
Proceedings of Machine Learning Research vol 125:1–26, 2020 33rd Annual Conference on Learning Theory

Algorithms and SQ Lower Bounds for PAC Learning
One-Hidden-Layer ReLU Networks

Ilias Diakonikolas ILIAS@CS.WISC.EDU
University of Wisconsin-Madison

Daniel M. Kane DAKANE@CS.UCSD.EDU
University of California, San Diego

Vasilis Kontonis KONTONIS@WISC.EDU

Nikos Zarifis ZARIFIS@WISC.EDU

University of Wisconsin-Madison

Editors: Jacob Abernethy and Shivani Agarwal

Abstract
We study the problem of PAC learning one-hidden-layer ReLU networks with k hidden units on Rd

under Gaussian marginals in the presence of additive label noise. For the case of positive coeffi-
cients, we give the first polynomial-time algorithm for this learning problem for k up to Õ(

√
log d).

Previously, no polynomial time algorithm was known, even for k = 3. This answers an open ques-
tion posed by Klivans (2017). Importantly, our algorithm does not require any assumptions about
the rank of the weight matrix and its complexity is independent of its condition number. On the
negative side, for the more general task of PAC learning one-hidden-layer ReLU networks with
arbitrary real coefficients, we prove a Statistical Query lower bound of dΩ(k). Thus, we provide a
separation between the two classes in terms of efficient learnability. Our upper and lower bounds
are general, extending to broader families of activation functions.
Keywords: PAC learning, one-hidden-layer networks, statistical query model

1. Introduction

1.1. Background and Motivation

In recent years, the impressive practical success of deep learning has motivated the development of
provably efficient learning algorithms for various classes of neural networks. A large body of re-
search (see Section 1.4 for a brief overview) has resulted in efficient learning algorithms for shallow
networks with common activation functions (e.g., ReLUs or sigmoids) under various assumptions
on the underlying distribution and the weight structure of the network. Despite intensive investi-
gation, the broad question of whether deep neural networks are efficiently learnable with provable
guarantees remains an outstanding theoretical challenge in machine learning. In particular, the class
of networks for which efficient learners are known is relatively limited, even in the realizable case
(i.e., when the data is drawn from a neural network in the class).

In this work, we continue this line of investigation by studying the learnability of a simple class
of networks without imposing strong restrictions on the structure of its weights. Specifically, we
focus on the problem of learning one-hidden-layer ReLU networks under the Gaussian distribution
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in the presence of additive random label noise. Our goal is to understand the complexity of this
problem in the PAC learning model without assumptions on the weight matrix of the network.

Definition 1 (One-hidden-layer ReLU networks) Let Ck denote the concept class of one-hidden-
layer ReLU networks on Rd with k hidden units. That is, fα,W ∈ Ck if and only if there exist weight
vectors w(i) ∈ Rd and real coefficients αi, i ∈ [k], such that fα,W(x) =

∑k
i=1 αiφ(〈w(i),x〉),

where φ(t) = max{0, t}, t ∈ R. We will denote by α = (αi)
k
i=1 the vector of coefficients and by

W = [w(i)]ki=1 the weight matrix of the network. We will use C+
k to denote the subclass of Ck where

α ∈ Rk+.

The (distribution-specific) PAC learning problem for a concept class C of real-valued functions
is the following: The input is a multiset of i.i.d. labeled examples (x, y), where x is generated
from the standard Gaussian distribution on Rd and y = f(x) + ξ, where f ∈ C is the unknown
target concept and ξ is some type of random observation noise. The goal of the learner is to output
a hypothesis h : Rd → R that with high probability is close to f in L2-norm. The hypothesis h
is allowed to lie in any efficiently representable hypothesis class H. If H = C, the PAC learning
algorithm is called proper.

Perhaps surprisingly, the complexity of PAC learning one-hidden-layer ReLU networks (even
with positive weights) has remained open, even in the realizable setting, under Gaussian marginals,
and for k = 3 Klivans (2017)1. A line of prior work Ge et al. (2018); Bakshi et al. (2019); Ge et al.
(2019) had studied the task of parameter estimation for this concept class, i.e., the task of recovering
the unknown coefficients αi and weight vectors w(i) of the data generating network within small
accuracy. It should be noted that for parameter estimation to even be information-theoretically pos-
sible, some assumptions on the target function are necessary. The aforementioned prior works made
the common assumption that the weight matrix W = [w(i)]ki=1 is full-rank. Under this assumption,
they provided efficient parameter learning algorithms with respect Gaussian marginals for the case
of positive coefficients, i.e., for C+

k . Importantly, the sample and computational complexity of these
algorithms scale polynomially with the condition number of W. In contrast, no such algorithm is
known for general coefficients, i.e., for Ck, even under the aforementioned strong assumptions on
the weights.

In contrast to parameter estimation, PAC learning one-hidden-layer ReLU networks does not re-
quire any assumptions on the structure of the weight matrix. The PAC learning problem for this class
is information-theoretically solvable with polynomially many samples. The question is whether a
computationally efficient algorithm exists. It should also be noted that proper PAC learning is not
generally equivalent to parameter estimation, as it is in principle possible to have two networks that
define close-by functions and whose parameters are significantly different.

1.2. Our Results

We are ready to describe the main contributions of this work. Our main positive result is the first
PAC learning algorithm for C+

k (one-hidden-layer Relu networks with positive coefficients) under
Gaussian marginals that runs in polynomial time for any k = Õ(

√
log d). On the lower bound side,

we establish a Statistical Query (SQ) lower bound suggesting that no such algorithm is possible for

1. Formally speaking, the k = 2 case does not appear explicitly in the literature, but an efficient algorithm easily follows
from prior work on parameter estimation (e.g., Ge et al. (2018)).
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Ck (general coefficients) for any k = ω(1) (also under Gaussian marginals). Our SQ lower bound
provides a separation between C+

k and Ck in terms of efficient learnability.
Before we state our main theorems, we formally define the PAC learning problem.

