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Abstract
We establish improved rates for structured non-smooth optimization problems by means of near-
optimal higher-order accelerated methods. In particular, given access to a standard oracle model
that provides a pth order Taylor expansion of a smoothed version of the function, we show how
to achieve ε-optimality for the original problem in Õp

(
ε−

2p+2
3p+1

)
calls to the oracle. Furthermore,

when p = 3, we provide an efficient implementation of the near-optimal accelerated scheme that
achieves an O(ε−4/5) iteration complexity, where each iteration requires Õ(1) calls to a linear
system solver. Thus, we go beyond the previous O(ε−1) barrier in terms of ε dependence, and
in the case of `∞ regression and `1-SVM, we establish overall improvements for some parameter
settings in the moderate-accuracy regime. Our results also lead to improved high-accuracy rates for
minimizing a large class of convex quartic polynomials.
Keywords: Non-smooth convex optimization, higher-order acceleration, `∞ regression

1. Introduction

While the benefit of smoothness for improved convergence guarantees is well understood in the
optimization literature, many problems of interest are unfortunately non-smooth, and thus do not
inherit these favorable rates. One such example is the classic problem of `∞ regression:

min
x∈Rd
‖Ax− b‖∞, A ∈ Rm×d, b ∈ Rm. (1)

Although a first-order iteration complexity of O(1/ε2) can be obtained when optimizing Lips-
chitz continuous convex functions, it is known that one can achieve better than the black-box rate
for certain structured functions (Nemirovski, 2004; Nesterov, 2005b,a, 2007), such as `∞ and `1
regression, as well as bilinear saddle-point problems.

In this work, we go beyond these previous first-order approaches to establish improved higher-
order smoothed oracle complexities for several important non-smooth optimization problems, in-
cluding `∞ regression. As noted by Ene and Vladu (2019), even achieving a linear dependence in
ε−1 has required careful handling of accelerated techniques for non-smooth optimization (Nesterov,
2005b; Sherman, 2017; Sidford and Tian, 2018). Thus, we show how to go beyond these rates to
achieve oracle complexities sublinear in ε−1. We further extend these results to the setting of `1-
SVM, again achieving oracle complexities that are sublinear in ε−1. Additionally, under third-order
smoothness assumptions (i.e., the p = 3 case), we make use of efficient tensor methods Nesterov
(2018a) in order to establish overall computational costs in terms of (per-iteration) linear system
solves, thus providing results that may be compared with (Christiano et al., 2011; Chin et al., 2013;

c© 2020 B. Bullins.



HIGHLY SMOOTH MINIMIZATION OF NON-SMOOTH PROBLEMS

Ene and Vladu, 2019), where the `∞ regression problem has been considered in the context of
approximate max flow.

An important observation of this work is that the softmax approximation to the max function,
which we denote as smaxµ(·) (parameterized by µ > 0), is not only smooth (i.e., its gradient is
Lipschitz continuous), but also higher-order smooth. In particular, we establish Lipschitz continuity
of its pth derivatives with Lipschitz constant Op(1/µp), where we use Op(·) to hide additional p-
dependent terms. By combining this observation with recent advances in higher-order acceleration
(Gasnikov et al., 2018; Jiang et al., 2018; Bubeck et al., 2018b; Bullins, 2018; Gasnikov et al., 2019),
we achieve an improved pth-order oracle complexity of Õp(ε

− 2p+2
3p+1 ), thus establishing a family of

rates that goes beyond the previous O(1/ε) dependence for p > 1 (Nesterov, 2005b; Sherman,
2017; Sidford and Tian, 2018; Ene and Vladu, 2019).

1.1. Our contributions

The main contributions of this work are as follows:

1. We provide improved higher-order oracle complexities for several important non-smooth opti-
mization problems, by combining near-optimal higher-order acceleration with the appropriate
highly smooth approximations.

2. By leveraging efficient tensor methods for the case when p = 3 (Nesterov, 2018a), we go be-
yond the oracle model to establish overall computational cost for these non-smooth problems
that, for certain parameter regimes (see: Appendix A), improves upon previous results.

3. Our efficient tensor methods can further be extended to the high-accuracy regime, whereby
we show in Appendix C improved convergence rates for a large class of convex quartic poly-
nomials. By doing so, we arrive at a convergence rate for `4 regression that improves upon
the rate of Bubeck et al. (2018a), and matches that of Adil et al. (2019a) (up to logarithmic
factors).

1.2. Overview of approach

We begin by considering the value that softmax provides as an approximation to the (non-smooth)
max function. In particular, we go beyond its standard first-order smoothness to instead show how
to bound its pth-order derivatives for all orders p ≥ 1, as a function of p. Ultimately, the higher-
order smoothness guarantees combine with near-optimal higher-order accelerated methods (Gas-
nikov et al., 2018; Jiang et al., 2018; Bubeck et al., 2018b; Bullins, 2018; Gasnikov et al., 2019) to
result in the higher-order smoothed oracle complexity of Õp(ε

− 2p+2
3p+1 ), for p ≥ 1.

Once we shift to the specific case for p = 3, our approach is primarily based on extending a near-
optimal accelerated higher-order optimization procedure (Monteiro and Svaiter, 2013), whereby
each iteration of the method requires finding an exact minimizer of a subproblem given by the third-
order Taylor expansion, centered around the tth iterate, plus an additional fourth-order regularization
term. As our aim is to go beyond the oracle model, we leverage an efficient third-order tensor
method (Nesterov, 2018a) which provides a sufficiently accurate solution to the subproblem. We
note that the approach presented by Nesterov (2018a) is highly tuned to the fourth-order regularized
model, and so extending this type of result beyond fourth-order regularization remains an interesting
open question.
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After a part of this work first appeared on arXiv (Bullins and Peng, 2019), follow-up work by
Carmon et al. (2020) showed how to achieve a rate of Õ

(
‖x0 − x∗‖2/3A>A

ε−2/3
)

for `∞ regression,
by combining Monteiro-Svaiter acceleration with access to an efficiently implementable ball oracle.
We believe both works provide further evidence of the value of these acceleration schemes, and we
look forward to exploring these promising directions. Due to space constraints, we provide a more
extensive overview of related works in the appendix.

1.3. Organization of the paper

Our paper is organized as follows. In Section 2, we establish the necessary definitions and machin-
ery for handling higher-order derivatives, along with the relevant extensions to higher-order notions
of smoothness and strong convexity. Then, in Section 3, we present the standard softmax function
as a smooth approximation to the max function, whereby we show that its smoothness properties
extend to all orders. Combining this result with recent advances in higher-order optimization leads
to our main oracle complexity results, Theorems 10 and 11. In Section 4, we focus on the case
where p = 3, thus allowing us to go beyond the oracle model and arrive at overall computational
guarantees in the form of Theorems 12 and 13.

2. Setup

Let u, v denote vectors in Rd. Throughout, we let vi denote the i-th coordinate of v, and we let [k]
def
=

{1, . . . , k} for k ≥ 1. We let ∆m
def
= {x ∈ Rm :

∑
i xi = 1, xi ≥ 0} denote the m-dimensional

simplex. We let ‖v‖p denote the standard `p norm, and we drop the subscript to let ‖·‖ denote the
`2 norm. Let B ∈ Rd×d be a symmetric positive-definite matrix, i.e., B � 0. Then, we may define
the matrix-induced norm of v (w.r.t. B) as ‖v‖B

def
=
√
v>Bv, and we let ‖B‖ def

= λmax(B).
We now make formal a higher-order notion of smoothness. Specifically, for p ≥ 1, we say a

p-times differentiable function f(·) is Lp-smooth (of order p) w.r.t. ‖·‖B if the pth derivative is
Lp-Lipschitz continuous, i.e., for all x, y ∈ Rd,

‖∇pf(y)−∇pf(x)‖∗B ≤ Lp‖y − x‖B, (2)

where we define

‖∇pf(y)−∇pf(x)‖∗B
def
= max

h:‖h‖B≤1

∣∣∣∇pf(y)[h]p −∇pf(x)[h]p
∣∣∣ ,

and where
∇pf(x)[h]p

def
= ∇pf(x) [h, h, . . . , h]︸ ︷︷ ︸

p times

.

Observe that, for p = 1, this recovers the usual notion of smoothness, and so our convention
will be to refer to first-order smooth functions as simply smooth. A complementary notion is that of
strong convexity, and its higher-order generalization known as uniform convexity (Nesterov, 2008).
In particular, f(·) is σp-uniformly convex (of order p) with respect to ‖·‖B if, for all x, y ∈ Rd,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
σp
p
‖y − x‖pB.
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Again, we may see that this captures the typical σ2-strong convexity (w.r.t. ‖·‖B) by setting p = 2.
Following the conventions of Nesterov (2018a), we define the pth-order Taylor expansion, cen-

tered at x, as

Φx,p(y)
def
= f(x) +

p∑
i=1

1

i!
∇if(x)[y − x]i, p ≥ 1. (3)

3. Softmax approximation for non-smooth problems

We recall from (Nesterov, 2005b; Sidford and Tian, 2018) the standard softmax approximation, for
x ∈ Rm:

smaxµ(x)
def
= µ log

(
m∑
i=1

e
xi
µ

)
. (4)

It is straightforward to observe that (4) is 1
µ -smooth, and furthermore that it smoothly approximates

the max function, i.e., maxj∈[m] xj (Sidford and Tian, 2018).

Fact 1 For all x ∈ Rm,

max
j∈[m]

xj ≤ smaxµ(x) ≤ µ log(m) + max
j∈[m]

xj . (5)

Note that this approximation can be used to approximate ‖x‖∞, since ‖x‖∞ = max
j∈[m]

|xj |, and

|xj | = max {xj ,−xj}. It follows that we may determine a smooth approximation of `∞ regression,
i.e.,

min
x∈Rd
‖Ãx− b̃‖∞, Ã ∈ Rm×d, b̃ ∈ Rm, (6)

as smaxµ(Ax− b), where A =

(
Ã

−Ã

)
and b =

(
b̃

−b̃

)
.

Having now formalized the connection between smaxµ(·) and ‖·‖∞, we assume throughout the
rest of the section that A ∈ Rm×d and b ∈ Rm, as the difference in dimension between Ã, b̃ and A,
b only affects the final convergence by a constant factor. In addition, we will assume that A is such
that A>A � 0, and thus we consider the regime where m ≥ d.

3.1. `1-regularized SVM

We may also consider the `1-regularized soft-margin SVM (`1-SVM) problem, i.e.,

f(x) = λ‖x‖1 +
1

m

m∑
i=1

max {0, 1− bi〈ai, x〉} , (7)

for ai ∈ Rd, bi ∈ R (i ∈ [m]), and λ > 0. To simplify the notation, we define

SVM(x)
def
=

1

m

m∑
i=1

max {0, 1− xi} .

Letting q̃i
def
= biai and Q̃

def
= [q̃1 q̃2 . . . q̃m]> , we may then rewrite f(x) = λ‖x‖1 + SVM(Q̃x).

We now make the following observations concerning softmax-based approximations for ‖·‖1 and
max {0, ·}.
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Lemma 2 (`1 approximation) Let sabsµ(c)
def
= smaxµ([c,−c]) for c ∈ R, and let soft-`1µ(x)

def
=

m∑
i=1

sabsµ(xi) for x ∈ Rm. Then, we have that

‖x‖1 ≤ soft-`1µ(x) ≤ ‖x‖1 + µm. (8)

Lemma 3 (Smooth hinge loss approximation) Let shingeµ(c)
def
= smaxµ([0, c]) for c ∈ R. Then

max {0, c} ≤ shingeµ(c) ≤ max {0, c}+ µ. (9)

This gives us a natural smooth approximation to SVM(x), namely,

softSVMµ(x)
def
=

1

m

m∑
i=1

shingeµ(1− xi). (10)

Taken together with these approximations, we arrive at the following lemma, the proof of which
follows by combining Lemmas 2 and 3.

Lemma 4 Let fµ(x) = λ soft-`1µ(x) + softSVM(Q̃x), and let f(x) be as in (7). Then, for all
x ∈ Rd,

f(x) ≤ fµ(x) ≤ f(x) + 2µλd. (11)

3.2. Softmax calculus and higher-order smoothness

Now that we have established the connection between softmax and some important non-smooth
functions, we shift our attention to several desirable properties of smaxµ(·). To simplify notation,

we let Zµ(x) =
m∑
i=1

e
xi
µ , and so smaxµ(x) = µ log (Zµ(x)). Note that we have

∇ smaxµ(x)i =
e
xi
µ

Zµ(x)
, i ∈ [m] . (12)

Furthermore, since∇ smaxµ(x) ∈ ∆m for all x ∈ Rm, it follows that, for all p ≥ 1,

‖∇ smaxµ(x)‖p ≤ 1. (13)

We may also see that

∇2 smaxµ(x) =
1

µ

(
diag(∇ smaxµ(x))−∇ smaxµ(x)∇ smaxµ(x)>

)
. (14)

As mentioned previously, one of the key observations of this work is that softmax is equipped
with favorable higher-order smoothness properties. Thus, the following lemma shows how we may
bound its pth-order derivatives, for all p ≥ 1, and its proof can be found in the appendix.

