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Abstract
We consider two agents playing simultaneously the same stochastic three-armed bandit problem.
The two agents are cooperating but they cannot communicate. Under the assumption that shared
randomness is available, we propose a strategy with no collisions at all between the players (with
very high probability), and with near-optimal regret O(

√
T log(T )). We also argue that the extra

logarithmic term
√

log(T ) should be necessary by proving a lower bound for a full information
variant of the problem.

1. Introduction

We consider the (cooperative) multi-player version of the classical stochastic multi-armed bandit
problem. We focus on the case of two players, Alice and Bob, and three actions. The problem can
be defined as follows. The environment1 is described by the mean losses p = (p1, p2, p3) ∈ [0, 1]3

for the three actions. The parameter p is unknown to the players. Denote (`t(i))1≤i≤3,1≤t≤T for a
sequence of independent random variables such that P(`t(i) = 1) = pi and P(`t(i) = 0) = 1− pi.
At each time step t = 1, . . . , T , Alice and Bob choose independently two actions iAt ∈ {1, 2, 3} and
iBt ∈ {1, 2, 3}. If they collide, i.e. iAt = iBt , then they both suffer the maximal loss of 1. Otherwise
they respectively suffer the losses `t(iAt ) and `t(iBt ). As is usual in bandit scenarios, each player
receives only its own loss as feedback (in particular when a player receives a loss of 1, they don’t
know if they have collided or if it came from the loss `t). The goal of the players is to minimize
their (combined) cumulative losses. To evaluate the performance of Alice and Bob we measure the
regret RT , defined as the (expected) difference between their cumulative losses and the best they
could have done if they knew p, namely T ·p∗ where p∗ = min(p1 +p2, p1 +p3, p2 +p3). That is:

RT =
T∑
t=1

(
2 · 1iAt =iBt

+ 1iAt 6=iBt (piAt + piBt )− p∗
)
. (1)

1.1. Main result and related works

The above problem is motivated by cognitive radio applications, where players correspond to de-
vices trying to communicate with a cell tower, and the actions correspond to different channels.

1. We focus on {0, 1}-valued losses. Note that it is easy to reduce [0, 1]-valued losses to {0, 1}.
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The model was first introduced roughly at the same time in Lai et al. (2008); Liu and Zhao (2010);
Anandkumar et al. (2011), and has been extensively studied since then (Avner and Mannor, 2014;
Rosenski et al., 2016; Bonnefoi et al., 2017; Lugosi and Mehrabian, 2018; Boursier and Perchet,
2018; Alatur et al., 2019; Bubeck et al., 2019). Despite all this attention, at the moment the state
of the art regret bound is Õ(T 3/4). The latter regret was obtained for two players in Bubeck et al.
(2019) (in fact it holds in the more general non-stochastic case), and it can also be recovered from
the bounds in Lugosi and Mehrabian (2018); Boursier and Perchet (2018) as we explain in the end
of Section 2. On the other hand no non-trivial lower bound is known (i.e. only Ω(

√
T ) is known). A

near-optimal regret of Õ(
√
T ) has been obtained under various extra assumptions such as revealed

collisions, or assuming that players can abstain from playing, or assuming that the mean losses are
bounded away from 1 (Lugosi and Mehrabian, 2018; Boursier and Perchet, 2018; Bubeck et al.,
2019).

Our main contribution is the first Õ(
√
T ) algorithm for this problem, in the case where there are

3 arms:

Theorem 1 There exists a randomized strategy (with shared randomness) for Alice and Bob such
that, for any p ∈ [0, 1]3, we simultaneously have

E[RT ] ≤ 220
√
T log(T )

and
P
(
∀t ∈ [T ], iAt 6= iBt

)
≥ 1− 1

T
, (2)

where the expectation and the probability are with respect to both the loss sequence and the ran-
domness in Alice and Bob’s strategies2.

The property (2) is an important part of our result, and it points to a fundamental difference
between our approach and all previous works on cooperative multi-player multi-armed bandits.
Indeed, all previous works have proposed strategies that use collisions as a form of implicit com-
munication between the players, since Alice can affect Bob’s feedback by trying to force collisions.
For example, assume as in Lugosi and Mehrabian (2018); Boursier and Perchet (2018) that the
mean-losses are bounded from above by 1−µ, i.e., ‖p‖∞ ≤ 1−µ. Then if Bob plays an action for
Ω(1/µ) rounds and does not observe a single 0 loss, he knows that with high probability Alice must
have been playing that action too, effectively making communication possible. Leveraging this im-
plicit communication device, Lugosi and Mehrabian (2018); Boursier and Perchet (2018) obtain a
strategy with regret Õ(

√
T + 1/µ) (we explain at the end of Section 2 how to use this result to

obtain an algorithm with Õ(T 3/4) regret without any assumption). In Bubeck et al. (2019) another
Õ(T 3/4) strategy is proposed. It is epoch-based, with Alice playing a fixed action in an epoch, and
Bob playing a sleeping-bandit strategy where arms awaken as losses with value 0 are observed (i.e.,
an arm is awake for Bob when he can guarantee that Alice is not there for this epoch). Thus we see
that both methods heavily rely on collisions for implicit communication. The approach presented
in this paper is fundamentally different, in that with very high probability the two players do not
collide at all. Thus we achieve one of the key properties required by the underlying cognitive radio

2. By our method, we can actually obtain a slightly stronger version where, with probability at least 1−1/T with respect
to the i.i.d. loss sequence, we have both the expected regret bound and almost surely no collision (with respect to the
players’ randomness).
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application, namely that the two agents do not communicate in any way once the game has started.
We note however that for the strategy presented here it is crucial that Alice and Bob have shared
randomness. However, in the arxiv version of the present work Bubeck and Budzinski (2020), we
present a different algorithm achieving regret O(

√
T log T ) without shared randomness, but also

without the no-collision property3.

1.2. A toy problem

In order to motivate our new strategy, it will be useful to first consider a different model which
contains the essence of the difficulty of coordination without communication, but without the usual
exploration or exploitation dilemma. The first modification that we propose is to assume that, even
under collisions, a “real” loss is revealed. Precisely, if both players play the same action i at round
t, then we assume that they both observe independent samples from Ber(pi) (rather than observing
1 in the original model). This modification completely removes the possibility for implicit com-
munication, since Alice’s feedback is now completely unaffected by the presence of Bob (and vice
versa). Concretely we denote (`Xt (i))1≤i≤3,1≤t≤T,X∈{A,B} for a sequence of independent random
variables such that P(`Xt (i) = 1) = pi and P(`Xt (i) = 0) = 1 − pi. When player X ∈ {A,B}
plays action i, they observe the loss `Xt (i) (irrespective of the other player’s action). Note that in
this model we still assume that the players suffer a loss of 1 if they collide, they simply don’t ob-
serve their actual suffered loss (to put it differently, we are still concerned with the regret (1)). The
problem now looks significantly more difficult for the players4, and it is not clear a priori that any
non-trivial guarantee can be obtained. In fact it is non-trivial even with full information: that is at
the end of round t, player X ∈ {A,B} observes (`Xt (1), `Xt (2), `Xt (3)). For this modified model
we assume such a full information feedback. The reason why we have chosen to have two different,
independent loss sequences `A and `B is that if we had `A = `B , then A and B would have exactly
the same information, in which case it is very easy to avoid collisions.

Our first task will be to give a strategy with regret O(
√
T log(T )) for the full-information toy

model, which we do in Section 3. The extension to the bandit scenario is then done in Section
4. An interesting property of the toy model is that it is amenable to lower bound arguments, since
we avoid the difficulty created by implicit communication. In particular, in Appendix E we prove
the first non-trivial lower bound for multi-player online learning, by showing that the extra factor√

log(T ) is necessary:

Theorem 2 There exists a universal constant c > 0 and a distribution over p such that, for any
strategy in the full-information toy model, one has:

EpRT ≥ c
√
T log(T ) .

