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Abstract
The classical PAC sample complexity bounds are stated for any Empirical Risk Minimizer (ERM)
and contain an extra multiplicative logarithmic factor log 1

ε which is known to be necessary for
ERM in general. It has been recently shown by Hanneke (2016a) that the optimal sample com-
plexity of PAC learning for any VC class C does not include this log factor and is achieved by a
particular improper learning algorithm, which outputs a specific majority-vote of hypotheses in C.
This leaves the question of when this bound can be achieved by proper learning algorithms, which
are restricted to always output a hypothesis from C.

In this paper we aim to characterize the classes for which the optimal sample complexity can
be achieved by a proper learning algorithm. We identify that these classes can be characterized
by the dual Helly number, which is a combinatorial parameter that arises in discrete geometry
and abstract convexity. In particular, under general conditions on C, we show that the dual Helly
number is bounded if and only if there is a proper learner that obtains the optimal dependence on ε.

As further implications of our techniques we resolve a long-standing open problem posed by
Vapnik and Chervonenkis (1974) on the performance of the Support Vector Machine in Rn by
proving that the sample complexity of SVM in the realizable case is

Θ

(
n

ε
+

1

ε
log

1

δ

)
.

This gives the first optimal PAC bound for Halfspaces in Rn achieved by a proper learning algo-
rithm, and moreover is computationally efficient.
Keywords: Statistical Learning Theory, PAC Learning, Sample Complexity, Proper Learning,
SVM.

1. Introduction

In the literature on the theory of PAC learning, there has been much work discussing the important
distinction between proper vs improper learning algorithms, where a proper learner is required to
output a hypothesis from the concept class being learned, while an improper learner may output
any classifier, not necessarily in the class. Most of this literature has focused on the computational
separations between proper and improper learning (see e.g., Kearns and Vazirani, 1994). However,
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it is also interesting to consider the effect on sample complexity of proper vs improper learning.
While the optimal sample complexity of PAC learning was recently resolved by Hanneke (2016a),
the proposed learning algorithm is improper: constructing its classifier based on a majority vote of
well-chosen classifiers from the concept class. Furthermore, it follows from arguments analogous to
the work of Daniely and Shalev-Shwartz (2014) that the optimal sample complexity of PAC learning
is sometimes not achievable by proper learners (see also our Theorem 11). While the question of
characterizing the best sample complexity achievable by proper learners has been resolved for sev-
eral special-case concept classes (e.g., Auer and Ortner, 2007; Darnstädt, 2015; Hanneke, 2016b),
the best known general results on the sample complexity of proper learning in the prior literature
are still only the results that hold for all empirical risk minimization (ERM) algorithms (Vapnik and
Chervonenkis, 1974; Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989; Hanneke, 2016b; Zhivo-
tovskiy and Hanneke, 2018). However, it is well known that there are many classes where specific
proper learners can achieve better sample complexities (by a log factor) than the worst ERM learner
(Auer and Ortner, 2007). Thus, it is important to go beyond the analysis of general ERM learners if
we are to understand the best sample complexity achievable by proper learners in general.

In the present work, we aim to provide such a general analysis of the sample complexity of
proper learning, applicable to every concept class, by identifying the relevant combinatorial com-
plexity measures of the class. We specifically find that a quantity called the dual Helly number
(previously proposed by Kane, Livni, Moran, and Yehudayoff, 2019 under the name coVC dimen-
sion) is of critical importance. In particular, when the dual Helly number is finite, the logarithmic
factor in the well-known sample complexity bounds for ERM (Vapnik and Chervonenkis, 1974)
may be replaced by a bounded quantity. The proper learner achieving this bound is a variant of the
optimal PAC learner of Hanneke (2016a), but modified in several steps so that it remains proper.

As a further implication of the techniques we develop, we find that in the case of learning
Halfspaces in Rn, the well-known support vector machine (SVM) learning algorithm achieves the
optimal sample complexity Θ

(
n
ε + 1

ε log 1
δ

)
. This resolves a question that appeared in the seminal

work of Vapnik and Chervonenkis (1974). Moreover, this also provides the first proof that Half-
spaces are properly learnable with the optimal sample complexity: that is, sample complexity of
the form n

ε + 1
ε log 1

δ . As a further implication, we find that Maximum classes of any given VC
dimension d are also properly learnable with optimal sample complexity Θ

(
d
ε + 1

ε log 1
δ

)
.

The known results on sample complexity are summarized in Figure 1 along with a (rough)
statement of our new results.

Notation. To begin the formal discussion, we introduce some basic notation. Fix a space X
equipped with a σ-algebra specifying the measurable subsets. Let Y = {−1, 1} denote the label
space. A classifier is any measurable function h : X → Y , and a concept class is any set C
of classifiers. To focus on nontrivial cases here, we will always suppose |C| ≥ 3. A learning
algorithm A maps any sequence (data set) {(x1, y1), . . . , (xn, yn)} in X × Y , of any length n, to
a classifier ĥn; the map A may include randomization. A learning algorithm A is called proper
(for C) if ĥn is always an element of C, for all possible data sets. Otherwise A is called improper.

In the PAC learning problem, there is a data distribution P (a probability measure on X ), and a
target concept f? ∈ C. For any classifier h, define erP(h; f?) = P(x : h(x) 6= f?(x)). When P
and f? are clear from the context, we simply write er(h). In contexts where P is specified, we let
X1, X2, . . . denote an i.i.d. sequence of P-distributed random variables. Define a ∧ b = min{a, b}
for a, b ∈ R. Generally, for any sequence x1, x2, . . . and any f : X → Y , we use the notation
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Bounds on the sample complexity of PAC learning

Improper Learning Θ
(
d
ε + 1

ε log 1
δ

) Hanneke, 2016a
Ehrenfeucht et al., 1989

Any ERM
O
(
d
ε log(1ε ∧

s
d) + 1

ε log 1
δ

)
Hanneke, 2016b

Ω
(
d
ε + 1

ε log(1ε ∧ s) + 1
ε log 1

δ

)
Vapnik and Chervonenkis, 1974

Proper Learning
O
(
dk2

ε log(k) + k2

ε log 1
δ

)
New results in this work.

Ω
(
d
ε + 1

ε log(k) + 1
ε log 1

δ

)
SVM / Halfspaces in Rn Θ

(
n
ε + 1

ε log 1
δ

)
New result in this work.

Maximum Class (Proper) Θ
(
d
ε + 1

ε log 1
δ

)
New result in this work.

Figure 1: Summary of results on the sample complexity of (ε, δ)-PAC learning, along with our
new results. d denotes the VC dimension (Vapnik and Chervonenkis, 1971), s the star
number (Hanneke and Yang, 2015), and k the dual Helly number (Kane, Livni, Moran,
and Yehudayoff, 2019) discussed in this article. Specific definitions, conditions, and
ranges of parameters for which the results hold are discussed below.

1 : n = {1, . . . , n}, x1:n = {x1, . . . , xn}, and (x1:n, f(x1:n)) = {(x1, f(x1)), . . . , (xn, f(xn))}.
The sample complexity, the central quantity of study in this work, is defined as follows.

Definition 1 For any ε, δ ∈ (0, 1), the sample complexity of (ε, δ)-PAC learning, denotedM(ε, δ),
is defined as the smallest n ∈ N for which there exists a learning algorithm A such that, for every
data distribution P and every f? ∈ C, the (random) classifier ĥn = A((X1:n, f

?(X1:n))) satisfies

Pr
(

er(ĥn) ≤ ε
)
≥ 1− δ.

The sample complexity of (ε, δ)-PAC proper learning, denoted byMprop(ε, δ), is defined identically,
except that the learning algorithm A is required to be proper: it always outputs an element of C.

A fundamental quantity in characterizing the sample complexity is the VC dimension (Vapnik
and Chervonenkis, 1971). We say C shatters a sequence of points x1:n ∈ X n if ∀y1:n ∈ Yn, ∃h ∈ C
with h(x1:n) = y1:n. The VC dimension of C, denoted by d, is the largest n ∈ N for which there
exists a sequence x1:n shattered by C; otherwise if no such largest n exists, define d =∞.

The sample complexity of (unrestricted) PAC learning was recently proven by Hanneke (2016a)
to satisfyM(ε, δ) = Θ

(
d
ε + 1

ε log
(
1
δ

))
, resolving a gap between the previously-known lower bound

of this form (from Vapnik and Chervonenkis, 1974; Ehrenfeucht, Haussler, Kearns, and Valiant,
1989) and previous suboptimal upper bounds (Vapnik and Chervonenkis, 1974; Blumer, Ehren-
feucht, Haussler, and Warmuth, 1989; Haussler, Littlestone, and Warmuth, 1994; Simon, 2015).
However, the optimal learning algorithm proposed by Hanneke (2016a) is improper.

Most of the work on the sample complexity of proper learning is based on the fact (due to Vapnik
and Chervonenkis, 1974, Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989) that any learning
algorithm that outputs any ĥ ∈ C making no mistakes on the training data (called empirical risk
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minimization, or ERM) is guaranteed to achieve a sample complexity O
(
d
ε log

(
1
ε

)
+ 1

ε log
(
1
δ

))
.

This bound has been refined in some special cases (Hanneke, 2016b; Zhivotovskiy and Hanneke,
2018), but it is known that it cannot generally be improved while still holding for all ERM learners
(Blumer and Littlestone, 1989; Haussler, Littlestone, and Warmuth, 1994; Auer and Ortner, 2007).
On the other hand, for some special types of concept classes, it was observed thatMprop(ε, δ) =
Θ
(
d
ε + 1

ε log
(
1
δ

))
: that is, proper learning is sometimes optimal. For instance, this was shown for

any intersection-closed concept class, where the optimal sample complexity is achieved by a proper
learner known as the Closure algorithm (Auer and Ortner, 2007; Darnstädt, 2015; Hanneke, 2016b).
For the class of Halfspaces on Rn, Vapnik and Chervonenkis (1974) found that the support vector
machine (SVM) classifier (which is a proper learner) achieves the optimal dependence on d and ε
for obtaining expected error ε, and they essentially asked the question of whether the exact optimal
form Θ

(
d
ε + 1

ε log
(
1
δ

))
for PAC learning is achieved by SVM. This question has remained open

since then, with a number of works investigating the question (e.g., Blumer and Littlestone, 1989;
Balcan and Long, 2013; Zhivotovskiy, 2017; Hanneke and Kontorovich, 2019; Long and Long,
2020). We answer this question affirmatively, finding that indeed the SVM classifier achieves the
optimal sample complexity for learning Halfspaces.