Theorem 5 For all x, h ∈ Rd, p ≥ 1,

|∇p smaxµ(x)[h]p| ≤

(
p

ln(p+1)

)p
(p− 1)!‖h‖p2

µp−1
. (15)

5



HIGHLY SMOOTH MINIMIZATION OF NON-SMOOTH PROBLEMS

It will also be helpful to note the following standard result on how a bound on the (p + 1)th

derivative implies Lipschitz-continuity of the pth derivative.

Lemma 6 Let f(·) be a (p + 1)-times differentiable function, let Lp > 0 and A be such that
A>A � 0, and suppose, for all ζ, h ∈ Rd,∣∣∇p+1f(ζ)[h]p+1

∣∣ ≤ Lp‖Ah‖p+1
2 . (16)

Then we have that, for all x, y ∈ Rd,

‖∇pf(y)−∇pf(x)‖∗A>A ≤ Lp‖y − x‖A>A. (17)

Having determined these bounds, we now provide smoothness guarantees for the softmax ap-
proximation to both `∞ regression and `1-SVM.

Theorem 7 Let fµ(x) = smaxµ(Ax − b). Then, fµ(x) is (order p)

(
p+1

ln(p+2)

)p+1
p!

µp - smooth w.r.t.
‖·‖A>A.

Theorem 8 Let fµ(x) = λ soft-`1µ(x) + softSVMµ(Q̃x). Then, fµ(x) is (order p) Q-smooth

w.r.t. ‖·‖2, for Q =

(
p+1

ln(p+2)

)p+1
p!

(
λd+‖Q̃>Q̃‖

p+1
2

)
µp .

We now consider recent advances in near-optimal accelerated methods for higher-order smooth
convex optimization (Gasnikov et al., 2018; Jiang et al., 2018; Bubeck et al., 2018b; Bullins, 2018;
Gasnikov et al., 2019). While we will further explore the details behind the method in Section 4,
the overall idea is to combine a carefully tuned acceleration scheme with a regularized pth-order
Taylor expansion oracle, whereby the inner step of the acceleration scheme requires minimizing the
regularized Taylor model.

Theorem 9 (Bubeck et al. (2018b), Theorem 1.1) Let f(·) denote a convex function whose pth

derivative is Lp-Lipschitz, and let x∗ denote a minimizer of f(·). Then, the Accelerated Taylor De-
scent (ATD) method (Bubeck et al. (2018b), Algorithm 1) satisfies, with cp = 2p−1(p+1)

3p+1
2 /(p−

1)!,

f(yk)− f(x∗) ≤ cpLp‖x∗‖p+1

k
3p+1

2

. (18)

Furthermore, each iteration of ATD can be implemented in Õ(1) calls to a pth-order Taylor expan-
sion oracle.

We first apply this general theorem to our smooth approximations, before showing overall
higher-order smoothed oracle complexity for our non-smooth problems of interest. Here it will

be useful to define ĉp
def
= 42p−1p(p+ 1)

3p+1
2

(
p+1

ln(p+2)

)p+1
.

Corollaries 29 and 30, found in Appendix B, follow by combining Theorem 9 with Theorems
7 and 8, respectively. Thus, we may arrive at the following key theorems of this section (found in
full in Appendix B), the proofs of which are immediate from the previous corollaries by using Fact
1 and Lemma 4.
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Theorem 10 (Sketch) Let f(x) = ‖Ax− b‖∞ for b ∈ Rm, A ∈ Rm×d s.t. A>A � 0, and let x∗

denote a minimizer of f(·). Then, ATD satisifies, for N = Õ(1/ε(2p+2)/(3p+1))

f(yN )− f(x∗) ≤ ε. (19)

Theorem 11 (Sketch) Let f(x) = λ‖x‖1 + 1
m

m∑
i=1

max {0, 1− bi〈ai, x〉} where ai ∈ Rd, bi ∈ R

for i ∈ [m], let Q̃
def
= [b1a1 b2a2 . . . bmam]>, and let x∗ denote a minimizer of f(·). Then, ATD

satisifies, for N = Õ(1/ε(2p+2)/(3p+1)),

f(yN )− f(x∗) ≤ ε.

4. Efficient implementation for p = 3

In this section, we go beyond the oracle model in the case of third-order smoothness (i.e., p = 3) in
order to establish overall computational guarantees, beginning with `∞ regression:

Theorem 12 Let f(x) = ‖Ax − b‖∞ for b ∈ Rm, A ∈ Rm×d s.t. A>A � 0, and let x∗
def
=

argminx∈Rd f(x). There is a method, initialized with x0, that outputs xN such that

f(xN )− f(x∗) ≤ ε

in O
(

log3/5(m)‖x0−x∗‖4/5
A>A

ε4/5

)
iterations, where each iteration requires O(logO(1)(Z/ε)) calls to a

gradient oracle and linear system solver, for some problem-dependent parameter Z . 1

Our results are also applicable to soft-margin SVMs, and so in particular, we get the following
for `1-SVM (Bradley and Mangasarian, 1998; Zhu et al., 2004; Mangasarian, 2006).

Theorem 13 Let f(x) = λ‖x‖1+ 1
m

m∑
i=1

max {0, 1− bi〈ai, x〉} where ai ∈ Rd, bi ∈ R for i ∈ [m],

let Q̃
def
= [b1a1 b2a2 . . . bmam]>, and let x∗

def
= argminx∈Rd f(x). There is a method, initialized

with x0, that outputs xN such that
f(xN )− f(x∗) ≤ ε

inO
(

(λd)3/5(λd+‖Q̃>Q̃‖2)1/5‖x0−x∗‖4/5
ε4/5

)
iterations, where each iteration requiresO(logO(1)(Z/ε))

calls to a gradient oracle and linear system solver, for some problem-dependent parameter Z .

We begin by developing the necessary higher-order optimization guarantees, before later prov-
ing Theorems 12 and 13 in Appendix F.11. In order to handle the points that might be reached by
our method, starting from an initial point x0, we consider the following standard objects, beginning
with the set

K
def
=
{
x : ‖x− x0‖2B ≤ 4‖x0 − x∗‖2B

}
. (20)

1. Z depends polynomially upon, among other things, the diameter term P and the gradient norm bound G—the full
dependence may be found in the proof of Theorem 26. Note that Z only appears as part of polylogarithmic factors.
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Given this set, we now consider the maximum function value attained over K , i.e., F def
= max

x∈K
f(x).

Finally, we let
P def

= max
x,y∈L

‖x− y‖2B, (21)

where L
def
= {x : f(x) ≤ F}, and we let G def

= max
x∈L
‖∇f(x)‖2B−1 .

We recall that

Φx,p(y)
def
= f(x) +

p∑
i=1

1

i!
∇if(x)[y − x]i, p ≥ 1 (22)

denotes the pth-order Taylor approximation of f(·), centered at x. Furthermore, for f(·) that is
(order p) Lp-smooth, we define a model function

Ωx,p,B(y)
def
= Φx,p(y) +

2pLp
(p+ 1)!

‖y − x‖p+1
B . (23)

As we are only concerned in this section with functions that are third-order L3-smooth, we will drop
the p subscript to define Φx(y)

def
= Φx,3(y) and

Ωx,B(y)
def
= Ωx,3,B(y) = Φx(y) +

L3

4
‖y − x‖4B. (24)

Note that Ωx,B(y) is third-order 6L3-smooth w.r.t ‖·‖B. The following theorem illustrates some
useful properties of the model Ωx,B(·).

Theorem 14 (Nesterov (2018a), Theorem 1, for M = 2L3) Suppose f(·) is convex, 3-times dif-
ferentiable, and third-order L3-smooth. Then, for any x, y ∈ Rd, we have

0 � ∇2f(y) � ∇2Φx(y) +
L3

2
‖y − x‖2BB.

Moreover, for all y ∈ Rd,
f(y) ≤ Ωx,B(y). (25)

For functions f(·) that are third-order L3-smooth w.r.t. ‖·‖B, we also have that, for all x, y ∈
Rd,

‖∇f(y)−∇Φx(y)‖B−1 ≤
L3

6
‖y − x‖3B. (26)

With this representation of the model function Ωx,B(·) in hand, we let

TB(x)
def
= argminy∈Rd Ωx,B(y) (27)

denote a minimizer of the fourth-order model, centered at x. The following lemma concerning
Ωx,B(·) establishes a relaxed version of eq. (2.13) from Nesterov (2018a).

Lemma 15 Let ε > 0, and let TB(·) be as in (27). Then, for all x, y ∈ Rd,

〈∇f(x), y − x〉 ≥ 1

2L3r̂2
B(x, y)

‖∇f(x)‖2B−1 +
3L3

8
r̂4
B(x, y)− 2Z(x, y)W (x, y)‖x− TB(y)‖B

2L3r̂2
B(x, y)

,

(28)
for appropriately defined Z(x, y), W (x, y).

8
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We may also observe that Ωx,B(·) is (order 4) uniformly convex w.r.t. ‖·‖B.

Lemma 16 For all y, z ∈ Rd,

Ωx,B(z) ≥ Ωx,B(y) + 〈∇Ωx,B(y), z − y〉+
L3

12
‖z − y‖4B. (29)

4.1. Approximate auxiliary minimization

To begin, we consider the auxiliary minimization problem min
h∈Rd

Γx,B(h), where

Γx,B(h)
def
= f(x) + 〈∇f(x), h〉+

1

2
h>∇2f(x)h+

1

6
∇3f(x)[h]3 +

L3

4
‖h‖4B.

Note that Γx,B(h) is equivalent to Ωx,B(y), up to a change of variables. Our aim is to establish
a minimization procedure which returns an ε̃aam-optimal solution in O(log(A/ε̃aam)) iterations,
whereA is defined in Corollary 18. Furthermore, each iteration is dominated byO(logO(1)(1/ε̃aam))
calls to a linear system solver. This subroutine, which we call ApproxAuxMin (Algorithm 3), is de-
scribed in Section 5 of Nesterov (2018a) and is able to return an approximate minimizer of Ωx,B(·).
The approach involves showing that the auxiliary function is relatively smooth and strongly convex
(Bauschke et al., 2016; Lu et al., 2018), and further that each iteration of the method for minimizing
such a function reduces to a minimization problem of the form

−min
λ>0

w(λ), (30)

where w(λ)
def
= λ2

2 + 1
2〈(
√

2λB +∇2f(x))−1ct, ct〉 and

ct
def
= ∇Γx,B(ht) = ∇f(x) +∇2f(x)ht +

1

2
∇3f(x)[ht]

2 + L3‖ht‖2BBht.

As noted by Nesterov (2018a), this minimization problem is both one-dimensional and strongly con-
vex, and so we may achieve global linear convergence. Taken together with the relative smoothness
and strong convexity of Γx,B(·), we have the following theorem.

Theorem 17 (Nesterov (2018a), eq.(5.9) (τ =
√

2). See also: Lu et al. (2018), Theorem 3.1) For
all ht, K ≥ t ≥ 0, generated by ApproxAuxMin(yk, ε̃aam) (Algorithm 3), we have that

Γyk,B(ht)− Γyk,B(h∗) ≤ α(√
2+1
2

)t
− 1

,

where h∗
def
= argminh∈Rd Γyk,B(h) and α

def
= 1√

2
(h0−h∗)>∇2f(yk)(h0−h∗) +

√
2L3
4 ‖h0−h∗‖4B.

Corollary 18 Let xk+1 = yk + hK be the output from ApproxAuxMin(yk, ε̃aam), for yk ∈ L and

K = O(log(A/ε̃aam)), whereA def
= 1+max

z∈L

1√
2
(TB(z)−z)>∇2f(z)(TB(z)−z)+

√
2L3
4 ‖TB(z)−

z‖4B. Then
Ωyk,B(xk+1)− Ωyk,B(TB(yk)) ≤ ε̃aam,

where each iteration requires time proportional to evaluating f(·) in order to compute ct, as well
as O(logO(1)(1/ε̃aam)) calls to a linear system solver.

9
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As we shall see, it will become necessary to handle the approximation error from ApproxAuxMin,
and so we provide the following several lemmas to that end.

Lemma 19 Let ε > 0, let xk+1 be as output by ApproxAuxMin(yk, ε̃aam), and let TB(yk) be as in

(27). Then, ‖xk+1 − TB(yk)‖B ≤
(

12ε̃aam
L3

)1/4
.

Lemma 20 Let xk+1 = ApproxAuxMin(yk, ε̃aam). Then,

〈∇f(xk+1), yk − xk+1〉 ≥
1

2L3r̂2
B(xk+1, yk)

‖∇f(xk+1)‖2B−1 +
3L3

8
r̂4
B(xk+1, yk)

− 3Z(xk+1, yk)W (xk+1, yk)ε̃
1/4
aam

L
5/4
3 r̂2

B(xk+1, yk)
.

Proof The result follows from Lemmas 15 and 19.

Lemma 21 Let xk+1 be the output from ApproxAuxMin(yk, ε̃aam) for yk ∈ L . In addition, let

r(yk)
def
= ‖TB(yk)− yk‖B. Then,∣∣r̂2

B(xk+1, yk)− r(yk)2
∣∣ ≤ 6

(
ε̃aam
L3

)1/4

P1/2 +

(
12ε̃aam
L3

)1/2

.