Unfortunately, there does not seem to be a direct way to transfer this lower bound to the original
bandit problem.

3. Note that Bubeck et al. (2019) show that for the adaptive adversary model in non-stochastic bandit, the shared
randomness assumption is necessary to get sublinear regret. Observe also that from a minimax perspective, the
shared randomness assumption is most natural as it is needed to even define a minimax strategy. Finally we note
that we do propose a derandomization approach (Appendix C) for a toy variant of the problem, see below for more
details.

4. It is not strictly speaking more difficult, since always receiving the feedback `Xt (it) means that the players have a
slightly more accurate estimate of p.
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2. Difficulties of coordination without communication

Whether we consider the toy model, or strategies for the bandit scenario that do not exploit the extra
1’s due to collisions, we face the same question: how can two agents with imperfect information
coordinate without communicating? In this section we illustrate some of the difficulties of coordi-
nation without communication. We focus on the most basic bandit strategy, namely explore then
exploit. We show how to appropriately modify it to obtain T 4/5 regret for the bandit scenario, using
shared randomness. All the discussion applies similarly to the full-information toy model, and as
we note at the end of the section it gives T 3/4 regret in that case.

2.1. Explore then exploit

Consider the following protocol:

1. Alice and Bob first explore in a round-robin way for Θ(T b) rounds, where b ∈ (0, 1) is
a fixed parameter. Denote qA(i) for the average loss observed by Alice on action i (and
similarly qB(i) for Bob).

2. Using these estimates, the players can order the arms in terms of expected performances. De-
note (A1, A2, A3) (respectively (B1, B2, B3)) for the order Alice (respectively Bob) obtains,
in ascending order of average empirical loss (i.e., qA(A1) ≤ qA(A2) ≤ qA(A3)).

3. For the remaining rounds they want to exploit. Alice and Bob could have agreed that Alice
will play the best action, and Bob the second best, thus for the remaining of the game Alice
plays A1 and Bob plays B2.

The problem with this naive implementation of explore/exploit is clear: there could be ambiguity
on which action is the best, for example if p1 = p2 � p3, in which case both A1 and B2 are
independent and uniform in {1, 2}. Thus in this case there is a constant probability of collision,
resulting in a linear regret. A natural fix is for Alice to build a set of “potential top action”A and for
Bob to build a set of “potential second best action” B. To decide whether an action is “potentially
the top action” we fix an “ambiguity threshold” τ , and now replace step 3 above with:

3’ If qA(A1) ≤ qA(A2) − τ (A1 is “clearly” the best) then let A = {A1} (in the same case for
B let B = B2), if not but qA(A2) ≤ qA(A3) − τ (A3 is “clearly” worse than A1 and A2)
then let A = {A1, A2} (in the same case for B let B = {B1, B2}), and if neither then let
A = {1, 2, 3} (same for B). To avoid collisions it makes sense for Alice to play min(A) and
for Bob to play max(B).

Unfortunately this is just pushing the problem to a different configuration of p. Indeed consider for
example p3 � p1 > p2 = p1 − τ . With a constant probability Alice could end up with A = {2}
and Bob with B = {1, 2}, in which case we have again a collision, and hence we get linear regret.

2.2. The root of the problem

Geometrically, the issues above come from the boundary regions of the “decision map” σ : ([0, 1]3)2 →
{1, 2, 3}2 from empirical estimates of the mean-losses to actions to be played in the exploitation
phase. All our results will come from careful considerations of these boundaries. Moreover, most
of the difficulties already arise for our proposed full-information toy model, hence the focus on the
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toy model first. We also note that the geometric considerations are much easier with two players
and three actions, which is why we focus on this case in this paper. The “high-dimensional” version
of the strategy proposed in Section 3 probably requires different tools.

Before going into the geometric considerations, we can illustrate one of our insights in the sim-
ple case of the explore/exploit strategy above. Namely we propose to make the decision boundaries
random. For the explore/exploit strategy this means taking the ambiguity threshold τ to be random.
Say we take it random at scale T−a for some parameter a ∈ [0, 1]. More precisely let τ = U/T a

with U a uniform random variable in [0, 1]. In particular, since we don’t distinguish differences
below the scale T−a, we might suffer a regret of T 1−a. On the other hand, the only risk of collision
is if Alice and Bob disagree on whether some gap ∆ = |pi − pj | is smaller than τ or not. Since
the fluctuations of the empirical means are of order T−b/2, we have that a collision might happen if
|τ −∆| = Õ(T−b/2). To put it differently, with high probability (over the observed losses during
the exploration phase), collisions happen only if

|U − T a∆| = Õ(T a−b/2) .

Because we have taken U uniform on [0, 1], the above event has probability (over the realization of
U ) at most Õ(T a−b/2). Thus finally we get a regret of order:

T · T a−b/2 + T · T−a + T b ,

which is optimized at b = 4/5 and a = 1/5, resulting in a Õ(T 4/5) regret.

2.3. Minor variants

We note that the same argument applies to the full-information toy model, where we are effectively
taking b = 1, resulting in a Õ(T 3/4) regret. Furthermore the same technique can be used to estimate
µ in Lugosi and Mehrabian (2018); Boursier and Perchet (2018), improving upon the above T 4/5 to
give T 3/4 for the bandit case.

3. Toy model upper bound

We prove here the following theorem:

Theorem 3 There exists a deterministic strategy for Alice and Bob in the full-information toy model
such that with probability at least 1− 1/T , one has both:

RT ≤ 320
√
T log(T ) , (3)

and ∀t ∈ [T ], iAt 6= iBt .

For 2 ≤ t ≤ T , i ∈ {1, 2, 3} and X ∈ {A,B}, we write

qXt (i) =
1

t− 1

t−1∑
s=1

`Xs (i),

with the convention qX1 (i) = 0. In other words qXt is the estimate of the vector p by player X
at time t. Our strategy is based on a subtle partition of the cube [0, 1]3. Precisely we build a map
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σt : [0, 1]3 → {1, 2, 3} × {1, 2, 3}, with σt =
(
σAt , σ

B
t

)
, such that Alice plays iAt = σAt (qAt ) and

Bob plays iBt = σBt (qBt ). An interesting aspect of Theorem 3 compared to Theorem 1 is that we
do not require shared randomness for the full-information toy model. However it will be easier for
us to first describe a shared randomness strategy, and then explain how to remove that assumption.
More precisely, we first build a random partition σ, and we prove Theorem 3 with (3) holding in
expectation over this random partition. We explain how to derandomize in Section C with a dynamic
partition.

We denote wt = 16

√
log(T )
t , and we fix the event

Ω =
{
∀t ∈ [T ], i ∈ {1, 2, 3}, X ∈ {A,B}, |qXt (i)− pi| <

wt
4

}
. (4)

Applying Hoeffding’s inequality and an union bound, one obtains

P(Ω) ≥ 1− 1

T
.

For the remainder of the section, we fix loss sequences for which Ω holds true. All probabilities
will be taken with respect to the randomness of Alice and Bob. We note in particular that under Ω
we have ‖qXt − p‖∞ ≤ wt

4 for X ∈ {A,B}, so we get

‖qAt − qBt ‖2 < wt . (5)

3.1. A random partition of the cube

3.1.1. CYLINDRICAL COORDINATES

To describe our partition, it will be more convenient to use cylindrical coordinates around the axis
D = {p|p1 = p2 = p3}. More precisely, for p = (p1, p2, p3) we write

mp =
p1 + p2 + p3

3
,

rp = d(p,D) =
√

(p1 −mp)2 + (p2 −mp)2 + (p3 −mp)2 ,

and θp ∈ [0, 2π) for the angle between the line from p to its orthogonal projection (mp,mp,mp)
on the axis D and the half-line {(mp − t,mp + 2t,mp − t) |t ≥ 0} (this angle is contained in the
plane orthogonal to D passing through p). We write p = (p1, p2, p3) = [mp, rp, θp].