Related results are known for the multi-class setting (where we may have |Y| > 2, or even
infinite Y). In this case, Daniely, Sabato, Ben-David, and Shalev-Shwartz (2015) showed that
different ERMs may have strikingly different sample complexities, and Daniely and Shalev-Shwartz
(2014) showed that there exist classes (with |Y| =∞) that are learnable but not properly learnable
(i.e., M(ε, δ) < ∞ but Mprop(ε, δ) = ∞). A similar separation between proper and improper
learnability was also recently shown by Montasser, Hanneke, and Srebro (2019) for the problem
of learning with adversarial robustness guarantees. Of course, these kinds of striking separations
cannot happen in the binary classification setting (|Y| = 2) studied here, since the aforementioned
result of Vapnik and Chervonenkis (1974) shows that ERM learners obtain sample complexities that
are at most suboptimal by a factor O(log 1

ε ). However, the argument used in the proofs of Daniely
and Shalev-Shwartz (2014) and Montasser, Hanneke, and Srebro (2019) can be adapted to show
that this logarithmic factor is sometimes necessary: that is, that there exist classes of any given VC
dimension d for whichMprop(ε, δ) = Ω(dε log 1

ε + 1
ε log 1

δ ).1

One of the aims of this paper is to connect these scattered observations and explain the properties
of the class C responsible for the optimality or sub-optimality of proper PAC learners.

Structure of the paper and main contributions
• Section 2 contains the definition of the dual Helly number and two variants of it: the hol-

low star number and the projection number. We show that these three parameters coincide
whenever they are finite, and present some (infinite) classes where their values can differ.

• Section 3 contains an upper bound for proper learning classes with bounded dual Helly num-
ber. Specifically, we show that if the projection number is bounded, there is a particular ERM
having a better sample complexity than arbitrary ERM. We also provide a proper learning
algorithm achieving an even more-improved sample complexity, but this proper algorithm is
not necessarily an ERM.

• Section 4 contains a lower bound on the sample complexity of proper algorithms when the
hollow star number is large.

1. This result is unpublished, and essentially folklore, discovered independently by several different people familiar
with the argument of Daniely and Shalev-Shwartz (2014).
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• Section 5 presents a new upper bound for stable compression schemes: compression schemes
whose choice of compression set is unaffected by removing points not in the compression set.
In particular, as SVM can be viewed as a stable compression scheme, our result implies that
SVM requires only O

(
n
ε + 1

ε log 1
δ

)
examples in order to (ε, δ)-PAC learn n-dimensional

halfspaces. This resolves a long-standing open problem from Vapnik and Chervonenkis
(1974). As a further implication of our general result for stable compression schemes, we
also find that all Maximum classes are properly learnable with optimal sample complexity.

2. The dual Helly number

Helly’s Theorem is a fundamental result about convex sets (Helly, 1923). It asserts that for any finite
sequence of convex sets C1 . . . Cm ⊆ Rn such that ∩mi=1Ci = ∅ there is a subsequence Ci1 . . . Cik ,
with k ≤ n + 1 such that ∩kj=1Cij = ∅. This notion has been studied more abstractly in various
settings (see, e.g., Levi, 1951; Danzer, Grünbaum, and Klee, 1963); it is defined in an abstract
manner as follows: let F be a family of subsets over a domain X . The Helly number of F is the
minimum integer k such that whenever C ⊆ F is a collection of sets whose intersection is empty
then there is a subset C′ ⊆ C of size at most k whose intersection is empty. That is, the empty
intersection of the entire collection C is witnessed by a subset of size at most k.

We adapt the Helly number (in a dual form) to our context, obtaining a parameter2 critical to the
proper sample complexity. For any S ⊆ X × Y , define C[S] = {h ∈ C : ∀(x, y) ∈ S, h(x) = y}.

Definition 2 (The dual Helly number) Define the dual Helly number of C, denoted by kw, as the
smallest integer k such that, for any S ⊆ X × Y such that C[S] = ∅, there is a set W ⊆ S with
|W | ≤ k such that C[W ] = ∅. That is, for any unrealizable set of examples, there is an unrealizable
subset of size at most k. If no such k exists, we define kw =∞.

Observe that the dual Helly number is precisely the Helly number of the following family F : for
each (x, y) ∈ X × Y let C(x,y) := {h ∈ C : h(x) = y}, and let F := {C(x,y) : (x, y) ∈ X × Y}.
This definition is also related to the notion of a teaching set (Goldman and Kearns, 1995): recall that
W ⊆ X is a teaching set for h with respect to C if there exists no h′ ∈ C \ {h} which agrees with
h onW . In particular, observe that any h /∈ C has a teaching set with respect to C of size at most kw.

We proceed with the second definition. We will need the following notation: two sequences
(or samples) (x1, y1), . . . , (xk, yk) ∈ X × Y and (x′1, y

′
1), . . . , (x

′
k, y
′
k) ∈ X × Y are said to be

neighbors if xi = x′i for all i ∈ 1 : k and there exists exactly one j ∈ 1 : k such that yj 6= y′j .

Definition 3 (The hollow star number) Define the hollow star number of C, denoted by ko, as the
largest integer k such that there is a sequence S = ((x1, y1), . . . (xk, yk)) ∈ (X ×Y)k which is not
realizable by C (i.e. C[S] = ∅), however every sequence S′ which is a neighbor of S is realizable
by C (i.e., C[S′] 6= ∅). If no such largest k exists, define ko =∞.

We refer to any unrealizable sequence S ∈ (X × Y)∗, such that every neighbor S′ of S is
realizable, as a hollow star set. Thus, ko is the size of the largest finite hollow star set, or ∞

2. We note that an equivalent parameter was introduced by the name “coVC dimension” by Kane, Livni, Moran, and
Yehudayoff (2019), where it was used to characterize proper learning in a distributed setting.
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if there exist hollow star sets of unbounded finite sizes. Equivalently, a hollow star set S =
{(x1, y1), . . . , (xk, yk)} satisfies C[S] = ∅ and ∀i ≤ k, ∃hi ∈ C s.t. {j : hi(xj) 6= yj} = {i}.

The name hollow star number is chosen to stress the similarity with the star number defined
by Hanneke and Yang (2015). The star number s is the maximum size of a realizable sequence S
such that every sequence S′ which is a neighbor of S is also realizable. Thus, the definitions of star
number and hollow star number differ only in whether S is required to be realizable or unrealizable.

The star number s was defined by Hanneke and Yang (2015) to characterize the PAC sample
complexity of active learning, and was shown by Hanneke (2016b) to also characterize the general
rate of convergence of ERM (see Section 2.2 below). Interestingly, it can be shown (Hanneke and
Yang, 2015) that the star number upper bounds the size of the teaching set of any classifier. It also
has many other connections to various quantities arising in the learning theory literature (Hanneke
and Yang, 2015; Hanneke, 2016b). From the definitions, we immediately have the simple inequality:

ko − 1 ≤ s.
However, as we discuss below, while the classes C having s < ∞ are very limited, classes with
ko < ∞ are far more common (e.g., Halfspaces). Thus, this one small difference in the definition,
requiring the star’s center S to be unrealizable, significantly impacts the value of the quantity.

Our final definition is slightly more involved but it will play a key role in our upper bound. For
a finite (multiset) C′ ⊆ C let Majority(C′) : X → {0, 1, ?} denote the majority-vote classifier:

Majority(C′)(x) =


0
∣∣{c ∈ C′ : c(x) = 0}

∣∣ > |C′|
2 ,

1
∣∣{c ∈ C′ : c(x) = 1}

∣∣ > |C′|
2 ,

? else.
For ` ≥ 2, define the set XC′,` ⊆ X of all the points x on which less than 1

` -fraction of all
classifiers in C′ disagree with the majority. That is, letting hmaj = Majority(C′),

XC′,` =

{
x ∈ X :

∑
h∈C′

1[h(x) 6= hmaj(x)] <
|C′|
`

}
, (1)

Definition 4 (The projection number) Define the projection number of C, denoted by kp, as the
smallest integer k ≥ 2 such that, for any finite multiset C′ ⊆ C there exists h ∈ C that agrees with
Majority(C′) on the entire set XC′,k. If no such integer k exists, define kp =∞.

This definition allows us to “project” the majority vote of any classifiers in C to the class C. Define

ProjC(C′) is any element in
{
h ∈ C : h(x) = Majority(C′), for all x ∈ XC′,kp

}
.

The set used in this definition is always non-empty (by definition of kp) when kp <∞.
Following Kane, Livni, Moran, and Yehudayoff (2019), we say a class C is “closed” if every

S ⊆ X × Y with C[S] = ∅ has a finite subset S′ ⊆ S with C[S′] = ∅. The following lemma
connects these quantities. Its proof is included in Appendix A.

Lemma 5
• ko ≤ kp ≤ kw.

• If kw <∞ or C is closed, then ko = kp = kw.

Remark 6 Certainly if X or C is finite then kw < ∞, so that ko = kp = kw. However, in the
general case, there are examples where each of these inequalities can be strict, due to one quantity
being infinite and another finite. We discuss such examples in Section 2.1 below.
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2.1. Some Examples

Let us now argue that many classes of interest have finite values for these complexity measures.
Where appropriate, details of the examples are provided in Appendix A. We start with Halfspaces.

Example 1 Let C be a class induced by halfspaces in Rn. Then ko = kp = n+ 2 = d + 1.

Another simple example is the case of intersection closed classes. The class C is intersec-
tion closed if the set {{x : h(x) = +1} : h ∈ C} is closed under arbitrary intersections.
Also, recall the notions of Maximum and Extremal classes (see e.g., Floyd and Warmuth, 1995;
Lawrence, 1983; Bandelt, Chepoi, Dress, and Koolen, 2006; Moran and Warmuth, 2016). A class
C is a Maximum class if, for every integer m ≥ d and every distinct x1, . . . , xm ∈ X , we have
|{(h(x1), . . . , h(xm)) : h ∈ C}| =

∑d
i=0

(
m
i

)
. A class C is an Extremal class if, for every se-

quence x1, . . . , xm shattered by C, x1, . . . , xm is also shattered by a set of classifiers in C that
agree on all of X \ {x1, . . . , xm}. It is known that every Maximum class is Extremal.

Example 2 If C is intersection-closed or Extremal (e.g., any Maximum class), then ko ≤ d + 1.

This also means any closed class that is intersection-closed or Extremal has ko = kp = kw ≤ d+1.
As mentioned, all of the inequalities in Lemma 5 can be strict, due to the larger quantity being

infinite while the smaller one is finite. We now discuss this issue, and how it relates to whether a
class is closed (in terms of the definition of “closed” above, from Kane, Livni, Moran, and Yehuday-
off, 2019). In particular, in all these examples, merely adding the limit cases into the class brings the
complexity measures into agreement. We begin with a simple example where ko = 2 but kp =∞.

Example 3 Consider X = N and C = {21{t}− 1 : t ∈ X} the class of singletons. The only finite
hollow star sets are of size 2: namely, sets {(x, 1), (x′, 1)} and {(x, 1), (x,−1)}. Thus, ko = 2.
However, for any finite set C′ ⊂ C of size at least 3, Majority(C′) is −1 everywhere on X , but any
` < |C′| has XC′,` = X , so that we must have kp > `; thus, kp =∞.

Note that the constant function x 7→ −1 is a pointwise limit of functions in C. By adding just
this one extra function, the modified class C ∪ {x 7→ −1} is closed and has kw = kp = ko = 2.

Next we describe a simple example where kp = 2 but kw =∞.