4.2. Search procedure for finding ρk
In this section, we establish the correctness of RhoSearch (Algorithm 4), our subroutine for finding
an appropriate choice of ρk, given xk, vk as inputs. One of the key algorithmic components for
achieving fast higher-order acceleration, as observed by Monteiro and Svaiter (2013), is to deter-
mine ρk such that ρk ≈ ζk(ρk), where we define

ζk(ρ)
def
= ‖TB(yk(ρ))− yk(ρ)‖2B, (31)

yk(ρ)
def
= (1− τk(ρ))xk + τk(ρ)vk, (32)

and
τk(ρ)

def
=

2

1 +
√

1 + 4L3Akρ
. (33)

We will also need to define an approximate version

ζ̂k(ρ)
def
= ‖xk+1(ρ)− yk(ρ)‖2B, (34)

where we let xk+1(ρ)
def
= ApproxAuxMin(yk(ρ), ε̃aam). We may observe that ζk(ρ) is continuous

in ρ, and furthermore that there exists some 0 ≤ ρ∗k ≤ ∞ such that ζk(ρ∗k) = ρ∗k, since if ρ = 0,
then yk = vk, and if ρk → ∞, then yk = xk. Thus, we may reduce it to a binary search problem,
under an appropriate initialization. For now, we assume that at each iteration k ≥ 0, RhoSearch is
given initial bounds ρ−init and ρ+

init such that ρ−init ≤ ρ∗k ≤ ρ
+
init, thus ensuring it is a valid binary search

procedure. We will later show how FastQuartic can provide RhoSearch with such guarantees.
An important part of managing this process is to limit how quickly ζk(ρ) can grow, as we will

need to ensure a closeness in function value once our candidate bounds ρ− and ρ+ are sufficiently
close. Theorems 33 and 34, found in Appendix B, give us precisely what we need, namely a
differential inequality w.r.t. |ζ ′k(ρ)|. We note that the complicated description of ζk(ρ) as a function
of ρ gives rise to several technical challenges.

10
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4.3. Analyzing the convergence of FastQuartic

Algorithm 1 FastQuartic (Sketch)
Input: x0 = 0, A0 = 0, B � 0, N .
Define ψ0(x)

def
= 1

2‖x− x0‖2B.
for k = 0 to N − 1 do
vk = argminx∈Rd ψk(x)
Find ρk > 0, xk+1 ∈ Rd such that ρk ≈ ‖xk+1 − yk‖2B, where:

ak+1 =
1 +
√

1 + 4L3Akρk
2L3ρk

(
=⇒ (ak+1)2 =

Ak + ak+1

L3ρk

)
Ak+1 = Ak + ak+1, τk =

ak+1

Ak+1
, yk = (1− τk)xk + τkvk

xk+1 = argminx∈Rd Ωyk,3,B(x)

ψk+1 = ψk + ak+1 [f(xk+1) + 〈∇f(xk+1), x− xk+1〉]
end for
return xN

Having shown the correctness of the binary search procedure in RhoSearch, we now describe
our main algorithm, called FastQuartic (sketched in Algorithm 1), and prove its correctness. Due to
space constraints, we include the full method (Algorithm 5), along with its subroutines, in Appendix
E. Our analysis follows similarly to that of Chapter 4.3 in (Nesterov, 2018b), though we consider a
higher-order model function for the case where f(·) is third-order L3-smooth.

We begin by proving a useful inequality concerning the estimate sequence, which is a stan-
dard technique for analyzing accelerated methods (Nesterov, 2005b, 2018b). An important part of
FastQuartic is to provide RhoSearch with appropriate ρ+

init and ρ−init that are valid upper and lower
bounds, respectively, on ρ∗k. As we will see, setting ρ+

init = P will provide a sufficiently large upper
bound on ρ∗k. For the lower bound, we will observe that, for a small enough choice of ρ−init, if it is
still the case that ρ∗k < ρ−init, then we can show that our current iterate achieves sufficiently small
error, and so we are done. The following lemmas make these observations formal.

Lemma 22 Let c > 0, xk+1 = ApproxAuxMin(yk, ε̃aam), where yk ∈ L , and suppose cρ−init ≤
r̂2
B(xk+1, yk). Then,

〈∇f(xk+1), yk − xk+1〉 ≥
1

2L3r̂2
B(xk+1, yk)

‖∇f(xk+1)‖2B−1 +
3L3

8
r̂4
B(xk+1, yk)−

W ε̃
1/4
aam

cρ−init
.

whereW > 0 is some problem-dependent parameter.

Lemma 23 For any k ≥ 0, let Ak, xk, vk, yi{0≤i≤k−1} be as generated by k iterations of
FastQuartic with ε̃aam > 0 chosen sufficiently small, and suppose that for all k iterations, ρ−init ≤
(1 + ε̃fs)‖x−k+1− y

−
k ‖

2
B and ρ−init ≤ ‖x

−
k+1− y

−
k ‖

2
B−Qε̃

1/4
aam (forQ as in (45)). Then, we have that

Akf(xk) +Bk ≤ ψ∗k
def
= min

x∈Rd
ψk(x), (35)

11
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where Bk
def
= 3L3

16

k−1∑
i=0

Ai+1r̂
4
B(xi+1, yi). In addition,

f(xk) ≤ F , ‖vk − x∗‖2B ≤ ‖x0 − x∗‖2B, and vk, xk ∈ L . (36)

Corollary 24 For any k ≥ 0, let Ak, Bk, xk be as in the previous lemma statement. Then, we have

f(xk)− f(x∗) ≤ 1

2Ak
‖x0 − x∗‖2B and Bk ≤

1

2
‖x0 − x∗‖2B.

We now need to establish various bounds on the estimate sequence parametersAk, namely Lem-
mas 35 and 36 which are found in Appendix B, again extending the analysis of Nesterov (2018b) to
account for the higher-order smoothness. We thus arrive at the following key theorem.

Theorem 25 Let k ≥ 1 be such that the conditions in the statement of Lemma 23 hold. Then, we
have

f(xk)− f(x∗) ≤
128L3‖x0 − x∗‖4B

3

(
2

k + 1

)5

. (37)

So far, we have shown the correctness in the case where, for all k ≥ 0, ρ−init ≤ (1+ ε̃fs)‖x−k+1−
y−k ‖

2
B and ρ−init ≤ ‖x

−
k+1 − y

−
k ‖

2
B − Qε̃

1/4
aam. However, we need to ensure correctness of the case

where, for some iteration of FastQuartic, it happens that ρ−init > (1 + ε̃fs)‖x−k+1 − y
−
k ‖

2
B, or ρ−init ≤

‖x−k+1 − y
−
k ‖

2
B −Qε̃

1/4
aam. We handle these cases via Theorem 37 in Appendix B.

Having established the necessary results for proving the correctness of the output from
ApproxAuxMin and RhoSearch, we may combine these observations with those of Section 4.3 to
prove one of the key theorems of this work, which establishes the total cost of optimizing third-order
smooth convex f(·). The proofs of Theorems 12 and 13 then follow, as discussed in Appendix F.11.

Theorem 26 Suppose f(x) is convex and third-order L3-smooth. Then, under appropriate initial-
ization, FastQuartic finds a point xN such that

f(xN )− f(x∗) ≤ ε

inO
((

L3‖x0−x∗‖4B
ε

)1/5
)

iterations, where each iteration requiresO(logO(1)(Z/ε)) calls to a gra-

dient oracle and linear system solver, and where Z is a polynomial in various problem-dependent
parameters.
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Appendix A. Related work

Smooth approximation techniques: It has been shown that one can go beyond the black-box
convergence of O(1/ε2) to achieve an O(1/ε) rate for certain classes of non-smooth functions
(Nemirovski, 2004; Nesterov, 2005b,a, 2007). One such approach by Nesterov (2005b) was to
carefully smooth the well-structured function, and the work goes on to present several applications
of the method, including `∞ and `1 regression, in addition to saddle-point games. However, the
methods for all of these examples incur an O(1/ε) dependence which remains in several works that
build upon these techniques (Sherman, 2017; Sidford and Tian, 2018). For a more comprehensive
overview, we refer the reader to (Beck and Teboulle, 2012).

Higher-order accelerated methods: Several works have considered accelerated variants of opti-
mization methods based on access to higher-order derivative information. Nesterov (2008) showed
that one can accelerate cubic regularization, under a Lipschitz Hessian condition, to attain faster
convergence, and these results were later generalized by Baes (2009) to arbitrary higher-order ora-
cle access under the appropriate notions of higher-order smoothness. The rate attained in (Nesterov,
2008) was further improved upon by Monteiro and Svaiter (2013), and lower bounds have estab-
lished that the oracle complexity of this result is nearly tight (up to logarithmic factors) when the
Hessian is Lipschitz continuous (Arjevani et al., 2018). Until recently, however, it was an open
question whether these lower bounds are tight for general higher-order oracle access (and smooth-
ness), though this question has been mostly resolved as a result of several works developed over the
past year (Gasnikov et al., 2018; Jiang et al., 2018; Bubeck et al., 2018b; Bullins, 2018; Gasnikov
et al., 2019).

`∞ regression: Various regression problems play a central role in numerous computational and
learning tasks. Designing better methods for `∞ regression in particular has led to faster approxi-
mate max flow algorithms (Christiano et al., 2011; Chin et al., 2013; Kelner et al., 2014; Sherman,
2017; Sidford and Tian, 2018). Recently, Ene and Vladu (2019) presented a method for `∞ re-
gression, based on iteratively reweighted least squares, that achieves an iteration complexity of
O(m1/3 log(1/ε)/ε2/3 + log(m/ε)/ε2). We note that their rate of convergence has an O(m1/3)
dependence, whereas our result (Theorem 12) only depends logarithmically in m, though with an
additional diameter dependence, i.e., ‖x0 − x∗‖4/5.

Soft-margin SVM: Support vector machines (SVMs) (Cortes and Vapnik, 1995) have enjoyed
widespread adoption for classification tasks in machine learning (Cristianini et al., 2000). For the
soft-margin version, several approaches have been proposed for dealing with the non-smooth nature
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of the hinge loss. The standard approach is to cast the (`2-regularized) SVM problem as a quadratic
programming problem (Platt, 1998; Boyd and Vandenberghe, 2004). Stochastic sub-gradient meth-
ods have also been successful due to their advantage in per-iteration cost (Shalev-Shwartz et al.,
2011). While `2-SVM is arguably the most well-known variant, `p-SVMs, for general p ≥ 1,
have also been studied (Bradley and Mangasarian, 1998). `1-SVMs (Zhu et al., 2004; Mangasarian,
2006) are appealing, in particular, due to their sparcity-inducing tendencies, though they forfeit the
strong convexity guarantees that come with `2 regularization (Allen-Zhu and Hazan, 2016).

Interior-point methods: It is well-known that both `∞ regression and `1-SVM can be expressed
as linear programs (Boyd and Vandenberghe, 2004; Bradley and Mangasarian, 1998), and thus are
amenable to fast LP solvers (Lee and Sidford, 2014; Cohen et al., 2018). In particular, this means
that each can be solved in either Õ(dω) time (where ω ∼ 2.373 is the matrix multiplication constant)
(Cohen et al., 2018), or in Õ(

√
d) linear system solves (Lee and Sidford, 2014). We note that, while

these methods dominate in the high-accuracy regime, our method is competitive, under modest
choices of ε and favorable linear system solves, when ‖x0 − x∗‖4/5 ≤ O(

√
d) (up to logarithmic

factors).

Appendix B. Additional theorems

Corollary 27 Let fµ(x) = smaxµ(Ax− b) be the softmax approximation to (6) for µ = ε
2 log(m) ,

where A is such that A>A � 0. Then, letting x∗µ
def
= argminx∈Rd fµ(x), FastQuartic finds a point

xN such that
fµ(xN )− fµ(x∗µ) ≤ ε

2

in O
(

log3/5(m)‖x0−x∗‖4/5
A>A

ε4/5

)
iterations, where each iteration requires O(logO(1)(Z/ε)) calls to

a gradient oracle and linear system solver, and where Z is a polynomial in various problem-
dependent parameters.

Corollary 28 Let fµ(x) = λ soft-`1µ(x) + softSVMµ(Q̃x) be the smooth approximation to f(x)

(as in (7)) with µ = ε
4λd for ε > 0. Then, letting x∗µ

def
= argminx∈Rd fµ(x), FastQuartic finds a

point xN such that
fµ(xN )− fµ(x∗µ) ≤ ε

2

inO
(

(λd)3/5(λd+‖Q̃>Q̃‖2)1/5‖x0−x∗‖4/5
ε4/5

)
iterations, where each iteration requiresO(logO(1)(Z/ε))

calls to a gradient oracle and linear system solver, and whereZ is a polynomial in various problem-
dependent parameters.

Corollary 29 Let fµ(x) = smaxµ(Ax− b) be the softmax approximation to (6) for µ = ε
2 log(m) ,

where A is such that A>A � 0, and let x∗ denote a minimizer of f(·). Then, ATD satisifies

fµ(yN )− f(x∗) ≤ ε

2
(38)

for N =

⌈(
ĉp‖x∗‖p+1

A>A
logp(m)

εp+1

) 2
3p+1

⌉
.
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Corollary 30 Let ε > 0, let fµ(x) = λ soft-`1µ(x)+softSVM(Q̃x) be the softmax approximation
to (7) for µ = ε

4λd , and let x∗ denote a minimizer of f(·). Then, ATD satisifies

fµ(yN )− f(x∗) ≤ ε

2
(39)

for N =

⌈(
ĉp‖x∗‖p+1(λd)p(λd+‖Q̃>Q̃‖

p+1
2 )

εp+1

) 2
3p+1

⌉
.

