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Abstract
We investigate the computational complexity of several basic linear algebra primitives, includ-

ing largest eigenvector computation and linear regression, in the computational model that allows
access to the data via a matrix-vector product oracle. We show that for polynomial accuracy, Θ(d)
calls to the oracle are necessary and sufficient even for a randomized algorithm.

Our lower bound is based on a reduction to estimating the least eigenvalue of a random Wishart
matrix. This simple distribution enables a concise proof, leveraging a few key properties of the
random Wishart ensemble.

1. Introduction

Solving linear systems and computing eigenvectors are fundamental problems in numerical linear
algebra, and have widespread applications in numerous scientific, mathematical, and computational
fields. Due to their simplicity, parallelizability, and limited computational overhead, first-order
methods based on iterative gradient updates have become increasingly popular for solving these
problems. Moreover, in many settings, the complexity of these methods is currently well under-
stood: tight upper and lower bounds are known for gradient methods, accelerated gradient methods
and related algorithms.

First order methods for regression and eigenvector computation. As an example, consider
the problem of computing the largest eigenvector for a given matrix M ∈ Rd×d. The power method
finds an ε-approximate solution in O

(
log d
ε

)
iterations, each involving a matrix-vector product

that can be computed in time proportional to the number of non-zeros in the matrix. A variant
of the Lanczos algorithm improves this complexity to O

(
log d√
ε

)
(Kuczyński and Woźniakowski,

1992; Musco and Musco, 2015). Alternatively, if the matrix has an inverse-eigengap λ1(M)
λ1(M)−λ2(M)

bounded by κ, the above running times can be improved to O
(
κ log d

ε

)
and O

(√
κ log d

ε

)
. In a

low accuracy regime, where ε � 1/d, these upper bounds attained by Lanczos are known to be
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THE GRADIENT COMPLEXITY OF LINEAR REGRESSION

information-theoretically tight in the number of matrix-vector products required to compute a solu-
tion to the given precision (Simchowitz et al., 2018). The optimal complexities are nearly identical
for solving linear systems, except that these do not incur a log d dependence on the ambient di-
mension d (Simchowitz, 2018). More generally, these upper and lower bounds extend to convex
optimization with first order methods more broadly (Nemirovskii et al., 1983).

The blessing of data sparsity. One major advantage of first order methods is that they benefit
from sparsity. Each iteration of first order methods computes O (1) matrix-vector multiplies, and
if the matrix in question has #nnz non-zero entries, then these multiplications can be performed in
O (#nnz)-time. This yields runtimes which scale with the sparsity of the problem instance, rather
than the ambient dimension (which can be quadratically worse).

Regime of Dominance Running time Method
ε ≥ 1/poly(d) 1√

ε
× (#nnz) Lanczos, CG, AGD

κ < 1
ε

√
κ log 1

ε × (#nnz) Lanczos, CG, AGD
κ, ε−1 ≥ d2 d× (#nnz) Lanczos & CG (not AGD)

#nnz = d2 (ties with above) d3 matrix inversion (naive)
#nnz ≥ dω−1 dω + d2 log 1

ε matrix inversion (state of art)

Table 1: Methods for computing the largest eigenvector of A ∈ Rd×d, and solving linear systems
with d-data points, equivalent to computing A−1b for b ∈ Rd. Here #nnz denotes the
number of nonzero entries of A, κ refers to an upper bound the condition number (in least
squares) or eigengap (in PCA). For eigenvalue problems, above runtimes suppress log d-
dependence. Lanczos refers to the block Lanczos methods (Musco and Musco, 2015), CG
to the conjugate gradient methods ( e.g. Trefethen and Bau III (1997)), AGD to accel-
erated gradient descent. We use ’naive’ matrix elimination refers to approaches such as
those based on Gaussian elimination; ‘state of art’ matrix inversion denotes the theoreti-
cally state-of-art approach due to Williams (2012), which enjoys exponent ω ≈ 2.3727.
Logarithmic factors associated with iteration complexity are included; logarithmic factors
associated with numerical precision are suppressed.

The high accuracy regime. What is the computational complexity of obtaining high, inverse
polynomial ε = 1

poly(d) precision using a randomized algorithm, without a bound on the condition
number or eigengap of the matrix? This is precise the gap in the literature that our results address.

In this regime, our understanding of even these most basic problems is poor by comparison.
The best known algorithms for ε-approximation in this regime scale as O

(
dω + d2 log 1

ε

)
, where

ω is the matrix inversion constant, currently around 2.37. These methods proceed by attempting to
invert the matrix in question. Since the inverse of a sparse matrix is itself not necessarily sparse,
these methods do not take advantage of data sparsity.

It is thus natural to ask if there is a randomized algorithm based on gradient-like queries that can
exploit data sparsity, even for the simplest of linear algebra problems sketched above. We note that
such faster algorithms would not necessarily require an inverse of the entire matrix, and therefore
would not imply faster matrix inversion.
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Our results. Our main result shows that first-order methods based on gradient-like queries cannot
significantly surpass the performance of the existing conjugate gradient or Lanczos methods, even
for the simplest of linear algebra problems sketched above, and crucially, even in the high-accuracy
regime.

In a computation model where each iteration corresponds to one query of a matrix-vector prod-
uct, we show that Ω(d) matrix-vector product oracle queries are necessary to obtain a 1/d2-accurate
approximation to the largest eigenvector. This is tight, as d such queries are sufficient for the Lanc-
zos method to obtain an exact solution (up to machine precision). Similarly, we show a lower bound
of Ω̃ (d) queries for solving linear systems, which nearly matches the d-query upper bound of the
conjugate gradient method.

Moreover, for instances with #nnz(A) = Θ(s2) nonzero entries. we show a lower bound of
Ω(s) queries necessary for high-precision eigenvalue approximation, and Ω̃ (s) for solving linear
systems. This suggests an overall computational complexity of Ω(s3) for first order methods. This
in turn demonstrates that algebraic methods based on matrix inversion asymptotically outperform
optimization-based approaches in the regime s ≥ dω/3.

Finally, our lower bounds are constructed so that the instance sparsity s encodes the eigengap
(resp. condition number) parameters for eigenvector approximation (resp. least squares). In turn,
these parameters can in turn be used to encode target accuracy ε in the low-accuracy regime. When
translated in terms of these parameters, our guarantees are near-optimal up to logarithmic factors
in terms of both eigengap/condition number and accuracy. In contrast to much existing work, our
lower bounds are information theoretic, and apply to randomized algorithms, even those that do
not satisfy Krylov restrictions. To our knowledge, this is the first work that provides lower bounds
which apply to general randomized algorithms, and attain optimal dimension-dependence in the
high accuracy regime when ε � 1/poly(d). For a thorough discussion of the prior art, see our
discussion of related work below.

Randomized algorithms Our work establishes lower bounds for randomized algorithms. These
are more interesting than lower bounds for deterministic algorithms for several reasons. Of course,
the former are stronger and more widely applicable than the latter. More importantly, there are
problems for which randomized algorithms can outperform deterministic algorithms enormously,
for instance, the only polynomial time algorithms for volume computation are randomized (Lovász
and Vempala, 2006).