Definition 2 (Distribution-Specific PAC Learning) Let F be a concept class of real-valued func-
tions over Rd, D be a distribution on Rd, F ∈ L2(D,Rd), and 0 < ε < 1. Let f be an un-
known target function in F . A noisy example oracle, EXnoise(f,F), works as follows: Each time
EXnoise(f,F) is invoked, it returns a labeled example (x, y), such that: (a) x ∼ D, and (b)
y = f(x) + ξ, where ξ is a zero-mean and standard deviation σ subgaussian random variable
that is independent of x. A learning algorithm is given i.i.d. samples from the noisy oracle and its
goal is to output a hypothesis h such that with high probability h is ε-close to f in L2-norm, i.e., it
holds Ex∼D[(f(x)− h(x))2] ≤ ε2

(
Ex∼D[f2(x)] + σ2

)
.

Our main positive result is the first computationally efficient PAC learning algorithm for C+
k .

Theorem 3 (Proper PAC Learner for C+
k ) There is a proper PAC learning algorithm for C+

k with
respect to the standard Gaussian distribution on Rd with the following performance guarantee: The
algorithm draws poly(k/ε) · Õ(d) noisy labeled examples from an unknown target f ∈ C+

k , runs in
time poly(d/ε) + (k/ε)O(k2), and outputs a hypothesis h ∈ C+

k that with high probability is ε-close
to f in L2-norm.

Theorem 3 gives the first polynomial-time PAC learning algorithm for one-hidden-layer ReLU net-
works under any natural distributional assumptions, answering a question posed by Klivans (2017).
Our algorithm runs in polynomial time for some k = Ω̃(

√
log d). The existence of such an algorithm

was previously open, even for k = 3.
We remark that our main algorithmic result is more general, in the sense that it immediately

extends to positive coefficient one-hidden-layer networks composed of any non-negative Lipschitz
activation function. See Theorem 5 for a detailed statement.

Some additional remarks are in order: As stated in Theorem 3, our learning algorithm is proper,
i.e., h ∈ C+

k . An important distinguishing feature of our algorithm from prior related work is that
it requires no assumptions on the weight matrix of the network, and in particular that its sample
complexity is independent of its condition number. Prior work had given parameter estimation
algorithms for this concept class with sample complexity (and running time) polynomial in the
condition number. On the other hand, the running time of our algorithm scales with exp(k), while
previous parameter estimation algorithms had poly(k) dependence. The existence of a poly(k)
time PAC learning algorithm remains an outstanding open question. An additional advantage of our
algorithm is that it also immediately extends to the agnostic setting and in particular is robust to a
small (dimension-independent) amount of adversarial L2-error.

The algorithm of Theorem 3 crucially uses the assumption that the coefficients of the target
network are positive. A natural question is whether an algorithm with similar guarantees can be
obtained for unrestricted coefficients. Perhaps surprisingly, we provide evidence that such an algo-
rithm does not exist. Specifically, our second main result is a correlational Statistical Query (SQ)
lower bound ruling out a broad family of poly(d)-time algorithms for Ck for ε = Ω(1), for any
k = ω(1).

Specifically, we prove a lower bound for PAC learning Ck under Gaussian marginals in the corre-
lational SQ model. A correlational SQ algorithm has query access to the target concept f : Rd → R
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via the following oracle: The oracle takes as input any bounded query function q : Rd → [−1, 1]
and an accuracy parameter τ > 0, and outputs an estimate γ of the expectation Ex∼D[f(x)q(x)]
such that |γ − Ex∼D[f(x)q(x)]| ≤ τ. We note that the correlational SQ model captures a broad
family of algorithms, including first-order methods (e.g., gradient-descent), dimension-reduction,
and moment-based methods. (In particular, our algorithm establishing Theorem 3 can be easily
simulated in this model.) We establish the following:

Theorem 4 (Correlational SQ Lower Bound for Ck) Any correlational SQ learning algorithm
for Ck under the standard Gaussian distribution on Rd that guarantees error ε = Ω(1) requires
either queries of accuracy d−Ω(k) or 2d

Ω(1)
many queries.

The natural interpretation of Theorem 4 is the following: If the SQ algorithm uses statistical
queries of accuracy d−Ω(k), then simulating a single query with iid samples would require dΩ(k)

samples (hence time). Otherwise, the algorithm would require 2d
Ω(1)

time (since each query requires
at least one unit of time). Theorem 4, combined with our Theorem 3, provides a (super-polynomial)
computational separation between the PAC learnability of Ck and C+

k in the correlational SQ model.
We note that the statement of our general SQ lower bound (Theorem 13) is much more general

than Theorem 4. Specifically, we obtain a correlational SQ lower bound for PAC learning (under
Gaussian marginals) a class of functions of the form σ(

∑k
i=1 αiφ(w(i),x)), where roughly speaking

σ is any odd non-vanishing function and φ is not a low-degree polynomial.

1.3. Our Techniques

Here we provide an overview of our techniques in tandem with a comparison to prior work. We
start with our algorithm establishing Theorem 3. Our learning algorithm for C+

k employs a data-
dependent dimension reduction procedure. Specifically, we give an efficient method to reduce our
d-dimensional learning problem down to a k-dimensional problem, that can in turn be efficiently
solved by a simple covering method.