Theorem 31 Let f(x) = ‖Ax− b‖∞ for b ∈ Rm, A ∈ Rm×d s.t. A>A � 0, and let x∗ denote a
minimizer of f(·). Then, ATD satisifies

f(yN )− f(x∗) ≤ ε (40)

for N =

⌈(
ĉp‖x∗‖p+1

A>A
logp(m)

εp+1

) 2
3p+1

⌉
.

Theorem 32 Let f(x) = λ‖x‖1+ 1
m

m∑
i=1

max {0, 1− bi〈ai, x〉} where ai ∈ Rd, bi ∈ R for i ∈ [m],

let Q̃
def
= [b1a1 b2a2 . . . bmam]>, and let x∗ denote a minimizer of f(·). Then, ATD satisifies

f(yN )− f(x∗) ≤ ε

for N =

⌈(
ĉp‖x∗‖p+1(λd)p(λd+‖Q̃>Q̃‖

p+1
2 )

εp+1

) 2
3p+1

⌉
.

Theorem 33 Let ζk(ρ) > 0 be as defined in (31), for some yk(ρ) ∈ L . Then we have that, for all
ρ ≥ ρ−init, ∣∣ζ ′k(ρ)

∣∣ ≤ R
ζk(ρ)1/2

,

whereR is as defined in (43).

Proof Note that ζk(ρ) = (m ◦ yk)(ρ), where m(yk) = ‖TB(yk)− yk‖2B and yk(ρ) is as defined in
(32). Therefore, by the chain rule, we have∣∣ζ ′k(ρ)

∣∣ = |Jρyk(ρ)∇ykm(yk(ρ))|
≤ ‖Jρyk(ρ)‖B‖∇ykm(yk(ρ))‖B−1

≤ λmax(B−1)1/2‖Jρyk(ρ)‖B‖∇ykm(yk(ρ))‖,

where we let J denote the Jacobian. For ‖Jρyk(ρ)‖B, we know by (32) and (33) that

yk(ρ) = (1− τk(ρ))xk + τk(ρ)vk

and
τk(ρ) =

2

1 +
√

1 + 4L3Akρ
.
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Thus, it follows that

Jρyk(ρ) = − d

dρ
τk(ρ) · xk +

d

dρ
τk(ρ) · vk.

Note that∣∣∣∣ ddρτk(ρ)

∣∣∣∣ =
4L3Ak

(1 +
√

1 + 4L3Akρ)2
√

1 + 4L3Akρ
≤ 4L3Ak

(1 + 4L3Akρ)3/2
≤ 1

ρ
.

Taken together, this gives us that

‖Jρyk(ρ)‖B ≤
∣∣∣∣ ddρτk(ρ)

∣∣∣∣ (‖xk‖B + ‖vk‖B) ≤ ‖xk‖B + ‖vk‖B
ρ

.

To provide a bound for ‖∇ykm(yk(ρ))‖, we begin by letting g(x, z)
def
= Ωx,B(z). We may see

that TB(yk) = argminz∈Rd g(yk, z). As long as
[
∂2
zg(yk, TB(yk))

]−1 � 0, which we will see holds
when ‖TB(yk)− yk‖B > 0, we have that, by the implicit function theorem,

JxTB(x) = −
[
∂2
zg(x, TB(x))

]−1
∂x∂zg(x, TB(x)).

Note that, since g(x, z) = Φx(z) + L3
4 ‖z − x‖

4
B, we have

∂zg(x, z) = ∇f(x) +∇2f(x)[z − x] +
1

2
∇3f(x)[z − x]2 + L3‖z − x‖2BB(z − x),

and so it follows that

∂2
zg(x, z) = ∇2f(x) +∇3f(x)[z − x] + 2L3B(z − x)(z − x)>B + L3‖z − x‖2BB

� ∇2f(x) +∇3f(x)[z − x] + L3‖z − x‖2BB,

and

∂x∂zg(x, z) = ∇2f(x) +∇3f(x)[z − x]−∇2f(x) +
1

2
∇4f(x)[z − x]2

−∇3f(x)[z − x] + 2L3B(z − x)(z − x)>B− L3‖z − x‖2BB
= ∇4f(x)[z − x]2 + 2L3B(z − x)(z − x)>B− L3‖z − x‖2BB.

Thus,
‖∂x∂zg(x, z)‖ ≤ H(x, z), (41)

where

H(x, z)
def
= ‖∇4f(x)[z − x]2‖+ 2L3‖B(z − x)(z − x)>B‖+ L3‖z − x‖2B‖B‖.

By Theorem 14 we have that∇2f(x) +∇3f(x)[z − x] + L3
2 ‖z − x‖

2
BB � 0, and so

∂2
zg(x, z) � ∇2f(x) +∇3f(x)[z − x] + L3‖z − x‖2BB

�
L3‖z − x‖2B

2
B.
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Thus,

‖
[
∂2
zg(x, z)

]−1‖ ≤ 1

λmin ([∂2
zg(x, z))])

≤ 2

L3λmin(B)‖z − x‖2B
. (42)

We may now observe that, for m(y),

∇ykm(yk) = 2(JykT (yk)− I)B(T (yk)− yk),

and so, by standard matrix norm inequalities,

‖∇ykm(yk)‖ = 2‖(JykTB(yk)− I)B1/2B1/2(T (yk)− yk)‖
≤ 2‖JykTB(yk)‖ · ‖B1/2‖ · ‖T (yk)− yk‖B + ‖B1/2‖ · ‖T (yk)− yk‖B
≤ 2λmax(B1/2)

·
(
‖
[
∂2
zg(yk, TB(yk))

]−1
∂x∂zg(yk, TB(yk))‖ · ‖TB(yk)− yk‖B + ‖T (yk)− yk‖B

)
≤ 2λmax(B1/2)

·
(
‖
[
∂2
zg(yk, TB(yk))

]−1‖ · ‖∂x∂zg(yk, TB(yk))‖ · ‖TB(yk)− yk‖B + ‖T (yk)− yk‖B
)

≤ 2λmax(B1/2)

(
2H(yk, TB(yk)) + L3λmin(B)‖T (yk)− yk‖2B

L3λmin(B)‖TB(yk)− yk‖B

)
where the last inequality follows from (41) and (42), and since ‖TB(yk)−yk‖B > 0 (as if TB(yk) =
yk, then yk is a minimizer of f(·)).

All together, this gives us that∣∣ζ ′(ρ)
∣∣ ≤ λmax(B−1)1/2‖Jρyk(ρ)‖‖∇ykm(yk(ρ))‖

≤ λmax(B−1)1/2

(
‖xk‖B + ‖vk‖B

ρ

)
·
(

2λmax(B1/2)

(
2H(yk(ρ), TB(yk(ρ))) + L3λmin(B)‖T (yk(ρ))− yk(ρ)‖2B

L3λmin(B)‖TB(yk(ρ))− yk(ρ)‖B

))
.

LetH def
= max

x,z∈L
H(x, z), ρ−init be our initial lower bound on ρ∗k, andP be as in (21). Since yk(ρ) ∈ L

and ζ(ρ) = ‖TB(yk(ρ))− yk(ρ)‖2B by definition, it follows that

∣∣ζ ′(ρ)
∣∣ ≤ R

ζ(ρ)1/2
,

where

R def
=

4P1/2λmax(B1/2) (2H+ L3λmin(B)P)

L3λmin(B)ρ−init
. (43)

With this differential inequality in hand, we may now provide an important approximation guar-
antee for ρk.
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Theorem 34 Given xk, vk ∈ L , 0 < ε̃rs < 1 as inputs, and ε̃aam > 0 chosen sufficiently small,
the RhoSearch algorithm outputs ρk and xk+1 such that

(1− ε̃rs)ζ̂k(ρk) ≤ ρk ≤ (1 + ε̃rs)ζ̂k(ρk) (44)

where ζ̂k(·) is as defined in (34).

Proof By sufficiently small, we mean that ε̃aam is chosen such that

ε̃aam ≤ min

{(
ε̃2
rs

1000Q

)4

,

(
ε̃2
rs

1000W

)4

,
1

2

}
,

forW as defined in (65), and for

Q def
=

(
6P1/2

L
1/4
3

+
5

L
1/2
3

)
. (45)

We proceed by proving the correctness of the binary search procedure. Consider ρ̂ from the al-
gorithm, and let x̂k+1 be the output from the call to ApproxAuxMin(ŷk, ε̃aam) in the RhoSearch
algorithm. Then, at each iteration, one of the following three conditions must hold:

(a) ρ̂ > ζ̂k(ρ̂) + δ̃; or

(b) ρ̂ < ζ̂k(ρ̂)− δ̃; or

(c) ζ̂k(ρ̂)− δ̃ ≤ ρ̂ ≤ ζ̂k(ρ̂) + δ̃,

where

δ̃
def
= 6

(
ε̃aam
L3

)1/4

P1/2 +

(
12ε̃aam
L3

)1/2

.

Note that, based on our choice of ε̃aam, we ensure that δ̃ ≤ ε̃2rs
4 . Suppose condition (a) holds. Then,

by Lemma 21 (with yk = yk(ρ̂)), we have that ζk(ρ̂)− δ̃ ≤ ζ̂(ρ̂), and so it follows that ρ̂ > ζk(ρ̂).
Thus, ρ̂ is an upper bound on ρ∗k, and so this proves the correctness ρ+ remaining an upper bound
on ρ∗k after updating ρ+ ← ρ̂. By similar reasoning, we may conclude that if condition (b) holds, ρ̂
is a lower bound on ρ∗k, and so ρ− remains a lower bound on ρ∗k after updating ρ− ← ρ̂.

If condition (c) holds, then it must be the case that ζ̂k(ρ̂) ≥ ε̃rs
2 , since if we suppose that

ζ̂k(ρ̂) < ε̃rs
2 , this implies that ρ̂ ≤ ζ̂k(ρ̂) + δ̃ ≤ 3ε̃rs

4 . However, this is a contradicition since we

ensure that ρ̂ ≥ ρ−init ≥ ε̃rs. Therefore, since δ̃ ≤ ε̃2rs
4 ≤ ε̃rsζ̂k(ρ̂), it follows that

(1− ε̃rs)ζ̂k(ρ̂) ≤ ρ̂ ≤ (1 + ε̃rs)ζ̂k(ρ̂),

which means that condition (44) is met.
Based on our choice of update, anytime condition (a) or (b) holds and the update takes place,

we guarantee a decrease in |ρ+ − ρ−|, and so after O(log(R/ε̃rs)) iterations, we are assured that
|ρ+ − ρ−| ≤ ε̃3rs

100R . At this point, we make use of Theorem 33 to argue that ρ− must fall in the
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desired range, i.e., (1 − ε̃rs)ζ̂k(ρ
−) ≤ ρ− ≤ (1 + ε̃rs)ζ̂k(ρ

−). To show this, we first note that
|ρ∗k − ρ−| ≤

ε̃3rs
100R . Thus, using the fact that ζk(ρ) ≥ 0, Theorem 33 implies that∣∣∣ζ ′k(ρ)(ζk(ρ))1/2

∣∣∣ ≤ R =⇒ −R ≤ ζ ′k(ρ)(ζk(ρ))1/2 ≤ R.

Note that ρ− ≤ ρ∗k. By integrating with respect to ρ, we have∫ ρ−

ρ∗k

Rdρ ≤
∫ ρ−

ρ∗k

ζ ′k(ρ)(ζk(ρ))1/2dρ ≤
∫ ρ−

ρ∗k

−Rdρ.

It follows that

2

3
ζk(ρ

∗
k)

3/2 +R(ρ− − ρ∗k) ≤
2

3
ζk(ρ

−)3/2 ≤ 2

3
ζk(ρ

∗
k)

3/2 −R(ρ− − ρ∗k),

and so we have(
ζk(ρ

∗
k)

3/2 +
3R
2

(ρ− − ρ∗k)
)2/3

≤ ζk(ρ−) ≤
(
ζk(ρ

∗
k)

3/2 − 3R
2

(ρ− − ρ∗k)
)2/3

.

We may now observe that

ζk(ρ
−) ≤

(
ζk(ρ

∗
k)

3/2 − 3R
2

(ρ− − ρ∗k)
)2/3

=

(
ζk(ρ

∗
k)

3/2 +
3R
2

(ρ∗k − ρ−)

)2/3

≤
(
ζk(ρ

∗
k)

3/2 +
ε̃3
rs

50

)2/3

≤ ζk(ρ∗k) +

(
1

50

)2/3

ε̃2
rs,

and so

ζk(ρ
−)− ζk(ρ∗k) ≤

ε̃2
rs

10
. (46)

We again use Lemma 21 to see that

∣∣∣ζ(ρ−)− ζ̂k(ρ−)
∣∣∣ ≤ 6

(
ε̃aam
L3

)1/4

P1/2 +

(
12ε̃aam
L3

)1/2

≤ Qε̃1/4
aam, (47)

where Q is as defined in (45),
and the last inequality follows from the fact that ε̃aam ≤ 1

2 . Thus, since by our choice of ε̃aam

we know that ε̃aam ≤
(

ε̃2rs
100Q

)4
, it follows that

∣∣∣ζk(ρ−)− ζ̂k(ρ−)
∣∣∣ ≤ ε̃2

rs

100
.
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For the sake of clarity, we assumeR ≥ 1 – otherwise, we can choose M = O(log(1/ε̃rs)), and
a similar analysis holds. Taken together with (46) and the fact that |ρ− − ρ∗k| ≤

ε̃3rs
100R and ε̃rs ≤ 1,

we have that

ρ− ≥ ρ∗k −
ε̃3
rs

100R
= ζk(ρ

∗
k)−

ε̃3
rs

100R
≥ ζk(ρ∗k)−

ε̃2
rs

100
≥ ζk(ρ−)− 11ε̃2

rs

100
≥ ζ̂k(ρ−k )− 12ε̃2

rs

100
.