Example 4 Consider X = [0,∞) and C = {21[t,∞) − 1 : t ∈ [0,∞)} the class of threshold
functions. This class is Maximum with d = 1. For any finite C′ ⊂ C, the majority vote classifier is
a median threshold from C′, so there is always an h ∈ C that agrees with Majority(C′) on all of
X . Therefore, kp = 2, the smallest possible value of kp. On the other hand, the set S = {(x,−1) :
x ∈ X} is unrealizable by C, but there is no finite set witnessing this fact, and therefore kw =∞.

In this case, there are an infinite number of functions that are pointwise limits of functions in
C: namely, x 7→ −1, and every open threshold 21(t,∞) − 1, t ∈ X . By adding these functions, the
class C ∪ {x 7→ −1} ∪ {21(t,∞) − 1 : t ∈ X} has kw = kp = ko = 2.

These distinctions can occur in more extreme forms as well, as the following example illustrates.

Example 5 Consider X = R and C = {21[a,b] − 1 : a, b ∈ R} the class of bounded closed
intervals. This class is intersection-closed (and Maximum), with d = 2, and has ko = kp = 3, but
the set S = {(x, 1) : x ∈ X} has no finite subset witnessing its non-realizability, so kw =∞.

In this case, to bring the complexity measures into agreement, we must increase C to be the
set of all intervals (including unbounded intervals, closed intervals, open intervals, and half-open
half-closed intervals); this expanded class is closed and has kw = kp = ko = 3.
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2.2. Star number and sample complexity of ERM

We finish this section by recalling the known relations between ERM and the star number. We use
the following notation (also used in the results below). For x ≥ 0, define Log(x) = max{ln(x), 1}.

Definition 7 (The worst-case sample complexity of ERM) For any ε, δ ∈ (0, 1), the worst-case
sample complexity of ERM, denoted byMERM(ε, δ), is the smallest integer n such that for every
possible data distribution P and every f? ∈ C, for S = (X1:n, f

?(X1:n)) with X1:n ∼ Pn,

Pr

(
sup
h∈C[S]

er(h, f?) ≤ ε

)
≥ 1− δ.

The following bounds were shown by (Hanneke, 2016b):

1

ε

(
d + Log

(
s ∧ 1

ε

)
+ Log

(
1

δ

))
.MERM(ε, δ) .

1

ε

(
dLog

(
s

d
∧ 1

ε

)
+ Log

(
1

δ

))
.

In particular, having s <∞ is necessary and sufficient for the existence of a distribution-free bound
on the error rates of all ERMs converging at a rate inversely proportional to the sample size. Our
results below show that a much weaker assumption kp < ∞ implies an analog of this property
but only for some proper learners instead of all ERMs. It is important to notice that the projection
number is finite for many expressive VC classes. In contrast, the star number, while implying an
upper bound for ko, is infinite except for some relatively simple classes: e.g., s =∞ for Halfspaces
in Rn if n ≥ 2, and for many intersection-closed and maximum classes (Hanneke and Yang, 2015).

3. Upper bounds

Our upper bound will be established for the following algorithm, a modification of the optimal PAC
learner of Hanneke (2016a). The main modifications compared to the original algorithm involve
using kp+1 recursive calls, rather than 3 calls, and using the projection operator (introduced above)
to replace a majority vote classifier with an element of C so that the algorithm is a proper learner.

A(S;T )
1. If |S| < 4, Return ERM(S ∪ T )
2. Let S0 be the first d|S|/2e points in S
3. Let S1, . . . , Skp+1 be independent uniform subsamples of S \ S0 of size b|S|/4c
4. Let hi = A(S0;T ∪ Si) for each i = 1, . . . , kp + 1

5. Return ĥ = ProjC(h1, . . . , hkp+1).

To be precise, in Step 3, Si is sampled without replacement. For this algorithm, we have the follow-
ing theorem, representing one of the main results of this article.3 We present its proof in Appendix B.

Theorem 8 For any class C, the proper sample complexity (achieved by A(S; ∅)) satisfies

Mprop(ε, δ) = O

(
k2
p

ε

(
dLog(kp) + Log

(
1

δ

)))
.

3. We implicitly assume that C satisfies conditions so that all of the relevant random variables in the analysis are
measurable. This is always the case if X is countable. For the uncountable case, we refer the reader to discussions
by Blumer, Ehrenfeucht, Haussler, and Warmuth (1989); van der Vaart and Wellner (1996); van Handel (2013).
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Interestingly, algorithm A above is not necessarily an ERM: it is not always consistent with the
training sample. However, it is also possible to define a sample-consistent variant of the algorithm,
only losing a factor of kp in the sample complexity bound. Note that the standard VC bounds for
ERM apply to any ERM classifier, whereas the bound we establish for this algorithm only holds
for this specific choice of ERM classifier, which is therefore sometimes significantly better than the
worst ERM. We proceed with the definition and theorem, the proof of which is given in Appendix B.

AERM(S)
1. If |S| < kp + 1, Return ERM(S)
2. Split S into kp + 1 disjoint subsets Si of size at least b|S|/(kp + 1)c
3. Set hi = AERM(

⋃
i′ 6=i Si′) for i = 1, . . . , kp + 1.

4. Return ĥ = ProjC(h1, . . . , hkp+1).

To be precise, in Step 2, S is split into the subsets Si based purely on the indices: for instance,
take S1 as the first b|S|/(kp + 1)c data points in the sequence, S2 as the next b|S|/(kp + 1)c points
in the sequence, and so on, with Skp+1 as the last |S|−kpb|S|/(kp+1)c data points in the sequence.

Theorem 9 For any class C, the sample complexityMAERM of AERM(S) satisfies

MAERM(ε, δ) = O

(
k3
p

ε

(
dLog(kp) + Log

(
1

δ

)))
.

4. Lower Bounds

For the purpose of a lower bound, we will use the hollow star number ko. From Lemma 5, for many
classes we have ko = kp = kw, in which case this result indicates that the appearance of kp in
Theorem 8 is unavoidable (though there may be room to improve the specific dependence on kp).

Theorem 10 Every class with ko <∞ has proper sample complexity

Mprop(ε, δ) = Ω

(
d

ε
+

1

ε
Log

(
1

δ

)
+

1

ε
Log(ko)1[ε ≤ 1/ko]

)
.

Also, if ko =∞ then

Mprop(ε, δ) 6= o

(
1

ε
Log

(
1

ε

))
.

In other words, there is a sequence εi → 0 withMprop(εi, δ) ≥ c
εi

log
(

1
εi

)
for a constant c > 0.

The proof, which is inspired by the arguments in (Daniely and Shalev-Shwartz, 2014), is de-
ferred to Appendix C. Let us only provide some intuition behind the proof. Assume, for simplicity,
that we want to lower bound the sample complexity in a particular regime where ε = 1

2(ko−1) ,
ko ≥ 2. Let S = {(x1, y1), . . . , (xko , yko)} be a hollow star set, and ∀i ∈ 1 : ko let hi ∈ C be
such that {j : hi(xj) 6= yj} = {i}. We set f? = hi∗ for some i∗ ∈ 1 : ko and set P({xi∗}) = 0

and P({xi}) = 2ε for i 6= i∗. Observe that the only way for the learner to output ĥ ∈ C having
erP(ĥ, f?) ≤ ε is for ĥ to agree with hi∗ on all of S. However, the learner will not be able to identify

9
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the corresponding point xi∗ having zero mass before it observes xi for every i 6= i∗. By the standard
coupon collector argument (see Lemma 19 in Appendix C) due to the fact that there will be some
copies in the training sample we will need the sample size of order Ω(koLog(ko)) = Ω

(
1
εLog(ko)

)
.

The formal application of this idea (including extension to any ε ≤ 1/ko) is given in Appendix C.
Our second lower bound provides stronger guarantees. However, it is less general. In what

follows, given d and kw we present a particular class C and a space X such that the desired lower
bound holds. The proof of this result uses the same logic and the technical details are deferred to
Appendix C.

Theorem 11 There is a numerical constant c > 0 such that, for any value of d ≥ 1 and 2 ≤ kw <
∞, there exists a space X and a class C with VC dimension d and dual Helly number kw, for which
the proper sample complexity satisfies

Mprop(ε, δ) ≥ c

ε

(
dLog

(
kw
d
∧ 1

ε

)
+ Log

(
1

δ

))
,

for every ε ∈ (0, 1/8) and δ ∈ (0, 1/100). Furthermore, for any d ≥ 1 there exists X and a space
C with VC dimension d and hollow star number ko =∞ and

Mprop(ε, δ) ≥ c

ε

(
dLog

(
1

ε

)
+ Log

(
1

δ

))
.

5. Stable compression schemes and optimality of SVM for PAC learning Halfspaces

In this section we establish a new generalization bound for a special type of compression scheme,
referred to as a stable compression scheme, which removes a log factor (which is known to not be
removable for general compression schemes). We apply the result to obtain new tighter bounds for
several quantities of interest in the learning theory literature.

As our main application, we apply this new bound to resolve a long-standing open question:
namely, showing that the well-known support vector machine (SVM) learning algorithm for Half-
spaces achieves the optimal sample complexity. This resolves a question posed by Vapnik and
Chervonenkis (1974), which has received considerable attention in the literature (e.g., Blumer and
Littlestone, 1989; Balcan and Long, 2013; Zhivotovskiy, 2017; Hanneke and Kontorovich, 2019;
Long and Long, 2020). According to a note by A. Chervonenkis (see Chapter I in Vovk, Papadopou-
los, and Gammerman, 2015) the in-expectation version of the risk bound for SVM had been proven
in 1966, even before the renowned uniform law of large numbers was announced (Vapnik and Cher-
vonenkis, 1968). However, obtaining a high-probability version of the bound, without introducing
additional log factors, remained an open problem since then. The following theorem resolves this
problem. Furthermore, this is also the first proof that the optimal sample complexity for Halfspaces
is achievable by some proper learner.

Theorem 12 The PAC sample complexity of SVM in Rn is

MSVM(ε, δ) = Θ

(
n

ε
+

1

ε
log

1

δ

)
.

The proof is presented below, after the abstract result that implies it. This bound improves the
sample complexity boundMSVM(ε, δ) = O

(
n
ε log 1

δ

)
shown in (Zhivotovskiy, 2017) and the gen-

eral boundMERM(ε, δ) = O
(
n
ε log 1

ε + 1
ε log 1

δ

)
holding for any ERM (Vapnik and Chervonenkis,

1974; Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989).

10
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5.1. Stable compression schemes

We present here our new generalization bound for stable compression schemes. Let us recall some
standard definitions. A sample compression scheme consists of two functions: a compression func-
tion κ : (X ×Y)∗ → (X ×Y)∗ and a reconstruction function ρ : (X ×Y)∗ → YX . The following
definition is due to Littlestone and Warmuth (1986).

Definition 13 (Sample compression scheme) The pair of functions (κ, ρ) define a sample com-
pression scheme of size ` if for any m ∈ N and h ∈ C and any sample x1:m ∈ Xm it holds
that κ((x1:m, h(x1:m)) ⊆ (x1:m, h(x1:m)) and |κ((x1:m, h(x1:m))| ≤ `, and the classifier ĥ =
ρ(κ((x1:m, h(x1:m))) satisfies ĥ(x1:m) = h(x1:m): that is, it recovers h’s classifications on x1:m.

We work with the following natural definition taking its roots in (Vapnik and Chervonenkis, 1974).