Let f(x) =
∑k

i=1 αiφ(〈w(i),x〉) be the target function and observe that f depends only on
the k unknown linear forms 〈w(i),x〉, i ∈ [k]. If we could identify the subspace V spanned by the
w(i)’s exactly, then we could also identify f by brute-force on V , noting that we only need to search
a k2-dimensional space of functions and that for any x ∈ Rd it holds f(x) = f(projV (x)). Our
algorithm is based on a robust version of this idea. In particular, if we can find a subspace V ′ that
closely approximates V , then it suffices to solve for f on V ′ and use this projection to obtain an
approximation to f .

To find a subspace V ′ approximating V , we consider the matrix of degree-2 Chow parameters
(second moments) of f , i.e., Ex∼N (0,I)[f(x)(xxT − I)]. It is not hard to see that the (normalized)
second moments of f are positive in the directions along V and 0 in orthogonal directions. Thus, if
we could compute the second moments exactly, we could solve for V as the span of the second mo-
ment matrix. Unfortunately, we can only approximate the true second moment matrix via samples.
To deal with this approximation, we note that the true second moments will be large in the direction
of w(i) for components with large coefficients αi and 0 in directions orthogonal to V . Using this
fact, we show that if V ′ is the span of the k largest eigenvalues of an approximate second moment
matrix (obtained via sampling), the weight vectors w(i) corresponding to the important components
of f will still be close to V ′. From this point, can use a net-based argument to find a hypothesis
h ∈ C+

k with weight vectors on V ′ so that f(x) is close to h(projV ′(x)) in L2-norm.
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We note that the idea of using dimension-reduction to find a low-dimensional invariant subspace
has been previously used in the context of PAC learning intersections of LTFs Vempala (2010);
Diakonikolas et al. (2018). Our algorithm and its analysis of correctness are quite different from
these prior works. We also note that Ge et al. (2018) also used information based on low-degree
moments for their parameter estimation algorithm, but in a qualitatively different way. In particular,
Ge et al. (2018) used tensor-decomposition techniques (based on moments of degree up to four) to
uniquely identify the weight vectors, under structural assumptions on the weight matrix (full-rank
and bounded condition number).

We now proceed to explain our SQ lower bound construction. As is well-known, there is a gen-
eral methodology to establish such lower bounds, via an appropriate notion of SQ dimension Blum
et al. (1994); Feldman et al. (2017). In our setting, to prove an SQ lower bound, it suffices to find
a large collection of functions f1, . . . , fm ∈ Ck with the following properties: (1) The fi’s are pair-
wise far away from each other, and (2) The fi’s have small pairwise correlations. The difficulty is,
of course, to construct such a family. We describe our construction in the following paragraph.

First, it is not hard to see that (1) and (2) can only be simultaneously satisfied if almost all of
the fi’s have nearly-matching low-degree moments. In fact, we provide a construction in which
all the low-degree moments of all of the fi’s vanish. To achieve this, we build on an idea intro-
duced in Diakonikolas et al. (2017). Roughly speaking, the idea is to define a family of functions
whose interesting information is hidden in a random low-dimensional subspace, so that learning an
unknown function in the family amounts to finding the hidden subspace. In more detail, we will de-
fine a function in two dimensions which has the correct moments, and then embed it in a randomly
chosen subspace.

For simplicity, we explain our 2-dimensional construction for ReLU activations, even though
our SQ lower bound is more general. We provide an explicit 2-dimensional construction of a mixture
F of 2k ReLUs whose first k − 1 moments vanish exactly. For any 2-dimensional subspace V , we
can define FV (x) = F (projV (x)). From there, we can show that if U and V are two subspaces that
are far apart — in the sense that no unit vector in U has large projection in V — then FU and FV
will have small correlation — on the order of the k-th power of the closeness parameter between
the defining subspaces. Moreover, it is not hard to show that two randomly chosen U and V are far
from each other with high probability. This allows us to find an exponentially large family of FV ’s
that have pairwise exponentially small correlation.

1.4. Related Work

In recent years, there has been an explosion of research on provable algorithms for learning neural
networks in various settings, see, e.g., Janzamin et al. (2015); Sedghi et al. (2016); Daniely et al.
(2016); Zhang et al. (2016); Zhong et al. (2017); Ge et al. (2018, 2019); Bakshi et al. (2019); Goel
et al. (2017); Manurangsi and Reichman (2018); Goel and Klivans (2019); Vempala and Wilmes
(2019) for some works on the topic. The majority of these works focused on parameter learning,
i.e., the problem of recovering the weight matrix of the data generating neural network. In contrast,
the focus of this paper is on PAC learning. We also note that PAC learning of simple classes of
neural networks has been studied in a number of recent works Goel et al. (2017); Manurangsi and
Reichman (2018); Goel and Klivans (2019); Vempala and Wilmes (2019). However, the problem of
PAC learning linear combinations of (even) 3 ReLUs under any natural distributional assumptions
(and in particular under the Gaussian distribution) has remained open. At a high-level, prior works
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either rely on tensor decompositions Sedghi et al. (2016); Zhong et al. (2017); Ge et al. (2018,
2019); Bakshi et al. (2019) or on kernel methods Zhang et al. (2016); Daniely et al. (2016); Goel
et al. (2017); Goel and Klivans (2019). In the following paragraphs, we describe in detail the prior
works more closely related to the results of this paper.