Note that, by a similar reasoning as above, it must be the case that ζ̂k(ρ−) ≥ ε̃rs
2 . Since we have

ensured throughout the procedure that ρ− ≤ ζ̂k(ρ−), it follows that

(1− ε̃rs)ζ̂k(ρ−) ≤ ρ− ≤ (1 + ε̃rs)ζ̂k(ρ
−),

as desired, and so we set ρk = ρ−.

Lemma 35 For any k ≥ 0, we have that

Ak ≥
1

4L3

(
k−1∑
i=0

1

ρ
1/2
i

)2

,

and thus Ak ≥ 1
4L3ρi

, for all i ∈ {0, . . . , k − 1}.

Proof Note that, by our choice of Ak and ak,

A
1/2
k+1 −A

1/2
k =

ak+1

A
1/2
k+1 +A

1/2
k

=
1

A
1/2
k+1 +A

1/2
k

√
Ak+1

L3ρk
≥
√

1

4L3ρk
. (48)

Again, we procede with a proof by induction. A0 = 0, thus the case for k = 0 holds. Now, suppose
for some k ≥ 0,

Ak ≥
1

4L3

(
k−1∑
i=0

1

ρ
1/2
i

)2

.

By (48), we know that

A
1/2
k+1 ≥ A

1/2
k +

√
1

4L3ρk
≥
√

1

4L3

k−1∑
i=0

1

ρ
1/2
i

+

√
1

4L3ρk
=

√
1

4L3

k∑
i=0

1

ρ
1/2
i

which concludes the induction step.

Lemma 36 For any k ≥ 1, we have

Ak ≥
3

256L3‖x0 − x∗‖2B

(
k + 1

2

)5

. (49)
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Proof Using Theorem 34 and the fact that ε̃rs < 1, we have that ρi ≤ 2r̂2
B(xi+1, yi). By Lemma

35, it follows that, for all k ≥ 0,

Ak ≥
1

4L3

(
k−1∑
i=0

1

ρ
1/2
i

)2

≥ 1

8L3

(
k−1∑
i=0

1

r̂B(xi+1, yi)

)2

. (50)

Note that, for all k ≥ 0, x ∈ Rd,

ψk(x) =
1

2
‖x− x0‖2B +

k∑
i=0

ai [f(xk) + 〈∇f(xk), x− xk〉]

≤ 1

2
‖x− x0‖2B +

k∑
i=0

aif(x)

= Akf(x) +
1

2
‖x− x0‖2B,

and so it follows that

Akf(xk) +Bk ≤ min
x∈Rd

ψk(x) ≤ min
x∈Rd

Akf(x) +
1

2
‖x− x0‖2B = Akf(x∗) +

1

2
‖x∗ − x0‖2B.

Rearranging, we have

3L3

16

k−1∑
i=0

Ai+1r̂
4
B(xi+1, yi) = Bk ≤ Ak(f(x∗)− f(xk)) +

1

2
‖x∗ − x0‖2B ≤

1

2
‖x∗ − x0‖2B. (51)

The objective now is to lower bound the quantity
k−1∑
i=0

1
r̂B(xi+1,yi)

from (50), subject to the constraint

given by (51). After defining ξi
def
= r̂B(xi+1, yi) and D def

= 8
3L3
‖x0 − x∗‖2B, our aim is to minimize

ξ∗
def
= min

ξ∈Rk

{
k−1∑
i=0

1

ξi
:

k−1∑
i=0

Ai+1ξ
4
i ≤ D

}
.

We may introduce a Lagrange multiplier λ, giving us the following optimality conditions:

1

ξ2
i

= λAi+1ξ
3
i , i ∈ {0, . . . , k − 1} .

Therefore, ξi =
(

1
λAi+1

)1/5
. This gives us

D =
k−1∑
i=0

Ai+1

(
1

λAi+1

)4/5

=
1

λ4/5

k−1∑
i=0

A
1/5
i+1.

Thus, we have

ξ∗ =
k−1∑
i=0

(λAi+1)1/5 =
1

D1/4

(
k−1∑
i=0

A
1/5
i+1

)5/4

,
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and so
k−1∑
i=0

1

r̂B(xi+1, yi)
≥ 1

D1/4

(
k−1∑
i=0

A
1/5
i+1

)5/4

.

It follows that

Ak ≥
1

8L3D1/2

(
k∑
i=1

A
1/5
i

)5/2

, k ≥ 1.

Let θ = 1
8L3D1/2 and Ck =

(
k∑
i=1

A
1/5
i

)1/2

. Then, we have that

C2
k+1 − C2

k ≥ θ1/5Ck+1.

Thus, we have that C1 ≥ θ1/5, Ck+1 ≥ Ck, and so

θ1/5Ck+1 ≤ (Ck+1 − Ck)(Ck+1 + Ck)

≤ 2Ck+1(Ck+1 − Ck).

Thus, it follows that Ck ≥ θ1/5(1 + 1
2(k − 1)) for all k ≥ 1. Taken together, this gives us that

Ak ≥ θ
(
C2
k

)5/2 ≥ θ(θ1/5k + 1

2

)5

= θ2

(
k + 1

2

)5

=
3

256L3‖x0 − x∗‖2B

(
k + 1

2

)5

.

Theorem 37 Suppose there is some 1 ≤ i ≤ N such that for all iterations 1 ≤ j < i, we have that
ρ−init ≤ (1 + ε̃fs)‖x−j+1 − y

−
j ‖2B and ρ−init ≤ ‖x

−
j+1 − y

−
j ‖2B −Qε̃

1/4
aam, and for iteration i, either

(a) ρ−init > (1 + ε̃fs)‖x−i+1 − y
−
i ‖

2
B, or

(b) ρ−init ≤ (1 + ε̃fs)‖x−i+1 − y
−
i ‖

2
B and ρ−init > ‖x

−
i+1 − y

−
i ‖

2
B −Qε̃1/4

aam.

Then, FastQuartic returns xi+1 such that

f(xi+1)− f(x∗) ≤ 2L3ρ
−
init‖x0 − x∗‖2B. (52)

Proof By the algorithm statement, we have that ε̃fs = min
{
L2
3(ρ−init)

2

1000G , 1
2

}
. By ε̃aam > 0 sufficiently

small, we mean that

ε̃aam ≤ min

{(
ε̃fs

V(1 + ε̃fs)

)4

,

(
ε̃fsρ

−
init

Q(1 + ε̃fs)

)4

,

(
L3(ρ−init)

3

1000W

)4

,
1

2

}
.

For both cases (a) and (b), it holds by Lemma 23 (and the statement of this lemma) that

Aif(xi) +Bi ≤ ψ∗i
def
= min

x∈Rd
ψi(x).
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We begin by considering the case where (a) holds. We first observe that, since f(·) is convex, we
have that, for all z ∈ L ,

f(z)− f(x∗) ≤ P1/2‖∇f(z)‖B−1 .

If ‖∇f(xk+1)‖2B−1 <
ε2

P , then we are done, as f(z) − f(x∗) ≤ ε, so we consider the case where
‖∇f(xk+1)‖2B−1 ≥ ε2

P .
Thus, by Lemma 20, we have that

〈∇f(xk+1), yk − xk+1〉 ≥
1− V ε̃1/4

aam

2L3r̂2
B(xk+1, yk)

‖∇f(xk+1)‖2B−1 +
3L3

8
r̂4
B(xk+1, yk),

where V def
= max

x,y∈L

6Z(x,y)W (x,y)P
ε2L

1/4
3

.

Since ρ−init > (1+ ε̃fs)‖x−i+1−y
−
i ‖2B = (1+ ε̃fs)r̂

2
B(xi+1, yi) (by (a)), we may follow the same

approach as before to arrive at

min
x∈Rd

ψi+1(x) ≥ Ai+1f(xi+1) +Bi −
a2
i+1

2
‖∇f(xi+1)‖2B−1 + 〈∇f(xi+1), Ai+1(yi − xi+1)〉

≥ Ai+1f(xi+1) +Bi −
Ai+1

2L3ρ
−
init
‖∇f(xi+1)‖2B−1

+Ai+1

(
1− V ε̃1/4

aam

2L3r̂2
B(xi+1, yi)

‖∇f(xi+1)‖2B−1 +
3L3

8
r̂4
B(xi+1, yi)

)

> Ai+1f(xi+1) +Bi −
Ai+1

2L3(1 + ε̃fs)r̂
2
B(xi+1, yi)

‖∇f(xi+1)‖2B−1

+Ai+1

(
1− V ε̃1/4

aam

2L3r̂2
B(xi+1, yi)

‖∇f(xi+1)‖2B−1 +
3L3

8
r̂4
B(xi+1, yi)

)
= Ai+1f(xi+1) +Bi

+Ai+1


(

(1 + ε̃fs)
(

1− V ε̃1/4
aam

)
− 1
)
‖∇f(xi+1)‖2B−1

2L3r̂2
B(xi+1, yi)

+
3L3

8
r̂4
B(xi+1, yi)

 .

Thus, since ε̃fs = min
{
L2
3(ρ−init)

2

1000G , 1
2

}
and ε̃aam ≤

(
ε̃fs

V(1+ε̃fs)

)4
, it follows that

min
x∈Rd

ψi+1(x) ≥ Ai+1f(xi+1) +Bi +
3L3Ai+1

8
r̂4
B(xi+1, yi) = Ai+1f(xi+1) +Bi+1.

As before, we may observe that

ψi+1(x) =
1

2
‖x− x0‖2B +

i+1∑
j=0

aj [f(xi+1) + 〈∇f(xi+1), x− xi+1〉]

≤ 1

2
‖x− x0‖2B +

i+1∑
j=0

ajf(x)

= Ai+1f(x) +
1

2
‖x− x0‖2B,

26



HIGHLY SMOOTH MINIMIZATION OF NON-SMOOTH PROBLEMS

and so it follows that
f(xi+1)− f(x∗) ≤ 1

2Ai+1
‖x0 − x∗‖2B.

By Lemma 35, we know that Ai+1 ≥ 1
4L3ρ

−
init

, and so it follows that

f(xi+1)− f(x∗) ≤ 2L3ρ
−
init‖x0 − x∗‖2B.

We now consider the case where (b) holds, i.e., ρ−init ≤ (1 + ε̃fs)‖x−k+1 − y
−
k ‖

2
B and ρ−init >

‖x−k+1 − y
−
k ‖

2
B −Qε̃

1/4
aam. We may observe that

‖x−k+1 − y
−
k ‖

2
B ≥

ρ−init
1 + ε̃fs

,

and so, if we choose ε̃aam ≤
(

ε̃fsρ
−
init

Q(1+ε̃fs)

)4

, it follows that

ρ−init > ‖x
−
k+1 − y

−
k ‖

2
B −Qε̃1/4

aam ≥ ‖x−k+1 − y
−
k ‖

2
B −

ε̃fsρ
−
init

(1 + ε̃fs)
≥ (1− ε̃fs)‖x−k+1 − y

−
k ‖

2
B,

and so we have that

(1− ε̃fs)‖x−k+1 − y
−
k ‖

2
B ≤ ρ−init ≤ (1 + ε̃fs)‖x−k+1 − y

−
k ‖

2
B.

Following a line of reasoning as before, we may use Lemma 22 with c = (1 + ε̃fs)
−1, along

with the fact that ρ−init ≥ (1− ε̃fs)‖x−i+1 − y
−
i ‖2B, to see that

min
x∈Rd

ψi+1(x) ≥ Ai+1f(xi+1) +Bi −
a2
i+1

2
‖∇f(xi+1)‖2B−1 + 〈∇f(xi+1), Ai+1(yi − xi+1)〉

≥ Ai+1f(xi+1) +Bi −
Ai+1

2L3ρi
‖∇f(xi+1)‖2B−1

+Ai+1

(
1

2L3r̂2
B(xi+1, yi)

‖∇f(xi+1)‖2B−1 +
3L3

8
r̂4
B(xi+1, yi)−

(1 + ε̃fs)W ε̃
1/4
aam

ρ−init

)

≥ Ai+1f(xi+1) +Bi −
Ai+1

2L3(1− ε̃fs)r̂2
B(xi+1, yi)

‖∇f(xi+1)‖2B−1

+Ai+1

(
1

2L3r̂2
B(xi+1, yi)

‖∇f(xi+1)‖2B−1 +
3L3

8
r̂4
B(xi+1, yi)−

(1 + ε̃fs)W ε̃
1/4
aam

ρ−init

)

= Ai+1f(xi+1) +Bi +Ai+1

(
3L3

8
r̂4
B(xi+1, yi)− ε̂curr

)
,

where

ε̂curr
def
=

ε̃fs

2L3(1− ε̃fs)ρ−init
‖∇f(xk+1)‖2B−1 +

(1 + ε̃fs)W ε̃
1/4
aam

ρ−init
.

