messages during this block if she is still exploring.

Exploration. The exploiting players sequentially pull all the arms in [K] to avoid collisions with
any other exploring player. Yet, they still collide with exploiting players.

RSD-GT is designed so that all players know at each round theM preferred arms of any exploiting
players and their order. The players thus know which arms are occupied by the exploiting players
during a block j. The communication arm is thus a common arm unoccupied by any exploiting player.
When an exploring player encounters a collision on this arm at the beginning of the block, this means
that another player signaled the start of a communication block. In that case, the exploring player
starts Listen, described by Protocol 11, to receive the messages of the communicating player.

On the other hand, when an exploring player j knows her M preferred arms and their order, she
waits for the next block j to initiate communication. She then proceeds to SignalPreferences,
given by Protocol 13.

Communication block. In a communication block, the communicating player first collides with
each exploiting and exploring player to signal them the start of a communication block as described
by Protocol 12. These collisions need to be done in a particular way given by SendBit so that all
players correctly detect the start of a communication block. These players then repeat this signal to
ensure that every player is listening.
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Algorithm 4: RSD-GT
Input: T, δ
M̂, j ← Initialize (T,K); state← “exploring” and blocknumber← 1

Let πππ be a M×M matrix with only 0 // πjk is the k-th preferred arm by j
while t < T do

blocktime← t (mod 5K +MK +M2K) + 1
if blocktime = 1 then // new block

blocknumber← blocknumber (mod M) + 1; bjk(t)←
√

2 log(T )/T jk (t)

Let λj be the ordering of the empirical means: µ̂j
λjk

(t) ≥ µ̂j
λjk+1

(t) for any k

if (blocknumber, state) = (j,“exploring”) and ∀k ∈ [M ], µ̂j
λjk
− bj

λjk
≥ µ̂j

λjk+1

+ bj
λjk+1

then πj ← λj ; state← SignalPreferences (πππ, j) // send Top-M arms

end
(l, comm_arm)← ComputeRSD (πππ, blocknumber) // j pulls lj

if state = “exploring” then
Pull lj and update µ̂j

lj

if lj = comm_arm and ηlj = 1 then // received signal
if blocktime > 4K then state← “punishing”
else (state, πblocknumber)← Listen (blocknumber, state,πππ, comm_arm)

end

if state = “exploiting” and ∃i, k such that πik = 0 then
Pull lj // arm attributed by RSD algo
if lj 6∈ {li|i ∈ [M ] \ {j}} and ηlj (t) = 1 then // received signal

if blocktime > 4K then state← “punishing”
else (state, πblocknumber)← Listen (blocknumber, state,πππ, comm_arm)

end

if state = “exploiting” and ∀i, k, πik 6= 0 then // all players are exploiting
Draw inspect ∼ Bernoulli(

√
log(T )/T )

if inspect = 1 then // random inspection
Pull li with i chosen uniformly at random among the other players
if ηli = 0 then state← “punishing” // lying player

else
Pull lj ; if observed two collisions in a row then state← “punishing”

end
if state = “punishing” then PunishSemiHetero (δ)

end

The communicating player then sends to all players her M preferred arms in order of preferences.
Afterwards, each player repeats this list to ensure that no malicious player interfered during com-
munication. As soon as some malicious behavior is observed, the start of PunishSemiHetero,
given by Protocol 14, is signaled to all players.
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Protocol 10: ComputeRSD
Input: πππ, blocknumber
taken_arms← ∅
for s = 0, . . . ,M − 1 do

dict← s+ blocknumber− 1(mod M) + 1 // current dictator
p← min{p′ ∈ [M ] | πdict

p′ 6∈ taken_arms} // best available choice

if πdict
p 6= 0 then ldict ← πdict

p and add πdict
p to taken_arms

else ldict ← t+ dict (mod K) + 1 // explore

end
comm_arm← min[K] \ taken_arms
return (l, comm_arm)

Exploitation. An exploiting player starts any block j by computing the attribution of the RSD
algorithm between the exploiting players given their known preferences and the dictatorship ordering
(j, . . . , j − 1). She then pulls her attributed arm for the whole block, unless she receives a signal.

A signal is received when she collides with an exploring player, while unintended9. If it is
at the beginning of a block, it means that a communication block starts. Otherwise, she just
enters the punishment protocol. Note that the punishment protocol starts by signaling the start of
PunishSemiHetero to ensure that every cooperative player starts punishing.