The work of Ge et al. (2018) studies the parameter learning of positive linear combinations of
ReLUs under the Gaussian distribution in the presence of additive (mean zero sub-gaussian) noise.
That is, they consider the same concept class and noise model as we do, but study parameter learn-
ing as opposed to PAC learning. Ge et al. (2018) show that the parameters can be approximately
recovered efficiently, under the assumption that the weight matrix is full-rank with bounded con-
dition number. The sample complexity and running time of their algorithm scales polynomially
with the condition number. More recently, Bakshi et al. (2019); Ge et al. (2019) obtained efficient
parameter learning algorithms for vector-valued depth-2 ReLU networks under the Gaussian distri-
bution. Similarly, the algorithms in these works have sample complexity and running time scaling
polynomially with the condition number. We note that the algorithmic results in the aforementioned
works do not apply to Ck, i.e., the class of arbitrary linear combinations of ReLUs.

Vempala and Wilmes (2019) show that gradient descent agnostically PAC learns low-degree
polynomials using neural networks as the hypothesis class. Their approach has implications for (re-
alizable) PAC learning of certain neural networks under the uniform distribution on the sphere. We
note that their method implies an algorithm with sample complexity and running time exponential in
1/ε, even for a single ReLU. Goel and Klivans (2019) give an efficient PAC learning algorithm for
certain 2-hidden-layer neural networks under arbitrary distributions on the unit ball. We emphasize
that their algorithm does not apply for (positive) linear combinations of ReLUs. In fact, recent work
has shown that the problem we solve in this paper is NP-hard under arbitrary distributions, even for
k = 2 Goel et al. (2020b).

The SQ model was introduced by Kearns (1998) in the context of learning Boolean-valued func-
tions as a natural restriction of the PAC model Valiant (1984). A recent line of work Feldman et al.
(2013, 2015b,a); Feldman (2016) extended this framework to general search problems over distribu-
tions. One can prove unconditional lower bounds on the computational complexity of SQ algorithms
via an appropriate notion of Statistical Query dimension. A lower bound on the SQ dimension of
a learning problem provides an unconditional lower bound on the computational complexity of any
SQ algorithm for the problem.

The work of Vempala and Wilmes (2019) establishes correlational SQ lower bounds for learn-
ing a class of degree-k polynomials in d variables. Shamir (2018) shows that gradient-based al-
gorithms (a special case of correlational SQ algorithms) cannot efficient learn certain families of
neural networks under well-behaved distributions (including the Gaussian distribution). We note
that the lower bound constructions in these works do not imply corresponding lower bounds for
one-hidden-layer ReLU networks.

Concurrent and Independent Work. Contemporaneous work Goel et al. (2020a), using a differ-
ent construction, obtained super-polynomial SQ lower bounds for learning one-hidden-layer neural
networks (with ReLU and other activations) under the Gaussian distribution.
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2. Preliminaries

Notation. For n ∈ Z+, we denote [n]
def
= {1, . . . , n}. We will use small boldface characters for

vectors. For x ∈ Rd, and i ∈ [d], xi denotes the i-th coordinate of x, and ‖x‖2
def
= (

∑d
i=1 x2

i )
1/2

denotes the `2-norm of x. We denote by ‖A‖2 the spectral norm of matrix A. We will use 〈x,y〉
for the inner product between x,y ∈ Rd. We will use E[X] for the expectation of random variable
X and Pr[E ] for the probability of event E . We denote by Var[X] its variance.

For d ∈ N, we denote Sd−1 the d-dimensional sphere. Denote by θ(u,v) the angle between
the vectors u,v. For a vector of weights α = (α1, . . . , αk) ∈ R2k, and matrix W ∈ Rk×d we
denote fα,W(x) = αTφ(Wx) =

∑k
i=1 αi φ(〈w(i),x〉). Let N denote the standard univariate

Gaussian distribution, we also denote N 2 the two dimensional Gaussian distribution and N d the
d-dimensional one.

3. Efficient Learning Algorithm

In this section, we give our upper bound for the problem of learning positive linear combinations
of Lipschitz activations, thereby establishing Theorem 3. We prove the following more general
statement:

Theorem 5 (Learning Sums of Lipschitz Activations) Let f(x) =
∑k

i=1 αiφ
( 〈

w(i),x
〉 )

with
αi > 0 for all i ∈ [k], where φ(t) is an L-Lipschitz, non-negative activation function such that
Et∼N [φ(t)] ≥ C, Et∼N [φ(t)(t2−1)] ≥ C, where C > 0 and Et∼N [φ2(t)] is finite. There exists an
algorithm that given k ∈ N, ε > 0, and sample access to a noisy set of samples from f : Rd → R+,
draws m = d ·poly(k, 1/ε) ·poly(L/C) samples, runs in time poly(m) + Õ((1/ε)k

2
), and outputs

a proper hypothesis h that, with probability at least 9/10, satisfies

E
x∼N d

[(f(x)− h(x))2] ≤ ε2poly(L/C)

(
σ2 + E

x∼N d
[f(x)2]

)
.

Remark 6 Theorem 3 follows as a corollary of the above, by noting that the ReLU satisfies L = 1
and C = 1√

2π
.

The following fact gives formulas for the low-degree Chow parameters of a one-layer network
(see Appendix A).

Fact 7 (Low-degree Chow Parameters) Let f : Rd → R be of the form f(x) =
∑k

i=1 αi ·
φ
(〈

w(i),x
〉)

. Then Ex∼N d [f(x)] = Et∼N [φ(t)]
∑k

i=1 αi , Ex∼N d [f(x)x] = Et∼N [φ(t)t] ·∑k
i=1 αiw

(i) , and

A = E
x∼N d

[
f(x)(xxT − I)

]
= E

t∼N
[φ(t)(t2 − 1)]

k∑
i=1

αiw
(i)w(i)T . (1)

The crucial formula is the one of the degree-2 Chow parameters, Equation (1). In fact, we can
already describe the main idea of our upper bound. Let us assume that we have the degree-2 Chow
parameters matrix A exactly. Then, by using singular value decomposition, we would obtain a basis
of the vector space spanned by the parameters w(i). The dimension of this space is at most k and
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therefore in that way we essentially reduce the dimension of the problem from d down to k. To find
parameters α̂i, ŵ(i) that give small mean squared error, we can now make a grid G and pick the ones
that minimize the empirical mean squared error with the samples, that is

min
β,U∈G

m∑
i=1

(fβ,U(x(i))− y(i))2 .