Definition 14 (Stable compression scheme) A sample compression scheme (κ, ρ) is called stable
if for any m ∈ N, h ∈ C, x1:m ∈ Xm and any (x, h(x)) ∈ (x1:m, h(x1:m)) \ κ((x1:m, h(x1:m)),

κ((x1:m, h(x1:m)) \ (x, h(x))) = κ((x1:m, h(x1:m)).

This definition means that removing any (x, h(x)) not belonging to the compression set, the com-
pression set of the sub-sample remains the same. Finally, we say that the sample compression
scheme (κ, ρ) is proper if the image of the reconstruction function ρ is contained in C.

It is known that for any stable compression scheme (κ, ρ) of any size `, for any P and f? ∈ C,
for any m ∈ N, E[er(ρ(κ((X1:m, f

?(X1:m))))] ≤ `
m+1 . This follows from the leave-one-out

analysis of Vapnik and Chervonenkis (1974) (see also Haussler, Littlestone, and Warmuth, 1994;
Zhivotovskiy, 2017). The best known PAC generalization bound on er(ρ(κ(X1:m, f

?(X1:m))))
(holding with probability 1 − δ) valid for any sample compression scheme of a size ` is due to
Littlestone and Warmuth (1986) (see also Floyd and Warmuth, 1995): O

(
1
m

(
` log(m) + log

(
1
δ

)))
,

where the log(m) factor improves to Log
(
m
`

)
if ρ is permutation-invariant. Floyd and Warmuth

(1995) showed that there exist spaces C and compression schemes for C for which this log factor
cannot be improved. However, in the special case of stable compression schemes, Zhivotovskiy
(2017) established a bound O

(
`
m log

(
1
δ

))
, which is sometimes better.

As one of the main contributions of this work, the following result improves this PAC general-
ization bound by completely removing the log factor from the bound of Littlestone and Warmuth
(1986). A simple proof of this result is provided in Appendix D.

Theorem 15 Assume that C has a stable sample compression scheme (κ, ρ) of size `. Then, for
any P and any f? ∈ C, for any integer m > 2`, given an i.i.d. sample S = (X1:m, f

?(X1:m)) of
size m, for any δ ∈ (0, 1), we have with probability at least 1− δ,

er(ρ(κ(S))) <
2

m− 2`

(
` ln(4) + ln

(
1

δ

))
.

This result immediately yields the following proof of Theorem 12 establishing optimality of
SVM for PAC learning Halfspaces.
Proof of Theorem 12 Since SVM may be expressed as a stable compression scheme of size n+ 1
(see (Long and Long, 2020) for a transparent proof of this fact, originally proven by Vapnik and
Chervonenkis 1974), the upper bound is immediate from Theorem 15. The lower bound follows
from (Ehrenfeucht, Haussler, Kearns, and Valiant, 1989).
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Maximum classes. As a second application of Theorem 15 to proper learning, consider any max-
imum class C (Floyd and Warmuth, 1995; recall the definition from Section 2.1). Every maximum
class C is known to have a proper stable compression scheme of size d; this follows from Theorem
5.1 and condition (R2) of Theorem 6.1 from the paper of Chalopin, Chepoi, Moran, and Warmuth
(2019) (specifically, for their (κ, ρ), every realizable data set contains exactly one compression set
for a concept in C consistent with the data, and hence removing any point not in that compression
set cannot change the identity of this unique compression set). Hence, we have the following corol-
lary of Theorem 15, establishing (for the first time) that maximum classes are properly learnable
with sample complexity of the same order as the optimal PAC sample complexity.

Corollary 16 For C which is a Maximum class,

Mprop(ε, δ) = Θ

(
d

ε
+

1

ε
log

(
1

δ

))
.

Remark 17 We note that Theorem 15 is also able to recover the optimal PAC sample complexity for
the Closure algorithm for intersection-closed classes (Helmbold, Sloan, and Warmuth, 1990); this
sample complexity result was already known via different arguments (Darnstädt, 2015; Hanneke,
2016b; Auer and Ortner, 2007), though Theorem 15 offers improved numerical constants.

Remark 18 A further implication of Theorem 15 and Theorem 10 together is that any class C with
ko =∞ does not have a proper stable compression scheme of bounded size.

6. Remaining Gaps and Open Questions

Although our upper and lower bounds give a description of proper PAC sample complexity in many
cases, there are still situations not explained by our general bounds. Consider Example 3 (singletons
x 7→ 21{t}(x) − 1). Since ko = 2 but kp = ∞, our upper bound (Theorem 8) does not match our
lower bound (Theorem 10), and also does not match the optimal (improper) sample complexity
M(ε, δ) = Θ

(
1
ε log 1

δ

)
. However, it turns out there does exist a proper stable compression scheme

of size 1 for this C, and therefore Theorem 15 impliesMprop(ε, δ) = Θ
(
1
ε log 1

δ

)
, matching the

optimal (improper) sample complexity. Specifically, for any data set S, if ∃(x, 1) ∈ S, define
κ(S) = {(x, 1)} and ρ({(x, 1)}) = 21{x} − 1; if S is all negative examples, define κ(S) =
{(x,−1)} for the largest x in S, and ρ({(x,−1)}) = 21{x+1} − 1. Alternatively, we may simply
note that C is a Maximum class, hence Corollary 16 applies. It is therefore important to ask whether
Mprop(ε, δ) is perhaps always characterized by ko (and d, ε, δ). It is also interesting to consider
whether the optimal size of a proper stable compression scheme is also always characterized by ko
(and d). Another interesting direction is sharpening the dependence on kp in our upper bounds.

Finally, we remark that the result of Section 5 is related to the question of obtaining gener-
alization bounds for learning algorithms that are stable with respect to small perturbations in the
training sample. In the case of uniformly stable algorithms, recent results (Feldman and Vondrak,
2019; Bousquet, Klochkov, and Zhivotovskiy, 2019) provide sharp high-probability bounds, and the
proofs are based on a sub-sampling argument: the learner is tested on carefully chosen parts of the
training sample. Similarly to uniformly stable algorithms, stable compression schemes easily pro-
vide sharp in-expectation error bounds (Haussler, Littlestone, and Warmuth, 1994). The challenging
part, already pointed out by Vapnik and Chervonenkis (1974), is to prove that these algorithms ad-
mit sharp high-probability bounds. Our result, based on related arguments, is the first to prove that
an optimal high-probability error bound holds for stable compression schemes, including SVM.
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Appendix A. Omitted proofs of Section 2

Proof of Lemma 5 We note that many of these arguments were given in some form in the course
of the proofs of Kane, Livni, Moran, and Yehudayoff (2019). However, we provide the proofs
explicitly here, particularly since our context is slightly different.

First, on a technical note, we remark that because of our assumption |C| ≥ 3 stated initially,
all of ko,kp,kw are at least 2 (so that the restriction to kp ≥ 2 in its definition does not affect the
claims).

For the first claimed inequalities, given the ko classifiers C′ in C witnessing a hollow star, for
any ` < ko the regionXC′,` contains the hollow star, and hence the majority vote of the C′ classifiers
is unrealizable on XC′,`. Therefore, kp ≥ ko.

If kw = ∞, then trivially kp ≤ kw, so suppose kw < ∞. Suppose some finite multiset C′ ⊆ C
has no h ∈ C that coincides with Majority(C′) on XC′,kw . Then S = {(x,Majority(C′)(x)) :
x ∈ XC′,kw} is an unrealizable set. Therefore, it contains a subset W of size at most kw that is also
unrealizable. But (by definition of XC′,kw ) each point (x, y) in W contradicts strictly fewer than
|C′|/kw elements in C′, so that there must be at least one h ∈ C′ that survives: a contradiction.
Therefore, kp ≤ kw.
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It remains to show that these quantities are all equal when kw < ∞. Let S be an unrealizable
set such that the smallest unrealizable subset W has size kw < ∞. If W is not a hollow star set,
then there exists a point (x, y) ∈ W such that (W \ {(x, y)}) ∪ {(x,−y)} is also not realizable,
which implies W \ {(x, y)} is also not realizable: a contradiction. Therefore, W is a hollow star
(indeed, any unreducible unrealizable set is a hollow star), and hence kw ≤ ko. The equalities then
follow from the first claim, established above.

For the remaining claim, if C is closed and yet kw = ∞, it implies there is a sequence Si of
sets with C[Si] = ∅ for which the smallest Wi ⊆ Si with C[Wi] = ∅ has limi→∞ |Wi| = ∞, yet
eachWi is finite (due to the “closedness” assumption). As above, these minimum-sizeWi sets must
be hollow star sets, which implies there is no finite bound on the size of all finite hollow star sets.
Therefore ko =∞, and the inequality established above then implies kp =∞ as well.

Proof for Example 1 This follows from Proposition 2.8 in (Braverman, Kol, Moran, and Saxena,
2019). Indeed, this implies that ko ≤ n + 2 since if a finite unrealizable sample S is a hollow star
set, then in particular every proper subsample of S must be realizable; however, by Proposition 2.8
in (Braverman, Kol, Moran, and Saxena, 2019) the set S must contain an unrealizable subsample
of size at most n + 2, and hence it must be that |S| ≤ n + 2. To see that ko ≥ n + 2, pick
x1, . . . , xn+1 ∈ Rn to be the vertices of a simplex, and choose

S =

{
(x1,+1), . . . , (xn+1,+1),

(x1 + . . .+ xn+1

n+ 1
,−1

)}
.

We leave it to the reader to verify that the above S witnesses that ko ≥ |S| = n+ 2.
It remains to show that kp = n + 2. By Lemma 5 it suffices to show that kp ≤ n + 2. Let

C′ be a finite collection of halfspaces in Rn. We need to show that there exists a halfspace h
which agrees with Majority(C′) on the set XC′,n+2. Let X+ ⊆ XC′,n+2 denote the set of all points
x ∈ XC′,n+2 such that Majority(C′)(x) = +1 and similarly let X− ⊆ XC′,n+2 denote the set
of all points x ∈ XC′,n+2 such that Majority(C′)(x) = −1. We first claim that the convex hulls
conv(X+) and conv(X−) are disjoint; indeed, otherwise by Proposition 2.8 in (Braverman, Kol,
Moran, and Saxena, 2019) there exist S+ ⊆ X+, S− ⊆ X− such that conv(S−) ∩ conv(S+) 6= ∅
and |S−|+ |S+| ≤ n+ 2 However, every x ∈ S− ∪S+ is classified correctly by more than 1− 1

n+2
fraction of the halfspaces in C′ and hence there must be a halfspace in C′ that classifies correctly all
points in S+ ∪ S− and so conv(S−) ∩ conv(S+) = ∅, which is a contradiction.