Another security is required to ensure that the selfish player truthfully reports her preferences.
She could otherwise report fake preferences to decrease another player’s utility while her best arm
remains uncontested and thus available. To avoid this, RSD-GT uses random inspections when all
players are exploiting. With probability

√
log(T )/T at each round, any player checks that some

other player is indeed exploiting the arm she is attributed by the RSD algorithm. If it is not the case,
the inspecting player signals the start of PunishSemiHetero to everyone by colliding twice with
everybody, since a single collision could be a random inspection. Because of this, the selfish player
can not pull another arm than the attributed one too often without starting a punishment scheme.
Thus, if she did not report her preferences truthfully, this also has a cost for her.

9. She normally collides with exploring players. Yet as she knows the set of exploring players, she exactly knows when
this happens.
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Protocol 11: Listen
Input: blocknumber, state,πππ, arm_comm
ExploitPlayers = {i ∈ [M ] | πi1 6= 0}; λ← πblocknumber

if λ1 6= 0 then state← “punishing” // this player already sent
while blocktime ≤ 2K do Pull t+ j(mod K) + 1
if blocktime = 2K then SendBit (comm_arm,ExploitPlayers, j) // repeat signal
else while blocktime ≤ 4K do Pull t+ j(mod K) + 1

for K rounds do
if state = “punishing” then Pull j // signal punishment
else

Pull k = t+ j(mod K) + 1 ; if ηk = 1 then state← “punishing”
end

for n = 1, . . . ,MK do // receive preferences
Pull k = t+ j(mod K) + 1
m← dn/Ke // communicating player sends her m-th pref. arm
if ηk = 1 then

if λm 6= 0 then state← “punishing” // received two signals
else λm ← k

end

for n = 1, . . . ,M2K do // repetition block

m←
⌈
n (mod MK)

K

⌉
and l← d n

MK e // l repeats the m-th pref.

if j = l then Pull λm
else

Pull k = t+ j (mod K) + 1
if ηk = 1 and λm 6= k then state← “punishing” // info differs

end
if #{λm 6= 0 |m ∈ [M ]} 6= M then state← “punishing” // did not send all
return (state, λ)

Protocol 12: SendBit
Input: comm_arm,ExploitPlayers, j
if ExploitPlayers = ∅ then j̃ ← j

else j̃ ← min ExploitPlayers
for K rounds do Pull t+ j̃(mod K) + 1 // send bit to exploiting players
for K rounds do Pull comm_arm // send bit to exploring players

D.2. Regret analysis

This section aims at proving the first point of Theorem 7. RSD-GT uses the exact same initialization
phase as SIC-GT, and its guarantees are thus given by Lemma 14. Here again, the regret is
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Protocol 13: SignalPreferences
Input: πππ, j, comm_arm
ExploitPlayers = {i ∈ [M ] \ {j} | πi1 6= 0}; λ← πj // λ is signal to send
state← “exploiting” // state after the protocol
SendBit (comm_arm,ExploitPlayers, j) // initiate communication block

for 2K rounds do Pull t+ j(mod K) + 1 // wait for repetition

for K rounds do // receive punish signal
Pull t+ j(mod K) + 1; if ηk = 1 then state← “punishing”

end

for n = 1, . . . ,MK do pull λd nK e // send k-th preferred arm

for n = 1, . . . ,M2K do // repetition block

m←
⌈
n (mod MK)

K

⌉
and l← d n

MK e // l repeats the m-th pref.

if j = l then Pull λm
else

Pull k = t+ j (mod K) + 1
if ηk = 1 and λm 6= k then state← “punishing” // info differs

end
return state

decomposed into three parts:

RRSD
T = Rinit +Rcomm +Rexplo, (13)

where



Rinit = TinitEσ∼U(SM )

[ M∑
k=1

µ
σ(k)
πσ(k)

]
− Eµ

[ Tinit∑
t=1

M∑
j=1

rj(t)
]

with Tinit = (12eK2 +K) log(T ),

Rcomm = #CommEσ∼U(SM )

[ M∑
k=1

µ
σ(k)
πσ(k)

]
− Eµ

[ ∑
t∈Comm

M∑
j=1

rj(t))
]
,

Rexplo = #ExploEσ∼U(SM )

[ M∑
k=1

µ
σ(k)
πσ(k)

]
− Eµ

[∑
t∈Explo

M∑
j=1

rj(t))
]

with Comm defined as all the rounds of a block where at least a cooperative player uses Listen
protocol and Explo = {Tinit + 1, . . . , T} \ Comm. In case of a successful initialization, a single
player can only initiate a communication block once without starting a punishment protocol. Thus,
as long as no punishment protocol is started: #Comm ≤M(5K +MK +M2K) = O(M3K).