Even though we do not have access to the matrix A exactly, we can estimate it empirically. Since
the activation function φ(·) is well-behaved and the distribution of the examples is Gaussian, we can
get a very accurate estimate of A with roughly Õ(dk/ε2) samples. We give the following lemma
whose proof relies on matrix concentration and concentration of polynomials of Gaussian random
variables (see Appendix B).

Lemma 8 (Estimation of degree-2 Chow parameters) Let fα,W(x) =
∑k

i=1 αiφ(〈w(i),x〉), where
φ(t) is an L-Lipschitz, non-negative activation function such that Et∼N [φ(t)] ≥ C. Let Σ =
Ex∼N d [fα,W(x)x⊗x] be the degree-2 Chow parameters of fα,W. Then, for some N = Õ(dk/ε2)
samples (x(i), y(i)), where y(i) = fα,W(x(i)) + ξi and ξi is a zero-mean, subgaussian noise with
variance σ2, it holds with probability at least 99% that∥∥∥∥∥ 1

N

N∑
i=1

x(i) ⊗ x(i)y(i) −Σ

∥∥∥∥∥
2

≤ ε
(
σ +

L

C
E

x∼N d
[fα,W(x)]

)
.

The next step is to quantify how accurately we need to estimate the degree-2 Chow parameters,
so that doing SVD on the empirical matrix gives us a good approximation of the subspace spanned
by the true parameters w(i). We show that that estimating the degree-2 Chow parameter matrix
within spectral norm roughly ε/k suffices. In particular, we show that the top-k eigenvectors of
our empirical estimate span approximately the subspace where the true parameters w(i) lie. For the
proof, we are going to use the following lemma that bounds the difference of a function evaluated
at correlated normal random variables.

Lemma 9 (Correlated Differences, Lemma 6 of Kontonis et al. (2019)) Let r(x) ∈ L2(Rd,N d)
be differentiable almost everywhere and let

Dρ = N
(

0,

(
I ρI
ρI I

))
.

We call ρ-correlated a pair of random variables (x,y) ∼ Dρ. It holds

1

2
E

(x,z)∼Dρ
[(r(x)− r(z))2] ≤ (1− ρ) E

x∼N d

[
‖∇r(x)‖22

]
.

We are now ready to prove the key technical lemma of our approach. We remark that the following
dimension reduction lemma is rather general and holds for any reasonable activation function, in
the sense that the error is bounded as long as its expected derivative Et∼N [(φ′(t))2] is bounded.

Lemma 10 (Dimension Reduction) Let fα,W(x) =
∑k

i=1 αiφ
( 〈

w(i),x
〉 )

with αi > 0, let
A = Ex∼N d [f(x)xxT ] and Et∼N [φ(t)(t2 − 1)] = C1. Let M ∈ Rd×d be a matrix such that
‖A−M‖22 ≤ ε and let V be the subspace of Rd that is spanned by the top-k eigenvectors of M.
There exist k vectors v(i) ∈ V such that for the matrix V ∈ Rk×d constructed by the vectors v(i), it
holds Ex∼N d [(fα,W(x)− fα,V(x))2] ≤ 2kεEx∼N d [fα,W(x)] Et∼N [(φ′(t))2]/C1 .
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Proof For simplicity, let us denote ε = ‖A−M‖2. Moreover, let A′ = A− Et∼N [φ(t)]
∑

i αiI,
M′ = M − Et∼N [φ(t)]

∑
i αiI, and observe that ‖A−M‖2 = ‖A′ −M′‖2. We note that

A′ = Et∼N [φ(t)(t2 − 1)]
∑k

i=1 αiw
(i)w(i)T , from Fact 7. Let b(1), . . . ,b(k) be the eigenvec-

tors corresponding to the top-k eigenvalues of M′ (which are also the top k eigenvectors of M), and
let V = span(b1, . . . ,bk). Let v(i) = projV(w(i)) and r(i) = w(i) − v(i). Let v(1), . . . ,v(k) be
any k vectors in Rd. Then we have,

E
x∼N d

[(fα,W(x)− fα,V(x))2] ≤ k
k∑
i=1

α2
i E
x∼N d

[(
φ
(
〈w(i),x〉

)
− φ

(
〈v(i),x〉

))2
]

≤ 2k E
t∼N

[
(φ′(t))2

] k∑
i=1

α2
i (1− 〈w(i),v(i)〉), (2)

where for the last inequality we used Lemma 9 and the fact that the random variables 〈w(i),x〉 and
〈v(i),x〉 are ρi-correlated with ρi = 〈w(i),v(i)〉.

