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Abstract
We consider the non-stochastic version of the (cooperative) multi-player multi-armed bandit prob-
lem. The model assumes no communication and no shared randomness at all between the players,
and furthermore when two (or more) players select the same action this results in a maximal loss.
We prove the first

√
T -type regret guarantee for this problem, assuming only two players, and un-

der the feedback model where collisions are announced to the colliding players. We also prove the
first sublinear regret guarantee for the feedback model where collision information is not available,
namely T 1− 1

2m where m is the number of players.

1. Introduction
We consider a decentralized/multi-player version of the adversarial multi-armed bandit problem
(Auer et al., 2002) and its generalization to multiple plays (Uchiya et al., 2010). Let us first describe
the classical centralized version: At each time step t = 1, . . . , T , a centralized agent selects a set
St ⊂ [K], |St| = m, of m actions, and simultaneously an adversary selects a loss for each action
`t : [K] → [0, 1]. The player’s feedback is the set of suffered losses (`t(a))a∈St (so-called semi-
bandit feedback (Audibert et al., 2014)). The player has access to external randomness, and can
select her set of actions St based on the history (Ss, `s(a))a∈Ss)s<t. The agent’s perfomance at
the end of the game is measured through the pseudo-regret (the expectation is with respect to the
randomness in her strategy) :

RT = max
S⊂[K],|S|=m

E
T∑
t=1

(∑
a∈St

`t(a)−
∑
a∈S

`t(a)

)
.

The optimal regret in this centralized setting is known to be Θ(
√
KTm) (Audibert et al., 2014). We

refer to Bubeck and Cesa-Bianchi (2012); Lattimore and Szepesvári (2019) for more background
on bandit problems.

In this paper we are interested in the decentralized version of this problem, where there are m
independent players chosing the actions instead of a single agent choosing all m actions at once.
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We assume that each player observes only its own loss, and that there is no communication at all
between the players. Moreover when two or more players select the same action at a given round
they all get a loss of 1 instead of the true underlying loss of that action (as well as a signal that a col-
lision occured). This decentralized setting with collision was first introduced, roughly at the same
time, in Lai et al. (2008); Liu and Zhao (2010); Anandkumar et al. (2011), motivated by cognitive
radio applications. The no-communication aspect was emphasized in Avner and Mannor (2014);
Rosenski et al. (2016). More recently an even more challenging setting was proposed, where in
case of a collision the players do not even get the information that a collision occured (they only
see a loss of 1) Bonnefoi et al. (2017); Lugosi and Mehrabian (2018); Boursier and Perchet (2018).
All of the works mentioned so far have focused on the classical stochastic version of the problem
(Robbins, 1952) where the loss sequence (`t)t∈[T ] is assumed to be i.i.d. (in this stochastic setting,
the centralized multiple plays problem discussed above go back to Anantharam et al. (1987)). The
non-stochastic version that we study here was mentioned as an open problem in Rosenski et al.
(2016) with collision information, and in Lugosi and Mehrabian (2018) without collision informa-
tion. We note that this non-stationary model is particularly appropriate in the context of cognitive
radio applications. Very recently a first result for the collision information case was posted on arXiv
(Alatur et al., 2019), with a suboptimal T 2/3 regret.

In this paper we prove, for m = 2, that with collision information the players can actually
obtain the optimal

√
T -regret. Furthermore without collision information we propose the first sub-

linear strategy, although with regret degrading rapidly as the number of player increases, namely
T 1− 1

2m . These results are proved for an oblivious adversary, that is the entire loss sequence (`t)t∈[T ]

is chosen at the beginning of the game. We show that that this assumption is necessary to obtain
sublinear regret, that is we prove that an adaptive adversary can induce a worst-case regret of Ω(T )
(even if the players have access to collision information). This gap between no non-trivial guarantee
for adaptive adversaries and sublinear regret for oblivious adversaries is reminiscent of bandit with
switching cost (Dekel et al., 2014). However, interestingly, in the latter case the oblivious minimax
regret is Θ̃(T 2/3) while here the gap is even more striking as we achieve the optimal Õ(

√
T ) regret

against oblivious adversaries.

For sake of clarity in this preliminary version we primarily focus on the two players case. We
briefly discuss the generalization to m > 2 players with collision information in Section 2.5, and
we give more details for the no-collision case in Section D.

2. Model and main results
We consider two players, Alice and Bob. At each time step t = 1, . . . , T , Alice chooses an action
At ∈ [K] and Bob chooses Bt ∈ [K], possibly using external sources of randomness (i.e., uniform
random variables in [0, 1]) RAt and RBt . In addition to the fresh randomness, these actions are
chosen based on their respective past history HA

t = (RAs ,max(`s(As),1{As = Bs}))s<t and
HB
t = (RBs ,max(`s(Bs),1{As = Bs}))s<t (note in particular that in the event of a collision,

both players observe a loss of 1). Moreover in the case where collision information is available,
we add 1{As = Bs} to the history of both players, e.g., HA

t = (RAs ,max(`s(As),1{As =
Bs}),1{As = Bs})s<t. Whether it is with or without collision information, our notion of regret
is as follows:

RT = max
a 6=b,a,b∈[K]

E
T∑
t=1

(
max(`t(At),1{At = Bt}) + max(`t(Bt),1{At = Bt})− (`t(a) + `t(b))

)
.
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2.1. Sources of randomness
We consider two models for the external sources of randomness: (a) shared randomness where
RAt = RBt , and (b) non-shared randomness where RAt and RBt are independent. Our two core
results are both for the non-shared randomness model, namely that one can still get the classical
and optimal

√
T -regret with collision information, and that sublinear regret is actually achievable

even without collision information. We introduce the shared randomness model for two reasons.
First it is quite natural, especially from the minimax perspective. Moreover, for algorithm design
one can also easily get a sublinear regret strategy without collision information but with shared
randomness: simply run two versions of Exp3, one for Alice and one for Bob, and couple the
draws using the shared random string so as to minimize the number of collisions (we note that such
a strategy, while sublinear, cannot possibly achieve

√
T -regret because Alice and Bob’s history

are diverging too quickly, leading to many collisions). Second (and most important for us), our√
T -regret strategy is actually more easily described assuming shared randomness. We then show

how to use the collision information to remove this shared randomness, by using a well-known
pseudorandom generator to “derandomize” the algorithm.

2.2. With collision information
Our main result is the first

√
T -regret guarantee for the multi-player non-stochastic multi-armed

bandit problem:

Theorem 1 Consider the model with collision information and no shared randomness. There exists a (ex-
plicit and efficient) two players strategy such that against any oblivious adversary one has

RT = O(K2
√
T log(K) log(T )) .

We prove the above result in Section 3. The broad strokes of our
√
T -strategy can be summarized

as follows:

1. Alice plays a low-switching strategy (i.e., Alice changes actions only every
√
T rounds –roughly–),

inspired from the “shrinking dartboard” strategy of Geulen et al. (2010).

2. During a phase where Alice remains constant, Bob plays an algorithm such as Exp3 (Auer et al., 2002)
on the remaining actions.

3. When Alice decides to switch actions, she first engages in a communication protocol with Bob to sync
their histories. Such a communication is easily achieved using the collision information.

Our actual strategy is significantly more complicated than the above summary, and for good reasons
as one has to overcome the following obstacles:

1. First of all the mixing of information between Alice and Bob is absolutely crucial, as it is known that a
low-switching strategy with bandit information cannot achieve

√
T -regret (Dekel et al., 2014). On the

other hand it is also known that typically information from an “off-policy” distribution cannot be used
with Exp3 to obtain a

√
T -regret, see e.g. [Theorem 4.3, Bubeck and Cesa-Bianchi (2012)]. In other

words we will need to reason about the joint distribution of Alice and Bob. Concretely this comes into
play to control the variance of the unbiased estimators, and it will lead to non-trivial joint decision
making of Alice and Bob at communication times.

2. Another reason that one needs to argue about the joint distribution of Alice and Bob is that running
Exp3 on an adversarially chosen K − 1 subset (so-called sleeping expert setting (Kleinberg et al.,
2010)) does not typically achieve low-regret even against the second best arm (see Remark 11 in
Section 4). Thus again the collaboration between Alice and Bob will be crucial here.
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3. Next is perhaps the most difficult conceptual point in our work, namely the idea of doing a filtering
strategy (as in (Geulen et al., 2010)) with bandit-type information. Indeed the basic filtering idea is
to say that if a random action is currently distributed from p, and the next target distribution q does
not change by more than (1 − η) multiplicatively, then one can afford to stay put with probability
(1 − η), while still ensuring to be correctly distributed as the next time step (provided that in the
event of a switch one resamples from an appropriately modified distribution). However with bandit
feedback the next distribution actually depends on the current action, so the filtering argument has to
be significantly more involved. This is the part of the argument where assuming shared randomness
makes the description much easier.