Denote by ∆j = mink∈[M ] µ
j
(k) − µ

j
(k+1) the level of precision required for player j to know her

M preferred arms and their order. Proposition 2 gives the exploration time required for any player j:

Proposition 2. With probability 1−O
(
K
T

)
and as long as no punishment protocol is started, the

player j starts exploiting after at most O
(
K log(T )

(∆j)2
+M3K

)
exploration pulls.
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Protocol 14: PunishSemiHetero
Input: δ
if ExploitPlayers = [M ] then collide with each player twice
else // signal punishment during rounds 3K + 1, . . . , 5K of a block

for 3K rounds do Pull t+ j(mod K) + 1
SendBit (comm_arm,ExploitPlayers, j)

end

α←
(

1+δ
1−δ

)2
(1− 1/K)M−1 and δ′ = 1−α

1+3α

Set µ̂jk, S
j
k, v

j
k, n

j
k ← 0

while ∃k ∈ [K], δ′µ̂jk < 2sjk(log(T )/njk)
1/2 + 14 log(T )

3(njk−1)
do // estimate µjk

Pull k = t+ j (mod K) + 1

if δ′µ̂jk < 2sjk(log(T )/njk)
1/2 + 14 log(T )

3(njk−1)
then

Update µ̂jk ←
njk
njk+1

µ̂jk +Xk(t) and njk ← njk + 1

Update Sjk ← Sjk +X2
k and sjk ←

√
Sjk−(µ̂jk)2

njk−1

end

pk ←
(

1−
(
α

∑M
l=1 µ̂

j
(l)

(t)

Mµ̂jk(t)

) 1
M−1

)
+

; p̃k ← pk/
∑K

l=1 pl // renormalize

while t ≤ T do Pull k with probability pk // punish

Proof. In the following, the initialization is assumed to be successful, which happens with probability
1−O

(
M
T

)
. Moreover, Hoeffding inequality yields:

P

[
∀t ≤ T,

∣∣∣µ̂jk(t)− µjk(t)∣∣∣ ≥
√

2 log(T )

T jk (t)

]
≤ 2

T

where T jk (t) is the number of exploratory pulls on arm k by player j. With probability 1−O
(
K
T

)
,

player j then correctly estimates all arms at each round. The remaining of the proof is conditioned
on this event.

During the exploration, player j sequentially pulls the arms in [K]. Denote by n the smallest

integer such that
√

2 log(T )
n ≤ 4∆j . It directly comes that n = O

(
log(T )
(∆j)2

)
. Under the considered

events, player j then has determined her M preferred arms and their order after Kn exploratory
pulls. Moreover, she needs at most M blocks before being able to initiate her communication block
and starts exploiting. Thus, she needs at most O

(
K log(T )

(∆j)2
+M3K

)
exploratory pulls, leading to

Proposition 2.

Proof of the first point of Theorem 7. Assume all players play RSD-GT. Simply by bounding the
size of the initialization and the communication phases, it comes:

Rinit +Rcomm ≤ O
(
MK2 log(T )

)
.
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Proposition 2 yields that with probability 1−O
(
KM
T

)
, all players start exploitation after at most

O
(
K log(T )

∆2

)
exploratory pulls.

For p =
√

log(T )/T , with probability O(p2M) at any round t, a player is inspecting another
player who is also inspecting or a player receives two consecutive inspections. These are the only
ways to start punishing when all players are cooperative. As a consequence, when all players follow
RSD-GT, they initiate the punishment protocol with probability O

(
p2MT

)
. Finally, the total regret

due to this event grows as O
(
M2 log(T )

)
.

If the punishment protocol is not initiated, players cycle through the RSD matchings of σ ◦
σ−1

0 , . . . , σ ◦σ−M0 where σ0 is the classical M -cycle and σ is the players permutation returned by the
initialization. Define U(σ) =

∑M
k=1 µ

σ(k)
πσ(k), where πσ(k) is the arm attributed to the k-th dictator,

σ(k), as defined in Section 4.2.2. U(σ) is the social welfare of RSD algorithm when the dictatorships
order is given by the permutation σ. As players all follow RSD-GT here, σ is chosen uniformly at
random in SM and any σ ◦ σ−k0 as well. Then

Eσ∼U(SM )

[
1

M

M∑
k=1

U(σ ◦ σ−M0 )

]
= Eσ∼U(SM ) [U(σ)] .