An equivalent way to describe these cylindrical coordinates is as follows. Let us denote a =
1√
3
(1, 1, 1) (the main axis direction), b =

√
2
3

(
−1

2 , 1,−
1
2

)
(the direction of the half-line mentioned

above), and c =
√

2
3

(√
3

2 , 0,−
√

3
2

)
(the direction so that {a,b, c} forms an orthonormal basis).

We have:

p = 〈p,a〉a + rp cos(θp)b + rp sin(θp)c

=

mp

mp

mp

+

√
2

3
· rp ·

cos
(
θp + 2π

3

)
cos(θp)

cos
(
θp − 2π

3

)
 ,
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where the last equality comes from standard trigonometric identities.

The basic partitioning of interest is into the three regions corresponding to different top two
actions, namely p3 ≥ p1, p2 (players should play arms 1 and 2), p1 ≥ p2, p3, and p2 ≥ p1, p3. In
cylindrical coordinates these regions are described respectively by θ ∈

[
π
3 , π

]
, θ ∈

[
π, 5π

3

]
, and

θ ∈
[

5π
3 , 2π

]
∪
[
0, π3

]
.

3.1.2. TOPOLOGICAL DIFFICULTY

Intuitively, the “topological” difficulty of the problem is that, as θ varies continuously, the players
will face a decision boundary with a collision. For example, say that in the region around θ = 0
(namely θ ∈

[
5π
3 , 2π

]
∪
[
0, π3

]
) we play (iAt , i

B
t ) = (3, 1). As θ increases we enter the region

where we should stop playing action 3 and start playing action 2, and thus it is natural to play
(iAt , i

B
t ) = (2, 1) in the region θ ∈

[
π
3 , π

]
(i.e., only Alice is trying to figure out whether she plays

action 2 or 3, while Bob stays constant on action 1). On the other hand, as we decrease θ and enter
the region θ ∈

[
π, 5π

3

]
, we want to play (iAt , i

B
t ) = (3, 2) (i.e., it is now Bob who tries to figure

out whether to play action 2 or 1). The problem with this construction is that at θ = π we go
from configuration (2, 1) to configuration (3, 2), thus at this value of θ there is a constant chance of
collisions! The same occurs if (iAt , i

B
t ) = (3, 1). This observation is the core of our lower bound

proof in Section E.
To fix this issue, we propose to replace this fixed interface between (2, 1) and (3, 2) by a random

cut in the region θ ∈
[
π
3 , π

]
, where we will move from (2, 1) to (1, 2) (and thus at θ = π we move

from (1, 2) to (3, 2) and there is no risk of collision). We explain this construction next (see also
Figure 2).

3.1.3. RANDOM INTERFACE

Let Θ be a uniform random variable in
[
π
3 , π

]
(this is the only randomness needed by the players).

We write P = {[m, r, θ]|θ = Θ}, which is a (random) half-plane containing the axis D (this will
be our “random cut”, to be padded appropriately to move from (2, 1) to (1, 2)). More precisely, we

recall that wt = 16
√

log T
t , and define the following regions:

• At = {p = [m, r, θ]|π3 ≤ θ < Θ and d(p,P) ≥ wt},

• B′t = {p = [m, r, θ]|π3 ≤ θ < Θ and d(p,P) < wt},

• C ′t = {p = [m, r, θ]|Θ ≤ θ < π and d(p,P) < wt} \ D,

• Dt = {p = [m, r, θ]|Θ ≤ θ < π and d(p,P) ≥ wt},

• B′′t = {p = [m, r, θ]|0 ≤ θ < π
3 or 5π

3 ≤ θ < 2π},

• C ′′t = {p = [m, r, θ]|π ≤ θ < 5π
3 } \ D.

We finally write Bt = B′t ∪B′′t and Ct = C ′t ∪ C ′′t . Note that the large or strict inequalities and the
convention D 6⊂ Ct were chosen so that (At, Bt, Ct, Dt) is a partition of the cube [0, 1]3, but these
choices do not really matter.
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We illustrate on Figure 2 the restriction of this partition to the plane of equation p1+p2+p3 = 3
2 .

Note that the definition of At, Bt, Ct, Dt does not depend on the coordinate m. This implies that
the full partition is just obtained from Figure 2 by adding one dimension orthogonally to the plane.
More precisely, a point of [0, 1]3 belongs to a region of the partition if and only if its orthogonal
projection on the plane of Figure 2 belongs to that region. Note that B′′t corresponds exactly to the
region where the best two arms are 1 and 3, and C ′′t to the region where the best two arms are 2 and
3.

3.1.4. COLORING THE PARTITION

We now define the map σt : [0, 1]3 → {1, 2, 3} × {1, 2, 3} that the players use to select an action.
It will be constant over the regions At, Bt, Ct, Dt. Precisely, as on Figure 2:

σt(q) :=


(2, 1) if q ∈ At,
(3, 1) if q ∈ Bt,
(3, 2) if q ∈ Ct,
(1, 2) if q ∈ Dt.

We denote by σAt and σBt the two coordinates of σt. For example, for q ∈ At, we have σAt (q) = 2
and σBt (q) = 1. As explained above, the strategy is to set iAt = σAt (qAt ) and iBt = σBt (qBt ).

Roughly speaking, the reasons why this strategy works are as follows:

• By (5) qAt and qBt are never too far away from each other, so they are either in the same region
or in two neighbour regions of the partition, and the strategy ensures that there is no collision.

• Under the event Ω of (4), the players almost play the best two arms except in the region
B′t ∪ C ′t. If p is close to the axis D, this is not suboptimal by a lot. If p is far away from D,
then P (p ∈ B′t ∪ C ′t) is small since Θ is randomized.

3.2. Regret analysis

We give here the proof of Theorem 3, with (3) holding in expectation over Θ (which is the only
source of randomness in the players’ strategy).

3.2.1. NO COLLISION PROPERTY

First observe that the coloring σt is such that there are no collisions for neighboring regions, i.e.,
if U, V ∈ {At, Bt, Ct, Dt} are neighboring regions then σAt (U) 6= σBt (V ) and σBt (U) 6= σAt (V ).
Next we note that two non-neighboring regions are well-separated.

Lemma 4 In the partition (At, Bt, Ct, Dt), the distance between any two non-neighboring regions
is at least wt.

Proof The pairs of non-neighboring regions are (At, Dt), (At, Ct) and (Bt, Dt). Any of these pairs
has its two elements on different sides of the set

{
θ = Θ or θ = 5π

3

}
. Moreover, simple geometric

considerations show that At and Dt are both at distance wt from that set. Thus all these distances
are at least wt.

Finally recall that on Ω the observations of Alice and Bob are close to each other (see (5)), so
we can conclude that Alice and Bob never collide when Ω holds true.
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3.2.2. CONTROLLING THE REGRET FROM SUBOPTIMAL DECISIONS

We denote by B(x, r) the ball of radius r around x for the Euclidean distance. Given that there are
no collisions on Ω, we have:

RT =

T∑
t=1

(piAt + piBt − p∗) =

T∑
t=1

(pσAt (qAt ) + pσBt (qBt ) − p∗)

≤
T∑
t=1

max
q,q′∈B(p,wt/2)

(pσAt (q) + pσBt (q′) − p∗)

≤ 2

T∑
t=1

max
q∈B(p,wt/2)

(pσAt (q) + pσBt (q) − p∗), (6)

where the second line uses that under Ω we have qAt , q
B
t ∈ B(p, wt/2), and the last line uses the

bound

pσAt (q) + pσBt (q′) − p∗ ≤
(
pσAt (q) + pσBt (q) − p∗

)
+
(
pσAt (q′) + pσBt (q′) − p∗

)
.