It suffices to prove that
∥∥r(i)

∥∥
2

=
∥∥w(i) − v(i)

∥∥
2
≤ ε′ for some sufficiently small ε′. Note

that because r(i) ∈ V⊥, it holds r(i)TM′r(i) ≤
∥∥r(i)

∥∥2

2
maxu∈V⊥

uTM′u
‖u‖2

, because we know that

the subspace W is spanned by the top k eigenvectors of M′. Let u =
∑d

i=1 u(i), where u(i) ∈
ker(M − λiI) for all i ∈ {k + 1, . . . , d} and λi is the i-th greatest eigenvalue. From Weyl’s
inequality, we have that if Ai are the eigenvalues of A′ in decreasing order then ‖Ai − λi‖1 ≤ ε
and we know that the eigenvalues of A′ for i > k are zero, because the rank(A) ≤ k. Thus,

max
u∈V⊥

uTM′u

‖u‖2
≤ λk+1 ≤ ε ,

because the eigenvalues of the eigenvectors of M′ in V⊥ are less than ε, which implies that r(i)TM′r(i)

≤ ε
∥∥r(i)

∥∥2

2
. We also have r(i)TA′r(i) ≥ Et∼N [φ(t)(t2 − 1)]αir

(i)Tw(i)w(i)T r(i) = C1αi ·(
1−

∥∥v(i)
∥∥2

2

)2
= C1αi

∥∥r(i)
∥∥4

2
, where the last equality follows from the Pythagorean theorem.

Therefore,∥∥∥r(i)
∥∥∥2

2
ε ≥ r(i)TM′r(i) ≥ r(i)TA′r(i) − ε

∥∥∥r(i)
∥∥∥2

2
≥ C1αi

∥∥∥r(i)
∥∥∥4

2
− ε
∥∥∥r(i)

∥∥∥2

2
.

Thus, we obtain αi
∥∥r(i)

∥∥2

2
≤ 2ε/C1 . The bound now follows directly from (2) since 2αi(1 −

〈w(i),v(i)〉) = αi
∥∥w(i) − v(i)

∥∥2

2
= αi

∥∥r(i)
∥∥2

2
≤ 2ε/C1.

Now we have all the ingredients to complete our proof. Since the dimension of the subspace
that we have learned is at most k, we can construct a grid with (k/ε)O(k) candidates that contains an
approximate solution. Our full algorithm is summarized as Algorithm 1. The proof of Theorem 5
follows from the above discussion and can be found in Appendix A.
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Algorithm 1 Learning One-Hidden-Layer Networks with Positive Coefficients and Lipschitz Acti-
vations

1: procedure NNLEARNER(k, ε) . k: number of rows of weight matrix W, ε: accuracy.
2: Draw m = dpoly(k, 1/ε) samples, (x(i), y(i)), to estimate M̂. . Lemma 8
3: Find the SVD of M̂ to obtain the k eigenvectors v(1), . . . ,v(k) that correspond to the k

largest eigenvalues, and let V be the subspace spanned by these vectors.
4: Draw m′ = O(kL2) samples and compute an estimation µ̂ of the expectation of f(x)
5: Let G be an ε/k-cover of a k-ball wth radius (µ̂+ cσ)2 over V , with respect the `2-norm.
6: Draw n = poly(k, 1/ε) fresh samples (x(i), y(i)).
7: For every U = (u(1), . . . ,u(k)) ∈ Gk, let fU =

∑k
i=1

∥∥u(i)
∥∥

2
φ
( 〈

u(i),x
〉
/
∥∥u(i)

∥∥
2

)
and

compute eU = 1
n

∑n
i=1

(
fU(x(i))− y(i)

)2
8: Output the candidate fU which minimizes its corresponding error eU.

4. Statistical Query Lower Bound

We start by formally defining the class of algorithms for which our lower bound applies. In the
standard statistical query model, we do not have direct access to samples from the distribution, but
instead can pick a function q and get an approximation to its expected value. In this work, we
consider algorithms that have access to correlational statistical queries, which are more restrictive
and are defined as follows. We remark that in the following definition of inner product queries we
do not assume that the concept f(x) is bounded pointwise but only in the L2 sense. The properties
that we shall need for our result hold also under this weaker assumption.

Definition 11 (Correlational/Inner Product Queries) Let D be a distribution over some domain
X and let f : X 7→ R, where Ex∼D[f2(x)] ≤ 1. An inner product query is specified by
some function q : X 7→ [−1, 1] and a tolerance τ > 0, and returns a value u such that u ∈
[Ex∼D[q(x)f(x)]− τ,Ex∼D[q(x)f(x)] + τ ].

We will prove that almost any reasonable choice of activations σ, φ defines a family of functions
that is hard to learn. More precisely, for a pair of activations σ, φ, we define the following function
fσ,φ : R2 → R:

fσ,φ(x, y) = σ

(
2k∑
m=1

(−1)mφ
(
x cos

(πm
k

)
+ y sin

(πm
k

)))
. (3)

We are now ready to define the conditions on the activations σ, φ that are needed for our construc-
tion. We define

H =
{
fσ,φ : σ is odd and fσ,φ 6≡ 0

}
, (4)

where the second condition means that fσ,φ(x, y) as a function of x, y is not identically zero. We
can now define the class of (normalized) functions on Rd for which our lower bound holds. Given
a setW of 2× d matrices, we can embed fσ,φ into Rd by defining the following class of functions

FWσ,φ = {x 7→ fσ,φ(Wx)/ E
x∼N d

[fσ,φ(Wx)] : W ∈ W} . (5)

10
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Remark 12 For any f ∈ H, we have that f : R2 → R. We embedded f into Rd by taking
fW(x) = f(Wx) for some 2×dmatrix W with orthogonal rows. We prove correlational SQ lower
bounds against learning an approximation of the embedding plane W from a function fW. This
will imply a lower bound against learning fW so long as the function does not vanish identically.
However, this is not an entirely trivial condition. For example, if φ is a polynomial of degree less
than k, this will happen. However, as we show in Appendix C.3, this is essentially the only way that
things can go wrong. In particular, so long as φ is not a low degree polynomial and the parity of k
is chosen appropriately, this function f will not vanish, and our lower bounds will apply.