This means that in expectation, the utility given by the exploitation phase is the same as the
utility of the RSD algorithm when choosing a permutation uniformly at random. Considering the low
probability event of a punishment protocol, an unsuccesful initialization or a bad estimation of an
arm finally yields:

Rexplo ≤ O
(
MK log(T )

∆2

)
.

Equation (13) concludes the proof.

D.3. Selfish-robustness of RSD-GT

In this section, we prove the two last points of Theorem 7. Three auxiliary Lemmas are first needed.
They are proved in Appendix D.3.1.

1. Lemma 23 compares the utility received by player j from the RSD algorithm with the utility
given by sequentially pulling her M best arms in the δ-heterogeneous setting.

2. Lemma 24 gives an equivalent version of Lemma 21, but for the δ-heterogeneous setting.

3. Lemma 25 states that the expected utility of the assignment of any player during the exploitation
phase does not depend on the strategy of the selfish player. The intuition behind this result is
already given in Section 5.3.

In the case of several selfish players, they could actually fix the joint distribution of (σ−1(j), σ−1(j′)).
A simple rotation with a M -cycle is then not enough to recover a uniform distribution over
SM in average. A more complex rotation is then required and the dependence in M would
blow up with the number of selfish players.
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Lemma 23. In the δ-heterogeneous case for any player j and permutation σ:

1

M

M∑
k=1

µj(k) ≤ Ũj(σ) ≤ (1 + δ)2

(1− δ)2M

M∑
k=1

µj(k),

where Ũj(σ) := 1
M

∑M
k=1 µ

j

π
σ◦σ−k0

(σk0◦σ−1(j))
.

Following the notation of Section 4.2.2, πσ(σ−1(j)) is the arm attributed to player j by RSD
when the dictatorship order is given by σ. Ũj(σ) is then the average utility of the exploitation when
σ is the permutation given by the initialization.

Lemma 24. Recall that γ = (1 − 1/K)M−1. In the δ-heterogeneous setting with δ < 1−√γ
1+
√
γ , if

the punish protocol is started at time Tpunish by M − 1 players, then for the remaining player j,
independently of her sampling strategy:

E[Rewj
T |punishment] ≤ E[Rewj

Tpunish+tp
] + α̃

T − Tpunish − tp
M

M∑
k=1

µj(k),

with tp = O
(

K log(T )
(1−δ)(1−α̃)2µ(K)

)
and α̃ =

1+( 1+δ
1−δ )

2
γ

2 .

Lemma 25. The initialization phase is successful when all players end with different ranks in [M ].
For any player j, independently of the behavior of the selfish player:

Eσ∼successful initialization

[
Ũj(σ)

]
= Eσ∼U(SM )

[
µjπσ(σ−1(j))

]
.

where Ũj(σ) is defined as in Lemma 23 above.

Proof of the second point of Theorem 7 (Nash equilibrium). First fix Tpunish the beginning of
the punishment protocol. Note s the profile where all players follow RSD-GT and s′ the individual
strategy of the selfish player j.

As in the homogeneous case, the player earns at most Tinit + #Comm during both initialization
and communication. She can indeed choose her rank at the end of the initialization, but this has
no impact on the remaining of the algorithm (except for a M3K term due to the length of the last
uncompleted superblock), thanks to Lemma 25.

With probability 1−O
(
KM+M log(T )

T

)
, the initialization is successful, the arms are correctly

estimated and no punishment protocol is due to unfortunate inspections (as already explained in
Section D.2). The following is conditioned on this event.

Proposition 2 holds independently of the strategy of the selfish player. Moreover, the exploiting
players run the RSD algorithm only between the exploiters. This means that when all cooperative
players are exploiting, if the selfish player did not signal her preferences, she would always be the
last dictator in the RSD algorithm. Because of this, it is in her interest to report as soon as possible
her preferences.