4. Finally one needs to “derandomize” the algorithm, that is to explain how to reduce the shared random-
ness/collision information model to non-shared randomness/collision information.

2.3. Without collision information
Next we give the first sublinear regret bound for the case where collision information is not avail-
able. The extra difficulty here is that when the players see a loss of 1, they don’t know if the action
was truly bad, or if the loss comes from a collision.

Theorem 2 Consider the model with neither collision information nor shared randomness. There exists a
two players strategy such that against any oblivious adversary one has RT = Õ(KT 3/4).

This second result is proved in Section 4. Broadly speaking the strategy we propose has a
similar skeleton as the collision information strategy, namely Alice is a “slow” player while Bob
is a “fast” player. An important modification is that we now reserve a “safe” arm for Bob (in the
sense that no collision can happen by playing that arm). We also ignore all the intricacies that
resulted from sharing information between the players in the collision information case, as it is not
clear at all how to implicitly communicate without collision information (this is also why it seems
impossible to obtain a

√
T -regret strategy in this setting). The algorithm is summarized as follows:

1. Alice plays a low-switching strategy on the subset of arms {2, 3, · · · ,K}. In particular Alice never
plays arm 1. The low-switching is implemented by playing in blocks. In particular the times at which
Alice switches action are known to Bob.

2. During a phase between two switches of Alice, Bob plays an algorithm such as Exp3 (Auer et al.,
2002) on a growing subset of arms St. Initially, at the start t0 of a new phase, St0 = {1}. That is Bob
starts by focusing on the safe arm 1. During the phase Bob will regularly explore the set of Alice’s
actions {2, 3, · · · ,K}, and when he encounters an arm with loss < 1 he adds it to his active pool of
arms St (indeed Bob now knows that Alice cannot be on this arm, for otherwise the loss would have
been 1 due to collision). On the other hand if exploring an arm always results in a loss of 1, it means
that either Alice is sitting at that action for that phase, or that this arm is actually bad, so Bob does not
need to consider it to guarantee low regret.

One difficulty here is Obstacle 2 mentioned in Section 2.2. With collision information we
alluded to the fact that this obstacle will be resolved by careful collaboration between Alice and
Bob. However in this no-collision information case such collaboration cannot happen. Instead
we propose a more sophisticated argument that requires Alice to play a strategy with low internal
regret (Stoltz, 2005; Blum and Mansour, 2007). See Section 4 for the details. We also explain in
Section D how to generalize this approach to m > 2 players, and we show that in this case the
regret worsens to T 1− 1

2m .
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2.4. Adaptive adversaries
The above results are restricted to oblivious adversaries. This is partially justified by the following
result, which shows that, at least without shared randomness, one cannot obtain any non-trivial
guarantees.

Proposition 3 LetK = 3. For any two players strategy without shared randomness, there exists an adaptive
adversary such that RT ≥ T/64.

2.5. Open problems
A number of questions remain open:

1. Most intriguing of all is whether one could prove lower bounds in the most challenging scenario (no
collision information, no shared randomness). We believe that in this case the optimal regret with 2
players is Ω(T 2/3). Moreover the exponent could possibly degrade as the number of players increases
(indeed our best upper bound in this case is T 1− 1

2m , see Section D).

2. We briefly mentioned in Section 2.1 that with no collision information but with shared randomness
one could achieve a sublinear regret. In this case we believe that one can achieve a regret of O(T 4/5)
for any number of players. This points to a significant difficulty for proving that the regret degrades
with the number of players in the most challenging scenario. Indeed such an argument would then
need to rest on the fact that there is no shared randomness. We note that from a game-theoretic point
of view the shared randomness case is the easiest to reason about (as one can think of choosing a
single distribution over a profile of m deterministic strategies, and thus the minimax theorem applies
between the set of m players and the oblivious adversary).

3. The generalization of Theorem 1 to m > 2 players does not present any major obstacles, although
there are a number of technical complications. We believe that the dependency on T remains optimal
(i.e.,

√
T ) but it is unclear at this point if the dependency on m is polynomial or exponential. We will

address this point in the full version of the paper.

4. What can be said about the multi-player version of combinatorial (semi) bandits (Cesa-Bianchi and
Lugosi, 2012; Audibert et al., 2014)?

3. Proof of Theorem 1
Our goal here is to present a

√
T -regret strategy for the case with collision information and no

shared randomness. To simplify the presentation we first give a
√
T -regret algorithm in a different

model, where the players can communicate, and communication happens instantaneously. More-
over we also assume shared randomness. In this new model, in addition to the standard regret, we
will also control the number of times that such communication occurs and the total number of bits
exchanged. Our main result then reads as follows:

Theorem 4 There exists a strategy for two players multi-armed bandit with communication and shared
randomness such that:

1. There is no collision at all between the players.

2. The regret is smaller than 29K3/2 log(K)
√
T .

3. The number of times the players communicate is (in expectation) smaller than K3/2
√
T .

4. The number of bits exchanged at each communication step is O(K log(T )).

We show in Section B.4 how to remove the shared randomness assumption in the above result,
and then we also show in Section B.5 how to replace the communication assumption by collision
information. This then completes the proof of Theorem 1. We focus here on Theorem 4.
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3.1. Notation
We denote Ht for the randomness up to time t, consisting of the uniform random variables in [0, 1],
(RAs , R

B
s ) for s ≤ t (since we assume shared randomness, here RAs = RBs ). We recall that At

(respectively Bt) is the action played by Alice (respectively Bob) at time t. We denote by Qt
(respectively Pt) the probability distribution of {At, Bt} (respectively (At, Bt)) conditionally on
Ht−1. In other words Qt is the distribution over the unordered pair of actions {At, Bt}, while Pt
is the distribution over ordered pairs (At, Bt), where the ordering simply means that the actions
are assigned respectively to Alice and Bob. Finally we denote pAt to be the marginal of the first
coordinate of Pt, and pBt (·|a) to be the distribution of the second coordinate of Pt conditionally on
the first one being a.

It will be convenient for us to explicitly design some formulas for Qt and Pt, as well as some
sampling strategy for At and Bt. Part of the proof will be to show consistency, that is that the
proposed sampling strategy is such that Qt and Pt have the meaning ascribed above (namely the
distribution of the unordered pair of actions, and the distribution of the ordered pair of actions).

3.2. Communication and filtering
We will design a strategy such that Pt(a, a) = 0 for all time t and all actions a. In other words
there will never be any collision. On the other hand at the beginning of each round t, with some
probability the players will communicate to sync their history (when such communication does
occur we refer to t as a random communication round). The players will also communicate with
probability one at times t ∈ b

√
T/Kc · N (we refer to such t as fixed communication rounds).

Moreover we will ensure that At remains constant between any two syncing. In fact, the random
communication rounds will exactly corresponds to the rounds where At 6= At−1. In this way Bob
will always know where is Alice, and will always select his action from the remaining arms to avoid
collision. Moreover, the probability Pt will be designed such that at each time step Bob can ensure
that, conditionally on At and Ht−1 one has:

Bt ∼ pBt (·|At) . (1)

In other words we will need to ensure that if t is not a communication round then pBt+1(·|At) does
not depend on `t(At) (so that Bob does not need to know the loss of Alice’s arm to update his
probability). This will be proved in Lemma 16.

To ensure that the random communication rounds are not too frequent we need Alice to im-
plement some kind of low switching strategy. Taking inspiration from the “shrinking dartboard”
algorithm (Geulen et al., 2010) we propose the following simple “filtering” lemma:

Lemma 5 Let q and p two probability distributions such that q(i) ≥ (1 − εi)p(i). Define the probability
distribution r via r(i) = q(i)−(1−εi)p(i)∑

j p(j)εj
. Let bi ∼ Ber(εi), I ∼ p, and J ∼ r. Then the distribution of

(1− bI)I + bIJ is q.

Proof The probability that (1 − bI)I + bIJ is equal to some i is given by (1 − εi)p(i) +∑
j εjp(j)r(i), which is equal to q(i) by definition of r.