Lastly, the linear algebraic problems we consider are of great use in machine learning problems,
which are frequently tackled using randomized approaches in order to avoid poor dimensional de-
pendencies. As an example, randomized matrix sketching algorithms can substantially reduce the
complexity of PCA or SVD for very large matrices. For instance, computing the top-k singular
vectors of a d× d matrix requires kd2 time for traditional (deterministic) iterative methods, but can
be reduced to d2 + dk2/ε4 using a randomized sketching approach (Clarkson and Woodruff, 2017),
which can be much better for moderate ε.

Related Work. There is an extensive literature on algorithms for linear algebraic tasks such as
solving linear systems and computing eigenvalues and eigenvectors, see for example the survey of
Sachdeva et al. (2014). In the interest of brevity, we focus on the relevant lower bounds literature.

The seminal work of Nemirovskii et al. (1983) establishes lower bounds which apply only to
deterministic algorithms. These first order lower bounds enjoy essentially optimal dependence all
relevant problem parameters, including dimension. However, these constructions are based on a
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so-called resisting oracle, and therefore do not extend to the randomized algorithms considered in
this work.

For randomized algorithms, the lower bounds of Simchowitz et al. (2018) and Simchowitz
(2018) yield optimal dependence on the eigengap and condition number parameters. However,
these bounds require the dimension to be polynomial large in these parameters, which translates
into a suboptimal dimension-dependent lower bound of Ω̃

(
d1/3

)
.

A series of papers due to Woodworth and Srebro (2016, 2017) prove lower bounds for first
order convex optimization algorithms which obtain optimal dependence on relevant parameters,
but hold only in high dimensions. Furthermore, they are based on intricate, non-quadratic convex
objectives which can effectively “hide” information in a way that linear algebraic instances cannot.
Thus, they do not apply to the natural linear algebraic constructions that we consider. For high
dimensional/low accuracy problems, there are also lower bounds for randomized algorithms that use
higher order derivatives, see e.g. (Agarwal and Hazan, 2017). These, like the previously mentioned
lower bounds, also only apply in high dimensions and imply dimension-dependent lower bounds
like Ω̃

(
d1/3

)
.

Finally, in concurrent, related work, Sun et al. (2019) study numerous other linear algebraic
primitives in the same matrix-vector product oracle setting. They use a similar approach to proving
lower bounds for other problems and randomized algorithms, but do not address the fundamental
problems of maximum eigenvalue computation and linear regression as we do.

Proof Techniques. One of the greatest strengths of our results is the simplicity of their proofs.
In general, establishing query lower bounds which apply to randomized algorithms requires great
care to control the amount of information accumulated by arbitrary, randomized, adaptive queries.
Currently, the two dominant approaches are either (a) to construct complex problem instances that
obfuscate information from any sequence of queries made (Woodworth and Srebro, 2016), or (b)
reduce the problem to estimating of some hidden component (Simchowitz et al., 2018; Simchowitz,
2018). The constructions for approach (a) are typically quite intricate, require high dimensions,
and do not extend to linear algebraic problems. Approach (b) requires sophisticated information
theoretic tools to control the rate at which information is accumulated.

In contrast, our work leverages simple problems of a classic random matrix ensemble known
as the Wishart distribution Anderson et al. (2010). In particular, our lower bound for maximum
eigenvalue computation is witnessed by a very natural instance M = WW> where the entries
of W are i.i.d. Gaussian. This is plausibly a very benign instance as it is one of the simplest
distributions over symmetric positive definite matrices that one might think of.

The simplicity of the problem instance, and existing understanding of the distribution of the
spectrum of Wishart matrices allows for concise, straightforward proofs.

1.1. Notation

Let Sd−1 := {x ∈ Rd : ‖x‖2 = 1}, Sd := {M ∈ Rd×d : M = M>} and Sd++ := {A ∈ Sd :
A � 0}. As a general rule, we use M for matrices which arise in eigenvector problems, and A for
matrices which arise in least-squares problems. For M ∈ Sd, we let gap(M) := λ1(M)−λ2(M)

λ1(M) , and

for A ∈ Sd++, we set cond(A) := λ1(A)
λd(A) . We adopt the conventional notions O (·) ,Ω (·) ,Θ (·) as

suppressing universal constants independent of dimension and problem parameters, let Õ (·) , Ω̃ (·)
suppress logarithmic factors, and let g(x) = O∗ (f(x)) denote a term which satisfies g(x) ≤ cf(x)
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for a particular, unspecified, but sufficiently small constant c. We say a matrix is s sparse if its
number of nonzero entries is at most s.

2. Main Results

We begin the section by stating a lower bound for the problem of eigenvalue estimation and eigen-
vector approximation via matrix-vector multiply queries. Via a standard reduction, this bound will
imply a lower bound for solving linear systems via gradient-queries.

We stress that, unlike prior lower bounds, our bounds for eigenvalue problems (resp. linear
systems) both apply to arbitrary, randomized algorithms, and capture the correct dependence on the
eigengap (resp. condition number), all the way up to a Ω(d) (resp. Ω̃(d)) worst-case lower bound in
d dimensions. This worst-case lower bound is matched by the Lanczos (Musco and Musco, 2015)
and Conjugate Gradient methods (see, e.g. Trefethen and Bau III (1997)), which, assuming infinite
precision, efficiently recover the exact optimal solutions in at most d queries.

2.1. Eigenvalue Problems

Before introducing our results, we formalize the query model against which our lower bounds hold:

Definition 1 (Eigenvalue and Eigenvector Algorithms) An eigenvalue approximation algorithm,
or EigValueAlg, is an algorithm Alg which interacts with an unknown matrix M ∈ Sd++ via T
adaptive, randomized queries, w(i) = Mv(i), and returns an estimate λ̂ of λ1(M). An eigenvector
approximation algorithm, or EigVecAlg, operates in the same query model, but instead returns an
estimate v̂ ∈ Sd−1 of v1(M). We call T := Query(Alg) the query complexity of Alg.

We let PM∼D,Alg denote the probability induced by running Alg when the input is a ran-
dom instance M drawn from a distribution D. We now state our main query lower bound for
EigValueAlg’s, which we prove in Section 3. Our lower bound considers a distribution over sym-
metric matrices M which are also PSD, to show that our lower bounds hold even under the most
benign, and restrictive conditions:1

Theorem 2 (Lower Bound for Eigenvalue Estimation) There is a function d0 : (0, 1)→ N such
that the following holds. For any β ∈ (0, 1), ambient dimension d ≥ d0(β), and every sparsity level
s ∈ [d0(β), d], there exists a distribution D = D(s, d, β) supported on s2-sparse matrices in Sd++

such that any EigValueAlg Alg with Query(Alg) ≤ (1− β)s satisfies

PM∼D,Alg

[
|λ̂− λ1(M)| ≥ 1

20s2

]
≥ Ω(

√
β)

Moreover, M ∼ D satisfies gap(M) ≥ Ωβ(1)/s2, and 1− Ωβ(1)/s2 ≤ λ1(M) ≤ 1 almost surely.
Here, Ωβ(1) denotes a quantity lower bounded by a function of β, but not on s or d.