Moreover, reporting truthfully is a dominant strategy for the RSD algorithm, meaning that when
all players are exploiting, the expected utility received by the selfish player is at most the utility she
would get by reporting truthfully. As a consequence, the selfish player can improve her expected
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reward by at most the length of a superblock during the exploitation phase. Wrapping up all of this
and defining t0 the time at which all other players start exploiting:

E
[
Rewj

Tpunish+tp
(s′, s−j)

]
≤ t0 + (Tpunish + tp − t0)Eσ∼U(SM )

[
µjπσ(σ−1(j))

]
+O(M3K).

with t0 = O
(
K log(T )

∆2 +K2 log(T )
)

. Lemma 24 then yields for α̃ =
1+( 1+δ

1−δ )
2
α

2 :

E
[
Rewj

T (s′, s−j)
]
≤ t0+(Tpunish+tp−t0)Eσ∼U(SM )

[
µjπσ(σ−1(j))

]
+α̃

T − Tpunish − tp
M

M∑
k=1

µj(k)+O(M3K).

Thanks to Lemma 23, Eσ∼U(SM )

[
µj
πσ(σ−1(j))

]
≥
∑M
k=1 µ

j
(k)

M . We assume δ < 1−(1−1/K)
M−1

2

1+(1−1/K)
M−1

2

here, so that α̃ < 1. Because of this, the right term is maximized when Tpunish is maximized, i.e.,
equal to T . Then:

E
[
Rewj

T (s′, s−j)
]
≤ TEσ∼U(SM )

[
µj
πσ(σ−1(j))

]
+ t0 + tp +O(M3K).

Using the first point of Theorem 7 to compare TEσ∼U(SM )

[
µj
πσ(σ−1(j))

]
with Rewj

T (s) and
adding the low probability event then yields the first point of Theorem 7.

Proof of the second point of Theorem 7 (stability). For p0 = O
(
KM+M log(T )

T

)
, with probability

at least 1− p0, the initialization is successful, the cooperative players start exploiting with correct
estimated preferences after a time at most t0 = O

(
K2 log(T ) + K log(T )

∆2

)
and no punishment

protocol is started due to unfortunate inspections. Define ε′ = t0 + Tp0 + 7M3K. Assume that the
player j is playing a deviation strategy s′ such that for some i and l > 0:

E
[
Rewi

T (s′, s−j)
]
≤ E

[
Rewi

T (s)
]
− l − ε′

First, let us fix σ the permutation returned by the initialization, Tpunish the time at which the punish-
ment protocol starts and divide l = lbefore punishment + lafter punishment in two terms: the regret incurred
before the punishment protocol and the regret after. Let us now compare s′ with s∗, the optimal
strategy for player j. Let ε take account of the low probability event of a bad initialization/exploration,
the last superblock that remains uncompleted, the time before all cooperative players start the ex-
ploitation and the event that a punishment accidentally starts. Thus the only way for player i to
suffer some additional regret before punishment is to lose it during a completed superblock of the
exploitation. Three cases are possible:

1. The selfish player truthfully reports her preferences. The average utility of player i during the
exploitation is then Ũi(σ) as defined in Lemma 25. The only way to incur some additional loss to
player i before the punishment is then to collide with her, in which case her loss is at most (1+ δ)µ(1)

while the selfish player’s loss is at least (1− δ)µ(M).

After Tpunish, Lemma 24 yields that the selfish player suffers a loss at least (1−α̃)
T−Tpunish−tp

M

∑M
k=1 µ

j
(k),

while any cooperative player i suffers a loss at most (T − Tpunish)Ũi(σ). Thanks to Lemma 23 and

the δ-heterogeneity assumption, this term is smaller than T−Tpunish
M

(
1+δ
1−δ

)3∑M
k=1 µ

j
(k).
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Then, the selfish player after Tpunish suffers a loss at least (1−α̃)(1−δ)3
(1+δ)3

lafter punish − tp.

In the first case, we thus have for β = min( (1−α̃)(1−δ)3
(1+δ)3

,
(1−δ)µ(M)

(1+δ)µ(1)
):

E[Rewj
T (s′, s−j)|σ] ≤ E[Rewj

T (s∗, s−j)|σ]− βl + tp.

2. The selfish player never reports her preferences. In this case, it is obvious that the utility returned
by the assignments to any other player is better than if the selfish player reports truthfully. Then
the only way to incur some additional loss to player i before punishment is to collide with her, still

leading to a ratio of loss at most
µj
(M)

µi
(1)

.

From there, it can be concluded as in the first case that for β = min( (1−α̃)(1−δ)3
(1+δ)3

,
(1−δ)µ(M)

(1+δ)µ(1)
):

E[Rewj
T (s′, s−j)|σ] ≤ E[Rewj

T (s∗, s−j)|σ]− βl + tp.