Having established that conv(S−) ∩ conv(S+) = ∅, we are ready to finish the proof. Indeed,
by the Hyperplane Separation Theorem there exists a linear function L : Rn → R and a value v
such that L(x) ≤ v for every v ∈ X− and L(x) ≥ v for every v ∈ X+. However, note that in fact
L(x) < v for every x ∈ X−: this follows because X− is an open set (indeed, it can be written as
a union of (finite) intersections of sets of the form h−1(−1), where h ∈ C′, each of which is an
open set). Thus, the halfspace {x : L(x) ≥ v} agrees with Majority(C′) on the set XC′,n+2, as
required.4

Proof for Example 2 Let us sketch the proof. The bound ko ≤ d + 1 on the dual Helly number for
extremal classes follows from the fact that: (i) the complement of an extremal class is extremal, and

4. Note that we use the definition of Halfspaces where the positive side of each halfspace is closed: i.e., every halfspace
is of the form sign(L(x)− v), where sign(0) = +1.
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(ii) the one-inclusion graph on an extremal graph projected to any data set is connected (we refer
the reader to Bandelt, Chepoi, Dress, and Koolen, 2006 and Moran and Warmuth, 2016 for these
definitions and results). In particular, it follows that the one-inclusion graph of the complement of
C projected to any data set is connected.

Since a hollow star corresponds to a one-inclusion graph where the star’s center is an isolated
vertex in the one-inclusion graph of the complement of C projected to the points, it must be the
only vertex in the complement, which means any strict subset of the points is shattered by C. This
immediately implies ko − 1 ≤ d.

The case of intersection-closed classes is also straightforward. Let S = {(x1, y1), . . . , (xk, yk)}
be a finite hollow star set, and let h1, . . . , hk be elements of C such that {j : hi(xj) 6= yj} = {i}
for each i. Denote by m the number of yi values equal −1. We will first show that m ≤ 1.
Indeed, if the are at least two values yi and yj (i 6= j) both equal to −1, then letting h0 be the
classifier in C with {x : h0(x) = 1} = {x : hi(x) = 1} ∩ {x : hj(x) = 1} (which exists
since C is intersection-closed), we would have h0 correct on all of S: a contradiction to S be-
ing unrealizable. Next we argue that there are at most d values yi equal 1: that is, k − m ≤ d.
Suppose yi1 , . . . , yik−m

are equal 1. Then for any y′i1 , . . . , y
′
ik−m

∈ Y , there exists a classi-
fier h ∈ C with {x : h(x) = 1} =

⋂
{{x : hij (x) = 1} : y′ij = −1}, and this h has

(h(xi1), . . . , h(xik−m
)) = (y′i1 , . . . , y

′
ik−m

); thus, the set {xi1 , . . . , xik−m
} is shattered by C, and

hence has size at most d. Altogether, we have that k = (k−m) +m ≤ d + 1. Since this applies to
any finite hollow star set S, we conclude that ko ≤ d + 1.

Proof for Example 5 We provide the details for the final claim that the augmented class has
kw = kp = ko = 3. Since the class is intersection-closed with d = 2, Example 2 implies ko ≤ 3.
Thus, since ko ≥ 3 (witnessed by the hollow star set {(1, 1), (2,−1), (3, 1)}), Lemma 5 implies it
suffices to show the class is closed. Let S be an infinite unrealizable set; we aim to show it must con-
tain a finite unrealizable subset. If S contains (x, 1) and (x,−1) for some x, then {(x, 1), (x,−1)}
is a finite unrealizable subset. Otherwise, suppose no such x exists. Notice that S must contain
at least one point having label 1, since otherwise S would be realizable by the constant classifier
h−1 = −1, which is in the class. Let x = inf{x : (x, 1) ∈ S} and x̄ = sup{x : (x, 1) ∈ S}.
Note that every (x, y) ∈ S with x > x̄ has y = −1 and similarly every (x, y) ∈ S with x < x
has y = −1. In particular, this implies that if every (x, y) ∈ S with x < x < x̄ has y = 1, then
S would be realizable by a classifier corresponding to one of the intervals (x, x̄] (if (x, 1) /∈ S and
(x̄, 1) ∈ S), [x, x̄) (if (x, 1) ∈ S and (x̄, 1) /∈ S), [x, x̄] (if (x, 1) ∈ S and (x̄, 1) ∈ S), or (x, x̄) (if
(x, 1) /∈ S and (x̄, 1) /∈ S): a contradiction. Therefore, there exists (x2,−1) ∈ S with x < x2 < x̄.
By the definitions of x and x̄, this implies there exist finite x1, x3 with x1 < x2 < x3 such that
(x1, 1) and (x3, 1) are both in S. Then we have that the set {(x1, 1), (x2,−1), (x3, 1)} ⊂ S is a
finite unrealizable subset. Since this applies to any unrealizable infinite set S, we conclude that the
class is closed.

Appendix B. Proofs of the upper bounds

Proof of Theorem 8 Fix any target concept f? ∈ C and distribution P . We first argue that, for
any finite data sets S and T with labels consistent with f?, the proper learner A(S;T ) outputs
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ĥ ∈ C such that ĥ is correct on T . Note that this is trivially true if |S| < 4, since Step 1 returns
ERM(S ∪ T ), which is correct on T by definition. Now, for induction, suppose S is a correctly
labeled finite data set such that, for any strict subset S′ ⊂ S, and any correctly labeled finite data set
T ′, A(S′;T ′) returns a classifier in C that is correct on T ′. Now we extend this property to the full
set S. Fix any correctly labeled finite data set T . Recalling the notation from the algorithm, define
hmaj(x) = Majority(h1(x), . . . , hkp+1(x)) (breaking ties to favor label −1, say), and recalling the
notation (1) let

X0 = X{h1,...,hkp+1},kp .

By definition (from Step 5 in A(S;T )), the classifier ĥ = A(S;T ) ∈ C has ĥ(x) = hmaj(x) on
every x ∈ X0. Furthermore, since hi = A(S0;T ∪ Si) for each i, where S0 ⊂ S, the inductive
hypothesis implies hi is correct on T . Therefore, all hi agree on the labels in T , and hence the set of
points in T is contained in X0, which implies ĥ is correct on T as well. By induction, this implies
that for any correctly labeled finite data sets S and T , ĥ = A(S;T ) is correct on T .

Next we argue that, for any m0 ∈ N and any δ0 ∈ (0, 1), if T is any correctly labeled finite data
set and S is an i.i.d. labeled data set of size m0, with P marginal distribution and f? labels, then
with probability at least 1− δ0, we have that ĥ satisfies

er(ĥ) ≤
c · k2

p

m0

(
dLog(kp) + Log

(
1

δ0

))
, (2)

where c ≥ 1 is an appropriate finite numerical constant. Note that this would imply Theorem 8,
since setting δ0 = δ and m0 of size proportional to the claimed bound onMprop(ε, δ) from Theo-
rem 8, the bound (2) is less than ε.

If m0 < 4, the claim trivially holds, as the bound is greater than 1. In particular, this will be our
base case in an inductive argument. Now, for induction, supposem ≥ 4, and that for any δ0 ∈ (0, 1)
and any m0 < m, if S is an i.i.d. data set of size m0 (with P marginal distribution and f? labels)
and T is any finite data set with f? labels, then with probability at least 1 − δ0 the inequality (2)
holds for ĥ = A(S;T ).

Next we extend this claim to hold for m0 = m. Fix any δ0 ∈ (0, 1). If m < 160Log
(
6k2p
δ0

)
,

the inequality trivially holds since the bound is greater than 1 (for sufficiently large choice of c), so

suppose m ≥ 160Log
(
6k2p
δ0

)
. Consider the sets Si and classifiers hi as defined in the specification

of the algorithm A(S;T ) above Theorem 8, and with a slight abuse of notation we also use Si to
denote the unlabeled portion of the set Si (i.e., the points x such that (x, f?(x)) ∈ Si). As argued
above, each hi is correct on T ∪ Si.

For any h, define ER(h) = {x : h(x) 6= f?(x)}. We claim that

ER(ĥ) ⊆
⋃

i,j:i 6=j
ER(hi) ∩ ER(hj). (3)

To see this, note that since ĥ agrees with hmaj on X0, we have

ER(ĥ) ⊆ (X \ X0) ∪ (X0 ∩ ER(hmaj)). (4)

Furthermore, for any x ∈ X \ X0, at least two values of i have hi(x) different from the majority of
the values h1(x), . . . , hkp+1(x), which means there are at least two classifiers predicting each label
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in Y , and hence there are at least two classifiers hi with hi(x) 6= f?(x). Furthermore, any x with
hmaj(x) 6= f?(x) certainly also has at least two hi classifiers with hi(x) 6= f?(x). Therefore, the
set on the right hand side of (4) is contained within

⋃
i,j:i 6=j ER(hi) ∩ ER(hj), and (3) follows.

In particular, (3) implies

er(ĥ) = P(ER(ĥ)) ≤ P

 ⋃
i,j:i<j

ER(hi) ∩ ER(hj)

 ≤ ∑
i,j:i<j

P(ER(hi) ∩ ER(hj)) . (5)

The remainder of the proof will establish that each term P(ER(hi) ∩ ER(hj)) is small with high
probability. This is achieved using a “Win-Win” argument showing that for every distinct i, j, either
P(ER(hi)) = er(hi) is small, or else P(ER(hj)|ER(hi)) is small. In either case, it will follow that
P(ER(hi) ∩ ER(hj)) is small.

Specifically, we follow a “conditioning” argument.5 We claim that, with probability at least
1− δ0/3, for every pair i, j with i < j, either

er(hi) <
320

m
ln

(
6k2

p

δ0

)
(6)

or else
|ER(hi) ∩ (Sj \ Si)| ≥ er(hi)m/80, (7)

where here the notation Sj \ Si denotes the set of samples from S that are in Sj but not Si (distin-
guished by their indices, so that if S contains two copies of some x ∈ X and one is in Si and the
other in Sj , then the latter will still appear in Sj \ Si).

Toward establishing the above claim, note that for each distinct i, j we have

Pr

(
|ER(hi) ∩ (Sj \ Si)| < er(hi)m/80 and er(hi) ≥

320

m
ln

(
6k2

p

δ0

))

≤ Pr

(
|ER(hi)∩(Sj\Si)|<(1/2)er(hi)|Sj\Si| and er(hi)≥

320

m
ln

(
6k2

p

δ0

)
and |Sj\Si|≥

m

40

)
+ Pr

(
|Sj \ Si| <

m

40

)
. (8)

We begin with bounding the second term. Note that E
[
|Sj \ Si|

∣∣∣Si] =
(

1− bm/4cbm/2c

)
bm/4c ≥

m/20 (noting that, since m ≥ 20, we have bm/4c ≥ m/5 and bm/2c ≥ m/3). Therefore,
by a multiplicative Chernoff bound6 conditioned on Si, and the law of total probability, we have
Pr(|Sj \ Si| < m/40) ≤ e−m/160 ≤ δ0

6k2p
.

5. Conditioning arguments of this type originate in the work of Hanneke (2009) on ERM bounds and active learning, and
were later used to analyze several different learning algorithms (e.g., Darnstädt, 2015; Hanneke, 2016b; Zhivotovskiy
and Hanneke, 2018). Notably, the argument was used by Simon (2015) to analyze majority votes of independent
ERMs, and was used by Hanneke (2016a) in the proof of the optimal PAC sample complexity. Its use in the present
proof most closely follows this latter work.