In particular, any algorithm requires Query(Alg) ≥ Ω(d) queries in ambient dimension d to esti-
mate λ1(M) up to errorO∗

(
d−2
)

with constant probability, and in fact requires (1−O (1))d queries
for a 1− O (1) probability of error.

1. Note that a lower bound on PSD matrices holds a fortiori for arbitrary symmetric and square matrices, since PSD are
a subclass.
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Remark 3 The sparsity parameter in our construction can be used to encode the accuracy pa-
rameter ε. Specifically, by setting the parameter s = 1/

√
ε, Theorem 2 implies 1/

√
ε queries are

necessary for ε-accuracy. Alternatively, choosing s ≥ Ω(
√

gap(M)), we obtain a gap-dependent
bound requiring Ω(1/

√
gap(M)) queries forO (gap(M)) accuracy. Both bounds match the sharp

lower bounds of Simchowitz et al. (2018) up to logarithmic factors, while also capturing the cor-
rect worst-case query complexity for ambient dimension d, namely Ω(d). Moreover, our proof is
considerably simpler.

Implications for sparsity. For s ≥
√
d, our lower bound says that first order methods require

Ω(s) queries to approximate the top eigenvalue of matrices M with #nnz(M) = Θ(s2). There-
fore, implementations of first-order methods based on standard matrix-vector multiplies cannot have
complexity better than Ω(s3) in the worst case. On the other hand, matrix inversion has runtime dω,
and is sufficient both for solving least squares, and for computing eigenvalues and eigenvectors
(Garber and Hazan, 2015). Hence, for s ∈ [dω/3, d], we see that matrix inversion outperforms
first-order based methods.

Approximating the top eigenvector. As a corollary, we obtain the analogous lower bound for
algorithms approximating the top eigenvector of a symmetric matrix, and, in particular, an Ω(s)
query complexity lower bound for ε = O∗

(
s−2
)
-precision approximations:

Corollary 4 In the setting of Theorem 2, any EigVecAlg with Query(Alg) ≤ (1−β)s−1 satisfies

PM∼D,Alg

[
v̂>Mv̂ ≤ λ1(M)

(
1− 1

20s2

)]
≥ Ω(

√
β)

Proof For ease, set ε := 1
20s2

. Let Query(Alg) ≤ (1 − β)s − 1, and let λ̂ = v̂>Mv̂, which
can be computed using at most 1 additional query. Since λ̂ ≤ maxv∈Sd−1 v>Mv = λ1(M), and
since λ1(M) ≤ 1 we see that v̂>Mv̂ ≥ λ1(M) − ε only if |λ̂ − λ1(M)| ≤ ε. Thus, recall-
ing λ1(M) ≤ 1, we have PD,Alg

[
v̂>Mv̂ ≥ λ1(M)(1− ε)

]
≤ PD,Alg

[
v̂>Mv̂ ≥ λ1(M)− ε

]
=

PD,Alg
[
|λ̂− λ1(M)| ≤ ε

]
, which is at least Ω(

√
β) by Theorem 2.

Again, the the sparsity s can be used to encode the accuracy parameter ε via ε := 1
20s2

.

2.2. Lower Bounds for Solving Linear Systems

We now present our lower bounds for minimizing quadratic functions. We consider the following
query model:

Definition 5 (Gradient Query model for Linear System Solvers) We say that Alg is an LinSysAlg
if Alg is given initial point x0 ∈ Rd and linear term b ∈ Rd, and it interacts with an unknown sym-
metric matrix A ∈ Sd++ via T adaptive, randomized queries, w(i) = Av(i), and returns an estimate
x̂ ∈ Rd of A−1b. Again, we call T the query complexity of Alg.

Defining the objective function fA,b(x) := 1
2x
>Ax − b>x, we see that the query model of Def-

inition 5 is equivalent to being given a gradient query at 0, ∇fA,b(0) = b, and making queries
∇fA,b(v(i)) = Av(i) − b. We shall use PAlg,(x0,b,A) do denote probability induced by running the
a LinSysAlg Alg on the instance (x0, b, A). Our lower bound in this model is as follows, stated in
terms of the function suboptimality ‖x̂−A−1b‖2A = fA,b(x̂)−minx fA,b(x).
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Theorem 6 (Lower Bound for Linear System Solvers) Let d0 ∈ N be a universal constant. Then
for all ambient dimensions d ≥ d0, and all s ∈ [d2

0, d
2], any LinSysAlg Alg which satisfies the

guarantee

PAlg,x0,b,A

[
‖x̂−A−1b‖2A ≤

1

e
· λ1(A)‖x0‖2

s2

]
≥ 1− 1

e
(1)

for all (d + s2)-sparse matrices M ∈ Sd++ with cond(M) ≤ O
(
s2
)
, and all (x0, b) ∈ Rd × Rd,

must have query complexity at least

Query(Alg) ≥ Ω
(
s · (log2+log s)−1

)
,

where logp+log(x) := (logp x) · (log log x).

In particular, any algorithm which ensures ‖x̂−A−1b‖2A ≤ O
∗
(
λ1(A)‖x0‖2

d2

)
with probability 1− 1

e

requires Ω̃ (d)-queries.

Remark 7 As with the eigenvector lower bounds, we can use the sparsity parameters to encode ac-
curacy. Specifically, by s =

√
cond, obtaining a function suboptimality fA,b(x̂) −minx fA,b(x) =

‖x̂−A−1b‖2A ofO∗ (1/cond) requires Ω̃
(√

cond
)

queries, matching known upper bounds achieved
by the conjugate gradient method up to logarithmic factors (Trefethen and Bau III, 1997), which in
turn match information-theoretic lower bounds (Simchowitz, 2018). Moreover, these in turn can be
converted into an minimax lower bound by in turn selecting the condition number parameter as
cond ∝ 1/ε. Indeed, this implies that to ensure fA,b(x̂)−minx fA,b(x) ≤ ε, one requires Ω̃ (1/

√
ε)

queries, entailing the minimax rate up to logarithmic factors.