To control the last quantity of (6), let us first assume that d(p,P) > 2wt. Then we know
that for any q ∈ B(p, wt/2), one has q 6∈ B′t ∪ C ′t. By construction, qσAt (q) + qσBt (q) = q∗ for
any q 6∈ B′t ∪ C ′t. Moreover the map q 7→ q∗ is 2-Lipschitz so we get that pσAt (q) + pσBt (q) ≤
wt + qσAt (q) + qσBt (q) = wt + q∗ ≤ 2wt + p∗. In other words, so far we have proved that on Ω we
have:

RT ≤ 4

T∑
t=1

wt + 2

T∑
t=1

1d(p,P)≤2wt max
q∈B(p,wt/2)

(pσAt (q) + pσBt (q) − p∗) .

Note that
pσAt (q) + pσBt (q) − p∗ ≤ max

i 6=j
|pi − pj | ≤ rp .

Thus we get with the two above displays:

EΘRT ≤ 4
T∑
t=1

wt + 2
T∑
t=1

rpPΘ(d(p,P) ≤ 2wt) . (7)

The proof is now concluded with the following lemma, which implies EΘRT ≤ 10
∑T

t=1wt ≤
320
√
T log T . The proof of this lemma is postponed to Appendix B.

Lemma 5 For every t and p, we have

P (d(p,P) ≤ 2wt) ≤ 3
wt
rp
. (8)

4. Bandit upper bound

We prove here Theorem 1. The extra difficulty introduced by the bandit setting compared to the
full-information toy model is that, in addition to coordinating for exploitation (which is the key
point of the toy model), the players also have to coordinate their exploration of the arms. Moreover,

9
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there needs to be a smooth transition between exploration and exploitation, so that there are also no
collisions if one player stops exploring before the other. To do so we introduce extra padding around
the decision boundaries of the partition built in the previous section, and we give a carefully chore-
ographed dynamic coloring of this new partition. An explicit algorithm is fully described below by
combining the definition (9), the partition constructed in Section 4.1 (and represented on Figure 3)
and the table on Figure 1.

We denote wt = 215
√

log(T )
t . For 1 ≤ t ≤ T , i ∈ {1, 2, 3} and X ∈ {A,B}, we denote by

nXt (i) the number of times from 1 to t− 1 where player X has played arm i. We also write

qXt (i) =
1

nXt (i)

t−1∑
i=1
iXt =i

max
(
`t(i),1iAt =iBt

)
, (9)

with the convention qXt (i) = 0 if nXt (i) = 0. Then qXt =
(
qXt (1), qXt (2), qXt (3)

)
is an estimate at

time t, according to player X , of p. Note that this estimator is biased due to the potential collisions.
This issue will be handled below (Lemma 6).

We will prove the absence of collisions by induction on t, which means that we need to show
that our estimators at time t are not too bad if there has been no collision before. For this reason,
we define the following event:

Ω =
{
∀t ∈ [T ], i ∈ {1, 2, 3}, X ∈ {A,B}, if there has been no collision

at times 1, . . . , t− 1, then
∣∣qXt (i)− pi

∣∣ < w4nXt (i)+5

32

}
.

If there has been no collision before time t, we have qXt (i) = 1
nXt (i)

∑t−1
i=1,iXt =i

`t(i). Note that Ω

depends on the nXt (i), and therefore on the strategies used by the players. However, for any strategy,
if we fix an arm i and list the values `t(i) observed by a player X ∈ {A,B}, then these values are
i.i.d. Bernoulli with parameter pi. Therefore, the Hoeffding inequality and a union bound show that
P (Ω) ≥ 1− 1

T for any deterministic strategy of A and B, and thereforee also for a random one. We
will later prove the following result, which implies that the assumption of no collisions in Ω can be
removed.

Lemma 6 On the event Ω, our proposed bandit strategy satisfies iAt 6= iBt for all t ∈ [T ].

Like in the full-information toy model, in the remainder of this section we fix loss sequences
such that Ω holds true, and all probabilities are with respect to the random interface defined by Θ
(see below).

4.1. The bandit partition

We recall that wt = 215
√

log(T )
t . We denote by P the half-plane {θ = Θ} and by Q1 (resp. Q2,

Q3) the half-plane {θ = π
3 } (resp. {θ = π}, {θ = 5π

3 }). We now define the following sets, that we
will refer to as regions:

• Et =
{
p|π3 ≤ θp < Θ and d(p,Q1) ≥ wt

2 and d(p,P) ≥ 3wt
2

}
,

10
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• Gt =
{
p|θp ∈

[
0, π3

)
∪
[

5π
3 , 2π

)
and d(p,Q1) ≥ wt

2 and d(p,Q3) ≥ wt
2

}
,

• Ht =
{
p|d(p,P ∪Q3) < wt

2

}
,

• It =
{
p|θp ∈

[
π, 5π

3

)
and d(p,Q2) ≥ wt

2 and d(p,Q3) ≥ wt
2

}
,

• Kt =
{
p|Θ ≤ θp < π and d(p,Q2) ≥ wt

2 and d(p,P) ≥ 3wt
2

}
,

• Ft =
{
p|θp ∈ [0,Θ) ∪

[
5π
3 , 2π

)}
\(Et ∪Gt ∪Ht),

• Jt =
{
p|θp ∈

[
Θ, 5π

3

)}
\(Ht ∪ It ∪Kt).

As in the full information case, we have represented on Figure 3 the restriction of this partition
to the plane

{
p1 + p2 + p3 = 3

2

}
. Here again, since that plane is orthogonal to the half-planes P ,

Q1, Q2, Q3, the full partition is obtained by extending Figure 3 orthogonally to its plane.

4.2. Dynamic coloring

The strategy is now the following: for every 0 ≤ t < T
4 , playerAwill decide according to the region

of qA4t+1 where he plays at times 4t+ 1, 4t+ 2, 4t+ 3, 4t+ 4, and similarly for player B according
to the region of qB4t+1. More precisely, player A will play according to the table below. The way to
read this table is as follows: if 2/1 is written at the intersection of the row ”qA4t+1/q

B
4t+1 ∈ E4t+1”

and the column ”4t+2”, this means that if qA4t+1 ∈ E4t+1, then playerA plays arm 2 at time 4t+2.
If qB4t+1 ∈ E4t+1, then player B plays arm 1 at time 4t+ 2.

4t+ 1 4t+ 2 4t+ 3 4t+ 4

qA4t+1/q
B
4t+1 ∈ E4t+1 2 / 1 2 / 1 1 / 2 1 / 2

qA4t+1/q
B
4t+1 ∈ F4t+1 2 / 1 3 / 1 1 / 2 1 / 3

qA4t+1/q
B
4t+1 ∈ G4t+1 3 / 1 3 / 1 1 / 3 1 / 3

qA4t+1/q
B
4t+1 ∈ H4t+1 3 / 1 3 / 2 1 / 3 2 / 3

qA4t+1/q
B
4t+1 ∈ I4t+1 3 / 2 3 / 2 2 / 3 2 / 3

qA4t+1/q
B
4t+1 ∈ J4t+1 3 / 2 1 / 2 2 / 3 2 / 1

qA4t+1/q
B
4t+1 ∈ K4t+1 1 / 2 1 / 2 2 / 1 2 / 1

Figure 1: The table describing the arms played by the players at time 4t+ 1, . . . , 4t+ 4 according
to qA4t+1 and qB4t+1.