Theorem 13 (Correlational SQ Lower Bound) Let σ, φ be activations such that fσ,φ ∈ H (see
Eq. (4)). There exists a set W of matrices W ∈ R2×d such that for all f ∈ FWσ,φ (see Eq. (5))
Ex∼N d [f

2(x)] = 1 and the following holds: Any correlational SQ learning algorithm that for
every concept f ∈ FWσ,φ learns a hypothesis h such that Ex∼N d [(f(x)− h(x))2] ≤ ε, where ε > 0

is some sufficiently small constant, requires either 2d
Ω(1)

inner product queries or at least one query
with tolerance d−Ω(k) + 2−d

Ω(1)
.

To prove our lower bound we will use an appropriate notion of SQ dimension. Specifically, we
define the Correlational SQ Dimension that captures the difficulty of learning a class C.

Definition 14 (Correlational Statistical Query Dimension) Let ρ > 0, let D be a probability dis-
tribution over some domain X , and let C be a family of functions f : X 7→ R. We denote by ρ(C)
the average pairwise correlation of any two functions in C, that is ρ(C) = 1

|C|2
∑

g,r∈C Ex∼D[g(x) ·
r(x)]. The correlational statistical dimension of C relative to D with average correlation, denoted
by SDA(C,D, ρ), is defined to be the largest integer m such that for every subset C′ ⊆ C of size at
least |C′| ≥ |C|/m, we have ρ(C′) ≤ ρ.

The following lemma relates the Correlational Statistical Query Dimension of a concept class
with the number of correlational statistical queries needed to learn it. The difficulty lies in creating
a large family of functions with small average correlation. We will use the following result that
translates correlational statistical dimension to a lower bound on the number of inner product queries
needed to learn the function f ∈ C. We note that in this paper we consider inner-product queries of
the form g(x)y where y is not necessarily bounded. In fact, the proof of the following lemma does
not require g(x)y to be pointwise bounded (bounded L2 norm is sufficient) as it can be seen from
the arguments in Szörényi (2009), Goel et al. (2020a), Vempala and Wilmes (2019).

Lemma 15 Let D be a distribution on a domain X and let C be a family of functions f : X 7→ R.
Suppose for some m, τ > 0, we have SDA(C,D, τ) ≥ m and assume that for all f ∈ C, 1 ≥
Ex∼D[f2(x)] > η2. Any SQ learning algorithm that is allowed to make only inner product queries
and for any f ∈ C outputs some hypothesis h such that Ex∼D[(h(x)− f(x))2] ≤ c η2, where c > 0
is a sufficiently small constant, requires at least Ω(m) queries of tolerance

√
τ .

We will require the following technical lemma, whose proof relies on Hermite polynomials, and
can be found in Appendix C.

Lemma 16 Let p(x) : R2 7→ R be a function and let U,V ∈ R2×d be linear maps such that
UUT = VVT = I ∈ R2×2. Then, Ex∼N d [p(Ux)p(Vx)] ≤

∑∞
m=0

∥∥UVT
∥∥m

2
Ex∼N d [(p

[m](x))2].

11
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In the following simple lemma, we show that two random 2-dimensional subspaces in high dimen-
sions are nearly orthogonal. In particular, we can have an exponentially large family of almost
orthogonal planes. For the proof see Appendix C.

Lemma 17 For any 0 < c < 1/2, there exists a set S of at least 2Ω(dc) matrices in R2×d such that
for each pair A,B ∈ S, it holds

∥∥ABT
∥∥

2
≤ O(dc−1/2).

The following lemma shows that the correlation of any function f of H with any low-degree
polynomial is zero. For the proof see Appendix C.

Lemma 18 Let fσ,φ ∈ H. For every polynomial p(x) of degree at most k, it holds Ex∼D[fσ,φ(x) ·
p(x)] = 0.

We are now ready to prove our main result.
Proof [Proof of Theorem 13] Let f : R2 7→ R from Lemma 18. Let c > 0 and fix a set W of
matrices in R2×d satisfying the properties of Lemma 17. We consider the class of functions FWσ,φ (see
Eq. (5)). In particular, for all Ai,Aj ∈ W , let functions Gi(x) = f(Aix)/

√
Ex∼N 2 [f2(x)] and

Gj(x) = f(Ajx)/
√

Ex∼N 2 [f2(x)]. Notice that since AiA
T
i = I we have that Ex∼N d [G

2
i (x)] =

1 for all i. The pairwise correlation of Gi and Gj is

ρ(Gi, Gj) =
Ex∼N d [Gi(x)Gj(x)]

Ex∼N 2 [f2(x)]
, (6)

where in the second equality we used that Gaussian distributions are invariant under rotations and
in the last that the expectation of p(x) is zero. Then, using Lemma 16, it holds

E
x∼N d

[Gi(x)Gj(x)] = E
x∼N d

[f(Aix)p(Ajx)] ≤
∑
m>k

∥∥AiA
T
j

∥∥m
2

E
x∼N 2

[(f [m](x))2]

≤
∥∥AiA

T
j

∥∥k+1

2

∑
m>k

E
x∼N 2

[(f [m](x))2] ≤
∥∥AiA

T
j

∥∥k+1

2
E

x∼N 2
[(f(x))2]

≤ O(dk(c−1/2)) E
x∼N 2

[(f(x))2] , (7)

where in the first inequality we used that the first k moments are zero, in the second the fact that the
spectral norm of these two matrices is less than one, and in the third inequality we used Parseval’s
theorem. Thus, using Equation (7) into Equation (6), we get that the pairwise correlation is less than
τ = O(dk(c−1/2)). Thus, from a straighforward calculation, the average correlation of the set FWσ,φ
is less τ + 1−τ

|FW
σ,φ,|
≤ τ + |FWσ,φ|−1 ≤ τ + 2−Ω(dc). Moreover, for τ ′ = dO(k(c−1/2)) + 2−Ω(dc), the

SDA(FWσ,φ,D, τ ′) = 2Ω(dc) and the result follows from Lemma 15.
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Appendix A. Omitted Proofs from Section 3

In the following simple fact, we compute the degree-1 and degree-2 Chow parameters of a one-layer
network.