We prove Theorem 6 by leveraging a well-known reduction from eigenvector approximation to
minimizing quadratic functions, known as “shift-and-invert” (Saad, 2011; Garber et al., 2016) . To
state the result, we define a class of matrices to which the reduction applies:

Md(gap, α) :=
{
M ∈ Sd++ : gap(M) ≥ gap, |λ1(M)− 1| ≤ α gap, λ1(M) ∈

[
1
2 , 2
]}
,

The term gap corresponds to gap(M), whereas α measures to how close λ1(M) is to 1. The
rescaling to ensure λ1(M) ∈

[
1
2 , 2
]

is for simplicity, and more generally α corresponds to an
approximate foreknowledge of λ1(M) (which is necessary to facilitate the reduction). We further
note that the distributionD(s, d, β) from Theorem 2 satisfies, for some functions cgap(·) and ceig(·),

PM∼D(s,d,β)

[
M ∈Md

(
cgap(β)

s2
,
ceig(β)

cgap(β)

)]
= 1 (2)

With this definition in hand, we provide a precise guarantee for the reduction, which we prove
in Appendix A:

Proposition 8 (Eigenvector-to-Linear-System Reduction) Let d ≥ dmin for a universal dmin.
Fix a gap ∈ (0, 1), α > 0, and suppose that Alg be a LinSysAlg which satisfies (1) with cond :=
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1 + α + 1
gap

for all A ∈ Sd++ with cond(A) ≤ cond. Then, for any δ ∈ (0, 1/e), there exists an
EigVecAlg, Algeig, which satisfies

PAlgeig,M

[
v̂>Mv̂ ≥ (1− cgap)λ1(M)

]
≥ 1− δ, ∀M ∈Md (gap, α)

with query complexity at most

Query(Algeig) ≤ Query(Alg) · Oα
(

(log
1

δ
) · log2+log d

min{cgap, 1}

)
,

where Oα (·) hides multiplicative and additive constants depending on α.

We can now prove Theorem 6 by combining Proposition 8 and Theorem 2:
Proof We shall prove the theorem in the regime where s = d. The general s case is attained
by embedding an instance of dimension s into dimension d, as in the proof of Theorem 2, and is
deferred to Appendix B.

To begin, let β = 1
2 (any constant in (0, 1) suffices); throughout, β will be a universal constant,

rather than a problem parameter. Next, fix an ambient dimension d ≥ d0 := dmin ∨ d0(β), where
d0 is from Theorem 2, and dmin from Proposition 8.

Lastly, let gap :=
cgap(β)
d2

and α :=
ceig(β)
cgap(β) , where cgap(·) and ceig(·) are as in (2). Let M ∼

D(d, d, β). Then, (2) ensures M ∈ Md(gap, α) with probability 1. For the sake of contradiction,
suppose that Alg is a LinSysAlg which satisfies the guarantee of (1) for all

A : cond(A) ≤ 1 + α+
1

gap
= O

(
d2
)
.

Then, for the universal constant c := 1
20cgap(β) , there exists an EigVecAlg Algeig which satisfies,

for all M ∈Md (gap, α),

PAlgeig,M

[
v̂>Mv̂ ≥

(
1− 1

20d2

)
λ1(M)

]
= PAlgeig,M

[
v̂>Mv̂ ≥ (1− c gap)λ1(M)

]
≥ 1− Ω(

√
β),

whose query complexity Query(Algeig) is bounded by

Query(Alg) · Oα
(

(log 1
Ω(
√
β)∧ e) · log2+log d

1∧c gap,1

)
= Query(Alg) · O

(
log2+log d

)
,

where we use gap = Θ(d2), and that α, c, β,Ω(β) depend on universal constants, and not on the
choice of dimension d. By Theorem 2, we must have Query(Algeig) ≥ d/2, whence

Query(Alg) ≥ c1√
gap
· Ω
(

(log2+log d)−1
)

= Ω
(
d(log2+log d)−1

)
.
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3. Proof of Theorem 2

The proof of Theorem 2 follows by deriving a lower bound for the problem of estimating the least
eigenvalue of a classical random matrix ensemble known as the (standard) Wishart matrices:

Definition 9 (Wishart Distribution) We write W ∼ Wishart(d) to denote a random matrix with

the distribution W
d
= XX>, where X ∈ Rd×d and Xi,j

i.i.d.∼ N (0, 1
dI).

We now state our main technical contribution, which lower bounds the number of queries re-
quired for estimation the smallest eigenvalue of a matrix W ∼Wishart(d):

Theorem 10 (Lower Bound for Wishart Eigenvalue Estimation) There exists a universal con-
stant p0 and function d : (0, 1) → N such that the following holds: for all β ∈ (0, 1), and all
d ≥ d(β), we have that W ∼Wishart(d) satisfies

(a) Any algorithm Alg which makes T ≤ (1 − β)d adaptively chosen queries, and returns an
estimate λ̂min of λmin(W) satisfies

PW,Alg

[
|λ̂min − λmin(W)| ≥ 1

4d2

]
≥ cwish

√
β.

(b) There exists constants C1(β) and C2(β) such that

PW

[
{λd(W) ≤ C1(β)d−2} ∩ {λd−1(W)− λd(W) ≥ C2(β)d−2} ∩ {‖W‖ < 5}

]
≥ 1− cwish

√
β

2 .

Note that, by taking β = O (1), Theorem 10 in fact demonstrates that (1− O (1)))d queries are re-
quired for an O (1) probability of failure, showing that no nontrivial improvements can be achieved.
Proof [Proof of Theorem 2] Fix β ∈ (0, 1), and let d0(·) = d(·) denote the function from Theo-
rem 10. For s ≥ d0(β), let W ∼Wishart(s), and define

M =

[
Is×s − 1

5W 0
0 0

]
∈ Rd×d.

By construction, M has sparsity s2. Let us denote the event of part (b) of Theorem 10 E . Then E
occurs with with probability 1− cwish

√
β

2 .. On E , we further have

• 0 �M � 1

• gap(M) = λ1(M)−λ2(M)
λ1(M) ≥ d−2

5 C2(β) = Ωβ(1) · d−2

• |λ1(M)− 1| = 1
5λmin(W) ≤ Ωβ(1)d−2

Now consider an estimator λ̂ of λmax(M). By considering the induced estimator λ̂min := 5(1− λ̂)
of λmin(W), part (a) of Theorem 10 and a union bound implies that

9
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PM,Alg

[
{|λ̂− λmax(M)| ≤ 1

20d2
} | E

]
= PW,Alg

[
{|λ̂min − λmin(W))| ≤ 1

4d2
} | E

]
= PW,Alg

[
{|λ̂min − λmin(W))| ≤ 1

4d2
} ∩ E

]
≥ PW,Alg

[
{|λ̂min − λmin(W))| ≤ 1

4d2
}
]
− PW,Alg [E ]

(i)

≥ cwish

√
β − 1

2
cwish

√
β =

1

2
cwish

√
β

where (i) uses Theorem 2. Hence, let D denote the distribution of M conditioned on E , any
EigValueAlg Alg with Query(Alg) ≤ (1− β)d queries satisfies

PM∼D,Alg

[
{|λ̂− λmax(M)| ≤ 1

20d2
}
]
≥ 1

2
cwish

√
β = Ω(

√
β).

3.1. Proof of Theorem 10

We begin the proof of Theorem 10 by collecting some useful facts from the literature regarding the
asymptotic distribution of Wishart spectra.

Lemma 11 (Facts about Wishart Matrices) Let (z
(d)
d , z

(d)
d−1) ∈ R2 denote random variables with

the (joint) law of (d2λd(W
(d)), d2λd−1(W(d))), where W(d) ∼ Wishart(d). The following are

true:

1. (z
(d)
d , z

(d)
d−1) converge in distribution toD distribution with P(zd,zd−1)∼D[0 < zd < zd−1] = 1

(Ramı́rez and Rider (2009, Theorem 1)).