3. The selfish player reported fake preferences. If these fake preferences never change the issue
of the ComputeRSD protocol, this does not change from the first case. Otherwise, for any block
where the final assignment is changed, the selfish player does not receive the arm she would get if
she reported truthfully. Denote by n the number of such blocks, by Nlie the number of times player
j did not pull the arm attributed by ComputeRSD during such a block before Tpunish and by lb the
loss incurred to player i on the other blocks.

As for the previous cases, the loss incurred by the selfish player during the blocks where the
assignment of ComputeRSD is unchanged is at least

(1−δ)µ(M)

(1+δ)µ(1)
lb.

Each time the selfish player pulls the attributed arm by ComputeRSD in a block where the
assignment is changed, she suffers a loss at least ∆. The total loss for the selfish player is then (w.r.t.
the optimal strategy s∗) at least:

(1− α̃)
T − Tpunish − tp

M

M∑
k=1

µj(k) +
( n
M

(Tpunish − t0)−Nlie

)
∆ +

(1− δ)µ(M)

(1 + δ)µ(1)
lb.

On the other hand, the loss for a cooperative player is at most:

T − Tpunish

M

(
1 + δ

1− δ

)3 M∑
k=1

µj(k) +
n

M
(Tpunish − t0)(1 + δ)µ(1) + lb.

Moreover, each time the selfish player does not pull the attributed arm by ComputeRSD, she

has a probability p̃ = 1− (1− p
M−1)M−1 ≥ p

2 for p =

√
log(T )

T , to receive a random inspection and
thus to trigger the punishment protocol. Because of this, Nlie follows a geometric distribution of
parameter p̃ and E[Nlie] ≤ 2

p .
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When taking the expectations over Tpunish and Nlie, but still fixing σ and n, we get:

lselfish ≥ (1− α̃)
T − E[Tpunish]− tp

M

M∑
k=1

µj(k) +
( n
M

(
E[Tpunish]− t0

)
− 2/p

)
∆ +

(1− δ)µ(M)

(1 + δ)µ(1)
lb,

l ≤
T − E[Tpunish]

M

(
1 + δ

1− δ

)3 M∑
k=1

µj(k) +
n

M
(E[Tpunish]− t0)(1 + δ)µ(1) + lb.

First assume that n
M (E[Tpunish]− t0) ≥ 4

p . In that case, we get:

lselfish ≥ (1− α̃)
T − E[Tpunish]− tp

M

M∑
k=1

µj(k) +
n

2M
(E[Tpunish]− t0)∆ +

(1− δ)µ(M)

(1 + δ)µ(1)
lb,

l ≤
T − E[Tpunish]

M

(
1 + δ

1− δ

)3 M∑
k=1

µj(k) +
n

M
(E[Tpunish]− t0)(1 + δ)µ(1) + lb.

In the other case, we have by noting that (1 + δ)µ(1) ≤ 1+δ
1−δ

∑M
k=1 µ

j
(k):

lselfish ≥ (1− α̃)T

(
1− 4M√

log(T )
− tp

)
1

M

M∑
k=1

µj(k) +
(1− δ)µ(M)

(1 + δ)µ(1)
lb,

l ≤ T

(
1 +

4M√
log(T )

)
1

M

(
1 + δ

1− δ

)3 M∑
k=1

µj(k) + lb.

In any of these two cases, for β̃ = min

(
(1− α̃)

(
1+δ
1−δ

)3
√

log(T )−4M√
log(T )+4M

; ∆
(1+δ)µ(1)

;
(1−δ)µ(M)

(1+δ)µ(1)

)
:

lselfish ≥ β̃l − tp

Let us now gather all the cases. When taking the previous results in expectation over σ, this
yields for the previous definition of β̃:

E[Rewi
T (s′, s−j)] ≤ E[Rewi

T (s)]−l−ε′ =⇒ E[Rewj
T (s′, s−j)] ≤ E[Rewj

T (s∗, s−j)]−β̃l+tp+t0.