Although it might seem quite complicated, this table is actually a natural adaptation of the full
information strategy, where we have ”smoothened” the boundaries between regions. Let us first
focus on the first two columns: the regions E, G, I and K then correspond to the regions A, B, C,
D of the full information strategy. The difference here is that, if for example we are in the region
where p2 and p3 are close but much larger than p1, it is necessary to explore both arms 2 and 3
during a long time to find which is the best one. This is the role of region F , and regions H and J
play a similar role.

Moreover, the last two columns are the same as the first two, where the roles of A and B have
been exchanged. This is necessary to make sure that each of the players has information about all
the arms. Of course, such a problem did not exist in the full information case.

11
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4.3. Exploration phase and no collision property

The regions Ft, Ht and Jt can be considered as ”exploration” regions, since they are regions where
both players play the three arms. It is immediate from the definition of the regions that Et, Gt,
It and Kt are increasing in t, which means that Ft ∪ Ht ∪ Jt is decreasing in t. Therefore, it is
natural to expect that qAt will be in Ft ∪Ht ∪ Jt in the beginning (”exploration phase”), and in the
complementary after some time (”exploitation phase”). We make this intuition precise in the proof
of the next lemma.

Lemma 7 Under Ω, for every 1 ≤ t ≤ T , if there has been no collision before time t, then either
p, qAt and qBt are in the same region, or qAt , qBt belong to the ball of radius wt

4 around p.

Proof For X ∈ {A,B}, we denote by τX the first time t such that qXt /∈ Ft ∪ Ht ∪ Jt, with
the convention τX = +∞ if qXt ∈ Ft ∪ Ht ∪ Jt for all t ∈ [T ]. In particular, for any s <
τX−5

4 we have qX4s+1 ∈ Ft ∪ Ht ∪ Jt, which means that each arm appears at least once among

iX4s+1, i
X
4s+2, i

X
4s+3, i

X
4s+4. Therefore, we must have nXt (i) ≥ min(t,τX)−5

4 for every arm i. Using the
event Ω, this implies

∣∣qXt (i)− pi
∣∣ < w

min(t,τX )

32 for all i, and thus

d(qXt ,p) <
wmin(t,τX)

16
. (10)

In particular, since any point at distance ≤ wt
2 from Q1 ∪Q2 ∪Q3 ∪ P is in Ft ∪Ht ∪ Jt, we have

d(qX
τX
,Q1∪Q2∪Q3∪P) ≥ wt

2 . Hence p must be at distance at least 7
16wτX fromQ1∪Q2∪Q3∪P

(it is also immediate if τX = +∞). Next observe that for t ≥ 16τX one has 7
16wτX ≥

3
2wt+

1
16wτX .

Since Ft ∪Ht ∪Jt lie entirely at distance at most 3
2wt fromQ1 ∪Q2 ∪Q3 ∪P , we deduce that p is

at distance w
τX

16 from Ft ∪Ht ∪Jt, so the ball of center p and radius w
τX

16 is contained in the region
of p (which may be Et, Gt, It or Kt). By (10), this implies that qXt is in the same region as p.

On the other hand, for t ≤ 16τX , (10) gives

d(qXt ,p) <
wt/16

16
=

1

4
wt ,

which concludes the proof.

We now prove the no collision property. Note that this will allow us to use the event Ω without
having to assume that there has been no collision so far.
Proof [Proof of Lemma 6.] As explained earlier, we assume Ω and prove by induction on t the
absence of collisions until t. Assume there was no collision at times 1, . . . , t− 1. By Lemma 7, we
know that for every t, either qAt and qBt lie in the same region, or d(qAt ,q

B
t ) < wt

2 . In the first case,
there is no collision.

In the second case, we call two regions colliding if it is possible, when A plays according to the
first one and B according to the second, that iAt = iBt . By looking at the table of Figure 1, we can
list the pairs of colliding pairs: (Et, Ht), (Et, It), (Et, Jt), (Et,Kt), (Ft, It), (Ft, Jt), (Ft,Kt),
(Gt, Jt), (Gt,Kt) and (Ht,Kt). By the definitions of the regions, the distance between any two
colliding regions is always at least wt (this is very similar to Lemma 4 in the full information case,
so we omit the detailed proof). Therefore, no collision can happen if d(qAt ,q

B
t ) < wt

2 , which proves
the lemma.

Given Lemma 7 and the absence of collisions, the proof of Theorem 1 is now very similar to the
full information case, and is done in Appendix D.
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Appendix A. Figures

Here, we provide a more visual description of the two partitions of the cube that we used, by drawing
their restriction to the plane {p1 + p2 + p3 = 3

2}. Figure 2 is the partition used for the toy model in
Section 3, and Figure 3 is the one used for bandits in Section 4.

D

Dt

iA = 1

iB = 2

C ′t

C ′′t
iA = 3

iB = 2

B′t

B′′t
iA = 3

iB = 1

At

iA = 2

iB = 1wt

wt

Θ

Figure 2: The restriction of our partition of the cube to the plane {mp = 1
2}. We recall that Bt =

B′t ∪ B′′t and Ct = C ′t ∪ C ′′t . The full partition is obtained from here by extending each
region orthogonally to that plane. In blue, the arms played by each player in each region.

Appendix B. Proof of Lemma 5

Proof We first note that, since the half-plane P is orthogonal to the plane {mp = 1
2} of Figure 2,

both sides of (8) are unchanged if we replace p by its projection on {mp = 1
2}, so we can assume

p ∈ P . Moreover, the distance between p and P is equal to the distance in {mp = 1
2} between p

and the half-line P ∩ {mp = 1
2}.

We also note the result is obviously true if rp > 2wt (the right-hand side of (8) is larger than 1),
so we can assume rp ≤ 2wt. Then we have

d(p,P) = rp sinα ,

where α is the angle between the line from the point
(

1
2 ,

1
2 ,

1
2

)
to p and the half-line {θ = Θ}, in

the plane of Figure 2. We have α = |Θ− θp|, so the event of (8) is equivalent to

θp − arcsin
2wt
rp
≤ Θ ≤ θp + arcsin

2wt
rp

.

This has probability 3
2π × 2 arcsin 2wt

rp
≤ 3wtrp , which concludes the proof of the lemma.

14



COORDINATION WITHOUT COMMUNICATION IN TWO PLAYERS MULTI-ARMED BANDITS

wt
2

wt
2

wt
2

3wt
2

Et
iA = 2
iB = 1

Ft
iA = 2 or 3
iB = 1

Gt
iA = 3
iB = 1

Ht
iA = 3

iB = 1 or 2

It
iA = 3
iB = 2

Jt
iA = 3 or 1
iB = 2

Kt
iA = 1
iB = 2

D

Q1

Q2

Q3

P

Figure 3: The intersection of our bandit partition with the plane {p1 + p2 + p3 = 3
2}. Below the

names of the regions are the arms played by the players in the first two columns of the
table, i.e. for t ≡ 1 or 2 modulo 4 (for t ≡ 3 or 0 modulo 4, the roles of players A and B
are exchanged).

Appendix C. Derandomization in the full information case via a dynamic interface

In the proof of Theorem 3, the only place where we used the randomness in Θ is Lemma 5. To
derandomize the algorithm, we can replace the random angle Θ by a deterministic, time-dependent
angle (θt)t∈[T ], with π

3 ≤ θt ≤ π. In this setting, all the proof is the same until (7), which becomes

RT ≤ 4

T∑
t=1

wt + 2rp

T∑
t=1

1d(p,Pt)≤2wt ,

where Pt = {[m, r, θ]|θ = θt}. For the same reason as in the proof of Lemma 5, if d(p,Pt) ≤ 2wt,
then |θp − θt| ≤ arcsin 2wt

rp
≤ πwtrp . Therefore, to obtain the analog of Lemma 5, it is enough to

find (θt) such that, for any r and θ, the number of t such that |θ − θt| ≤ πwtr is at most 3
r

∑T
t=1wt.