In words the lemma says that, if Alice’s action A is currently distributed from p, and if she wants
to now be distributed according to q such that q(i) ≥ (1 − εi)p(i) for all i, then she can afford
to remain on A with probability 1 − εA (provided that when she switches she resamples from an
appropriate distribution as indicated in the lemma). A major difficulty in applying this lemma to the
bandit setting is that typically the next action distribution q depends on the current action A being
played (through the unbiased loss estimator), rendering the lemma all but useless. Such difficulty
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is to be excepted, as a low switching strategy provably does not exist for single-player multi-armed
bandit (Dekel et al., 2014). A major conceptual contribution of our work is to leverage the fact that
there are multiple players to go around this difficulty. Namely in the next section we propose a new
unbiased estimator based on a shared random bit so that Alice’s action at time step t is correctly
distributed even when conditioned on Alice and Bob’s distributions at time t + 1, or in other
words:

P(At = a|Pt, Pt+1) = pAt (a) . (2)

In particular it should be that, given pAt+1 and pAt , there is some uncertainty remaining on what
action Alice played (this sentence is clearly not true for classical single-player multi-armed bandit
strategies). Equipped with (2) one can use Lemma (5) to implement a (time-wise) marginally
correct distribution for Alice while also having low-switching (given a control on the multiplicative
updates of the distribution, see (3) below). More precisely, assume that pAt+1(a) ≥ (1−εt(a))pAt (a)
(for some fixed εt(a)). Given (2) we have that we can condition on pAt and pAt+1, and At remains
distributed as pAt . So Alice can now decide to stay put with probability 1− εt(At), that is At+1 =
At, and otherwise resample according to the distribution given by Lemma 5. In particular Lemma
5 now ensures that Alice’s distribution for At+1 is equal to pAt+1.

The exact sampling algorithm that we propose is described in Algorithm 1, where L is some
constant to be defined (we will have L = O(K)), and Ξt(a), a ∈ [K] is a carefully chosen set
of parameters to be defined later. In particular Ξt(a) only depends on the information exchanged
at the fixed communication rounds as well as the losses observed since then by plays of arm a.
Moreover Ξt(a) will verify:

pAt+1(a) ≥
(

1− ηL− η

Ξt(a)

)
pAt (a) , (3)

Ξt(a) ≥ 1

4K2
pAt (a) . (4)

We note that thanks to (4), the expected number of random communication rounds (i.e., times at
which Alice switches action, see [3., Algorithm 1]) is bounded from above by:

E
T∑
t=1

K∑
a=1

pAt (a)

(
ηL+

η

Ξt(a)

)
≤ η(4K3 + L)T . (5)

Crucially note that, as long as Algorithm 1 can be implemented1, then (At, Bt) is distributed ac-
cording to Pt(a, b) = pAt (a)pBt (b|a).

3.3. Outline of the rest of the proof
First, in Section 3.4, we propose a new unbiased loss estimator that allows us to ensure (2) whenQt
is derived from exponential weights on those estimators, and Pt only depends on those estimators.
This result, actually proved in Section 3.5, will be based on more assumptions on the (currently
mysterious for the reader) parameters Ξt(i). In Section 3.5 we also work out the variance term
for the exponential weights based on these new estimators. Next in Section 3.6 we explain the
difficulties in designing Pt to control this variance term. We give our actual design in Section
B.1. In particular the parameters Ξt(i) are also designed in that section (Section B.1.2). Once the
algorithm is fully specified, we prove in Section B.2 the various assumptions we made on the way.
A summary of the proof is given in Section B.3. Finally in Section B.4 we show how to remove
the shared randomness assumption, and in Section B.5 we show how to relate the communication
framework to the collision framework.

1. As we mentioned, we will need pBt+1(·|At) to not depend on `t(At) if t is not a communication round, and Ξt(a)
should only depend on the information exchanged at the fixed communication rounds as well as the losses observed
since then by plays of arm a

7
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Algorithm 1 Two players filtering strategy
1: At a fixed communication round, Alice and Bob communicate their history, then Alice com-

putes pAt (·) and picks an arm according to this distribution. Alice tells Bob which arm At she
picks, Bob then computes pBt (·|At) and samples Bt according to this distribution. . Fixed
communication round

2: At other rounds, with probability 1− ηL− η
Ξt−1(At−1) , Alice decides to pick At = At−1, Bob

then computes pBt (·|At) and samples Bt according to this distribution.
. No communication

3: Otherwise, Alice decides to communicate the history with Bob, then Alice computes
(pAt (·), pAt−1(·)) and picks an arm according to distribution rt such that for every i ∈ [K]:

rt(i) =
pAt (i)− (1− ηL− η

Ξt−1(i))pAt−1(i)∑
j∈[K]

(
ηL+ η

Ξt−1(j)

)
pAt−1(j)

. Random communication round
4: If a communication happened, then Alice also tells Bob which arm At she picks, and Bob

computes pBt (·|At) and samples Bt according to this distribution.

3.4. A new unbiased estimator
Our basic idea to ensure sufficient randomness in Alice’s action at time t, even given its distribution
at time t + 1 (in the hope to satisfy (2)), is to decide at random whether Alice or Bob records its
observed loss at time t, leveraging also the shared randomness assumption. Namely at and bt are
two random bits such that at+bt ≤ 1, and our proposed loss estimator ˜̀t will have the property that˜̀
t(i) 6= 0 only if: either i = At and at = 1, or i = Bt and bt = 1. The mean of at will be known

to both players, namely it is Ξt(At) (which by construction will only depend on the information
exchanged at the fixed communication rounds), while the mean of bt will be set to ensure (2) (see
Lemma 6 below). More precisely, assuming that (yet another constraint on Ξt to be verified once it
is defined in Section B.1.2, just as (4))

Ξt(b) ≤
pBt (b|a)

2
,∀a 6= b , (6)

we set at ∼ Ber(Ξt(At)) and bt ∼ Ber
(

Ξt(Bt)

pBt (Bt|At)

)
, two dependent random variables such that

at + bt ≤ 1. Our unbiased loss estimator is then defined by:

˜̀
t =

`t(At)

Ξt(At)
eAtat +

`t(Bt)

Ξt(Bt)
eBtbt . (7)

A key point of (7) is that it is symmetric in At and Bt. Moreover one can easily verify the unbi-
asedness (recall (1)):

E[˜̀t|Ht−1] = EAt∼pAt
[
E[˜̀t|At, Ht−1]

]
= EAt∼pAt

[
E
[
`t(At)eAt +

`t(Bt)

pBt (Bt|At)
eBt

∣∣∣∣At, Ht−1

]]
= `t .

(8)
As we explain next, we will want Alice and Bob to play according to the exponential weights
distribution on the above loss estimators, while only doing the communication mentioned in the
previous section (Algorithm 1).

8
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3.5. Two players filtering and exponential weights

Let us denote wt(a) = exp
(
−η
∑
s<t
˜̀
s(a)

)
. We will design strategies such that for any time t

and any actions a 6= b, one has:

Qt({a, b}) ∝ wt(a)wt(b) . (9)

Note that at this point we still have the flexibility of the assignment procedure, that is the design of
the distribution Pt such that for any a, b, Pt((a, b)) + Pt((b, a)) = Qt({a, b}). We will design Pt
in Section 3.6, based on the variance calculation (Lemma 7 below) for the strategy Qt described
by (9). The important point for us will be that Pt can be calculated with only the knowledge of˜̀
1, . . . , ˜̀t−1. This is quite a non-trivial assumption, in the sense that Pt (and thus presumably also

Ξt) should not depend on the actions actually played by the players (except through their implicit
effect on the unbiased loss estimators), and also should not depend on things such as τc(t) (the last
random communication round).

Lemma 6 Let us assume (1), (3), (6), and that Pt only depends on ˜̀1, . . . , ˜̀t−1. Then one has (2).

Proof We will in fact prove by induction that

P(At = a|˜̀1, . . . ˜̀t) = pAt (a) . (10)

First note that this is a stronger claim than (2), since by assumption using ˜̀1, . . . , ˜̀t one can build
Pt and Pt+1. Moreover note that (10) implies P(At+1 = a|˜̀1, . . . , ˜̀t) = pAt+1(a), since Alice is
implementing the filtering strategy from Lemma 5, and conditioning on ˜̀1, . . . , ˜̀t fixes both pAt
and pAt+1. We now distinguish three cases to prove (10): ˜̀t(a) 6= 0, ˜̀t(b) 6= 0 for some b 6= a, and
finally ˜̀t = 0.

Case 1: ˜̀t(a) 6= 0 (i.e., `t(a) 6= 0 and either At = a and at = 1, or Bt = a and bt = 1.
One then has (the second equality is true by induction and (1)):

P(At = a|˜̀1, . . . ˜̀t)
=

P(At = a and at = 1|˜̀1, . . . ˜̀t−1)

P(At = a and at = 1|˜̀1, . . . ˜̀t−1) + P(Bt = a and bt = 1|˜̀1, . . . ˜̀t−1)

=
pAt (a)Ξt(a)

pAt (a)Ξt(a) +
∑
a′ 6=a p

A
t (a′)pBt (a|a′) Ξt(a)

pBt (a|a′)

= pAt (a) .

Case 2: ˜̀t(b) 6= 0 for some b 6= a. One then has (the second equality is true by induction and
(1)):

P(At = a|˜̀1, . . . ˜̀t)
=

P(At = a and Bt = b and bt = 1|˜̀1, . . . ˜̀t−1)∑
a′ 6=b P(At = a′ and Bt = b and bt = 1|˜̀1, . . . ˜̀t−1) + P(At = b and at = 1|˜̀1, . . . ˜̀t−1)

=
pAt (a)pBt (b|a) Ξt(b)

pBt (b|a)∑
a′ 6=b p

A
t (a′)pBt (b|a′) Ξt(b)

pBt (b|a′) + pAt (b)Ξt(b)

= pAt (a) .