2. zd has the density f(x) = I(x ≥ 0) · x−1/2+1
2 e−(x/2+

√
x) (e.g. Shen (2001, Page 3))

Moreover, for any ε > 0, limd→∞ PW∼Wishart(d)‖W‖op ≥ 4 + ε] = 0 (e.g. Anderson et al. (2010,
Exercise 2.1.18))

We note that we use (z
(d)
d , z

(d)
d−1) for the normalized (by d2) eigenvalues of W(d). We convert

these asymptotic guarantees into quantitative ones (proof in Section C.1).

Corollary 12 (Non-Asymptotic Properties) There exists a maps dreg, ddens : (0, 1) → N, func-
tions C1, C2 : (0, 1) → R>0, and a universal constant p0 such that the following holds: for any
δ ∈ (0, 1) and d ≥ dreg(δ),

PW∼Wishart(d)

[{
z

(d)
d−1 − z

(d)
d ≥ C2(δ)

}
∩
{
z

(d)
d ≤ C1(δ)

}
∩ {‖W‖op ≤ 5}

]
≥ 1− δ (3)

Moreover, for anyα ∈ (0, 1) and d ≥ ddens(α), P[λd(W
(d)) ≥ d−2] ≥ p0, while and P[λd(W

(d)) ≤
α2d−2] ≥ p0α.

10
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We now show establish, in an appropriate basis, W ∼ Wishart(d) admits a useful block de-
composition:

Lemma 13 Let W ∼Wishart(d). Then, for any sequence of queries v(1), . . . , v(T ) and responses
w(1), . . . , w(T ), there exists a rotation matrix V constructed solely as a function of v(1), . . . , v(T )

such that the matrix VWV> can be written

VWV> =

[
Y1Y

>
1 Y1Y

>
2

Y2Y
>

1 Y2Y
>

2 + W̃

]
where W̃ conditioned on the event v(1) = v(1), . . . , v(T ) = v(T ), w(1) = w(1), . . . ,w(T ) = w(T )

satisfies ( d
d−T ) · W̃ ∼Wishart(d− T ) distribution.

The above lemma is proven in in Appendix C.2. The upshot of the lemma is that after T queries,
there is still a portion W̃ of W that remains unknown to the query algorithm. We now show that
this unknown portion exerts significant influence on the smallest eigenvalue of W. Specifically, the
following technical lemma implies that λmin(W) = λmin(VWV>) ≤ λmin(W̃):

Lemma 14 For A ∈ RT×T , B ∈ R(d−T )×T , and symmetric W̃ ∈ R(d−T )×(d−T ), let

M =

[
AA> AB>

BA> BB> +W

]
then λmin(M) ≤ λmin(W ).

Proof Let v ∈ Rd−T such that ‖v‖ = 1 and v>Wv = λmin(W ). Define z =

[
−A−>B>v

v

]
. Then

z>Mz = z>
[
−AB>v +AB>v

−BB>v +BB>v +Wv

]
= v>Wv = λmin(W )

Therefore, λmin(M) ≤ λmin(W ).

With all the above ingredients in place, we are now ready to complete the proof of Theorem 10:
Proof [Proof of Theorem 10] Let T ≤ (1 − β)d, and let t = 1

2d2
, ε = 1

4d2
. Moreover, let

Z := {v(1), . . . , v(T ),w(1), . . . ,w(T )} encode the query-response information, and let W̃ denote
the matrix from Lemma 13. Finally, define the error probability

perr := P[|λ̂min − λmin(W)| ≥ ε].

We can now lower bound the probability of error by lower bounding the probability that the algo-
rithm ouputs an estimate λ̂min above a threshold t, while the corner matrix W̃ has smallest eign-
value below t− 1

ε . We can then decouple the probability of these events using independence of W̃
conditioned on the queries

perr ≥ P[{λ̂min ≥ t} ∩ {t− ε ≥ λmin(W)}]
(i)

≥ P[{λ̂min ≥ t} ∩ {t− ε ≥ λmin(W̃)}]

= E
[
P[{λ̂min ≥ t} ∩ {t− ε ≥ λmin(W̃)} | Z]

]
≥ E

[
P[λ̂min ≥ t | Z] · P[W̃ ≤ t− ε]

]
= P[λmin(W̃) ≤ t− ε] · P[λ̂min ≥ t], (4)

11
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where (i) uses Lemma 14, and (ii) use the fact that W̃ has a Wishart distribution conditioned on Z,
and thus λmin(W̃) is independent of Z. On the other hand, we have

perr ≥ P[{λ̂min < t} ∩ {λmin(W) ≥ t+ ε}] ≥ P[λmin(W) ≥ t+ ε]− P[λ̂min ≥ t],

so that P[λ̂min ≥ t] ≥ P[λmin(W) ≥ t+ ε]− perr. Together with (4), this implies

perr ≥ P[λmin(W̃) ≤ t− ε] · P[λ̂min > t]

≥ P[λmin(W̃) ≤ t− ε] · (P[λmin(W) ≥ t+ ε]− perr) .

Performing some algebra, and recalling ε = 1
4d2

, t = 2ε,

perr ≥
P[λmin(W̃) ≤ t− ε] · P[λmin(W) ≥ t+ ε]

1 + P[λmin(W̃) ≤ t− ε]
≥

P[λmin(W̃) ≤ 1
2 ] · P[λmin(W) ≥ 1]

2
.

Finally, since T ≤ (1− β)d, we have (d− T )/d ≥ β. Thus,

P
[
λmin(W̃) ≤ 1

2

]
= P

W̃∼Wishart(T−d)

[
λmin(W̃) ≤ d− T

2d

]
≥ P

W̃∼Wishart(T−d)

[
λmin(W̃) ≤ β

2

]
.

Let d(β) = β−1ddens(
β
2 ), where ddens ddens is the function from Corollary 12. We then see that

for all d for which d ≥ d(β), then βd ≥ ddens(
β
2 ), and thus Corollary 12 yields the existence of

constant p0 for which P[λmin(W) ≥ 1] ≥ p0, and P
W̃∼Wishart(T−d)

[λmin(W̃) ≤ β
2 ] ≥

√
β/2p0.