One way to do so is the following: for every t, let k be such that 2k ≤ t < 2k+1, and take

θt =
π

3
+

2π

3

t− 2k

2k
.
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In that case, for every fixed k, r and θ, using that wt is decreasing in t, we have

2k+1−1∑
t=2k

1|θt−θ|≤πwtr
≤

2k+1−1∑
t=2k

1|θt−θ|≤
πw

2k
r

≤ 1 +
πw2k/r

2π/(3× 2k)
= 1 +

3

2
× 2k

w2k

r
≤ 3

2k+1−1∑
t=2k

wt
r
,

and summing over k yields the result.

Appendix D. End of the proof of Theorem 1

For every t, we write t = 4b t−1
4 c+ 1, so that iAt is chosen according to the region of qAt . We denote

by σt =
(
σAt , σ

B
t

)
the map prescribed by the table of Figure 1, so that iXt = σXt (qXt ). Using the

fact that we have no collisions, we have

RT =

T∑
t=1

(
pσAt (qAt ) + pσBt (qBt ) − p∗

)
.

Just like in the full information case (Section 3.2) we decompose the sum into two terms, based
on whether d(p,P) > 2wt or not. The case where d(p,P) ≤ 2wt is dealt exactly as in the full
information case, and gives a term 6

∑T
t=1wt in expectation over Θ. Now for the other term, we

assume that d(p,P) > 2wt and we write, thanks to the dichotomy given by Lemma 7,

pσAt (qAt ) + pσBt (qBt ) − p∗ ≤ pσAt (p) + pσBt (p) − p∗ + 2 max
q∈B(p,wt/4)

(
pσAt (q) + pσBt (q) − p∗

)
≤ 3 max

q∈B(p,wt/4)

(
qσAt (q) + qσBt (q) − q∗

)
+ 3wt ,

where the second inequality uses that q 7→ q∗ is 2-Lipschitz. Finally it only remains to observe that
the construction of the bandit partition is such that for any q with d(q,P) ≥ 3wt

2 one has

qσAt (q) + qσBt (q) − q∗ ≤ wt .

Thus we have proved that, RT1d(p,P)>2wt ≤ 6
∑T

t=1wt, and EΘ[RT1d(p,P))≤2wt ] ≤ 6
∑T

t=1wt.
The expected regret is therefore bounded by 12

∑T
t=1wt = O(

√
T log T ), which concludes the

proof of Theorem 1.

Appendix E. Toy model lower bound

We prove here Theorem 2. The goal is essentially to exploit the topological obstruction we alluded
to in Section 3.1.2. This topological obstruction is basically Lemma 13.

E.1. The hard instance

We first describe the law of (p1, p2, p3). Let ε > 0 be small (it is actually enough to have ε < 1/4).
Let I be the following union of intervals:

I =
[π

3
− 2T−1/2+2ε,

π

3
+ 2T−1/2+2ε

]
∪
[

3π

3
− 2T−1/2+2ε,

3π

3
+ 2T−1/2+2ε

]
∪
[

5π

3
− 2T−1/2+2ε,

5π

3
+ 2T−1/2+2ε

]
,
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with total measure 12T−1/2+2ε. We assume T−1/2+2ε < π
6 so that the definition makes sense. Let

Θ be a random variable on [0, 2π] with distribution

1

4π
dθ +

1θ∈I
24T−1/2+2ε

dθ. (11)

In other words Θ is picked uniformly in [0, 2π] with probability 1
2 and uniformly in I with proba-

bility 1
2 .

Finally using the cylindrical coordinates p = [mp, rp, θp] from Section 3.1.1 we setmp = 1/2,

rp =
√

3
2T
−ε, and θp = Θ. We also denote by (p1(Θ), p2(Θ), p3(Θ)) the Cartesian coordinates of

p, and write p∗(Θ) for the sum of the two smallest coordinates.
In particular (p1, p2, p3) is picked on a circle. Moreover, the ”reinforcement” near π

3 , π and 5π
3

of the law of Θ implies that the law of (p1, p2, p3) is reinforced at the places where two pi are almost
equal, and much larger than the third.

E.2. Proof skeleton

From now on, we assume that A and B follow a fixed, deterministic strategy. We concentrate on
the quantity:

rt(θ) = E
[
2 · 1iAt =iBt

+ 1iAt 6=iBt (piAt + piBt )− p∗
)∣∣Θ = θ

]
.

It is easy to see (and the standard route for bandit lower bounds) that it is sufficient to prove that,
for every 1 ≤ t ≤ T , we have

E [rt(Θ)] ≥ c
√

log T

T
. (12)

Therefore, we fix such a t until the end of the proof. Key quantities of interest will be the following
functions, defined for i ∈ {1, 2, 3} and X ∈ {A,B}:

fXi (θ) = P
(
iXt = i|Θ = θ

)
.

Even if this depends on t, since t is fixed until the end of the proof, we drop the t in the notation.
Since the loss vectors observed by A and B are independent conditionally on Θ, we can write

rt(θ) =
3∑
i=1

fAi (θ)fBi (θ)(2− p∗(θ)) +
∑
i 6=j

fAi (θ)fBj (θ)(pi(θ) + pj(θ)− p∗(θ)) ≥ 0 . (13)

The proof will now proceed by analyzing properties of the functions fXi , in particular the various
constraints they must satisfy for the players to hope for a small regret.

E.3. Constraints on the functions fXi
In our proof, the fact that the players cannot have a very precise estimate of Θ will be encoded by
the fact that the functions fAi , f

B
i are smooth enough, so that the players cannot change drastically

their choices when θ varies a little. Therefore, the first step is to prove an estimate on the regularity
of the functions fAi , fBi .
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Lemma 8 The functions fAi and fBi are analytic. Moreover, let δ > 0. Then there is a constant
c > 0 (depending on δ but not on t or T ) such that, for every θ, θ′, we have

fAi (θ′) ≥
(
fAi (θ)− δ

)
exp

(
−c− cT 1−2ε|θ′ − θ|2

)
,

and the same is true for fBi .

Proof Both functions are polynomials in (p1, p2, p3), so they are analytic in δ.
For the second point, we start by defining a ”truncation” of the functions fAi . If E is an event,

we write
fAi (θ,E) = P

(
iAt = i and E occurs|Θ = θ

)
.

We fix a constant C, and denote by EC(θ) the event that
∣∣∣∑t−1

s=1 `
A
s (i)− (t− 1)pi(θ)

∣∣∣ ≤ C
√
T for

every j ∈ {1, 2, 3}. By the central limit theorem, if C is chosen large enough (independently of θ,
t and T ), we have P (EC(θ)) ≥ 1− δ, so

fAi (θ,EC(θ)) ≥ fAi (θ)− δ.

On the other hand, we obviously have fAi (θ′) ≥ fAi (θ′, EC(θ)), so it is enough to prove

fAi
(
θ′, EC(θ)

)
≥ fAi (θ,EC(θ)) exp

(
−c− cT 1−2ε|θ′ − θ|2

)
. (14)

For this, let ` = (`s(i))1≤s≤t−1,1≤i≤3 ∈
(
{0, 1}3

)t−1 be a possible value of the loss vectors ob-
served by A until time t− 1. For j ∈ {1, 2, 3}, we write S(j) =

∑t−1
s=1 `s(j). Then we have

log
P (A observes `|Θ = θ′)

P (A observes `|Θ = θ)
=

3∑
j=1

(
S(j) log

pj(θ
′)

pj(θ)
+ (t− 1− S(j)) log

1− pj(θ′)
1− pj(θ)

)
.