9
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Case 3: ˜̀t = 0. For sake of simplicity one can assume that this case only happens when
at = bt = 0 (indeed one can artifically add ε to all loss values without changing anything). Thus
one has (the second equality is true by induction, (1), and crucially the fact that at and bt are
coupled to never be one together):

P(At = a|˜̀1, . . . ˜̀t)
=

∑
b6=a P(At = a and Bt = b and at = 0 and bt = 0|˜̀1, . . . ˜̀t−1)∑

a′
∑
b 6=a′ P(At = a′ and Bt = b and at = 0 and bt = 0|˜̀1, . . . ˜̀t−1)

=

∑
b 6=a p

A
t (a)pBt (b|a)

(
1− Ξt(a)− Ξt(b)

pBt (b|a)

)
∑
a′
∑
b 6=a′ p

A
t (a′)pBt (b|a′)

(
1− Ξt(a′)− Ξt(b)

pBt (b|a′)

)
=

pAt (a) (1−
∑
b Ξt(b))∑

a′ p
A
t (a′) (1−

∑
b Ξt(b))

= pAt (a) .

Next we give the core regret bound for our strategy (of particular importance is the form of the
variance term, which will guide us in the construction of Pt in the next section). The proof can be
found in Section B.1.

Lemma 7 Let L = maxa6=b,t∈[T ]
pBt (b|a)
Ξt(b)

. Then, under the same assumptions as Lemma 6, one has for any
actions a 6= b,

E

[
T∑
t=1

`t(At) + `t(Bt)− (`t(a) + `t(b))

]

≤ 2 log(K)

η
+ 8ηL2

T∑
t=1

Ea∼pAt

 K∑
b=1,b6=a

K∑
a′,b′=1

Qt({a′, b}Pt((a, b′))
Pt((a, b))

 .
3.6. Controlling the variance

Our objective is now to design Pt such that (i) Pt((a, b)) +Pt((b, a)) = Qt({a, b}) ∝ wt(a)wt(b),
(ii) one can control

Vt := Ea∼pAt

 K∑
b=1,b 6=a

K∑
a′,b′=1

Qt({a′, b})Pt((a, b′))
Pt((a, b))

 ,
(so that one controls the regret bound from Lemma 7), and (iii) one can verify (1) as well as the
assumptions from Lemma 6 that Pt only depends on ˜̀1, . . . , ˜̀t.We focus here on (ii), and we defer
(iii) (which depends on the construction of Ξt to Section B.1.2. We will denote Zt for twice the
normalization constant of Qt, that is:

Zt :=

K∑
a=1

K∑
b=1,b 6=a

wt(a)wt(b) .

The most basic assignment rule is to simply assign uniformly at random, that is set Pt((a, b)) =
1
2Qt({a, b}, or in other words Pt((a, b)) = wt(a)wt(b)

Zt
. Unfortunately it is easy to see that in this

10
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case Vt can be unbounded. Indeed consider a case with 3 actions, where wt(1)� wt(2) = wt(3),
and consider the term in Vt with a′ = b′ = 1, a = 2, b = 3, that is: Qt({1, 3})Pt((2, 1))/Pt((2, 3)).
This term appears with probability pAt (1) which is constant, the numerator is also constant, but the
denominator is tiny. In fact this issue (the largest weight being much larger than the second largest
weight) is the only obstacle to bound the variance, indeed one has with the naive assignment:

K∑
a′,b′=1

Qt({a′, b})Pt((a, b′))
Pt((a, b))

= 2
∑

a′ 6=a,b′ 6=b

wt(a
′)wt(b

′)

Zt
= 2

∑
a′ 6=a,b′ 6=b wt(a

′)wt(b
′)∑

a,b6=a wt(a)wt(b)
.

Assuming that the weights are ordered (wt(1) ≥ wt(2) ≥ . . .), the largest term in the numerator
could be wt(1)2 (if a, b 6= 1) while the largest term in the denominator is wt(1)wt(2), so the ratio
could be as large as wt(1)/wt(2).

We show in Section B.1 how to appropriately break the symmetry between Alice and Bob to
control the variance. All the remaining details are also included in Section B.

4. Proof of Theorem 2
Our strategy relies on the notion of swap regret, which we recall in Section 4.1. We then explain
both Alice (Section 4.2) and Bob’s algorithm (Section 4.3). The complete proof of Theorem 2 is
given in Section C. We denote ˆ̀

t(i) = max(`t(i),1{At = Bt}), that is the effective loss functions
for the players at round t. We also partition [T ] into R blocks B1, · · · ,BR, where each Br is given
as:

Br =

{
T

R
(r − 1) + 1,

T

R
(r − 1) + 2, · · · , T

R
r

}
.

4.1. Swap regret
The swap regret of a single-player multi-armed bandit strategy is defined as follows, (Stoltz, 2005;
Blum and Mansour, 2007),

max
Φ:[K]→[K]

E
T∑
t=1

(
`t(At)− `t(Φ(At))

)
.

We will not need the full power of swap regret, and in fact it is enough for us to compete against
strategies of the form: Φa,b(i) = a if i 6= b and Φa,b(b) = b. However for sake of clarity of
exposition we stick with the general swap regret.

Theorem 8 (Stoltz (2005)) There exists a single-player multi-armed bandit strategy with swap regretO(K
√
T log(K)).

4.2. Alice’s algorithm
Alice will restrict her attention to actions {2, . . . ,K}. Moreover she will view a block Br as a
single round (in other words she plays a constant action on a block Br). The strategy she uses over
those R rounds and K−1 actions is the no-swap regret algorithm from Theorem 8. We thus obtain
the following guarantee:

Lemma 9 Alice satisfies At 6= 1 for all t, and:

max
Φ:{2,...,K}→{2,...,K}

E
T∑
t=1

(
ˆ̀
t(At)− ˆ̀

t(Φ(At))
)

= O

(
KT

√
log(K)

R

)
.

Proof One can apply Theorem 8 with T replaced by R, and the range of the losses is T/R instead
of 1.

11
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4.3. Bob’s algorithm
Bob restarts his algorithm at the beginning of each block Br. During a block, Bob keeps an active
set of arms, and plays anytime-Exp3 restricted to these arms. The active set is initialized to {1}.
During the block, with probability

√
KR/T , Bob selects a random action outside of the current

active set. If on such exploration rounds Bob observes a loss < 1, then he adds the explored arm to
his active set, and starts a new instance of anytime-Exp3 on this set of active arms.

Lemma 10 Let Ar be the action that Alice plays during block Br. Then Bob satisfies Bt = Ar with
probability at most

√
KR/T . Furthermore for any b∗r 6= Ar,

E
∑
t∈Br

(
ˆ̀
t(Bt)− ˆ̀

t(b
∗
r)
)
≤ O

(
K

√
T log(K)

R

)
.

Proof We first notice that ˆ̀
t(Ar) = 1 for all t ∈ Br, thus Ar is never in the active set, which also

implies that Bt = Ar with probability at most
√
KR/T .

Let us now denote L0 to be the set of all t ∈ Br such that `t(b∗r) 6= 1 and L1 be the set of all
t ∈ Br such that `t(b∗r) = 1. Let us define

L0(t) = |[t] ∩ L0| .

Let t∗ be the time that b∗r is added to the active set. Note that the active set changes at most
K times during each block, hence partitions Br into Br,1 ∪ Br,2 ∪ · · · ∪ Br,K . Observe that if
we condition on the set of times that Bob plays within the active set, the conditional law of his
play on that subset of times is exactly anytime-Exp3 - the exploration steps occur independently
of Bob’s performance. Therefore the standard regret bound O

(√
|Br,i|K logK

)
applies on the

non-exploration times. Summing over the K Exp3 instances and including the loss from L0(t∗)
and from exploration rounds themselves, we have

E

[∑
t∈Br

ˆ̀
t(Bt)

]
−
∑
t∈Br

ˆ̀
t(b
∗
r) ≤ E[L0(t∗)] +O

(√
TK

R

)
+O

(
E

[∑
i

√
|Br,i|K logK

])
.

Note that Bob samples each arm with probability at least
√
R/(TK) at each iteration, which

implies that E[L0(t∗)] ≤ O
(√

TK/R
)

. We have
∑
i |Br,i| =

T
R so by Jensen’s inequality, the last

term is maximized when |Br,i| = T
RK for all i. Hence the last term is at most O

(
K
√

T log(K)
R

)
.

This completes the proof.