Moreover, thanks to the second part of Theorem 7, E[Rewj
T (s∗, s−j)] ≤ E[Rewj

T (s)] + ε, with

ε = O
(
K log(T )

∆2 +K2 log(T ) + K log(T )
(1−δ)r2µ(K)

)
. Then by defining l1 = l+ε′, ε1 = ε+tp+t0+β̃ε′ =

O(ε), we get:

E[Rewi
T (s′, s−j)] ≤ E[Rewi

T (s)]− l1 =⇒ E[Rewj
T (s′, s−j)] ≤ E[Rewj

T (s)]− β̃l1 + ε1.
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D.3.1. AUXILIARY LEMMAS

Proof of Lemma 23. Assume that player j is the k-th dictator for an RSD assignment. Since only
k − 1 arms are reserved before she chooses, she earns at least µj(k) after this assignment. This yields
the first inequality:

Ũj(σ) ≥
∑M

k=1 µ
j
(k)

M

Still assuming that player j is the k-th dictator, let us prove that she earns at most
(

1+δ
1−δ

)2
µj(k).

Assume w.l.o.g. that she ends up with the arm l such that µjl > µj(k). This means that a dictator j′

before her preferred an arm i to the arm l with µjl > µj(k) ≥ µ
j
i .

Since j′ preferred i to l, µj
′

i ≥ µ
j′

l . Using the δ-heterogeneity assumption, it comes:

µjl ≤
1 + δ

1− δ
µj
′

l ≤
1 + δ

1− δ
µj
′

i ≤
(

1 + δ

1− δ

)2

µji ≤
(

1 + δ

1− δ

)2

µj(k)

Thus, player j earns at most
(

1+δ
1−δ

)2
µj(k) after this assignment, which yields the second inequality

of Lemma 23.

Proof of Lemma 24. The punishment protocol starts for all cooperative players at Tpunish. Define

α′ =
(

1+δ
1−δ

)2
γ and δ′ = 1−α′

1+3α′ . The condition r > 0 is equivalent to δ′ > 0.

As in the homogeneous case, each player then estimates each arm such that after tp = O
(

K log(T )
(1−δ)·(δ′)2µ(K)

)
10

rounds, (1− δ′)µ̂jk ≤ µ
j
k ≤ (1 + δ)µ̂jk with probability 1−O (KM/T ), thanks to Lemma 22. This

implies that for any cooperative player j′:

1− pj
′

k ≤

γ (1 + δ′)
∑M

m=1 µ
j′

(m)

(1− δ′)Mµj
′

k

 1
M−1

≤

(
γ

1 + δ′

1− δ′

(
1 + δ

1− δ

)2
∑M

m=1 µ
j
(m)

Mµjk

) 1
M−1

The last inequality is due to the fact that in the δ-heterogeneous setting, µjk

µj
′
k

∈ [
(

1−δ
1+δ

)2
,
(

1+δ
1−δ

)2
].

Thus, the expected reward that gets the selfish player j by pulling k after the time Tpunish + tp is

smaller than γ 1+δ′

1−δ′
(

1+δ
1−δ

)2
∑M
m=1 µ

j
(m)

M .

Note that γ 1+δ′

1−δ′
(

1+δ
1−δ

)2
= α̃. Considering the low probability event of bad estimations of the

arms adds a constant term that can be counted in tp, leading to Lemma 24.

10. The δ-heterogeneous assumption is here used to say that 1

µ
j
(K)

≤ 1
(1−δ)µ(K)

.
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Proof of Lemma 25. Consider the selfish player j and denote σ the permutation given by the
initialization. The rank of player j′ is then σ−1(j′). All other players j pull uniformly at random
until having an attributed rank. Moreover, player j does not know the players with which she
collides. This implies that she can not correlate her rank with the rank of a specific player, i.e.,
Pσ [σ(k′) = j′|σ(k) = j] does not depend on j′ as long as j′ 6= j.

This directly implies that the distribution of σ|σ(k) = j is uniform over Sj→k
M . Thus, the

distribution of σ ◦ σ−l0 |σ(k) = j is uniform over Sj→k+l (mod M)
M and finally for any j′ ∈ [M ]:

Eσ∼successful initialization

[
1

M

M∑
l=1

µj
π
σ◦σ−l0

(σl0◦σ−1(j))

∣∣∣∣ σ(k) = j

]
=

1

M

M∑
l=1

E
σ∼U

(
Sj→lM

) [µj′
πσ(σ−1(j′))

]
,

=
1

M

M∑
l=1

1

(M − 1)!

∑
σ∈Sj→lM

µj
′

πσ(σ−1(j′))
,

=
1

M !

∑
σ∈SM

µj
′

πσ(σ−1(j′))
.

Taking the expectation of the left term then yields Lemma 25.
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