Thus, for ε̃fs = min
{
L2
3(ρ−init)

2

1000G , 1
2

}
, and ε̃aam ≤

(
L3(ρ−init)

3

1000W

)4

, it follows that

min
x∈Rd

ψi+1(x) ≥ Ai+1f(xi+1) +Bi +Ai+1

(
3L3

16
r̂4
B(xi+1, yi)

)
= Ai+1f(xi+1) +Bi+1.
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Therefore, it follows that

f(xi+1)− f(x∗) ≤ 1

2Ai+1
‖x0 − x∗‖2B,

and since by Lemma 35, we know that Ai+1 ≥ 1
4L3ρ

−
init

, we have that

f(xi+1)− f(x∗) ≤ 2L3ρ
−
init‖x0 − x∗‖2B.

Appendix C. Convex quartics and `4 regression

While we have so far focused on the moderate-accuracy regime, the procedure outlined previously
can in fact be used beyond the non-smooth setting to achieve nearly condition number-independent
high-accuracy convergence rates for some convex polynomial optimization problems. Specifically,
we show how it may be used to solve a large class of convex quartic minimization problems, namely

f(x) = c>x+ x>Gx+ T[x, x, x] +
1

24
‖Ax‖44 (53)

for some c ∈ Rd, G ∈ Rd×d, T ∈ Rd×d×d, and A ∈ Rn×d such that A>A � 0. We call these
functions structured convex quartics. Notably, this class includes the problems of `4 regression,
which is in turn an instance of the more general problem of `p regression Dasgupta et al. (2009);
Cohen and Peng (2015); Bubeck et al. (2018a); Adil et al. (2019a,b). In the general case, it is known
to be NP-hard to find the global minimizer of a quartic polynomial (Murty and Kabadi, 1987; Parrilo
and Sturmfels, 2003), or even to decide if the quartic polynomial is convex (Ahmadi et al., 2013),
but here we assume that f(·) is convex.

In order to get a handle on the regularity properties of f(·), we establish its third-order smooth-
ness and fourth-order uniform convexity parameters w.r.t. ‖·‖A>A.

Lemma 38 (Third-order smoothness) Suppose f(·) is of the form (53). Then, for all x, y ∈ Rd,

‖∇3f(y)−∇3f(x)‖∗A>A ≤ ‖y − x‖A>A. (54)

Proof Note that for all ξ ∈ Rd,

‖∇4f(ξ)‖∗B = max
h:‖h‖B≤1

∣∣∣∇4f(ξ)[h]4
∣∣∣ = max

h:‖h‖B≤1
‖Ah‖44 ≤ max

h:‖h‖B≤1
‖Ah‖42. (55)

Setting B = A>A gives us
max

h:‖h‖
A>A

≤1
‖Ah‖42 ≤ 1.

By the mean value theorem, we have, for some ξ along the line between x and y,

‖∇3f(y)−∇3f(x)‖∗
A>A

‖y − x‖A>A
= ‖∇4f(ξ)‖∗A>A ≤ 1,

and so it follows that
‖∇3f(y)−∇3f(x)‖∗A>A ≤ ‖y − x‖A>A.
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Lemma 39 (Order 4 uniform convexity) Suppose f(·) is of the form (53). Then, for all x, y ∈
Rd,

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

72n
‖y − x‖4A>A. (56)

Proof Following the same idea as in the proof of Lemma 38, we note that, for all x, y ∈ Rd,

f(y) = Φx,4(y).

Since f(·) is convex by definition, it follows that

0 � ∇2f(y) = ∇2f(x) +∇3f(x)[y − x] +
1

2
∇4f(x)[y − x, y − x].

Let h = y − x. Then, following the approach of Nesterov (2018a), we have

−∇3f(x)[h] � ∇2f(x) +
1

2
∇4f(x)[h, h].

Since this holds for any x, y (and therefore, for any direction h), we can replace h with τh for any
τ > 0 and arrive at

−τ∇3f(x)[h] � ∇2f(x) + τ2 1

2
∇4f(x)[h, h].

Furthermore, we can replace h by −h to get

τ∇3f(x)[h] � ∇2f(x) + τ2 1

2
∇4f(x)[h, h],

and so after dividing through by τ , we obtain

−1

τ
∇2f(x)− τ

2
∇4f(x)[h, h] � ∇3f(x)[h] � 1

τ
∇2f(x) +

τ

2
∇4f(x)[h, h].

We may now observe that

f(y) = f(x) + 〈∇f(x), y − x〉+
1

2
∇2f(x)[y − x, y − x] +

1

6
∇3f(x)[y − x]3

+
1

24
∇4f(x)[y − x]4

≥ f(x) + 〈∇f(x), y − x〉+

(
1

2
− 1

6τ

)
∇2f(x)[y − x, y − x]

+

(
1

24
− τ

12

)
∇4f(x)[y − x]4.

Setting τ = 1
3 gives us

f(y) ≥ f(x) + 〈∇f(x), y − x〉+
1

72
∇4f(x)[y − x]4

= f(x) + 〈∇f(x), y − x〉+
1

72
‖A(y − x)‖44

≥ f(x) + 〈∇f(x), y − x〉+
1

72n
‖A(y − x)‖42

= f(x) + 〈∇f(x), y − x〉+
1

72n
‖y − x‖4A>A,
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where the second inequality follows from the fact that, for v ∈ Rn, ‖v‖2 ≤ n
1
4 ‖v‖4. Thus, we

arrive at (56).

Combining Theorem 26 with the appropriate notion of uniform convexity, we may establish a
rate of linear convergence, based on the (fourth-order) condition number κ4

def
= L3

µ4
, by relying on

an additional restarting procedure (Algorithm 2). With this result in hand, the proof of the main
theorem follows almost immediately.

Theorem 40 Suppose f(x) is third-order L3-smooth and fourth-order µ4-uniformly convex w.r.t.
‖·‖B. Then, under appropriate initialization, FastQuartic + Restarting (Algorithm 2) finds a point
xN such that

f(xN )− f(x∗) ≤ ε

in O
(
κ

1/5
4 log

(
f(x0)−f(x∗)

ε

))
iterations, where each iteration requires O(logO(1)(Z/ε)) calls to

a gradient oracle and linear system solver, and where Z is a polynomial in various problem-
dependent parameters.

Proof Begin by running the FastQuartic algorithm for Ninner =

⌈(
512L3
µ4

)1/5
⌉

iterations, as in

each (outer) iteration of Algorithm 2. By combining Theorem 26 with the fact that f(·) is uniformly
convex, we have that, for any k ≥ 0,

f(xk+1)− f(x∗) ≤
128L3‖xk − x∗‖4B

3

(
2

Ninner + 1

)5

≤ 512L3(f(xk)− f(x∗))

3µ4(Ninner)5
.

It follows from our choice of Ninner that

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗)

2
.

Because we reduce the optimality gap by a constant factor each iteration of Algorithm 2, it suffices
to run FastQuartic + Restarting for N = O

(
log
(
f(x0)−f(x∗)

ε

))
iterations to achieve a point xN

such that
f(xN )− f(x∗) ≤ ε,

which gives a total iteration complexity of O(Ninner ·N) = O
(
κ

1/5
4 log

(
f(x0)−f(x∗)

ε

))
.

Having developed all of the necessary results, we may now prove our main theorem for structured
convex quartics, as well as the natural corollary regarding the special case of `4 regression.

Theorem 41 Let f(·) be a convex function of the form (53). Then, under appropriate initialization,
FastQuartic finds a point xN such that

f(xN )− f(x∗) ≤ ε

with total computational cost O(n1/5(GO+LSS) logO(1)(Z/ε)), where GO is the time to calculate
the gradient of f(·), LSS is the time to solve a d×d linear system, and Z is a polynomial in various
problem-dependent parameters.
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Algorithm 2 FastQuartic + Restarting

Input: ε > 0, x0 = 0, A0 = 0, B � 0, 1
2 > ρ−init > 0, ρ+

init = P , ε̃aam > 0, N , Ninner =

O
(
(L3/µ4)1/5

)
.

for k = 0 to N do
xk+1 = FastQuartic(ε, xk, A0,B, ρ

−
init, ρ

+
init, ε̃aam, Ninner)

end for
return xN+1

Proof [Proof of Theorem 41] The proof follows by combining Theorem 40 with Lemmas 38 and
39.

Corollary 42 For the problem of `4 regression, i.e., problems of the form

min
x∈Rd

f(x) = c>x+ ‖Ax− b‖44,

for c ∈ Rd, b ∈ Rn, A ∈ Rn×d such that A>A � 0, FastQuartic finds, under appropriate
initialization, a point xN such that

f(xN )− f(x∗) ≤ ε

with O(n1/5 logO(1)(Z/ε)) calls to a gradient oracle and linear system solver.

Proof [Proof of Corollary 42] Note that for all x ∈ Rd, ∇4f(x) = 24
n∑
i=1

a⊗4
i , where A =

[a1a2 . . . an]>. Since f(x) is a convex quartic function, we may equivalently express it as its fourth-
order Taylor expansion

f(x) = f(0) +∇f(0)>x+
1

2
x>∇2f(0)x+

1

6
∇3f(0)[x, x, x] +

1

24
∇4f(0)[x]⊗4

= f(0) +∇f(0)>x+
1

2
x>∇2f(0)x+

1

6
∇3f(0)[x, x, x] + ‖Ax‖44,

and so since f(·) is of the form (53), for A>A � 0, the result follows from Theorem 41.

Appendix D. Proofs for Section 3

D.1. Proof of Lemmas 2 and 3

Proof [Proof of Lemma 2] Since |c| = max {c,−c}, it follows by Fact (1) that |c| ≤ sabsµ(c) ≤
|c|+ µ. Thus, we have that

‖x‖1 =

m∑
i=1

|xi| ≤
m∑
i=1

sabsµ(xi) ≤ ‖x‖1 + µm. (57)

Proof [Proof of Lemma 3] The proof follows immediately from Fact (1).
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D.2. Proof of Theorem 5

Proof [Proof of Theorem 5] Recall that smaxµ(x) = µf(Zµ(x)) for f(z) = µ log(z). First, we
establish some preliminary observations concerning the higher-order derivatives of Zµ(x) and f(z).
To begin, note that for k ≥ 1,

f (k)(z) =
(−1)k−1(k − 1)!µ

zk
. (58)

In addition, since Zµ(x) is a separable function, it follows that, for k ≥ 1,

[
∇kZµ(x)

]
i1,...,ik

=

 e
xi
µ

µk
, if i1 = i2 = · · · = ik = i, for i ∈ [m] ;

0 otherwise.
(59)

Now, letting Πp denote the set of all partitions on p elements, we may observe that

∇p smaxµ(x)[h]p = ∇pf(Zµ(x))[h]p

=
∑
π∈Πp

f |π|(Zµ(x)) ·
∏
B∈π
∇|B|Zµ(x)[h]|B|

= µ
∑
π∈Πp

(−1)|π|−1(|π| − 1)!

(Zµ(x))|π|
·
∏
B∈π
∇|B|Zµ(x)[h]|B|

= µ
∑
π∈Πp

(−1)|π|−1(|π| − 1)!

(Zµ(x))|π|
·
∏
B∈π

m∑
i1,i2,...,i|B|=1

[∇|B|Zµ(x)
]
i1,i2,...,i|B|

|B|∏
j=1

hij


= µ

∑
π∈Πp

(−1)|π|−1(|π| − 1)!

(Zµ(x))|π|
·
∏
B∈π

m∑
i=1

([
∇|B|Zµ(x)

]
i,i,...,i

h
|B|
i

)

= µ
∑
π∈Πp

(−1)|π|−1(|π| − 1)!

(Zµ(x))|π|
·
∏
B∈π

m∑
i=1

(
e
xi
µ

µ|B|
h
|B|
i

)
,

where the second equality follows from Faà di Bruno’s formula, the third equality follows from
(58), and the final two equalities follow from (59). For convenience, we denote

h|B|
def
=
[
h
|B|
1 , h

|B|
2 , . . . , h|B|m

]>
.
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As our goal is to bound |∇p smaxµ(x)[h]p|, we may observe that, by the triangle and Cauchy-
Schwarz inequalities,

|∇p smaxµ(x)[h]p| =

∣∣∣∣∣∣µ
∑
π∈Πp

(−1)|π|−1(|π| − 1)!

(Zµ(x))|π|
·
∏
B∈π

p∑
i=1

(
e
xi
µ

µ|B|
h
|B|
i

)∣∣∣∣∣∣
≤ µ

∑
π∈Πp

∣∣∣∣∣(−1)|π|−1(|π| − 1)!

(Zµ(x))|π|
·
∏
B∈π

p∑
i=1

(
e
xi
µ

µ|B|
h
|B|
i

)∣∣∣∣∣
≤ µ

∑
π∈Πp

∣∣∣∣∣(−1)|π|−1(|π| − 1)!

(Zµ(x))|π|

∣∣∣∣∣ · ∏
B∈π

∣∣∣∣∣
p∑
i=1

(
e
xi
µ

µ|B|
h
|B|
i

)∣∣∣∣∣
= µ

∑
π∈Πp

(|π| − 1)!