Remark 11
It is crucial to the above analysis that Alice has low swap regret, not just low regret. If Alice is only

guaranteed low regret, even a perfect Bob player might not be able to obtain sublinear regret as a pair. Here
we give a simple example to illustrate this point. Consider a game with three actions and T rounds with
losses

`t =


(0, 1, 1), 0 < t ≤ T/3
(1, 0, 1), T/3 < t ≤ 2T/3

(0, 0, 1), 2T/3 < t ≤ T
.

Suppose that Alice plays action 1 for the first third, then action 2 for the next third, and then action 3 in
the final third. Her total loss is T/3, so she has 0 regret. However, given that Alice plays this way, there is no
sequence of actions for Bob achieving less than T/3 regret. Indeed, Bob always has loss at least 2T/3 for a
total loss of T between Alice and Bob, while the first two actions have total loss 2T/3.
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Appendix A. Proof of Proposition 3
Fix a round t, and consider the distributions pAt and pBt from which At and Bt are sampled from
(conditionally on respectively HA

t and HB
t ). If there exists a player, say A, and an action, say 1,

such that pAt (1) ≥ 3/4, then the adversary can play the loss `t = (1, 0, 0) which induces a loss
for the players of at least 3/4. On the other hand if for both players all actions have probability
less than 3/4, then it must be that there exists an action i such that pAt (i)pBt (i) ≥ 1/64 (indeed,
the probability of both top two actions for both players must be at least 1/8, and since there are
only 3 actions there must be a common action in their two top actions). In this case the adversary
simply plays the loss `t = (0, 0, 0), which results in an expected loss for the players of at least 1/64
(coming from the event of a collision).

Denote τ for the number of rounds where `t 6= 0. Then the player’s total loss is at least
3/4 · τ + (T − τ)/64, because `t 6= 0 only in rounds where maxj≤3 p

A
t (j) ≥ 3/4. on the other

hand, (by averaging over the three possible pairs) it is easy to see that there is a pair of actions
whose total loss is at most τ · 2/3.

Appendix B. Further details on the Proof of Theorem 1

B.1. Controlling the variance
We first recall the form of the variance, and give the corresponding proof.

Lemma 12 Let L = maxa6=b,t∈[T ]
pBt (b|a)
Ξt(b)

. Then, under the same assumptions as Lemma 6, one has for any
actions a 6= b,

E

[
T∑
t=1

`t(At) + `t(Bt)− (`t(a) + `t(b))

]

≤ 2 log(K)

η
+ 8ηL2

T∑
t=1

Ea∼pAt

 K∑
b=1,b6=a

K∑
a′,b′=1

Qt({a′, b}Pt((a, b′))
Pt((a, b))

 .
Proof Denote x = ea + eb and xt = E{A,B}∼Qt(eA + eB). The classical exponential weights
analysis yields:

T∑
t=1

(xt − x) · ˜̀t ≤ 2 log(K)

η
+ η

T∑
t=1

K∑
a′,b′=1

Qt({a′, b′})(˜̀t · (ea′ + eb′))
2 .

On the other hand one has, since {At, Bt} ∼ Qt in expectation by Lemma 6, it holds:

E

[
T∑
t=1

`t(At) + `t(Bt)− (`t(a) + `t(b))

]
= E

[
T∑
t=1

(xt − x) · `t

]

= E

[
T∑
t=1

(xt − x) · ˜̀t] ,
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where the second equality uses the tower rule, (8), and the fact that xt is measurable with respect
to Ht−1. Thus we see that it only remains to control:

E[Qt({a′, b′})(˜̀t · (ea′ + eb′))
2] ≤ 2E[Qt({a′, b′})(˜̀t(a′)2 + ˜̀t(b′)2)]

≤ 4

(
E
[
Qt({a′, b′})

(
1{At, Bt ∈ {a′, b′}}
pBt (Bt|At)Ξt(Bt)

)]
+ E

[
Qt({a′, b′})

(
1{At, Bt ∈ {a′, b′}}

Ξt(At)2

)])
≤ 4L2

(
E
[
Qt({a′, b′})

(
1{At, Bt ∈ {a′, b′}}

(pBt (Bt|At))2

)
+Qt({a′, b′})

(
1{At, Bt ∈ {a′, b′}}

(pBt (At|Bt))2

)])
= 8L2E

[
Qt({a′, b′})

(
1{At, Bt ∈ {a′, b′}}

(pBt (Bt|At))2

)]
.

Thus

K∑
a′,b′=1

E[Qt({a′, b′})(˜̀t · (ea′ + eb′))
2] ≤ 8L2E

[
Qt({{a′, Bt}, a′ ∈ [K]})

(pBt (Bt|At))2

]
.

Now it only remains to see that:

EBt∼pBt (·|At)

[
Qt({{a′, Bt}, a′ ∈ [K]})

(pBt (Bt|At))2

]
=

∑
b 6=At

Qt({{a′, b}, a′ ∈ [K]})
pBt (b|At)

=
∑
b 6=At

Qt({{a′, b}, a′ ∈ [K]}) · pAt (At)

Pt((At, b))

=
∑
b 6=At

∑
a′,b′

Qt({a′, b}) · Pt((At, b′))
Pt((At, b))

.

B.1.1. A MODIFIED ASSIGNMENT WITH A DOMINATING ARM

Imagine that we draw at random {It, Jt} from Qt. As we discussed before in Section 3.6, if 1 6∈
{It, Jt} (where again for sake of discussion let us assume that the weights are ordered) then there
will be essentially no problem in doing a uniformly random allocation (i.e., set (At, Bt) = (It, Jt)
with probability 1/2, and (At, Bt) = (Jt, It) with probability 1/2). On the other hand if 1 has
been sampled we need to be more careful, and owing to the intuition from the naive assignment
calculation we want to assign action 1 to Alice with higher probability. We simply propose in this
case to assign 1 to Bob with probability ε ' wt(2)

2wt(1) .

The above description is only to give intuition, as it ignores the fact that Alice and Bob do not
have full knowledge of the weights (in particular they might not know which arm actually has the
largest weight). The next lemma describes our actual strategy, based on some assumptions that will
need to be verified (just like (1) and (3) still need to be verified).

Lemma 13 Let us assume that we have ordered the arms so that

wt(1) ≥ 1

2
max
i∈[K]

wt(i) . (11)

Let εt be such that:

εt ∈
[

1

4

maxi 6=1 wt(i)

wt(1)
,min

(
maxi 6=1 wt(i)

wt(1)
,

1

2

)]
. (12)
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Then consider the assignment rule defined by Pt((i, j)) = 1
2Qt({i, j}) if 1 6∈ {i, j}, Pt((1, i)) = (1 −

εt)Qt({1, i}), and Pt((i, 1)) = εtQt({1, i}). One has:

Vt ≤ 64K .

Proof
For each a, b 6= a, we can compute that

pBt (b|a) =
Pt((a, b))∑

b′ 6=a Pt((a, b
′))

To bound the variance, we have that for each a, b 6= a, we want to control Vt(a, b) :=∑K
a′,b′=1

Qt({a′,b}Pt((a,b′))
Pt((a,b))

(note that in Vt this term is reweighted by pAt (a)). We consider three
cases. Recall that twice the normalization constant for Qt({a, b}) ∝ wt(a)wt(b) is denoted
Zt :=

∑
a′,b′ 6=a′ wt(a

′)wt(b
′).

Case 1: a = 1. Note that Pt((1, b)) ≥ 1
2Qt({1, b}) so that:

Vt(1, b) ≤ 2

K∑
a′,b′=1

Qt({a′, b})Qt({1, b′})
Qt({1, b})

= 4
∑

a′ 6=b,b′ 6=1

wt(a
′)wt(b

′)

Zt
≤ 8 ,

where the inequality follows from the fact that for any a′ one has (thanks to (11)):∑
b′ 6=1

wt(b
′) ≤ 2

∑
b′ 6=a′

wt(b
′) . (13)

Case 2: b = 1. One has:

Vt(a, 1) ≤ 2

K∑
a′,b′=1

Qt({a′, 1})Qt({a, b′})
Pt({a, 1})

= 8
∑

a′ 6=1,b′ 6=a

wt(a
′)wt(b

′)

εt · Zt
≤ 8

εt
.

Now observe that in Vt the terms Vt(a, 1) only appear with probability pAt (a). Invoking Lemma 14
we obtain:

Ea∼pAt [Vt(a, 1)1{a 6= 1}] ≤ 40K .

Case 3: a 6= 1, b 6= 1. One has:

K∑
a′,b′=1

Qt({a′, b}Pt((a, b′))
Pt((a, b))

= 4
∑

a′ 6=b,b′ 6=a

wt(a
′)

wt(a)
Pt((a, b

′))

≤ 4
∑
a′ 6=b

wt(a
′)

wt(a)
Pt((a, 1)) + 4

∑
a′ 6=b,b′ 6=1

wt(a
′)wt(b

′)

Zt
.