Hence, setting cwish =
p20

2
√

2
, we conclude

perr ≥
P[λmin(W̃) ≤ 1

2 ] · P[λmin(W) ≥ 1]

2

≥
P
W̃∼Wishart(T−d)

[
λmin(W̃) ≤ 1−β

2

]
· P[λmin(W) ≥ 1]

2

≥
√
β/2p0 · p0

2
=

p2
0

2
√

2

√
β = cwish

√
β.
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Appendix A. Proof of Proposition 8

The proof of Proposition 8 has two steps. First, we show that if Alg is LinSysAlg that can solve a
linear system to high precision (in the Euclidean norm), then Alg implies the existance of an Algeig

which can recover the top eigenvector of a matrix up to roughly that precision:

Lemma 15 (Shift-and-Invert Reduction) For parameters α > 0 and gap ≥ 1, and recall the set

Md(gap, α) :=
{
M ∈ Sd++ : gap(M) ≥ gap, |λ1(M)− 1| ≤ α gap, λ1(M) ∈

[
1
2 , 2
]}
,

and set gapα := 1
3+4α and condα = 1

gap
+(1+α). Further, suppose Alg is a LinSysAlg with query

complexity T , and satisfies, for a given ε ∈ (0, 1), and for all A ∈ Sd++ with cond(A) ≤ condα and
b ∈ Rd,

PA,b,Alg
[
‖x̂−A−1b‖22 ≤

( εgapα
5

)2 ‖A−1b‖22
]
≥ 1− δ

Then, for any τ ≥ 1 and d for which ε ≤ 1
τ
√
d

, and foran R(ε, α) = O
(

log(1/ε)
gapα

)
, there exists an

an EigVecAlg, Algeig, which has query complexity Query(Algeig) ≤ Query(Alg) · R(ε, α), and
satisfies

PM,Algeig

[
v̂>Mv̂ ≥ λ1(M)(1− ε2)

]
≥ 1− δR−O

(
τ−1

)
− e−Ω(d), ∀M ∈Md(gap, α)

This lemma is obtained by the so-called shift-and-invert procedure, which approximates v1(M) by
running the power method on the A−1, where A = γI −M is a “shifted” version of M for an
appropriate shift parameter γ.

Second, we show that if Alg can solve a linear system to moderate O
(

1
gap

)
-precision in the

‖ · ‖A, it can be bootrsapped to obtain high precision solutions in ‖ · ‖2:

Lemma 16 (Bootstrapping Moderate Precision Solves) Fix cond ≥ 1, and suppose Alg satis-
fies, for all A : cond(A) ≤ cond,

Px0,b,Alg
[
‖x̂−A−1b‖2A ≤

‖x0 −A−1b‖2λ1(A)

econd

]
≥ 1− 1

e (5)

Then, any for any ε, δ ∈ (0, 1/e), there exist a LinSysAlg, Alg′ with Query(Alg′) ≤ Query(Alg) ·
O (Q(ε, δ)) which satisfies

PA,x0,b,Alg
[
‖x̂−A−1b‖22 ≤ ε‖x0 −A−1b‖22

]
≥ 1− δ,

where Q(ε, δ) := (log 1
ε ) log(1

δ log 1
ε ),

Proposition 8 now follows from combining these two lemmas above
Proof Let τ = O (d) and d ≥ dmin, for dmin to be sufficiently large that the termO (τ)+e−Ω(d) ≤
1/2e. For a parameter c, we define the following constants.

ε = min{c gap, 1/τ
√
d} = Ω(min{d−3/2, c gap})

ε′ :=
(εgapα

5

)2
, δ :=

1

2eR(ε, α)
.
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Now, suppose that Alg0 is a LinSysAlg which satisfies (5) with query compexity Query(Alg0) ≤ T .
Then, by Lemma 16 the exists a LinSysAlg Alg with query complexity T ·Q(ε′, δ) satisfying

PA,b,Alg
[
‖x̂−A−1b‖22 ≤ ε′‖A−1b‖22

]
≥ 1− δ,

Hence, by Lemma 15, there exists an EigVecAlg Algeig with query complexity T ·Q(ε′, δ) ·R(ε, α)
which satisfies, for all M ∈Md(gap, α)

PM,Algeig

[
v̂>Mv̂ ≥ λ1(M)− cgap

]
≥ 1− δ −O (τ) + e−Ω(d) ≥ 1− 1

e
.

We can increasing the success probability of Algeig to ≥ 1 − δ by restarting Algeig L = O
(
log 1

δ

)
times to obtain v̂(1), . . . , v̂(L), and returning

v̂ := arg max{v ∈ {v̂(j)}j∈[L] : v>Mv},

In total, this requires at most L+LT ·Q(ε′, δ) ·R(ε, α) = T O
(
(log 1

δ ) ·Q(ε′, δ) ·R(ε, α)
)

queries.
We conclude by boudning Q(ε′, δ) ·R(ε, α). We have that

R(ε, α) = O
(

log(1/ε)

gapα

)
≤ O

(
log(1/gapαε)

gapα

)
Q(ε′, δ) =

(
log

1

ε′

)
·
(

log
1

δ
(log

1

ε′
)

)
= O

((
log

1

gapαε

)
·
(

log
1

R(ε.α)
+ log log

1

gapαε
)

))
= O

((
log

1

gapαε

)
·
(

log
1

gapα
+ log log

1

gapαε
)

))
Hence

Q(ε′, δ) ·R(ε, α) = O
(

1

gapα
log2 1

gapαε

(
log

1

gapα
+ log log

1

gapαε

))
= O

(
log 1

gapα

gapα
log2+log 1

gapαε

)

= Oα
(

log2+log d

min{1, cgap}

)
,

where we recall the notation logp+log(x) = (logp x) log log x.

A.1. Proof of Lemma 16

Recall the function f(x) = 1
2x
>Ax− b>x, and note that

f(x)− f(A−1b) = ‖x−A−1b‖2A.
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Let q ≥ 1 be a parameter to be selected later, and let Algq denote the algorithm which (a) runs Alg
q times to obtain estimates x̂(1), . . . , x̂(q), and (b) makes at most q additional queries to find

x̂ ∈ arg min
{
f(x) : x ∈ {x̂(1), . . . , x̂(q)}

}
. (6)

Then, by independence of the internal randomness of Alg, we can ensure

Px0,b,Algq

[
‖x̂−A−1b‖2A ≤

‖x0‖2λ1(A)

econd

]
≥ 1− e−q

using at most Tq + q queries.
Next, oberve that if ‖x̂ − A−1b‖2A ≤

‖x0‖2λ1(A)
econd ≤ ‖x0‖2λ1(A)

econd(A) = 1
e‖x0‖2λd(A), then ‖x̂ −

A−1b‖22 ≤ 1
e‖x0 − A−1b‖22. Hence, by repeating Algq k-times, each time setting x0 for the j-th

repetition to coincide with x̂ from the j − 1st, we find that

Px0,b,Algq

[
‖x̂−A−1b‖2A ≤ e−k

‖x0 −A−1b‖2λ1(A)

econd

]
≥ 1− ke−q

Hence, setting k = log(1
ε ) and q = log 1

δ log(1
ε ), we obtain the lemma.