The ratio pj(θ
′)

pj(θ)
is going to 1 as T → +∞, uniformly in θ, so we can use the inequality log(1+x) ≥

x− x2 to bound the above quantity from below by

3∑
j=1

(
pj(θ

′)− pj(θ)
)( S(j)

pj(θ)
− t− 1− S(j)

1− pj(θ)

)
−

3∑
j=1

|pj(θ′)−pj(θ)|2
(
S(j)

pj(θ)2
+
t− 1− S(j)

(1− pj(θ))2

)
.

(15)
The second term is bounded from below by

−
3∑
j=1

∣∣pj(θ′)− pj(θ)∣∣2 × 2t

1/16
≥ −96T 1−2ε|θ′ − θ|2,

by using 1
4 ≤ pj(θ) ≤

3
4 , and then

∣∣∣dpj(θ)dθ

∣∣∣ ≤ T−ε and t ≤ T .

On the other hand, since we work on the event EC(θ), we have |S(j)− (t− 1)pj(θ)| ≤ C
√
T ,

so both S(j)
pj(θ)

and t−1−S(j)
1−pj(θ) are close to t − 1. More precisely, we can bound the absolute value of

the first sum of (15) by

3∑
j=1

∣∣pj(θ′)− pj(θ)∣∣× 2
C
√
T

1/4
≤ 24CT 1/2−ε|θ′ − θ| ≤ 12C

(
1 + T 1−2ε|θ′ − θ|2

)
.
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By combining our estimates on (15), we obtain, for every ` compatible with EC(θ):

P
(
A observes `|Θ = θ′

)
≥ P (A observes `|Θ = θ) exp

(
−c− cT 1−2ε|θ′ − θ|2

)
,

with c = 12C + 96. This proves (14) and the lemma.

The next lemma expresses the risk of collision: if fAi (θ) and fBi (θ′) are both large for θ′ close
to θ, then there is a risk that both players pull the arm i and a large loss occurs. In all the rest of the
paper, we will write x � y if x is larger than y times an absolute constant, which does not depend
on t or T or θ, but which may vary from line to line.

Lemma 9 There is an absolute constant η such that the following holds. Assume that there is an

arm i and θ, θ′ with |θ′ − θ| ≤ ηT ε
√

log T
T , such that

fAi (θ) ≥ 1

10
and fBi (θ′) ≥ 1

10
.

Then rt(θ) � T−ε/2 and E [rt(Θ)] � T−
1
2

+ ε
2 .

Proof Since every term in (13) is nonnegative, if T is large enough so that all the pi are at most 3
4 ,

we can write

rt(θ) ≥ fAi (θ)fBi (θ) (2− p∗(θ))

≥ 1

2
fAi (θ)

(
fBi (θ′)− 1

20

)
exp

(
−c− c|θ′ − θ|2T 1−2ε

)
� T−cη2

� T−ε/2,

provided η was chosen small enough compared to ε. The second inequality uses Lemma 8 with
δ = 1

20 . For the second point of the lemma, assume without loss of generality θ < θ′. For every θ′′

in the interval [
θ − T ε−1/2, θ′ + T ε−1/2

]
, (16)

we have |θ′′ − θ|, |θ′′ − θ′| ≤ 2ηT ε
√

log T
T (provided T is large enough), so Lemma 8 gives

fAi (θ′′) � T−4η2c � T−ε/4 and fBi (θ′′) � T−4η2c � T−ε/4

provided η is small enough. Hence rt(θ′′) � T−ε/2. Moreover, we know from (13) that rt(Θ) ≥ 0,
so

E [rt(Θ)] � T−ε/2P
(
θ − T ε−1/2 ≤ Θ ≤ θ′ + T ε−1/2

)
≥ T−ε/2 × 2T ε−1/2

4π
� T−1/2+ε/2,

where in the end we used the law of Θ (11).
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∆θ = T−1/2+2ε

∆p = T−1/2+ε
∆θ = 1
∆p = T−ε

I2

I1

I3

I12

I31

I23

Figure 4: The sets Ii and Ii1i2 .

Remark 10 This is the only place in the proof where it was necessary that the fluctuations of
(p1, p2, p3) are of order T−ε instead of 1. If the fluctuations were constant, the interval of (16)
would have size T−1/2 instead of T ε−1/2.

We now define several regions on the unit circle. Our goal will then be to show in a quantitative
way that the players must make certain choices on each of these regions (Lemmas 11 and 12). More
precisely, we write:

• I1 =
[
π
3 − 2T−1/2+2ε, π3 + 2T−1/2+2ε

]
,

• I2 =
[
π − 2T−1/2+2ε, π + 2T−1/2+2ε

]
,

• I3 =
[

5π
3 − 2T−1/2+2ε, 5π

3 + 2T−1/2+2ε
]
,

• I12 =
[
π
3 + T−1/2+2ε, π − T−1/2+2ε

]
,

• I23 =
[
π + T−1/2+2ε, 5π

3 − T
−1/2+2ε

]
,

• I31 =
[

5π
3 + T−1/2+2ε, 2π

]
∪
[
0, π3 − T

−1/2+2ε
]
.

See also Figure 4 to see what these intervals look like. Basically, Ii is the region where the arm i is
way better than the two others but the two others are close to each other. Ii1i2 is the region where
the arms i1 and i2 are significantly better than the last one. Note also that I1 ∪ I2 ∪ I3 is precisely
the set I of (11) where the distribution of Θ is ”reinforced”.

The next lemma means that in the interval Ii, it is absolutely necessary that one of the players
picks the arm i.

Lemma 11 Let i1, i2, i3 be any permutation of the indices 1, 2, 3. Assume that there is θ ∈ Ii1 such
that

fAi2 (θ)fBi3 (θ) ≥ 1

100
.
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Then rt(θ) � T−ε and E [rt(Θ)] � T−2ε.

Proof Without loss of generality, assume i1 = 1, i2 = 2, i3 = 3. Since each term in (13) is
nonnegative, we have

rt(θ) ≥ fA2 (θ)fB3 (θ) (p2(θ) + p3(θ)− p∗(θ)) ≥ 1

100
(max(p2(θ), p3(θ))− p1(θ)) � T−ε,

by the definition of I1.
Similarly, for every θ′ with |θ′ − θ| ≤ T ε−1/2, by Lemma 8, we have rt(θ′) � rt(θ) � T−ε.

Therefore:

E [rt(Θ)] � T−εP
(
|Θ− θ| ≤ T ε−1/2

)
� T−ε T

ε−1/2

T 2ε−1/2
,

where the last inequality follows from the law of Θ (11), and more precisely the fact that it is
”reinforced” on I1 ∪ I2 ∪ I3.

After Lemmas 9 and 11, we now state a third constraint on the strategy of the players. This one
states that a suboptimal choice cannot be made on a too large region, and in particular not on the
whole region I1 ∩ I12.

Lemma 12 Let i1, i2, i3 be any permutation of the indices 1, 2, 3.

• Let θ ∈ Ii1 ∩ Ii1i2 . If

fAi1 (θ)fBi3 (θ) ≥ 1

100
or fAi3 (θ)fBi1 (θ) ≥ 1

100
,

then rt(θ) � T−1/2+ε.

• If

fAi1 (θ)fBi3 (θ) + fAi3 (θ)fBi1 (θ) ≥ 2

100

for all θ ∈ Ii1 ∩ Ii1i2 , then E [rt(Θ)] � T−1/2+ε.