The second term in the last display is bounded by 8 (using (13)). On the other hand the first term is
upper bounded by (using (12) for the first inequality, and (13) for the second inequality):

4
∑
a′ 6=b

εt · wt(a′)wt(1)

Zt
≤ 4

∑
a′ 6=b

wt(a
′) maxi 6=1 wt(i)

Zt
≤ 8 .
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Lemma 14 With the assignment rule described in Lemma 13 and assuming (11), (12), one has

pAt (1) ≥ 1− 5Kεt .

Proof By definition of pAt and our choice of Pt((1, b)), we know that (by
∑
b 6=a Pt((a, b)) = 1)

pAt (1) =
∑
b 6=1

Pt((1, b)) =
∑
b6=1

(1− εt)Qt({1, b}) .

Next observe that∑
b6=1

Qt({1, b}) =

∑
b 6=1 wt(1)wt(b)∑

a′
∑
b′>a′ wt(a

′)wt(b′)
=

1

1 +
∑
a′ 6=1

∑
b′>a′

wt(a′)
wt(1) wt(b

′)/
∑
b 6=1 wt(b)

≥ 1

1 + 4εtK
,

where the inequality follows from (12). Thus we obtain

pAt (1) ≥ 1− εt
1 + 4εtK

≥ 1− 5Kεt .

B.1.2. THE εt AND Ξt(i) PARAMETERS

To fully specify our algorithm it only remains to define the parameter εt for the assignement rule
described in Lemma 13, as well as the parameters Ξt(i) that were used crucially in the definition of
the loss estimators. First, to simplify notation, we reorder the arms at every fixed communication
round so that arm 1 has the largest weight wt, and arm 2 has the second largest weight. In other
words at any time twe havewτ(t)(1) = maxi∈[K] wτ(t)(i) andwτ(t)(2) = maxi 6=1 wτ(t)(i) (recall
that τ(t) denotes the last fixed communication round before time t). We will now use the following
formulas:

εt :=
wτ(t)(2)

2wτ(t)(1)
, (14)

and

Ξt(i) :=
wt(i)

2Kwτ(t)(2)
for i 6= 1 and Ξt(1) =

1

8K
. (15)

B.2. Verifying all the assumptions
Now that we have a complete description of the players’ strategies we will verify all the assumptions
made in the previous sections. It will be useful to first work out the formulas for pBt (b|a).

Lemma 15 One has pBt (b|1) ∝ wt(b) for any b 6= 1. For any a 6= 1 one has

pBt (b|a) ∝ wt(b)1{b 6= 1}+ εtwt(1)1{b = 1} ,

for b 6= a.

Proof First we have:

pBt (b|1) =
Pt((1, b))∑

b′ 6=1 Pt((1, b
′))

=
Qt({1, b})∑

b′ 6=1Qt({1, b′})
=

wt(b)∑
b′ 6=1 wt(b

′)
.

18
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Next we have:

pBt (1|a) =
Pt((a, 1))∑
b′ 6=a Pt((a, b

′))
=

εtQt({a, 1})
εtQt({a, 1}) +

∑
b′ 6=a,1

1
2Qt({a, b′})

=
εtwt(1)

εtwt(1) + 1
2

∑
b′ 6=a,1 wt(b

′)
.

Finally if both a and b are distinct from 1:

pBt (b|a) =
Pt((a, b))∑

b′ 6=a Pt((a, b
′))

=
1
2Qt({a, b})

εtQt({a, 1}) +
∑
b′ 6=a,1

1
2Qt({a, b′})

=
1
2wt(b)

εtwt(1) + 1
2

∑
b′ 6=a,1 wt(b

′)
.

B.2.1. SAMPLING ASSUMPTIONS

We start with (1), namely that Bob can sample from pBt (·|At) using only the information received
at communication rounds (both fixed and random), as well as his own feedback (in other words
pBt (·|At) should not depend on `s(At) for s ∈ [τc(t), t], where we recall that τc(t) is the last
communication round). We also verify that Alice can be implement the filtering by showing that
Ξt(At) similarly only depends on the information available to Alice at round t.

Lemma 16 For every t ∈ [T ], we have that pBt (·|At) only depends onAt, Hτc(t) and (Bs, `s(Bs)) for every
s ∈ (τc(t), t), but not `s(As) for any s ∈ (τc(t), t). Moreover Ξt(At) only depends on Hτc(t) and `s(At) for
every s ∈ (τc(t), t), but not on (Bs, `s(Bs)) for any s ∈ (τc(t), t)

Proof Let us prove the first claim by induction. Given Lemma 15 it clearly suffices to show that
wt(b) for any b 6= At can be computed with such limited information, which in turn only requires˜̀
t(b) to be computable with such information. This in turn is clearly true by induction (recall the

formulas (7) and (15)). The second claim is proved similarly.

Next we also show that Alice’s sampling satisfies the bounded multiplicative update given in
(3)

Lemma 17 (3) holds true between each fixed communication rounds.

Proof By definition, we know that

pAt+1(a) =
∑
b6=a

Pt+1((a, b)) =

∑
b 6=a ca,bwt+1(a)wt+1(b)

Zt+1
,

where ca,b ∈
{
ε, 1− ε, 1

2

}
as given in Lemma 13.

Recall that ˜̀t is non-negative, thus wt(a) = exp
(
−η
∑
s<t
˜̀
s(a)

)
is non-increasing at every

iteration. Which implies that Zt+1 ≤ Zt. Thus,

pAt+1(a) ≥
∑
b 6=a ca,bwt+1(a)wt+1(b)

Zt

≥
∑
b 6=a e

−η
(

1
Ξt(a)

+ 1
Ξt(b)

)
ca,bwt(a)wt(b)

Zt

= e−
η

Ξt(a)

∑
b 6=a

pAt (a)
∑
b6=a

pBt (b|a)e−
η

Ξt(b)

≥ e−
η

Ξt(a) pAt (a)
∑
b 6=a

pBt (b|a)

(
1− η

Ξt(b)

)
≥ (1− ηL)e−

η
Ξt(a) pAt (a)
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B.2.2. ASSUMPTIONS ON εt

Next we prove that we weights do not change too rapidly. In particular the following lemma easily
implies that (11) and (12) holds true.

Lemma 18 Assume that η ≤ 1
8L
√
KT

. Then one has

wt(1)

wτ(t)(1)
≥ 1

2
and

wt(2)

wτ(t)(2)
≥ 1

2

Proof We are going to prove this by induction. Note first that, by definition of L (see Lemma
7) one has for any a 6= b, wt+1(b) ≥ wt(b) exp

(
−ηL 1

pBt (b|a)

)
. We will now show (using

the induction hypothesis) that pBt (2|1) ≥ 1/(4K) and pBt (1|2) ≥ 1/(4K) which easily con-
cludes the proof. Indeed the multiplicative change on say wt(1) compared to wτ(t)(1) is at most
exp (−(t− τ(t))4ηLK), and t− τ(t) ≤

√
T/K by definition of the fixed communication rounds.

Using Lemma 15, the induction hypothesis, and the definition of the arm ordering (recall Sec-
tion B.1.2) we have:

pBt (2|1) =
wt(2)∑
b6=1 wt(b)

≥
1
2wτ(t)(2)∑
b 6=1 wτ(t)(b)

≥ 1

2K
.

Similarly we get (recall the definition of εt (14)):

pBt (1|2) =
εtwt(1)

εtwt(1) +
∑
b 6=1,2 wt(b)

≥
1
2εtwτ(t)(1)

εtwτ(t)(1) +
∑
b6=1,2 wτ(t)(b)

≥ 1

4K
, (16)

which concludes the proof.

B.2.3. ASSUMPTIONS ON Ξt(a)

Finally we conclude the proof by proving the assumptions (4) and (6) on Ξi(t), as well as showing
that L = O(K). We start with the following result, which directly shows (6) as well as L ≤ 8K.

Lemma 19 For any a 6= 1 we have pBt (1|a) ≥ 1
4K . Moreover for any a and b 6∈ {1, a} we have:

pBt (b|a) ∈
[

wt(b)

Kwτ(t)(2)
,

4wt(b)

wτ(t)(2)

]
.

Proof The first inequality is proved exactly as (16). For the second statement we distinguish two
cases, whether a = 1 or not.

Case 1: a = 1. By Lemma 15 we have:

pBt (b|1) =
wt(b)∑

b′ 6=1 wt(b
′)
≥ wt(b)

Kwτ(t)(2)
.

For the upper bound we use that
∑
b′ 6=1 wt(b

′) ≥ wt(2) ≥ 1
2wτ(t)(2) by Lemma 18.
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Case 2: a 6= 1. By Lemma 15 we have (for b 6= 1)

pBt (b|a) =
wt(b)

εtwt(1) +
∑
b′ 6=1,a wt(b

′)
≥ wt(b)

Kwτ(t)(2)
.

For the upper bound we use that, by Lemma 18, εtwt(1) +
∑
b′ 6=1 wt(b

′) ≥ 1
2εtwτ(t)(1) =

1
4wτ(t)(2).