6. As proven by Hoeffding, 1963, the moment generating function for sampling without replacement is upper bounded
by the moment generating function for sampling with replacement, and hence the usual Chernoff bounds for sampling
with replacement also hold for sampling without replacement.
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Next we bound the first term in (8). We note that, conditioned on |Sj \Si|, the samples in Sj \Si
are i.i.d. (with distribution P) and independent of hi. Thus, a multiplicative Chernoff bound implies
(almost surely)

Pr
(
|ER(hi) ∩ (Sj \ Si)| < (1/2)er(hi)|Sj \ Si|

∣∣∣hi, |Sj \ Si|) ≤ e−(1/8)er(hi)|Sj\Si|.

Therefore, the first term in (8) is bounded by

E

[
e−(1/8)er(hi)|Sj\Si|1

[
er(hi) ≥

320

m
ln

(
6k2

p

δ0

)
and |Sj \ Si| ≥ m/40

]]
≤ δ0

6k2
p

.

Altogether, we have that (8) is at most δ0
3k2p

. Finally, by a union bound over all pairs i, j with i < j,

we conclude that with probability at least 1− δ0
3 , for every i, j with i < j, at least one of (6) or (7)

holds, as claimed.
Since hj is correct on Sj , it is certainly correct on ER(hi)∩(Sj \Si). Also note that the samples

in ER(hi) ∩ (Sj \ Si) are conditionally i.i.d. given hi and |ER(hi) ∩ (Sj \ Si)|, with conditional
distribution P(·|ER(hi)). We can therefore apply the classic PAC bound for ERM (Vapnik and
Chervonenkis, 1974; Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989), under the conditional
distribution given hi and |ER(hi) ∩ (Sj \ Si)|, together with the law of total probability, to obtain
that, for any distinct i, j, with probability at least 1− δ0

3k2p
,

P(ER(hj)|ER(hi)) ≤
2/ ln(2)

|ER(hi) ∩ (Sj\Si)|

(
dLog

(
2e|ER(hi) ∩ (Sj\Si)|

d

)
+ Log

(
6k2

p

δ0

))
.

(interpreting the bound to be infinite in the case |ER(hi) ∩ (Sj \ Si)| = 0). By the union bound,
this holds simultaneously for all i, j with i < j with probability at least 1 − δ0

3 . Combining this
with the event established above, by the union bound and monotonicity of x 7→ (1/x)Log(ax), with
probability at least 1− 2

3δ0, every i, j with i < j either satisfy (6) or

P(ER(hj)|ER(hi)) ≤
160/ ln(2)

er(hi)m

(
dLog

(
er(hi)me

40d

)
+ Log

(
6k2

p

δ0

))
. (9)

Since S0 is i.i.d. (with marginal distribution P and f? labels) with m/2 ≤ |S0| < m, the
inductive hypothesis and the union bound imply that, with probability at least 1− δ0

3 , every hi has

er(hi) ≤
ck2
p

m/2

(
dLog(kp) + Log

(
3(kp + 1)

δ0

))
.

Plugging this into the log in (9), by the union bound we have that, with probability at least 1 − δ0,
every i, j with i < j either satisfy (6) or P(ER(hj)|ER(hi)) is upper bounded by

160/ ln(2)

er(hi)m

(
dLog

(
ck2
p

(
Log(kp) +

1

d
Log

(
3(kp + 1)

δ0

)))
+ Log

(
6k2

p

δ0

))
.
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In either case (i.e., whether (6) holds or not), on this event

P(ER(hi) ∩ ER(hj)) = er(hi)P(ER(hj)|ER(hi))

≤ 320

m

(
dLog

(
ck2
p

(
Log(kp) +

1

d
Log

(
3(kp + 1)

δ0

)))
+ Log

(
6k2

p

δ0

))
.

Combining this with (5) we have that, with probability at least 1− δ0,

er(ĥ) ≤
(

kp + 1

2

)
320

m

(
dLog

(
ck2
p

(
Log(kp) +

1

d
Log

(
3(kp + 1)

δ0

)))
+ Log

(
6k2

p

δ0

))
.

Finally, simplifying the expression, and noting that the constant c only appears in a logarithmic
term, one can verify that for a sufficiently large choice of numerical constant c (e.g., any c ≥ 217

would suffice), the right hand side is at most

ck2
p

m

(
dLog(kp) + Log

(
1

δ0

))
,

which extends the inductive hypothesis to m0 = m. The result now follows by the principle of
induction.

Proof of Theorem 9 Fix any target concept f? ∈ C and any distribution P on X . We will argue
that, for any finite labeled data set S with f? labels, the proper learner AERM(S) outputs ĥ ∈ C
correct on S, and in the case that S is m0 i.i.d. training examples (with P marginal distribution and
f? labels), then for any δ0 ∈ (0, 1), with probability at least 1− δ0, the classifier ĥ = A(S) satisfies

er(ĥ) ≤
ck3
p

m0

(
dLog(kp) + Log

(
1

δ0

))
, (10)

where c ≥ 1 is an appropriate finite numerical constant. Note that Theorem 9 would immediately
follow from this (since it holds for any P and any f? ∈ C), taking δ0 = δ, and noting that m0 of
size proportional to the stated bound onMAERM(ε, δ) makes the right hand side of (10) less than ε.

If m0 < kp + 1, the algorithm returns ĥ = ERM(S) in Step 1, which is an element of C that is
correct on S by definition; furthermore, the inequality trivially holds in this case, as the right hand
side is greater than 1. These values ofm0 will serve as our base case in an inductive argument. Now,
for induction, suppose m ≥ kp + 1, and that for any δ0 ∈ (0, 1) and m0 < m, for any correctly
labeled data set S of size m0, the classifier ĥ returned by AERM(S) is in C and is correct on S, and
in the case that S is i.i.d. (with P marginal distribution and f? labels), then with probability at least
1− δ0 (10) holds.

Next we extend this claim to m0 = m. Consider a run of AERM(S) with a correctly labeled
finite data set S of size m. Consider the sets Si and classifiers hi as defined in the algorithm, and
with a slight abuse of notation we also use Si to denote the unlabeled portion of Si (i.e., the points
x such that (x, f?(x)) ∈ Si). Define hmaj(x) = Majority(h1(x), . . . , hkp+1(x)) (breaking ties to
favor label −1, say), and as before using the notation (1),

X0 = X{h1,...,hkp+1},kp .
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Since each hi is in C (by the inductive hypothesis), the classifier ĥ = ProjC(h1, . . . , hkp+1) in Step
4 is well defined, and by definition, ĥ ∈ C and has ĥ(x) = hmaj(x) on every x ∈ X0. Note that
since every (x, y) ∈ S is included in just one set Si, and hence is in every set

⋃
j′ 6=j Sj′ except

j = i, and by the inductive hypothesis every j 6= i has hj correct on
⋃
j′ 6=j Sj′ , we see that every

(x, y) ∈ S has x ∈ X0, and hmaj(x) = y, so that this extends the claim that ĥ is in C and is correct
on S for the inductive proof, and all that remains is to extend the bound on the error rate to hold for
m0 = m.

Toward this end, consider the case that S is an i.i.d. data set of sizem (with marginal distribution
P and f? labels). Fix any δ0 ∈ (0, 1). By the inductive hypothesis each hi is correct on

⋃
j 6=i Sj

and has hi ∈ C. We will follow a similar “conditioning” argument to that used in the proof of
Theorem 8. As in that proof, define ER(h) = {x : h(x) 6= f?(x)} for any classifier h. Since ĥ
agrees with hmaj on X0, we have

ER(ĥ) ⊆ (X \ X0) ∪ (X0 ∩ ER(hmaj)). (11)

Furthermore, for any x ∈ X \ X0, at least two values of i have hi(x) different from the majority of
the values h1(x), . . . , hkp+1(x), which means there are at least two classifiers predicting each label
in Y , and hence there are at least two classifiers hi with hi(x) 6= f?(x). Furthermore, any x with
hmaj(x) 6= f?(x) certainly also has at least two hi classifiers with hi(x) 6= f?(x). Therefore, the
set on the right hand side of (11) is contained within

⋃
i,j:i 6=j ER(hi) ∩ ER(hj). In particular, this

implies

er(ĥ) = P(ER(ĥ)) ≤ P

 ⋃
i,j:i<j

ER(hi) ∩ ER(hj)

 ≤ ∑
i,j:i<j

P(ER(hi) ∩ ER(hj)) . (12)

The remainder of the proof will establish that each term P(ER(hi) ∩ ER(hj)) is small with high
probability.

For any i, we have

Pr

(
|ER(hi) ∩ Si| < (1/2)er(hi)|Si| and er(hi) ≥

8

|Si|
ln

(
3(kp + 1)

δ0

))
= E

[
Pr
(
|ER(hi) ∩ Si| < (1/2)er(hi)|Si|

∣∣∣er(hi)
)

1

[
er(hi) ≥

8

|Si|
ln

(
3(kp + 1)

δ0

)]]
. (13)

Since Si is excluded from the training set
⋃
j 6=i Sj producing hi, we have that Si and hi are inde-

pendent random variables. Therefore, a multiplicative Chernoff bound implies that (almost surely)

Pr
(
|ER(hi) ∩ Si| < (1/2)er(hi)|Si|

∣∣∣er(hi)
)
≤ exp(−er(hi)|Si|/8),

so that (13) is at most δ0
3(kp+1) . In other words, with probability at least 1− δ0

3(kp+1) , either

er(hi) <
8

|Si|
log

(
3(kp + 1)

δ0

)
(14)

or else
|ER(hi) ∩ Si| ≥ (1/2)er(hi)|Si|. (15)
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By the union bound, with probability at least 1− δ0
3 , every i satisfies at least one of (14) or (15).

For distinct j, i, since hj is correct on
⋃
i′ 6=j Si′ ⊇ Si it is certainly correct on ER(hi) ∩ Si.

Also note that the samples in ER(hi) ∩ Si are conditionally i.i.d. given hi and |ER(hi) ∩ Si|, with
conditional distribution P(·|ER(hi)). Thus, by the classic PAC bound for ERM (Vapnik and Cher-
vonenkis, 1974; Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989) (applied under the conditional
distribution given hi and |ER(hi) ∩ Si|) and the law of total probability, with probability at least
1− δ0

3k2p
,

P(ER(hj)|ER(hi)) ≤
2/ ln(2)

|ER(hi) ∩ Si|

(
dLog

(
2e|ER(hi) ∩ Si|

d

)
+ Log

(
6k2

p

δ0

))
.

By the union bound (over i, j pairs with i < j, and combining with the event above) and mono-
tonicity of x 7→ (1/x)Log(ax), with probability at least 1 − 2

3δ0, every pair i, j with i < j have
either (14) or

P(ER(hj)|ER(hi)) ≤
4/ ln(2)

er(hi)|Si|

(
dLog

(
e er(hi)|Si|

d

)
+ Log

(
6k2

p

δ0

))
. (16)

Since each hi is correct on
⋃
j 6=i Sj , which is itself an i.i.d. data set of size strictly smaller than

m and no smaller than kpbm/(kp + 1)c ≥ m
3 (using the fact that kp ≥ 2, from the definition), the

inductive hypothesis and the union bound imply that with probability at least 1− δ0
3 , every hi has

er(hi) ≤
3ck3

p

m

(
dLog(kp) + Log

(
3(kp + 1)

δ0

))
.