A.2. Proof of Lemma 15

Let M ∈Md(α, gap), so that λ1(M) ∈ [1/2, 2], gap(M) ≥ gap and |M − I| ≤ αgap. We define
the associated “shifted” matrix A := (1+(1+α)gap)I−M . Crucially, A−1 and M have the same
top eigenvector, and their eigenvalues are related by the correspondence

λj(A
−1) =

1

1 + 2αgap− λj(M)

We can therefore compute the eigengap of A via

λ2(A−1)

λ1(A−1)
=

1 + (1 + α)gap− λ1(M)

1 + (1 + α)gap− λ2(M)
=

1 + (1 + α)gap− λ1(M)

1 + (1 + α)gap− (1− gap)λ1(M)

=
1

1 + gapλ1(M)
1+(1+α)gap−λ1(M)

(i)

≤ 1

1 + gapλ1(M)
(1+2α)gap

(ii)

≤ 1

1 + 1
2(1+2α)

where (i) uses |λ1(M)− 1| ≤ αgap, and (ii) uses λ1(M) ≥ 1/2. Hence,

gap(A−1) ≥
1

2(1+2α)

1 + 1
2(1+2α)

=
1

1 + 2(1 + 2α)
=

1

3 + 4α
:= gapα

In other words, the eigengap of A−1 depends on the parameter α, but not on the eigengap of M .
Hence we can effectively run the power method on A−1 to compute the top eigenvector of M . Of
course, we cannot query A−1, but we can approximate a query A−1v by using a LinSysAlg. To
facillitate this reduction, we observe that cond(A) = O

(
gap−1

)
:

Claim 17 cond(A) ≤ condα := 1
gap

+ (1 + α).
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Proof Since M � 0, λ1(A) ≤ 1 + (1 +α)gap. Moreover, since |λ1(M)− 1| ≤ αgap, λmin(A) =
1 + 2αgap− λ1(M) ≥ gap.

We our now ready to present the reduction. Let Alg be LinSysAlg satisfying the condition
PA,b,Alg

[
‖x̂−A−1b‖22 ≤

( εgapα
5

)2 ‖A−1b‖22
]
≥ 1− δ for all A : cond(A) ≥ condα and b ∈ Rd,

For a round numberR ≥ 1 to be selected later, precision ε, and failure probability δ, we define a
procedure Algeig in Algorithm 1, which uses Alg as a primitive to run an approximate power method
on A−1, up to the errors:

∆r := ‖x̂(r) −A−1ur‖2.

Algorithm 1: Algeig (Approximate Power Method via Alg)

1 Input: Confidence Parameter ε, accuracy parameter δ

2 Draw u0
unif∼ Sd−1

3 for rounds r = 1, 2, . . . , R do
4 call Alg to obtain x̂(r) such that

P
[
‖x̂(r) −A−1ur−1‖22 ≤

(εgapα
5

)2
‖A−1ur−1‖22

]
≥ 1− δ (7)

Set ur := x̂(r)/‖x̂(r)‖2
5 Return v̂ = ur.

This “noisy” power method admits a black-box analysis due to Hardt and Price (2014):

Lemma 18 (Corollary 1.1 in Hardt and Price (2014), k = p = 1, specialized to Algorithm 1) Fix
a parameter τ > 1, and an ε ≤ 1

τ
√
d

. Then, if

∆r ≤
(
λ1(A−1)− λ2(A−1)

5

)
ε,

then for an R = O
(

log(dτ/ε)
gap(A−1)

)
,
√

1− 〈uR, v1(M)〉2 ≤ ε with probability 1 − O
(
τ−1

)
− e−Ω(d)

over the draw of x0, where c is a universal constant.

We first interpret the bound
√

1− 〈uR, v1(M)〉2 in terms of the subotimality λ1(M) − u>RMuR.
Since 0 �M � 2I , we have that if the conclusion of Lemma 18 is satisfied,

u>RMuR = λ1(M)(u>Rv1(M))2 +
d∑
i=2

λi(M) · (u>Rvi(M))2

≥ λ1(M)(u>Rv1(M))2 = λ1(M)(1 + (1− (u>Rv1(M))2)) = λ1(M)(1− ε2).
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We can now conclude the proof by verifying

P[u>RMuR ≥ λ1(M)− 2ε2] +O (τ) + e−Ω(d)

≥ P
[
∀r ∈ [R]∆r ≤

(
λ1(A−1)−λ2(A−1)

5

)
ε
]

= P
[
∀r ∈ [R]∆r ≤ λ1(A−1)

(
gap(A−1)

5

)
ε
]

(i)

≥ P
[
∀r ∈ [R]∆r ≤ ‖A−1ur−1‖2

(gapα
5

)
ε
] (ii)

≥ Rδ,

where (i) follows from the bound gap(A−1) ≤ gapα and ‖A−1ur−1‖2 ≤ ‖ur−1‖2λ1(A−1) =

λ1(A−1), and (ii) by a union bound over the event in (7), with R = O
(

log(dτ/ε)
gap(A−1)

)
= O

(
log(1/ε)
gapα

)
,

where we recall ε ≤ 1
τ
√
d

.

Appendix B. Proof of Theorem 6 for Arbitrary Condition Number

In this section, we given proof of Theorem 6 for general condition number. Using Proposition 8
directly for matrices with larger gap incurs a dimension on log of the ambient dimension.

To sharpen this, we state a slightly refined reduction. For this to go through, define, for a
subspace V ⊂ Rd, let

Md(gap, α,V) := {M ∈Md(gap, α) : v1(M) ∈ V}

to denote the restriction of Md(gap, α) to matrices whose top eigenvector is know to lie in a sub-
space V . For this class, we can improve Proposition 8 as follows:

Proposition 19 (Eigenvector-to-Linear-System Reduction, Known Subspace) Fix a gap ∈ (0, 1),
α > 0, and suppose that Alg be a LinSysAlg which which satisfies (1) with cond := 1 + α + 1

gap

for all A ∈ Sd++ with cond(A) ≤ cond. Then, for any δ ∈ (0, 1/e), there exists an EigVecAlg,
Algeig, which satisfies

PAlgeig,M

[
v̂>Mv̂ ≥ (1− cgap)λ1(M)

]
≥ 1− δ, ∀M ∈Md (gap, α,V)

with query complexity at most

Query(Algeig) ≤ Query(Alg) · Oα
(

(log
1

δ
) · log2+log dim(V)

min{cgap, 1}

)
,

where Oα (·) hides multiplicative and additive constants depending on α.

Proof The proof is nearly identical to the proof of Theorem 8. The only difference is that, by
initializing u0 to be uniform on Sd−1 ∩ V , the guarantee of the noisy power method (Lemma 18)
can be improved to depend on dim(V) instead of the ambient dimension d.

The proof of Theorem 6 for general cond is as now as follows: Fix s ∈ [d0(1/2) ∨ dmin, d]. Let

β = 1
2 , M ∼ D(s, s, β), and define the embedded matrix M =

[
M 0
0 0

]
∈ Rd×d. Then, v1(M)
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lies in the s-dimensional subspace V corresponding to the first s entries, it is easy to check that
M ∈ Md(gap, α,V), where gap :=

cgap(β)
s2

and α :=
ceig(β)
cgap(β) analogously to the s = d case of

Theorem 6.
Retracing the steps, and replacing the dependence of d with s, we find if Alg satisfies the guar-

antee of (1) for all cond(A) ≤ cond := 1 + α+ 1
gap

= Θ(s2),

Query(Alg) ≥ c1√
gap
· Ω
(

(log2+log s)−1
)

= Ω
(
s(log2+log s)−1

)
.