Lemma 20 For every action a ∈ [K], Ξt(a) ≥ 1
4K2 p

A
t (a) (that is (4) holds true).

Proof For a = 1, 2 this claim is trivially true. For a 6= 1, 2, we have that

pAt (a) =
∑
b6=a

Pt((a, b)) ≤
2Kwt(1)wt(a)

wt(1)wt(2)
≤ 2Kwt(a)

wτ(t)(2)
= 4K2Ξt(a) .

B.3. Proof summary
We detail here how to put together the previous sections to obtain Theorem 4. First of all, as in-
dicated by Lemma 16, we know that Alice can compute Ξt(At) and Bob can compute pBt (and
Ξt(a) for a 6= At) between each communication rounds, so the proposed strategy can indeed
be implemented (moreover the assumptions needed on Ξt are verified in Section B.2.3). When
Alice and Bob Communicates, Alice send Bob

∑
s∈(τc(t),t)

`s(As)
Ξs(As)

eAsas and Bob sends Alice∑
s∈(τc(t),t)

`s(Bs)
Ξs(Bs)

eBsbs, each requiring O(K log(T )) bits2. Alice also communicates her new
action to Bob.

Since we can take L = 8K (see Section B.2.3) we get from (5) that the expected number of
communication rounds is less than 5K3ηT . We also have that the number of fixed communication
rounds is less than

√
TK.

Next we invoke Lemma 7 with Lemma 13 (note that the assumptions in the latter lemma are
proved in Section B.2.2) to obtain that the regret of Alice and Bob is bounded from above by:

log(K)

η
+ 215K3ηT ,

where we have the constraint that η ≤ 1

26
√
K3T

from Lemma 18.

Finally, taking η = 1

27
√
K3T

one obtains a regret of 29K3/2 log(K)
√
T and a total number of

communication rounds of K3/2
√
T .

2. To be more precise Alice and Bob communicates an approximation to these numbers at the 1/poly(T ) scale. This
does not have any effect on the bounds, so we ignore this minor point.
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B.4. Removing the shared randomness
For ` ∈ {0, 1}KT and s ∈ {0, 1}T , let us denote R`(s) for the regret suffered by Alice and Bob
against the loss sequence ` when using the bit string s as their shared randomness (recall that the
strategy described above only needs one shared random bit per step, to decide who will record their
observed loss). More precisely R`(s) denotes the expected regret, where the expectation is taken
with respect to everything except the shared random bit string s. Our proof so far showed that:

∀` ∈ {0, 1}KT , Es∼unif({0,1}T )R`(s) = OK(
√
T ) .

If the shared bit string s was of smaller length, say O(
√
T ), then one could remove the shared

randomness assumption since s could simply be sampled by say Alice, and then communicated to
Bob. Viewing random bits as a resource is the appanage of the theory of pseudorandom generators
(see e.g., (Goldreich, 2010)). Instantiated in our framework, we would like to use a much shorter
bit string s′ ∈ {0, 1}O(log(T )), together with an appropriate map G : {0, 1}O(log(T )) → {0, 1}T ,
such that for all ` ∈ {0, 1}KT and all t ∈ [0, T ] ∩ N one has

Ps′∼unif({0,1}O(log(T ))(R`(G(s′)) ∈ [t, t+ 1]) ≤ 1

T
+ Ps∼unif({0,1}T )(R`(s) ∈ [t, t+ 1]) . (17)

Note that the above condition directly implies that replacing a truly random T -bit string s by G(s′)
in the algorithm only cost an additive constant 2 in the regret. Moreover one can assume access to
G(s′) for both players without assuming shared randomness. Indeed G is a fixed map built once
and for all (more on that below), and s′ is small enough that it can be communicated at the start of
the game. Thus proving (17) is enough to remove the shared randomness assumption (note that we
assume here that the losses are taking value in {0, 1} instead of [0, 1], but it is well-known how to
reduce the latter to the former).

The map G is usually referred to as a PRG (pseudorandom generator) that fools the boolean
test functions s 7→ 1{R`(s) ∈ [t, t + 1]}, for ` ∈ {0, 1}KT and t ∈ [0, T ] ∩ N. It is well-known
that one can fool N test functions, up to a uniform error of ε in the probabilities, using s′ of length
only O(log log(N) + log(1/ε)) (note that we take ε = 1/T and N = 2KT , so we indeed obtain
that s′ is of length O(log(T ))). In fact with a simple Hoeffding’s inequality one can show that a
random map G works with high probability and in expectation (see e.g., [Exercise 1.3, (Goldreich,
2010)]). Note that the random map G can be known to the oblivious adversary, so we do not need
to communicate G during the game.

B.5. From communication to collision
Finally we describe in Algorithm 2 the reduction from Algorithm 1 to an algorithm that uses only
collision information instead of explicit communication (note that there is an overhead of O(K),
namely to communicate one bit there will be O(K) collisions in expectation). This (together with
Section B.4) completes the proof of Theorem 1. Indeed, in Algorithm 1 there is no collision at all
between Alice and Bob. Thus, when Bob (Alice) finds a collision, he (she) knows that Alice (Bob)
wants to communicate. The expected regret caused by this protocol is O(K) times the expected
number of bits of communication. We obtain the claimed dependency onK in Theorem 1 by doing
a slightly different optimization on η from the one in Section B.3.

Appendix C. Further details on the Proof of Theorem 2
First we note that the regret bounds in Lemma 9 and Lemma 10 in fact hold with `t instead of
ˆ̀
t, with an added term O(

√
KRT ) in the former case. Indeed by Lemma 10 the probability of

collision is at most
√
KR/T so the total number of collisions is

√
KRT .
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Algorithm 2 Communication to Collision
Require: Alice wants to send a bit s ∈ {1, 2} to Bob:

while No Collision do
Alice pick an arm uniformly at random from K.
end

1: Alice pick arm s.
2: Bob pick arm 1.
3: If no collision, then Bob knows that the bit is 2, otherwise the bit is 1.

We now consider any two distinct actions a, b ∈ [K] such that a 6= 1 and show that Alice
and Bob achieve small regret against this pair. Let us define a function f : {2, 3, · · · ,K} →
{2, 3, · · · ,K} such that f(i) = a for every i 6= b and f(b) = b if b ∈ {2, 3, · · · ,K}. Then, the
low swap regret property of Alice ensures that:

E
T∑
t=1

(
`t(At)− `t(f(At))

)
≤ O

(
KT

√
log(K)

R
+
√
KRT

)
.

Next, let g : [K]→ {a, b} be a function such that g(i) = b if i 6= b and g(b) = a. In particular
g(i) 6= i for every i ∈ [K], then Lemma 10 ensures that for every r ∈ [R] and every Ar,

E
∑
t∈Br

(
`t(Bt)− `t(g(Ar))

)
≤ O

(
K

√
T logK

R

)
.

Summing up the above two displays (the second being summed also over all r ∈ [R]) we have:

E

∑
r∈[R]

∑
t∈Br

`t(Ar) + `t(Bt)

 ≤ E

∑
r∈[R]

∑
t∈Br

(`t(f(Ar)) + `t(g(Ar)))


+O

(
KT

√
log(K)

R
+K

√
TR logK

)
.

Note that {f(Ar), g(Ar)} = {a, b}. Since a and b were arbitrary, the final RHS is an upper
bound for the expected regret. It remains to optimize over R to obtain O

(
KT 3/4 log1/2K

)
.

Appendix D. Extension to Many Players with No Collision Information
Here we extend our analysis without collision information to the case of m > 2 players, showing a
T 1− 1

2m type regret bound.

Theorem 21
Let m ≤ K and consider the m player bandit game with neither collision information nor shared

randomness. There exists an m player strategy such that against any oblivious adversary one has

RT = Õ
(
mK3/2T 1− 1

2m

)
.

The proof is given in subsection D.4. In preparation, we first describe the algorithm and then
give two lemmas. The first lemma essentially controls the swap regret of each player. The second
lemma generalizes our functions f, g in the previous section to the m player case.
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D.1. Algorithm description
The algorithm is similar to the m = 2 case, with each player using blocks of a different size. We
label the players 1 through m, with Player 1 playing in the largest blocks. More precisely, Player i
plays a fixed action on each block Bir of length |Bir| = T 1− i

m . We will denote by Bir the rth such
block, for r ≤ T i/m. For j ≤ i, we will denote by Aj,Bir the fixed action played by Player j during
Bir.

Paralleling them = 2 case, Player i only plays actions in the set {m−i+1,m−i+2, . . . ,K},
and he starts each round with an active arm set consisting only of {m−i+1}. He performs random
explorations α := K1/2T−1/2m fraction of the time. While playing in the active arm set, he uses
an anytime-low-swap-regret algorithm, which achieves expected regretO(K|Bi1|

√
S log(K)) after

S consecutive i-blocks. Note that is easy to turn the low-swap-regret algorithm of Stoltz (2005)
into an anytime algorithm with the same guarantee by shrinking the learning rate and restarting on
a dyadic set of times. Player i also resets his memory every T 1/m blocks (or T 1− i−1

m timesteps, or
every time a new Bi−1

r′ block begins).