(Zµ(x))|π|
·
∏
B∈π

∣∣∣∣∣
p∑
i=1

(
e
xi
µ

µ|B|
h
|B|
i

)∣∣∣∣∣ .
Finally, using Hölder’s inequality and simplifying, we have that

|∇p smaxµ(x)[h]p| = µ
∑
π∈Πp

(|π| − 1)!

(Zµ(x))|π|
·
∏
B∈π

∣∣∣∣∣
p∑
i=1

(
e
xi
µ

µ|B|
h
|B|
i

)∣∣∣∣∣
≤ µ

∑
π∈Πp

(|π| − 1)!

(Zµ(x))|π|
·
∏
B∈π

(
Zµ(x)

µ|B|
‖h|B|‖∞

)

≤ µ
∑
π∈Πp

(|π| − 1)!

(Zµ(x))|π|
·
∏
B∈π

(
Zµ(x)

µ|B|
‖h‖|B|2

)

= µ
∑
π∈Πp

(|π| − 1)!

(Zµ(x))|π|
·

(
(Zµ(x))|π| ‖h‖p2

µp

)

= µ
∑
π∈Πp

(|π| − 1)!‖h‖p2
µp

≤ (p− 1)!‖h‖p2
µp−1

∑
π∈Πp

1

=
Bp(p− 1)!‖h‖p2

µp−1
,

where Bp
def
= |Πp| is the pth Bell number, i.e., the number of partitions on p elements. Since

Bp ≤
(

p
ln(p+1)

)p
(Berend and Tassa, 2010), it follows that

|∇p smaxµ(x)[h]p| ≤

(
p

ln(p+1)

)p
(p− 1)!‖h‖p2

µp−1
. (60)
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D.3. Proof of Lemma 6

Proof [Proof of Lemma 6] Note that, for all ζ ∈ Rd,

‖∇p+1f(ζ)‖∗A>A = max
h:‖h‖

A>A
≤1

∣∣∇p+1f(ζ)[h]p+1
∣∣

= max
h:‖Ah‖2≤1

∣∣∇p+1f(ζ)[h]p+1
∣∣

≤ max
h:‖Ah‖2≤1

Lp‖Ah‖p+1
2

= Lp,

where the inequality follows from (16). Thus, we may see by a standard mean value theorem
argument that, for any x, y ∈ Rd,

‖∇pf(y)−∇pf(x)‖∗A>A ≤ Lp‖y − x‖A>A.

D.4. Proof of Theorem 7

Proof [Proof of Theorem 7] By applying the chain rule to f(·) p times, we may observe that

∇pf(x)[h]p = ∇p smaxµ(Ax− b)[Ah]p, (61)

and so it follows from (2) and Lemma 16 that f(x) is (order p)

(
p+1

ln(p+2)

)p+1
p!

µp -smooth w.r.t. ‖·‖A>A.

D.5. Proof of Theorem 8

Proof [Proof of Theorem 8] First, we observe that since soft-`1µ(x) =
d∑
i=1

sabsµ(xi), it follows by

Theorem 5 that

∣∣∇p+1 soft-`1µ(x)[h]p+1
∣∣ ≤ d∑

i=1

∣∣∇p+1 sabsµ(xi)[h]p+1
∣∣ ≤ d

(
p+1

ln(p+2)

)p+1
p!

µp
‖h‖p+1

2 . (62)

In addition, we may note that

∣∣∣∇p+1 softSVMµ(Q̃x)[Q̃h]p+1
∣∣∣ ≤ 1

m

m∑
i=1

(
p+1

ln(p+2)

)p+1
p!‖Q̃h‖p+1

2

µp

≤

(
p+1

ln(p+2)

)p+1
p!‖Q̃>Q̃‖

p+1
2

µp
‖h‖p+1

2 .
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Taken together, we may see that∣∣∇p+1fµ(x)[h]p+1
∣∣ =

∣∣∣λ∇p+1 soft-`1µ(x)[h]p+1 +∇p+1 softSVMµ(Q̃x)[Q̃h]p+1
∣∣∣

≤ λ
∣∣∇p+1 soft-`1µ(x)[h]p+1

∣∣+
∣∣∣∇p+1 softSVMµ(Q̃x)[Q̃h]p+1

∣∣∣
≤

(
p+1

ln(p+2)

)p+1
p!
(
λd+ ‖Q̃>Q̃‖

p+1
2

)
µp

‖h‖p+1
2 ,

and so the theorem follows from Lemma 6.

Appendix E. Section 4 Algorithms

Algorithm 3 ApproxAuxMin

Input: yk, ε̃aam > 0, K = O(log(A/ε̃aam)), h0 = 0.
for t = 0 to K do
ct

def
= ∇f(yk) +∇2f(yk)ht + 1

2∇
3f(yk)[ht]

2 + L3‖ht‖2BBht
ht+1 = argminh∈Rd

{
〈ct, h− ht〉+ 1√

2
(h− ht)>∇2f(yk)(h− ht) +

√
2L3
4 ‖h− ht‖

4
B

}
end for
return xk+1 = yk + hK

Algorithm 4 RhoSearch

Input: xk, vk, Ak, ρ+
init, ρ

−
init (s.t. ρ+

init ≥ ρ∗k ≥ ρ
−
init), ε̃rs > 0, ε̃aam > 0, M = O(log(R/ε̃rs)).

Define δ̃ def
= 6

(
ε̃aam
L3

)1/4
P1/2 +

(
12ε̃aam
L3

)1/2
.

ρ+ ← ρ+
init, ρ

− ← ρ−init
for t = 1 to M do
ρ̂ = ρ−+ρ+

2

âk+1 = 1+
√

1+4L3Akρ̂
2L3ρ̂

(
=⇒ â2

k+1 =
Ak+âk+1

L3ρ̂

)
Ak+1 = Ak + âk+1

τk =
âk+1

Ak+1

ŷk = (1− τk)xk + τkvk
x̂k+1 ← ApproxAuxMin(ŷk, ε̃aam)
if ρ̂ > ζ̂(ρ̂) + δ̃ then
ρ+ ← ρ̂

else if ρ̂ < ζ̂(ρ̂)− δ̃ then
ρ− ← ρ̂

else
return ρ̂, x̂k+1, âk+1

end if
end for
return ρ−, x̂k+1, âk+1
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Algorithm 5 FastQuartic

Input: ε > 0, x0 = 0, A0 = 0, B � 0, 1
2 > ρ−init > 0, ρ+

init = P , ε̃aam > 0, N .

Define ψ0(x)
def
= 1

2‖x − x0‖2B, ε̃fs
def
= min

{
L2
3(ρ−init)

2

1000G , 1
2

}
, ε̃rs

def
= min

{
L3(ρ−init)

3

1000T , ρ−init,
1
2

}
, T as

in (66).
for k = 0 to N do
vk = argminx∈Rd ψk(x)

a−k+1 =
1+
√

1+4L3Akρ
−
init

2L3ρ
−
init

(
=⇒

(
a−k+1

)2
=

Ak+a−k+1

L3ρ
−
init

)
A−k+1 = Ak + a−k+1

τ−k =
a−k+1

A−k+1

y−k = (1− τ−k )xk + τ−k vk
x−k+1 ← ApproxAuxMin(y−k , ε̃aam)

if ρ−init > (1 + ε̃fs)‖x−k+1 − y
−
k ‖

2
B then

return x−k+1

else if ρ−init ≤ (1 + ε̃fs)‖x−k+1 − y
−
k ‖

2
B and ρ−init > ‖x

−
k+1 − y

−
k ‖

2
B −Qε̃

1/4
aam (Q as defined in

(45)) then
return x−k+1

else
ρk, xk+1, ak+1 ← RhoSearch(xk, vk, Ak, ρ

+
init, ρ

−
init, ε̃rs, ε̃aam)

ψk+1 = ψk + ak+1 [f(xk+1) + 〈∇f(xk+1), x− xk+1〉]
end if

end for
return xN+1

Appendix F. Proofs for Section 4

F.1. Proof of Lemma 15

Proof To begin, we define

Z(x, y)
def
= ‖∇f(x) + L3r̂

2
B(x, y)B(x− y)‖B−1 ,

W (x, y)
def
=
(
‖B−1/2‖2‖H(x, y)‖‖B−1‖+ L3‖x− TB(y)‖2B

)
,

and
H(x, y)

def
= ∇2Ωy,B(TB(y)) +

1

2
∇3Ωy,B(TB(y))[x− TB(y)].

Let x, y ∈ Rd, let r̂B(x, y)
def
= ‖x − y‖B, and let δ(x, y)

def
= ∇Ωy,B(x). Using the third-order

L3-smoothness of f(x), we have by (26) and the triangle inequality that∣∣‖∇f(x) + L3r̂
2
B(x, y)B(x− y)‖B−1 − ‖δ(x, y)‖B−1

∣∣ ≤ ‖∇f(x) + L3r̂
2
B(x, y)B(x− y)− δ(x, y)‖B−1

= ‖∇f(x)−∇Φy(x)‖B−1

≤ L3

6
r̂3
B(x, y),
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where the last inequality follows from (26). Squaring both sides gives us

‖∇f(x) + L3r̂
2
B(x, y)B(x− y)‖2B−1 −∆(x, y) ≤ L2

3

36
r̂6
B(x, y),

where
∆(x, y)

def
= 2Z(x, y)‖δ(x, y)‖B−1 − ‖δ(x, y)‖2B−1

and
Z(x, y)

def
= ‖∇f(x) + L3r̂

2
B(x, y)B(x− y)‖B−1 .

After expanding and rearranging the terms in the inequality, we arrive at

‖∇f(x)‖2B−1 +
35

36
L2

3r̂
6
B(x, y)−∆(x, y) ≤ 2L3r̂

2
B(x, y)〈∇f(x), y − x〉.

Dividing both sides by 2L3r̂
2
B(x, y) gives us

‖∇f(x)‖2B−1

2L3r̂2
B(x, y)

+
35

72
L3r̂B(x, y)4 − ∆(x, y)

2L3r̂2
B(x, y)

≤ 〈∇f(x), y − x〉. (63)

All that remains is to bound ∆(x, y). Note that, by (26) and using the fact that∇Ωy,B(TB(y)) =
0,

‖∇Ωy,B(x)−∇Ωy,B(TB(y))−∇2Ωy,B(TB(y))[x− TB(y)]− 1

2
∇3Ωy,B(TB(y))[x− TB(y)]2‖B−1

= ‖∇Ωy,B(x)−∇2Ωy,B(TB(y))[x− TB(y)]− 1

2
∇3Ωy,B(TB(y))[x− TB(y)]2‖B−1

≤ L3‖x− TB(y)‖3B.

By triangle inequality and rearranging, we have

‖∇Ωy,B(x)‖B−1 ≤ ‖H(x, y)(x− TB(y))‖B−1 + L3‖x− TB(y)‖3B (64)

where H(x, y)
def
= ∇2Ωy,B(TB(y)) + 1

2∇
3Ωy,B(TB(y))[x−TB(y)]. Note that, by our choice of B,

we may write its eigendecomposition as B = UΛU>, and we may define B1/2 def
= UΛ1/2U> and

B−1/2 def
= UΛ−1/2U>. Thus, we can then rewrite

‖H(x, y)(x− TB(y))‖B−1 = ‖B−1/2H(x, y)(x− TB(y))‖
≤ ‖B−1/2‖‖H(x, y)‖‖x− TB(y)‖
= ‖B−1/2‖‖H(x, y)‖‖B−1‖‖B−1/2B1/2(x− TB(y))‖
≤ ‖B−1/2‖‖H(x, y)‖‖B−1‖‖B−1/2‖‖B1/2(x− TB(y))‖
= ‖B−1/2‖2‖H(x, y)‖‖B−1‖‖x− TB(y)‖B,

and so it follows that

‖∇Ωy,B(x)‖B−1 ≤
(
‖B−1/2‖2‖H(x, y)‖‖B−1‖+ L3‖x− TB(y)‖2B

)
‖x− TB(y)‖B

= W (x, y)‖x− TB(y)‖B.
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Taken together with (63), we have that

〈∇f(x), y − x〉 ≥
‖∇f(x)‖2B−1

2L3r̂2
B(y)

+
35

72
L3r̂B(y)4 − 2Z(x, y)W (x, y)‖x− TB(y)‖B

2L3r̂2
B(y)

.

F.2. Proof of Lemma 16.

Proof We note that, for all y, z ∈ Rd, since Ωx,B(z) is a convex quartic, it similarly follows from
the proof of Lemma 39 that

Ωx,B(z) = Ωx,B(y) + 〈∇Ωx,B(y), z − y〉+
1

2
(z − y)>∇2Ωx,B(y)(z − y) +

1

6
∇3Ωx,B(y)[z − y]3

+
1

24
∇4Ωx,B(y)[z − y]4

≥ Ωx,B(y) + 〈∇Ωx,B(y), z − y〉+
1

72
∇4Ωx,B(y)[z − y]4

= Ωx,B(y) + 〈∇Ωx,B(y), z − y〉+
L3

12
‖z − y‖4B.

F.3. Proof of Corollary 18.