Plugging this into the log in (16) above, together with the fact that |Si| ≥ bm/(kp + 1)c ≥
(1/2)m/(kp + 1), we have by the union bound that with probability at least 1 − δ0, every pair
i, j with i < j either have (14) or have that P(ER(hj)|ER(hi)) is upper bounded by

(8/ ln(2))(kp + 1)

er(hi)m

(
dLog

(
3

2
eck2

p

(
Log(kp) +

1

d
Log

(
6k2

p

δ0

)))
+ Log

(
6k2

p

δ0

))
.

In either case (i.e., whether (14) holds or not), on this event we have

P(ER(hi) ∩ ER(hj)) = er(hi)P(ER(hj)|ER(hi))

≤ 16(kp + 1)

m

(
dLog

(
3

2
eck2

p

(
Log(kp) +

1

d
Log

(
6k2

p

δ0

)))
+ Log

(
6k2

p

δ0

))
.

Combining this with (12), we conclude that on the above event of probability at least 1− δ0,

er(ĥ) ≤
(

kp + 1

2

)
16(kp + 1)

m

(
dLog

(
3

2
eck2

p

(
Log(kp) +

1

d
Log

(
6k2

p

δ0

)))
+ Log

(
6k2

p

δ0

))
.

By simplifying the expression on the right hand side and noting that the constant c only appears
in a logarithm, one can verify that for a sufficiently large choice of numerical constant c (e.g., any
c ≥ e8 would suffice), the right hand side is at most

ck3
p

m

(
dLog(kp) + Log

(
1

δ0

))
,
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which extends the inductive hypothesis to m0 = m. The result now follows by the principle of
induction.

Appendix C. Proofs of lower bounds

We start with the analysis of the coupon collector’s problem and corresponding lower bounds (see
e.g., (Motwani and Raghavan, 2010)). Since we need a slightly more general result (not appearing
in the standard textbooks to the best of our knowledge), we present a short proof for the sake of
completeness. We remark that a similar argument was used in (Simon, 2015).

Lemma 19 (Generalized coupon collector’s problem) Let m ≤ k ∈ N. Consider a sequence
x1, x2, . . . of independent uniform draws from a set of size k. Assume z ∈ N satisfies that with
probability at least 1/2, the number of distinct elements among x1, . . . , xz is at least k −m. Then,

z ≥ k

(
ln
k

m
− 1−

√
2

m

)
.

Proof Let Z denote the random variable that counts the number of independent draws until at

least k − m distinct elements are present among x1, x2, . . .. We may write Z =
k−m∑
i=1

Zi, where

Zi represents the (random) number of draws after i − 1 distinct elements were observed and up to
and including the first draw when i distinct elements have been observed. Observe that Zi-s are
independent, each having the geometric distribution with parameter pi = k−i+1

k . Thus, EZi = 1
pi

and Var(Zi) = 1−pi
p2i

, which implies

EZ =
k−m∑
i=1

EZi =
k−m∑
i=1

k

k − i+ 1
= k(Hk −Hm),

where Hp =
p∑
i=1

1
i stands for the p-th Harmonic number. Further, we have

Var(Z) =

k−m∑
i=1

k(i− 1)

(k − i+ 1)2
=

k∑
j=m+1

k(k − j)
j2

≤ k2
k∑

j=m+1

1

j2
≤ k2

m
.

Finally, by Chebyshev’s inequality and the relation ln p ≤ Hp ≤ ln p+ 1 we have, with probability
at least 1

2 ,

Z ≥ EZ − k
√

2

m
≥ k

(
ln
k

m
− 1−

√
2

m

)
.

The claim follows.

Remark 20 We will often use the following handy corollary of Lemma 19: under the conditions of

this result, z ≥ k
2 ln k

m , provided that 1 +
√

2
m ≤

1
2 ln k

m .
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Proof of Theorem 10 A lower bound Ω
(
d
ε + 1

ε log
(
1
δ

))
holds for all learning algorithms (Vapnik

and Chervonenkis, 1974; Ehrenfeucht, Haussler, Kearns, and Valiant, 1989), so we focus only on
establishing a lower bound Ω

(
1
ε log(ko)1[ε ≤ 1/ko]

)
for proper learners. Without loss of generality

we may assume that ko ≥ 128 since for smaller values of ko the lower bound is automatically
established by choosing a small enough numerical constant factor. We in fact establish a stronger
result, which also implies the second claim: namely, for any k ≥ 128 such that there exists a hollow
star of size k, any ε ≤ 1/k hasMprop(ε, δ) ≥ c

ε log(k) (for a numerical constant c > 0). Note that
both of the claimed lower bounds will follow from this, since when ko < ∞ there exists a hollow
star of size ko, and when ko =∞ there exists a sequence ki →∞ for which there exist hollow stars
of each size ki, so that choosing εi = 1/ki the lower bound c

εi
log
(

1
εi

)
holds for each εi.

Fix any k ≥ 128 such that there exists a hollow star set S = {(x1, y1), . . . , (xk, yk)}, and for
each i ∈ {1, . . . , k} let hi ∈ C be such that {j : hi(xj) 6= yj} = {i}. Fix any proper learning
algorithm A′. We construct a target function f? and distribution P to witness the lower bound via
the probabilistic method. Let ε ≤ 1/k and choose i∗ ∼ Uniform({2, . . . , k}), and set f? = hi∗ and
P({xi}) = ε/(1− ε) for i ∈ {2, . . . , k} \ {i∗}, P({x1}) = 1− (k− 2)ε/(1− ε) (which is greater
than ε), and P({xi∗}) = 0. Consider running A′ with a data set Dn (conditionally i.i.d. given i∗,
with each point (X,Y ) having X ∼ P and Y = f?(X)), of some size n < 1

8
1−ε
ε ln(k − 2), and

let ĥ be the classifier it outputs. Since A′ is proper (ĥ ∈ C) and C[S] = ∅ (S being a hollow
star), we know that ĥ cannot realize the yi classification of every xi, so there must be a non-empty
set Î = {i : ĥ(xi) 6= yi} 6= ∅. If any of these î ∈ Î are not equal i∗, then er(ĥ) > ε. Denote
by n̂ the number of the n data points in Dn falling in {(x2, y2), . . . , (xk, yk)} \ {(xi∗ , yi∗)}, and
denote by n̂1 the number of distinct elements of {(x2, y2), . . . , (xk, yk)} \ {(xi∗ , yi∗)} observed in
the data set Dn. By Markov’s inequality, with probability at least 3

4 , we have n̂ ≤ 4n(k−2)ε1−ε <
1
2(k − 2) ln(k − 2). Furthermore, note that conditioned on n̂ and i∗, the n̂ samples in Dn falling in
{(x2, y2), . . . , (xk, yk)} \ {(xi∗ , yi∗)} are conditionally independent, with conditional distribution
uniform on this set. Therefore, on the event that n̂ < 1

2(k − 2) ln(k − 2), Lemma 19 implies that
Pr(n̂1 < k − 3|n̂, i∗) > 1

2 (noting that k ≥ 128 implies 1 +
√

2 ≤ 1
2 ln(k − 2)). Finally, note

that conditioned on Dn, the variable i∗ has conditional distribution uniform on the k − 1 − n̂1
values i ∈ {2, . . . , k} with (xi, yi) /∈ Dn. Thus, on the event that n̂1 < k − 3, we have that
Pr(Î 6= {i∗}|Î , Dn) ≥ (k−1−n̂1)−1

k−1−n̂1
≥ 1

2 . Altogether, we have

Pr
(
Î 6= {i∗}

)
≥ E

[
Pr
(
Î 6= {i∗}

∣∣∣Î , Dn

)
1[n̂1 < k − 3]

]
≥ 1

2Pr(n̂1 < k − 3)

≥ 1
2E
[
Pr(n̂1 < k − 3|n̂, i∗) 1

[
n̂ < 1

2(k − 2) ln(k − 2)
]]
≥ 1

4Pr
(
n̂ < 1

2(k − 2) ln(k − 2)
)
≥ 3

16 .

In particular, this implies that for any proper learning algorithm A′, if n < 1
8
1−ε
ε ln(k − 2),

there exist fixed choices of f? ∈ C and P such that, with probability at least 3/16, the classifier ĥ
returned by A′ has er(ĥ) > ε. The claim follows.

Proof of Theorem 11 Fix any d, kw. Since there is already a known lower bound c′

ε

(
d + Log

(
1
δ

))
from (Ehrenfeucht, Haussler, Kearns, and Valiant, 1989; Blumer, Ehrenfeucht, Haussler, and War-
muth, 1989; Vapnik and Chervonenkis, 1974), for PAC learning in general (for some numerical
constant c′ > 0), we focus on showing a lower bound cd

ε Log
(
kw
d ∧

1
ε

)
for some numerical constant

c > 0. Furthermore, since Log(x) ≥ 1 (from its definition above), this lower bound again already
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follows from the lower bound of Ehrenfeucht, Haussler, Kearns, and Valiant (1989) in the case that
kw < 126d (for instance, taking X = {1, . . . ,d − 1 + kw} and C = {x 7→ 21[x ∈ I] − 1 : I ⊆
X , |I ∩{1, . . . , kw}| = 1}, which one can easily verify has VC dimension d and dual Helly number
kw). To address the remaining case, suppose kw ≥ 126d.

In the special case d = 1, simply take X = {1, . . . , kw} and C = {x 7→ 21[x = t]−1 : t ∈ X}
the singleton classifiers. It is an easy exercise to verify that the VC dimension of C is indeed 1,
and that {(x,−1) : x ∈ X} is a hollow star set of size kw, so that Lemma 5 (together with the
fact that this is clearly the largest possible hollow star set, and that C is finite and therefore closed)
implies the dual Helly number is indeed kw. The claimed lower bound for this case then follows
from Theorem 10. To address the remaining case, for the rest of the proof suppose d ≥ 2.

LetX = {(i, j) : i∈{d−1, . . . , kw+d−2}, j∈{1, . . . , i}}. For each i ∈ {d−1, . . . , kw+d−2}
and each J ⊆ {1, . . . , i} with |J | = d− 1, define a classifier hi,J(i′, j) = 1− 21[i′ = i]1[j /∈ J ]:
that is, hi,J classifies as 1 everything that does not have first coordinate equal i, and exactly d − 1
of the points that do have first coordinate equal i. Set

C = {hi,J : i ∈ {d− 1, . . . , kw + d− 2}, J ⊆ {1, . . . , i}, |J | = d− 1}.

We first show that the VC dimension of C is indeed d. To see that d points can be shattered,
simply take i = 2d − 1 (which has i ≤ kw + d − 2 since kw ≥ d + 1) and we claim that the
points (i, 1), . . . , (i,d) are shattered: for any strict subset J ⊂ {1, . . . ,d}, we can realize a labeling
with {(i, j) : j ∈ J} positive and the other d − |J | negative with hi,J∪J ′ where J ′ is any subset
of {d + 1, . . . , 2d − 1} with |J ′| = d − 1 − |J |; also, we can realize the all-positive labeling
of these d points with hd−1,1:(d−1). To show no set of d + 1 points can be shattered, note that
if {((i1, j1),−1), . . . , ((id+1, jd+1),−1)} is realizable, then i1 = · · · = id+1; but in this case,
{((i1, j1), 1), . . . , ((id, jd), 1), ((id+1, jd+1),−1)} is not realizable, and hence no set of size d + 1
is shattered.