D.2. Swap regret of each player
The lemma we need controls the swap regret of Player i on each Bi−1

r block.

Lemma 22 Player i satisfies, for each r ≤ T i−1
m ,

max
Φ:{m−i+1,...,K}→{m−i+1,...,K}

E
∑

t∈Bi−1
r

(
ˆ̀
t(Ai,t)− `t(Φ(Ai,t))

)
= O

(
K3/2T 1− 2i−1

2m

√
log(K)

)
.

Moreover the expectation takes as given the actions Aj,Bi−1
r

for j ≤ i − 1 (which are constant during
Bi−1
r ).

Proof The proof is similar to that of Lemma 10. We first fix a function Φ.
Again set L0(i) to be the set of all t ∈ Bi−1

r such that `t(i) 6= 1 and L1(i) be the set of all
t ∈ Bi−1

r such that `t(i) = 1. Let us define

L0(i, t) = |[t] ∩ L0(i)| .

Let t∗(i) be the time that i is added to the active set. Note that the active set changes for
at most K times during each block, hence partitions Bi−1

r into Bi−1
r,1 ∪ B

i−1
r,2 ∪ · · · ∪ B

i−1
r,K . So

the swap-regret bound O
(
K
√
|Bi−1
r,j | logK

)
applies to the set of non-exploration times in Bi−1

r,j .

Summing over the K subblocks Bi−1
r,i and including the loss from L0(i, t∗) and from exploration

rounds themselves, we have

E
[∑

t∈Bi−1
r

ˆ̀
t(Ai,t)−

∑
t∈Bi−1

r

ˆ̀
t(Φ(Ai,t))

]
≤

∑
i E[L0(i, t∗(i))] +O

(
αT 1− i−1

m

)
+O

(
E

[
KT 1− i

m

√
logK ·

∑
j≤K

√
|Bi−1
r,j |
|Bi1|

])
.

Recall we set an exploration rate of α = K1/2T−1/2m. To estimate the E[L0(i, t∗(i))] terms
we observe that each i-block contributes at most T 1− i

m and is added to the active set with proba-
bility at least α

K = K−1/2T−1/2m whenever it gives a positive contribution. Therefore both of the
first two terms are O(K3/2T 1− 2i−1

2m ) in total.

By Jensen’s inequality the last term is maximized when |Bi−1
r,j | = T 1− i−1

m

K for all j. In this case
the final sum has K terms each of size T−

1
2mK−1/2. Combining, we have
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E

 ∑
t∈Bi−1

r

ˆ̀
t(Ai,t)−

∑
t∈Bi−1

r

ˆ̀
t(Φ(Ai,t))

 ≤ O
(
K3/2T 1− 2i−1

2m

√
log(K)

)
This is almost what we need. We also need to control

E

 ∑
t∈Bi−1

r

(
ˆ̀
t(Φ(Ai,t))− `t(Φ(Ai,t))

) .
This is simply bounded by |Bi−1

r |αm for the explorations of the m other players - note that the
value of α is the same for all players. As m ≤ K we have

E

 ∑
t∈Bi−1

r

(
ˆ̀
t(Φ(Ai,t))− `t(Φ(Ai,t))

) = O
(
K3/2T 1− 2i−1

2m

)
.

Adding gives the claimed result.

D.3. Assigning a top-m Action to each player
We now generalize our functions f, g from the two-player case. There, the point was to ensure that
{f(Ar), g(Ar)} = {a, b} for any given actions {a, b}, and apply this when a, b are the best two
actions. This allowed us to compare the regret of Alice against f and the regret of Bob against g.
Here we describe a more general construction. The construction takes as given a set ofm “optimal”
actions {a1, a2, . . . , am} and a sequence of not necessarily distinct actionsA1, . . . , Am ∈ [K] such
that Ai ≥ m − i + 1 for all i; the actions Ai represent the actions currently being played by the
players. The construction assigns Player i a distinct one of these actions Ãi = aj for some j.
Explicitly, for k = 1 to k = m, we:

1. Set Ãk = Ak if both Ak ∈ {aj |j ≤ m} and Ak /∈ {Ãj |j < k}. Essentially, we define Ãk = Ak when
possible.

2. In the case that Ãk = Ak does not happen in the previous step, define Ãk = aj for the smallest value
of j such that aj /∈ {Ãj |j < k} and aj ≥ m− k + 1.

Lemma 23 In the setting above, with actions

{a1, a2, . . . , am}

Ai ≥ m− i+ 1, for i ≤ m.

the following hold:

(A) Ãk has a well-defined value. Furthermore:

(a) Ãk ∈ {a1, . . . , am}.

(b) Ãk ≥ m− k + 1.

(c) Ãk /∈ {Ã1, . . . , Ãk−1}.

(d) Ãk /∈ {A1, . . . , Ak−1}.
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(B) Ãk is a function of the set {aj |j ≤ m} and the sequence (A1, . . . , Ak).

(C) The set {Ãi|i ≤ m} is a permutation of the set {ai|i ≤ m}.

Proof To see claim (A), we think about choosing Ãk. Points (a), (b), (c) are all clear by construc-
tion assuming a suitable value of Ãk always exists. So the point is to show a value Ãk exists and is
not equal to any Aj for j ≤ k − 1.

To see this, we first observe that if Aj ∈ {a1, . . . , am} for j ≤ k − 1 then Ãi = Aj for some
i ≤ k − 1. That is, Aj is never actually available as a value of Ãk. Indeed, by construction Ãj
would equal Aj if Aj ∈ {a1, . . . , am} and no previous Ãi equaled Aj .

Therefore, any value

Ãk ∈ ({aj |j ≤ m} ∩ {m− k + 1, . . . ,K}) \{Ãj |j ≤ k − 1}

satisfying (a), (b), (c) automaticaly satisfies (d). Assuming one exists, step 2 of the algorithm
will pick such a value for Ãk. So we are left to prove that the above set of possible Ãk values is
non-empty.

We do this with a simple counting argument. Observe that of the three subsets above, the first
{aj |j ≤ m} has m elements, the second has K −m+ k, and the third has k − 1. Intersecting the
first two results in a set with at least k elements, and removing k− 1 leaves at least 1. We conclude
that a value of Ãk making (a), (b), (c) true exists, hence is picked by the algorithm, and this value
automatically satisfies (d) as well.

Claim (B) is true by induction, since Ãk is a function of the set {aj |j ≤ m}, the sequence
(A1, . . . , Ak) and the sequence (Ã1, . . . , Ãk−1).

Claim (C) is implied by claim (A).

We denote by Φk the functions obtained from the Lemma, which by (B) take as input sets
{aj |j ≤ m} of actions, and a sequence (A1, . . . , Ak) of not-necessarily-distinct action. We use the
following notation to suggest that Ak is the actual argument, while the rest are (fixed) parameters:

Φk;(a1,...,am);(A1,...,Ak−1)(Ak) = Φk;(a1,...,am);(A1,...,Ak).

Claim (C) of the lemma says that these functions satisfy the property

{Φj;(a1,...,am);(A1,...,Aj−1)(Aj)|j ≤ m} = {aj |j ≤ m}

as long as Aj ≥ m− j + 1 for all j.
To obtain the desired regret bound for the multiplayer bandit game, we use these functions Φ

as our swap functions, where the actions Aj are those of the slower players.

D.4. Proof of Theorem 21
Proof For any distinct actions (a1, . . . , am) we show the regret bound

E

∑
t≤T

∑
i≤m

(
ˆ̀
t(Ai,t)− `t(ai)

) = O
(
mK3/2T 1− 1

2m

√
log(K)

)
.

For player i, consider each block Bi−1
r , and apply Lemma 22 with the Φ function above,

Φi(Ai) = Φi;(a1,...,am);(A
1,Bi−1

r
,...,A

i−1,Bi−1
r

)(Ai).
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Note that in constructing Φ we allowed the sequence A1, . . . , Ai−1 to have repeats, which
might happen here if some Player j for j ≤ i− 1 is exploring outside his active arm set.

We let Φi,t be the function Φi during for the block containing time t. For each fixed i, summing
over all T

i−1
m blocks Bi−1

r for varying r shows

E

∑
t≤T

ˆ̀
t(Ai,t)−

∑
t≤T

`t(Φi,t(Ai,t))

 ≤ O
(
K3/2T 1− 1

2m

√
log(K)

)
By construction, at each time t the functions {Φj,t|j ≤ m} take all the values {aj |j ≤ m}

exactly once. Therefore summing the previous inequality over i ≤ m gives the claimed regret
bound.
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