Proof We first note that TB(yk) = yk + h∗, and so Ωyk,B(xk+1)−Ωyk,B(TB(yk)) = Γyk,B(ht)−
Γyk,B(h∗). As observed by Nesterov (2018a) (see also: Appendix A in (Agarwal et al., 2017)),
ct can be calculated in time proportional to the cost of evaluating f(·). In addition, Nesterov
(2018a) notes that (30) can be found by any reasonable linearly convergent procedure, and so
given access to the gradient of w(λ), this problem can be optimized (to sufficiently small error)
in O(logO(1)(1/ε̃aam)) calls to a gradient oracle. Since

d

dλ
w(λ) = λ−

√
2

2
c>t (
√

2λB +∇2f(x))−1B(
√

2λB +∇2f(x))−1ct,

calculating the gradient requires O(LSS) time.
Finally, since K = O(log(A/ε̃aam)), by our choice of A, it follows from Theorem 17 that

Ωyk,B(xk+1)− Ωyk,B(TB(yk)) ≤ ε̃aam.
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F.4. Proof of Lemma 19.

Proof By Lemma 16, we know that

Ωyk,B(xk+1)− Ωyk,B(TB(yk)) ≥ 〈∇Ωyk,B(TB(yk)), xk+1 − TB(yk)〉+
L3

12
‖xk+1 − TB(yk)‖4B

=
L3

12
‖xk+1 − TB(yk)‖4B,

and so it follows from Corollary 18 that

‖xk+1 − TB(yk)‖B ≤
(

12ε̃aam
L3

)1/4

.

F.5. Proof of Lemma 21.

Proof Let β def
= xk+1 − TB(yk). We have that∣∣r̂(xk+1, yk)

2 − r(yk)2
∣∣ =

∣∣‖TB(yk)− yk‖2B − ‖xk+1 − yk‖2B
∣∣

=
∣∣‖TB(yk)− yk‖2B − ‖TB(yk) + β − yk‖2B

∣∣
=
∣∣‖TB(yk)− yk‖2B + 2〈β,B(TB(yk)− yk)〉+ ‖β‖2B − ‖TB(yk)− yk‖2B

∣∣
≤ 2‖β‖B‖TB(yk)− yk‖B + ‖β‖2B.

Now, by Lemma 19, we know that ‖β‖B ≤
(

12ε̃aam
L3

)1/4
, and so it follows from the definition of P

that ∣∣r̂(xk+1, yk)
2 − r(yk)2

∣∣ ≤ 6

(
ε̃aam
L3

)1/4

P1/2 +

(
12ε̃aam
L3

)1/2

.

F.6. Proof of Lemma 22.

Proof The lemma follows directly from Lemma 20, since

〈∇f(xk+1), yk − xk+1〉 ≥
1

2L3r̂2
B(xk+1, yk)

‖∇f(xk+1)‖2B−1 +
3L3

8
r̂4
B(xk+1, yk)

− 3Z(xk+1, yk)W (xk+1, yk)ε̃
1/4
aam

L
5/4
3 r̂2

B(xk+1, yk)

≥ 1

2L3r̂2
B(xk+1, yk)

‖∇f(xk+1)‖2B−1 +
3L3

8
r̂4
B(xk+1, yk)−

W ε̃
1/4
aam

cρ−init
,

where we let
W def

= max
x,y∈L

Z(x, y)W (x, y). (65)
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F.7. Proof of Lemma 23.

Proof By sufficiently small, we mean that ε̃aam > 0 is chosen such that

ε̃aam ≤ min

{(
ε̃2
rs

1000Q

)4

,

(
ε̃2
rs

1000W

)4

,
1

2

}
,

where ε̃rs is as defined in the algorithm.
Following the standard line of reasoning, as presented by Nesterov (2018b), we proceed via

proof by induction. For k = 0,

A0f(x0)+B0 = min
x∈Rd

ψ0 = 0, f(x0) ≤ F , ‖v0−x∗‖2B = ‖x0−x∗‖2B, and v0 = x0 ∈ L .

Now suppose, for some k ≥ 0, that (35) and (36) hold. To show that ρ+
init = P is a valid

upper bound on ρ∗k, we note that for any τ ∈ [0, 1], letting yk = (1 − τ)xk + τvk, we have that
f(yk) ≤ max {f(xk), f(vk)} ≤ max {F , f(vk)}, by our inductive assumption. We also know by
our inductive assumption that ‖vk − x∗‖2B ≤ ‖x0 − x∗‖2B. Thus, since

‖vk − x0‖2B ≤ 2‖vk − x∗‖2B + 2‖x0 − x∗‖2B ≤ 4‖x0 − x∗‖2B,

it follows that vk ∈ K, which means that f(vk) ≤ F , and so f(yk) ≤ F . We then have that, for all
τ ∈ [0, 1], ‖TB(yk) − yk‖2B ≤ P , where P is defined as in (21), since f(TB(yk)) ≤ f(yk) for all
x ∈ Rd. Thus, P is a valid upper bound on ρ∗k.

For the lower bound on ρ∗k, we note that, based on the condition for when the RhoSearch pro-
cedure is reached in FastQuartic, it must be the case that ρ−init ≤ (1 + ε̃fs)‖x−k+1 − y−k ‖

2
B and

ρ−init ≤ ‖x
−
k+1 − y

−
k ‖

2
B − Qε̃

1/4
aam. Thus, from (47), it can be seen that ρ−init ≤ ζ(ρ−init), and so it

follows that ρ−init ≤ ρ∗k. Therefore, the correctness of RhoSearch can be ensured.
With this observation in hand, we may see that, for any x ∈ Rd,

ψk+1(x) ≥ ψ∗k +
1

2
‖x− vk‖2B + ak+1 [f(xk+1) + 〈∇f(xk+1), x− xk+1〉]

≥ Akf(xk) +Bk +
1

2
‖x− vk‖2B + ak+1 [f(xk+1) + 〈∇f(xk+1), x− xk+1〉]

≥ Ak(f(xk+1) + 〈∇f(xk+1), xk − xk+1〉) +Bk +
1

2
‖x− vk‖2B

+ ak+1 [f(xk+1) + 〈∇f(xk+1), x− xk+1〉]

= Ak+1f(xk+1) +Bk +
1

2
‖x− vk‖2B + 〈∇f(xk+1), Ak(xk − xk+1) + ak+1(x− xk+1)〉

= Ak+1f(xk+1) +Bk +
1

2
‖x− vk‖2B + 〈∇f(xk+1), ak+1(x− vk) +Ak+1(yk − xk+1)〉,

where the last equalities is due to the fact that Ak+1yk = Akxk + ak+1vk. Note that

min
x∈Rd

1

2
‖x− vk‖2B + 〈∇f(xk+1), ak+1(x− vk)〉 = −

a2
k+1

2
‖∇f(xk+1)‖2B−1 .
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Combining this observation with Lemma 22, the fact that ρ−init ≤ ‖x
−
j+1 − y

−
j ‖2B, and our choice of

ε̃aam, we have

min
x∈Rd

ψk+1(x) ≥ Ak+1f(xk+1) +Bk −
a2
k+1

2
‖∇f(xk+1)‖2B−1 + 〈∇f(xk+1), Ak+1(yk − xk+1)〉

≥ Ak+1f(xk+1) +Bk −
Ak+1

2L3ρk
‖∇f(xk+1)‖2B−1

+Ak+1

(
1

2L3r̂2
B(xk+1, yk)

‖∇f(xk+1)‖2B−1 +
3L3

8
r̂4
B(xk+1, yk)−

W ε̃
1/4
aam

ρ−init

)

≥ Ak+1f(xk+1) +Bk −
Ak+1

2L3ρk
‖∇f(xk+1)‖2B−1

+Ak+1

(
1

2L3r̂2
B(xk+1, yk)

‖∇f(xk+1)‖2B−1 +
3L3

8
r̂4
B(xk+1, yk)−

ε̃2
rs

1000ρ−init

)
.

We also know, by the guarantees of RhoSearch in Theorem 34, along with the choice of ε̃aam, that
ρk ≥ (1− ε̃rs)ζ̂(ρk) = (1− ε̃rs)r̂2

B(xk+1, yk), and so

min
x∈Rd

ψk+1(x) ≥ Ak+1f(xk+1) +Bk −
Ak+1

2L3(1− ε̃rs)r̂2
B(xk+1, yk)

‖∇f(xk+1)‖2B−1

+Ak+1

(
1

2L3r̂2
B(xk+1, yk)

‖∇f(xk+1)‖2B−1 +
3L3

8
r̂4
B(xk+1, yk)−

ε̃2
rs

1000ρ−init

)
≥ Ak+1f(xk+1) +Bk +Ak+1

(
3L3

8
r̂4
B(xk+1, yk)− ε̃curr

)
,

where

ε̃curr
def
=

ε̃rs

2L3(1− ε̃rs)ρ−init
‖∇f(xk+1)‖2B−1 +

ε̃2
rs

1000ρ−init
.

Therefore, by our choice of ε̃rs ≤
L3(ρ−init)

3

1000T , where

T def
=
G
L3

+
1

1000
, (66)

(35) holds for k + 1, proving the induction step. In addition, we may note that

ψk+1(x) =
1

2
‖x− x0‖2B +

k+1∑
i=0

ai [f(xk+1) + 〈∇f(xk+1), x− xk+1〉]

≤ 1

2
‖x− x0‖2B +

k+1∑
i=0

aif(x)

= Ak+1f(x) +
1

2
‖x− x0‖2B.
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Since vk+1 = argminx∈Rd ψk+1(x) and ψk+1(x) is a quadratic function, it follows that, for all
x ∈ Rd,

ψk+1(x) = ψk+1(vk+1) + 〈∇ψk+1(vk+1), x− vk+1〉+
1

2
‖x− vk+1‖2B

= ψk+1(vk+1) +
1

2
‖x− vk+1‖2B

≤ Ak+1f(x) +
1

2
‖x− x0‖2B.

Taken together, this gives us that

Ak+1f(xk+1) +Bk+1 +
1

2
‖x− vk+1‖2B ≤ min

x∈Rd
ψk+1(x) +

1

2
‖x− vk+1‖2B

= ψk+1(vk+1) +
1

2
‖x− vk+1‖2B

≤ Ak+1f(x) +
1

2
‖x− x0‖2B.

Rearranging and letting x = x∗, we have that

Ak+1(f(xk+1)− f(x∗)) +Bk+1 +
1

2
‖x∗ − vk+1‖2B ≤

1

2
‖x∗ − x0‖2B,

and so it follows that
‖vk+1 − x∗‖2B ≤ ‖x0 − x∗‖2B

and vk+1, xk+1 ∈ L .

F.8. Proof of Corollary 24.

Proof Note that, for all k ≥ 0, x ∈ Rd,

ψk(x) =
1

2
‖x− x0‖2B +

k∑
i=0

ai [f(xk) + 〈∇f(xk), x− xk〉]

≤ 1

2
‖x− x0‖2B +

k∑
i=0

aif(x)

= Akf(x) +
1

2
‖x− x0‖2B,

and so it follows from Lemma 23 that

Akf(xk) +Bk ≤ min
x∈Rd

ψk(x) ≤ min
x∈Rd

Akf(x) +
1

2
‖x− x0‖2B = Akf(x∗) +

1

2
‖x∗ − x0‖2B.

Rearranging, we have

3L3

16

k−1∑
i=0

Ai+1r̂
4
B(xi+1, yi) = Bk ≤ Ak(f(x∗)− f(xk)) +

1

2
‖x∗ − x0‖2B ≤

1

2
‖x∗ − x0‖2B

and so
f(xk)− f(x∗) ≤ 1

2Ak
‖x∗ − x0‖2B.
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F.9. Proof of Theorem 25

Proof By combining Corollary 24 with Lemma 36, we observe that

f(xk)− f(x∗) ≤ 1

2Ak
‖x0 − x∗‖2B ≤

128L3‖x0 − x∗‖4B
3

(
2

k + 1

)5

.

F.10. Proof of Theorem 26.

Proof Let Z def
= max {A,G,P,Q,R,V,W, L3}. By appropriate initialization, we mean that ρ−init,

ε̃aam are chosen such that ρ−init ≤
ε

2L3P , and

ε̃aam < min

{(
ε̃2
rs

1000Q

)4

,

(
ε̃2
rs

1000W

)4

,

(
ε̃fs

V(1 + ε̃fs)

)4

,

(
ε̃fsρ

−
init

Q(1 + ε̃fs)

)4

,

(
L3(ρ−init)

3

1000W

)4

,
1

2

}

≤ min

{
O
(
poly

( ε
Z

))
,
1

2

}
,

where ε̃fs and ε̃rs are as defined in the FastQuartic algorithm. Thus, based on our choices of ρ−init
and ε̃aam, the iteration complexity follows immediately from Theorems 25 and 37. Each itera-
tion of FastQuartic requires at most O(log(Zε )) iterations of RhoSearch, each of which requires at
mostO(log(Zε )) iterations of ApproxAuxMin, and each iteration of ApproxAuxMin requires at most
O(logO(1)(Zε )) calls to a gradient oracle and linear system solver. Taken together, this gives us a
total computational cost of O(logO(1)(Zε )) calls to a gradient oracle and linear system solver per
iteration of FastQuartic.

F.11. Proofs of Theorems 12 and 13

To prove Theorems 12 and 13, we first rely on at Corollaries 27 and 28, found in Appendix B. Their
proofs simply follow from Theorem 26, using the smoothness guarantees provided by Theorems 7
and 8, respectively. Thus, the proof of Theorem 12 follows by combining Fact 1, for µ = ε

2 log(m) ,
with Corollary 27, while Theorem 13 follows from combining Lemma 4, for µ = ε

4λd , with Corol-
lary 28.
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