Next we argue that the dual Helly numer of C is indeed kw. To see that it is at least kw,
note that {((kw + d − 2, 1),−1), . . . , ((kw + d − 2, kw),−1)} is a hollow star set of size kw,
so that Lemma 5 implies the dual Helly number is at least kw. To see that it is also at most kw,
consider any unrealizable set S. If some x has {(x,−1), (x, 1)} ⊆ S, this is clearly an unrealizable
subset of size 2 ≤ kw. Otherwise if no such x exists, then note that since hd−1,1:(d−1) is positive
on all of X , there must be some (i, j−) with ((i, j−),−1) ∈ S. If there are in fact two points
(i, j), (i′, j′) with i 6= i′ and {((i, j),−1), ((i′, j′),−1)} ⊆ S, then again this is an unrealizable
subset of size 2 ≤ kw. Otherwise, if every (i, j) with ((i, j),−1) ∈ S has the same i, then it
must be that either there exist j1, . . . , jd with {((i, j1), 1), . . . , ((i, jd), 1)} ⊂ S, in which case
{((i, j1), 1), . . . , ((i, jd), 1), ((i, j−),−1)} is an unrealizable subset of size d + 1 ≤ kw, or else
there exist j1, . . . , ji−(d−2) with {((i, j1),−1), . . . , ((i, ji−(d−2)),−1)} ⊆ S, in which case this is
an unrealizable subset of size i − (d − 2) ≤ kw. Since this covers all possible cases for the set S,
we conclude that the dual Helly number is equal kw.

Fix any δ ∈ (0, 1/100). For any ε ∈ (1/504, 1/8), a lower bound cd
ε Log

(
kw
d ∧

1
ε

)
follows from

the lower bound c′d
ε of Ehrenfeucht, Haussler, Kearns, and Valiant (1989) (for c a sufficiently small

numerical constant). To address the remaining case, fix any ε ∈ (0, 1/504]. If ε ≥ d−1
4(kw−1) , let

iε = b(d − 1)/(4ε)c + d − 1, and otherwise let iε = kw + d − 2. We prove the lower bound via
the probabilistic method. Let J∗ be a subset of {1, . . . , iε} with |J∗| = d − 1 chosen uniformly
at random (without replacement). Let P({(iε, j)}) = 4ε

d−1 for every j ∈ {1, . . . , iε} \ J∗, and let
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P({(d− 1, 1)}) = 1− (iε − (d− 1)) 4ε
d−1 , and define the target concept f? = hiε,J∗ : in particular,

f?((iε, j)) = 21[j ∈ J∗] − 1, and hence P has zero mass on the set of all points (iε, j) where
f?((iε, j)) = 1 and has mass 4ε

d−1 on every point (iε, j) where f?((iε, j)) = −1; any remaining
probability mass is placed on (d− 1, 1), which is an uninformative point (since every hi,J classifies
it 1).

Fix any sample size n ∈ N with n < d−1
32eε ln

(
1

d−1 min
{⌊

d−1
4ε

⌋
, kw − 1

})
, fix any proper

learning algorithm A′, and let ĥ be the classifier returned by running A′ on a conditionally i.i.d.
(given J∗) training set Dn of size n (with each (X,Y ) ∈ Dn having X ∼ P and Y = f?(X)
given J∗). Let Ziε = {((iε, j),−1) : j ∈ {1, . . . , iε} \ J∗} and n̂ = |Dn ∩ Ziε |, and note
that we have E[n̂|J∗] = 4ε

d−1(iε − (d − 1))n. Thus, by a Chernoff bound and the law of total
probability, with probability at least 1/2, it holds that n̂ ≤ 1 + 2eE[n̂|J∗] = 1 + 8eε

d−1(iε− (d−1))n
(see Motwani and Raghavan, 2010). Combining this with the constraint on n, on this event we have
n̂ < 1+ iε−(d−1)

4 ln
(

1
d−1 min

{⌊
d−1
4ε

⌋
, kw − 1

})
≤ iε−(d−1)

2 ln
(
iε−(d−1)

d−1

)
(using the fact that ε ≤

1/504). Furthermore, note that the samples in Dn∩Ziε are conditionally i.i.d. Uniform(Ziε) given
n̂. Also note that the assumptions that kw ≥ 126d and ε ≤ 1/504 imply iε− (d− 1) ≥ 126(d− 1),

so that 1 +
√

2
d−1 ≤

1
2 ln iε−(d−1)

d−1 . Therefore, denoting by n̂1 the number of distinct elements of

Ziε present in Dn, we have that, on the event that n̂ < iε−(d−1)
2 ln

(
iε−(d−1)

d−1

)
, Lemma 19 implies

Pr(n̂1 < iε − 2(d− 1)|n̂, J∗) > 1
2 .

Since A′ is a proper learning algorithm, it must be that ĥ = hî,Ĵ for some î ∈ {d− 1, . . . , kw +

d − 2} and Ĵ ⊆ {1, . . . , î} with |Ĵ | = d − 1. If î 6= iε, then er(ĥ) = (iε − (d − 1)) 4ε
d−1 > ε.

Otherwise, suppose î = iε. Then er(ĥ) = |Ĵ \ J∗| 4ε
d−1 . Note that, conditioned on Dn, the variable

J∗ has conditional distribution uniform on the subsets of the (size iε − n̂1) set {j ∈ {1, . . . , iε} :

((iε, j),−1) /∈ Dn} of size d−1. In particular, on the event î = iε, we have E
[
|Ĵ \J∗|

∣∣∣Dn, Ĵ , î
]
≥

(d−1) iε−n̂1−(d−1)
iε−n̂1

. On the event that n̂1 < iε−2(d−1), this implies E
[
|Ĵ \J∗|

∣∣∣Dn, Ĵ , î
]
> d−1

2 .
Therefore, a Chernoff bound (for sampling without replacement; see Hoeffding, 1963) implies that,
on the events that n̂1 < iε − 2(d − 1) and î = iε, we have Pr

(
|Ĵ \ J∗| ≤ d−1

4

∣∣∣Dn, Ĵ , î
)
≤

exp
{
−d−1

16

}
≤ e−1/16 < 1 − 1

17 . In particular, note that if î = iε and |Ĵ \ J∗| > d−1
4 , then

er(ĥ) > ε. Altogether, we have that

Pr(er(ĥ) > ε) ≥ Pr(̂i 6= iε) + E
[
Pr
(
|Ĵ \ J∗| > d− 1

4

∣∣∣Dn, Ĵ , î
)

1[n̂1 < iε − 2(d−1)]1[̂i = iε]

]
≥ 1

17
E
[
Pr
(
n̂1 < iε − 2(d− 1)

∣∣∣n̂, J∗)1

[
n̂ <

iε − (d− 1)

2
ln

(
iε − (d− 1)

d− 1

)]]
≥ 1

34
Pr

(
n̂ <

iε − (d− 1)

2
ln

(
iε − (d− 1)

d− 1

))
≥ 1

68
> δ.

In particular, this implies that there exists a non-random choice of f? ∈ C and P such that, with
probability strictly greater than δ, it holds that er(ĥ) > ε. The claimed lower bound onMprop(ε, δ)
follows by simplifying the expression of the constraint on n above (which is lower-bounded by the
expression in the theorem, for a sufficiently small choice of the numerical constant c).

For the final claim in the theorem, it is clear that we can extend the above construction to
an infinite space by allowing all i ∈ N with i ≥ d − 1, in which case ko = kw = ∞ (since
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there exist hollow star sets of unbounded sizes, following the same argument given above), and the
dLog

(
kw
d ∧

1
ε

)
term simplifies to dLog

(
1
ε

)
.

Appendix D. Proof of Theorem 15

The essence of the proof of this result is in fact very simple, relying only on one technical construc-
tion: a set system on the data indices. Specifically, for any m ∈ N, consider a family Im of subsets
of {1, . . . ,m} satisfying the following two properties, for some Tm ∈ {1, . . . ,m}:

(i) each I ∈ Im has size |I| ≤ m− Tm,

(ii) for every i1, i2, . . . i` ∈ {1, . . . ,m} there exists I ∈ Im such that {i1, i2, . . . i`} ⊆ I .

Let (κ, ρ) be a stable compression scheme of size `. Fix any distribution P , any f? ∈ C, and
any δ ∈ (0, 1), and let S = (X1:m, f

?(X1:m)) be such that X1:m ∼ Pm. Given any family Im
satisfying (i) and (ii), we will establish that with probability at least 1− δ,

er(ρ(κ(S))) ≤ 1

Tm

(
ln(|Im|) + ln

(
1

δ

))
. (17)

As a simple example of such a family Im that yields Theorem 15, consider any partition of
{1, . . . ,m} into disjoint blocks I1, . . . , I2`, each of size either dm/(2`)e or bm/(2`)c. Then we can
define

Im =
{⋃
{Ij : j ∈ J } : J ⊆ {1, . . . , 2`}, |J | = `

}
. (18)

This clearly satisfies the above properties, with Tm = `bm/(2`)c, and has size |Im| =
(
2`
`

)
< 4`,

and hence plugging this into (17) yields the bound stated in Theorem 15. We now finish the proof
of Theorem 15 by establishing the bound (17).

Fix any family Im satisfying (i) and (ii) above. For the set S as introduced above, for any
I ⊆ {1, . . . ,m} define SI = {(Xi, f

?(Xi)) : i ∈ I}. For any I ∈ Im, since S(1:m)\I is independent
of SI , and property (i) implies |S(1:m)\I | ≥ Tm, we have

Pr
(
ρ(κ(SI)) is correct on S(1:m)\I and er(ρ(κ(SI))) > ε

)
≤ (1− ε)Tm .

However, by property (ii) there must exist at least one I∗ ∈ I with κ(S) ⊆ SI∗ , which means
ρ(κ(SI∗)) = ρ(κ(S)) (by the stability property). Thus, since ρ(κ(S)) is correct on all of S (because
(κ, ρ) is a valid compression scheme), including S(1:m)\I∗ , we have for this (data-dependent) choice
of I∗ that ρ(κ(SI∗)) is correct on S(1:m)\I∗ . Therefore, by basic inequalities and a union bound,

Pr(er(ρ(κ(S))) > ε) = Pr(er(ρ(κ(SI∗))) > ε)

≤ Pr
(
∃I ∈ Im : ρ(κ(SI)) is correct on S(1:m)\I and er(ρ(κ(SI))) > ε

)
≤ |Im|(1− ε)Tm ≤ |Im|e−εTm . (19)

In particular, for any δ ∈ (0, 1), choosing ε equal the expression on the right hand side of (17)
makes the rightmost expression in (19) equal δ, which therefore completes the proof of the abstract
bound (17). The bound in Theorem 15 follows by plugging in the family Im from (18), which has
|Im| < 4` and Tm = `bm/(2`)c > (m− 2`)/2.
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