Appendix C. Omitted Proofs from Section 3

C.1. Proof of Corollary 12

For the first point, fix a δ ∈ (0, 1). Then by Lemma 11, the limiting normalized distributions of
the eigenvalues (zd, zd−1) satisfy P[{zd ≥ C1(δ)} ∩ {zd−1 − zd ≤ C2(δ)}] ≤ δ

3 for appropriate
constantsC1(δ), C2(δ). By convergence in distribution, and the fact that {z1 ≥ C1(δ)}∩{z2−z1 ≤
C2(δ)} corresponds to the event that (z1, z2) lie in a closed set, limd→∞ P[{z(d)

d ≥ C1(δ)} ∩
{z(d)
d−1 − z

(d)
d ≤ C2(δ)}] ≤ δ

3 , so that for all d sufficently large as a function of δ, P[{z(d)
d ≥

C1(δ)} ∩ {z(d)
d−1 − z

(d)
d ≤ C2(δ)}] ≤ 2δ

3 . Finally, for all d sufficiently large as a function of δ, we
have P[λmax(W) ≥ 5] ≤ δ

3 . The result now follows from a union bound.
For the second point, we use that the limiting distribution of d2λ1(W) has density f(x) =

I(x ≥ 0) · x−1/2+1
2 e−(x/2+

√
x). Recalling the notation zd for a random variable with said limiting

distribution, integrating the density shows that there exists a constant p such that, for all for all
α ∈ (0, 1), P[zd ≥ 1] ≥ p and P[zd ≤ α2] ≥ pα. The bound now follows by invoking convergence
in distribution and setting, say p0 = p/2.

C.2. Proof of Lemma 13

Without loss of generality, the query vectors v(1), . . . , v(T ) are orthonormal because the response to
any sequence of queries can be calculated from the responses to a sequence of orthonormal queries.

We define a sequence of matrices V1, . . . ,VT such that for each t ≤ T , the product V1:t =
VtVt−1 . . .V1 is an orthonormal matrix whose first t rows are v(1), . . . , v(t). This can be accom-
plished by choosing Vt to be an arbitrary orthonormal matrix whose first t−1 rows are e1, . . . , et−1,
and whose tth row is chosen so that Vt[t, :]V1:t−1 = v(t)>. This is always possible because each
Vt is a rotation matrix and thus V1:t−1 is full rank and orthonormal. Importantly, the matrix Vt

can be constructed as a function of v(1), . . . , v(t) only, and does not depend in any way on the later
queries v(t+1), . . . , v(T ).

Similarly, we define another sequence of matrices R1, . . . ,RT such that for each t ≤ T , the
product R1:t = R1R2 . . .Rt is an orthonormal matrix whose first t columns form an orthonormal
basis for the first t rows of V1:tX. This can be accomplished by choosing Rt to be an arbitrary
orthonormal matrix whose first t − 1 columns are e1, . . . , et−1, and whose tth column is the (nor-
malized) component of the tth row of V1:tX that lies outside the span of the first t − 1 rows of
V1:tX. Importantly, the matrix Rt can be constructed as a function of the first t rows of V1:tX
only.

20



THE GRADIENT COMPLEXITY OF LINEAR REGRESSION

By the construction of V1:t and R1:t, for each t ≤ T , querying v(t) and observing the response
w(t) = XX>v(t) is equivalent to querying et and observing the response w̃(t) = V1:tw

(t) =
V1:tXR1:tR

>
1:tX

>V>1:tet.
Let V‖1:t denote the first t rows of V1:t, and let V⊥1:t denote the remaining d− t rows. Similarly,

let R‖1:t denote the first t columns of R1:t, and let R⊥1:t denote the remaining d− t columns. Then,
for any t ≤ T we can decompose

(V1:tXR1:t) (V1:tXR1:t)
> =


(
V
‖
1:tXR

‖
1:t

)(
V
‖
1:tXR

‖
1:t

)> (
V
‖
1:tXR

‖
1:t

)(
V⊥1:tXR

‖
1:t

)>
(
V⊥1:tXR

‖
1:t

)(
V
‖
1:tXR

‖
1:t

)> (
V⊥1:tXR

‖
1:t

)(
V⊥1:tXR

‖
1:t

)>
+
(
V⊥1:tXR⊥1:t

) (
V⊥1:tXR⊥1:t

)>


(8)
We will now prove the lemma by induction.

Base case: Recall that V1 is constructed solely as a function of v(1), which is independent of X.
Therefore, V‖1X is independent of V⊥1 X. The matrix R1 is constructed as a function of V‖1X, and
is thus independent of V⊥1 X. Consequently, V⊥1 XR

‖
1 is independent of V⊥1 XR⊥1 .

Finally, we observe from (8) that w̃(1) = V1XR1R
>
1 X
>V>1 e1 is measurable with respect to

the matrices V‖1XR
‖
1 and V⊥1 XR

‖
1, both of which are independent of V⊥1 XR⊥1 .

We conclude that V⊥1 XR⊥1 is independent of both the first query v(1) and the first observation

w(1), and thus has a entries (V⊥1 XR⊥1 )i,j
i.i.d.∼ N (0, 1

d) conditioned on v(1) = v(1) and w(1) = w(1).

Inductive step: Suppose that for all t < T the matrix V⊥1:tXR⊥1:t has entries entries which are

(V⊥1:tXR⊥1:t)i,j
i.i.d.∼ N (0, 1

d) conditioned on the first t queries and responses.
The algorithm’s T th query is a function of the first T − 1 queries and observations, thus VT and

V1:T are independent of V⊥1:T−1XR⊥1:T−1 by the inductive hypothesis. Therefore, V‖1:TXR⊥1:T−1

is independent of V⊥1:TXR⊥1:T−1. The matrices RT and R1:T are constructed as a function of

V
‖
1:TX and are thus independent of V⊥1:TXR⊥1:T−1. We conclude that V⊥1:TXR

‖
1:T is independent

of V⊥1:TXR⊥1:T .
Finally, we observe from (8) that w̃(T ) = V1:TXR1:TR

>
1:TX

>V>1:T eT is measurable with
respect to V

‖
1:TXR

‖
1:T and V⊥1:TXR

‖
1:T , both of which are independent of V⊥1:TXR⊥1:T .

Therefore, by induction V⊥1:TXR⊥1:T is independent of the algorithm’s T queries and thus has

entries (V⊥1:TXR⊥1:T )i,j
i.i.d.∼ N (0, 1

d) for 1 ≤ i, j ≤ d− T conditioned on v(1) = v(1), . . . , v(T ) =

v(T ) and w(1) = w(1), . . . ,w(T ) = w(T ). Hence, W̃ := (V⊥1:TXR⊥1:T )(V⊥1:TXR⊥1:T )> satisfies
( d
d−T ) · W̃ ∼Wishart(d− T ).
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