Proof Without loss of generality, assume i1 = 1, i2 = 2, i3 = 3, so that p1(θ) < p2(θ) < p3(θ) on
I1 ∩ I12. For the first point, by (13), we have

rt(θ) ≥ fA1 (θ)fB3 (θ) (p3(θ)− p2(θ)) � T−1/2+ε,

where the last inequality follows from the definition of I12.
This implies that under the assumptions of the second point, we have rt(θ) � T−1/2+ε for all

θ ∈ I1 ∩ I12, so
E [rt(Θ)] � T−1/2+εP (Θ ∈ I12 ∩ I1) � T−1/2+ε

by (11).
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1, 2

1, 23

1, 3
12, 3

2, 3

2, 13

2, 1

23, 1

3, 1
3, 12

3, 2

13, 2

Figure 5: The collision graph: the vertices are the possible values of E(θ). The pairs of vertices
linked by a full edge correspond to regions that may be neighbour. Note that (1, 2) and
(1, 3) are not linked by a full edge, because at the boundary we would have fB2 (θ) =
fB3 (θ) = 1

10 but fB1 (θ) < 1
10 , which is not possible since fB1 + fB2 + fB3 = 1. The

vertices not linked by any edge correspond to regions which must be separated by at least

ηT ε
√

log T
T to avoid the risk of a collision.

E.4. Proof of Theorem 2

We recall that 1 ≤ t ≤ T is fixed. As noted earlier, it is sufficient to check E [rt(Θ)] �
√

log T
T . For

each θ, let a(θ) (resp. b(θ)) be the set of arms i such that fAi (θ) (resp. fBi (θ)) is at least 1
10 .

It follows from Lemma 9 that if E [rt(Θ)] �
√

log T
T , then a(θ)∩ b(θ) = ∅ and clearly a(θ) and

b(θ) are nonempty, so only the following situations can occur:

• a(θ) and b(θ) are disjoint singletons;

• a(θ) is a singleton and b(θ) its complement;

• b(θ) is a singleton and a(θ) its complement.

We denote by E(θ) the pair (a(θ), b(θ)). We will write E(θ) in a compact form. For example, if
a(θ) = {1, 3} and b(θ) = {2}, we will write E(θ) = (13, 2). The 12 possible values of E(θ)
split the circle on which θ lives into regions. Since the functions fAi and fBi are analytic by Lemma
8, these regions are finite unions of intervals. Moreover, Lemma 9 shows that a(θ) ∩ b(θ′) = ∅ if

|θ′ − θ| ≤ ηT ε
√

log T
T , so certain regions may not touch each other. More precisly, the graph of

possible adjacence of these regions is summed up on Figure 5.

Moreover, if E [rt(Θ)] �
√

log T
T , then Lemmas 11 and 12 imply respectively the following.

1. For i ∈ {1, 2, 3} and θ ∈ Ii, we have i ∈ a(θ) ∪ b(θ);
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2. for any permutation i1, i2, i3 of the indices 1, 2, 3, there is θi1i2 ∈ Ii1 ∩ Ii1i2 such that {i1, i3}
is not included in a(θi1i2) ∪ b(θi1i2). Since i1 is always in the union by the previous item, it
means that E(θi1i2) has to be (i1, i2) or (i2, i1).

Lemma 13 There is a permutation i1, i2, i3 of the indices 1, 2, 3 such that:

E(θi1i2) = (i1, i2) but E(θi2i1) = (i2, i1), or E(θi1i2) = (i2, i1) but E(θi2i1) = (i1, i2).

Proof Suppose this is not the case, and assume without loss of generality that E(θ12) = (1, 2).
By Item 1 above, we know that for every θ ∈ I1, the arm 1 must be in exactly one of the two sets
a(θ) and b(θ). Since I1 is connected, it is always in the same set, so 1 ∈ a(θ). In particular, since
θ13 ∈ I1, we have 1 ∈ a(θ13), so E(θ13) = (1, 3).

But by our assumption that we are on a counter-example to Lemma 13, it follows that E(θ31) =
(1, 3). By the same argument using Item 1, this implies E(θ32) = (2, 3), so by our assumption
E(θ23) = (2, 3). Hence E(θ21) = (2, 1) by Item 1 and finally E(θ12) = (2, 1) by our assumption.
This is a contradiction.

We are now in position to conclude the proof of Theorem 2. We consider a counter-example
to (12). By Lemma 13, without loss of generality, we can assume E(θ12) = (1, 2) and E(θ21) =
(2, 1), where θ12 ∈ I1 ∩ I12 and θ21 ∈ I2 ∩ I12, so θ12 < θ21. We define

θ̂ = inf{θ ∈ [θ12, θ21]|E(θ) = (2, 1)},

θ̃ = sup{θ ∈ [θ12, θ̂]|E(θ) = (1, 2)}.

We note that by definition of I12, we have

π

3
+ T−1/2+2ε ≤ θ̃ < θ̂ ≤ π − T−1/2+2ε,

with θ̂ − θ̃ ≥ ηT ε
√

log T
T to avoid collisions (see Figure 5). By definition, for θ̃ < θ < θ̂, we have

E(θ) 6= (1, 2), (2, 1), so 3 ∈ a(θ) ∪ b(θ). But note that on Figure 5, the vertices (1, 2) and (2, 1)
disconnect the graph into two parts: the ”top” part, where 3 ∈ b(θ), and the ”bottom” part, where
3 ∈ a(θ). It follows that either 3 ∈ a(θ) for all θ̃ < θ < θ̂, or 3 ∈ b(θ) for all such θ. Without loss
of generality, assume that we are in the first case.

To finish the proof, we distinguish three cases according to the values of θ̃ and θ̂ in the interval
I12.

• Case 1: π
3 + π

100 ≤ θ̃ < θ̂.
In this case, note that by the graph of Figure 5, the region where E(θ) = (3, 2) must be

separated from θ̂ by at least ηT ε
√

log T
T . Hence, there is an interval J of length at least

ηT ε
√

log T
T where 3 ∈ a(θ) and 1 ∈ b(θ). For any θ in this interval, we have

rt(θ) ≥ fA3 (θ)fB1 (θ) (p1(θ) + p3(θ)− p∗(θ))

≥ 1

100
(p3(θ)− p2(θ))

� T−ε,
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where the second inequality follows from the definitions of a(θ) and b(θ), and the last one
from θ > π

3 + π
100 . From the law of Θ, it follows that

E [rt(Θ)] � T−εP (Θ ∈ J) ≥ T−ε × 1

4π
ηT ε

√
log T

T
�
√

log T

T
.

• Case 2: θ̃ < θ̂ ≤ π − π
100 .

This case is similar to the first one where we exchange the roles of the arms 1 and 2: there is

an interval J ′ ⊂
[
π
3 , π −

π
100

]
with length at least ηT ε

√
log T
T where 3 ∈ a(θ) and 2 ∈ b(θ).

On this interval, we have

rt(θ) ≥ fA3 (θ)fB2 (θ) (p3(θ)− p1(θ)) � T−ε,

so we get E [rt(Θ)] �
√

log T
T .

• Case 3: θ̃ < π
3 + π

100 < π − π
100 < θ̂.

In this case, we have 3 ∈ a(θ) on the full interval
[
π
3 + π

100 , π −
π

100

]
, so for any θ in that

interval we have

rt(θ) ≥ fA3 (θ) (p3(θ)−max (p1(θ), p2(θ))) � T−ε.

Since this interval is macroscopic, the variable Θ lands in it with probability� 1, so E [rt(Θ)] �
T−ε, which concludes the proof.

Remark 14 Separating different cases was necessary in the end: for example, if the interval [θ̃, θ̂]
is very close to π

3 , then the arm 2 is barely better than 3, so we lose almost nothing on the interval
where E(θ) = (3, 1). However, we lose a lot when E(θ) = (3, 2).
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