Fact 19 (Low-degree Chow parameters) Let f(x) =
∑k

i=1 αiφ
( 〈

w(i),x
〉 )

. Then

E
x∼N d

[f(x)] = B1

k∑
i=1

αi E
x∼N d

[f(x)x] = C
k∑
i=1

αiw
(i)

E
x∼N d

[f(x)(xxT − I)] = B
k∑
i=1

αiw
(i)w(i)T

where B1 = Et∼N [φ(t)] ,C = Et∼N [φ(t)t] and B = Et∼N [φ(t)(t2 − 1)].

Proof

E
x∼N d

[f(x)] =

k∑
i=1

αi E
x∼N d

[
φ
(〈

w(i),x
〉)]

=

k∑
i=1

αi

∫
Rd
φ
〈
x,w(i)

〉
N (x)dx = B1

k∑
i=1

αi ,

where in the third equality we used the fact that normal distribution is invariant under rotations. For
the second equality, we have

E
x∼N d

[f(x)x] =
k∑
i=1

αi E
x∼N d

[
φ
(〈

w(i),x
〉)

x
]

=
k∑
i=1

αi

∫
Rd

max
(〈

x,w(i)
〉
, 0
)

xN (x)dx

=

k∑
i=1

αiR
−1
i

∫
Rd

max (〈x, e1〉 , 0) xN (x) det(J(Ri))dx

=
k∑
i=1

αiw
(i)/2 ,
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where Ri is some rotation matrix that maps w(i) to e1, and J is the Jacobian of this rotation which
has always determinant of 1. The Chow parameters of degree-2 are given by

E
x∼N d

[f(x)(xxT − I)] =
k∑
i=1

αi E
x∼N d

[
φ
(〈

w(i),x
〉)

(xxT − I)
]

=
k∑
i=1

αi

∫
Rd
φ
(〈

x,w(i)
〉)

(xxT − I)N (x)dx

=

k∑
i=1

αiR
−1
i

∫
Rd
φ (〈x, e1〉) (xxT − I)N (x) det(J(Ri))dxR−1

i
T

=

k∑
i=1

αiR
−1
i

∫
Rd

d∑
k,l=1

φ (x1) (xkxl − δk,l)ekeTl N (x)dxR−1
i

T

There are 4 cases. First case is when k 6= l 6= 1. Then, by independence we have that Ex∼N d [φ(x1)(xkxl−
δk,l)] = Ex∼N d [φ(x1)] Ex∼N d [(xkxl)] = 0, where we used the independence of the random vari-
ables xk,xl. Similarly, if k 6= l and k = 1 we have that Ex∼N d [φ(x1)(x1xl)] = 0. If k = l 6= 1,
then Ex∼N d [φ(x1)(x2

l − 1) = 0, because Ex∼N d [x
2
l ] = 1. Thus, the only non zero case is when

k = l = 1. Then,

E
x∼N d

[f(x)(xxT − I)] =
k∑
i=1

αiR
−1
i

∫
Rd
φ (x1) (x2

1 − 1)e1e
T
1N (x)dxR−1

i
T

= B
k∑
i=1

αiw
(i)w(i)T ,

Lemma 20 Let fα,W(x) =
∑k

i=1 αiφ(
〈
w(i),x

〉
) and fβ,V(x) =

∑k
i=1 βiφ(

〈
v(i),x

〉
) with αi, βi

> 0, then it holds Ex∼N d [(fα,W(x)− fβ,V(x))2] ≤ 2kEt∼N [(φ′(t))2]
∑k

i=1 α
2
i

∥∥v(i) −w(i)
∥∥

2
+

kEt∼N [φ(t)2]
∑k

i=1(αi − βi)2 .

Proof We have

E
x∼N d

[(fα,W(x)− fβ,V(x))2] ≤ k E
x∼N d

[
k∑
i=1

(
αiφ
(〈

w(i),x
〉)
− βiφ

(〈
v(i),x

〉))2
]

≤ k E
x∼N d

[
k∑
i=1

αi

(
φ
(〈

w(i),x
〉)
− φ

(〈
v(i),x

〉))2
]

+ E
x∼N d

[
k∑
i=1

φ
(〈

v(i),x
〉)2

(αi − βi)2

]

≤ 2k E
t∼N

[(φ′(t))2]
k∑
i=1

α2
i

∥∥∥v(i) −w(i)
∥∥∥

2
+ k E

t∼N
[φ(t)2]

k∑
i=1

(αi − βi)2 ,

where we used Lemma 10.

16



ALGORITHMS AND SQ LOWER BOUNDS FOR PAC LEARNING ONE-HIDDEN-LAYER RELU NETWORKS

Fact 21 Let f(x) =
∑k

i=1 αiφ(〈wi,x〉) and y = f(x) + ξ where ξ is zero mean subgaussian with
variance σ2. Let B2 = Et∼N [φ2(t)] and c > 0 a constant, then using O(kB2) samples we can find
µ̂ such as

E
x∼N d

[f(x)] ≤ 2µ̂+ 2c

√
σ2

k
and µ̂ ≤ 3

2
E

x∼N d
[f(x)] + c

√
σ2

k

with probability at least 3/4.

Proof Let µ̂ = 1
m

∑m
i=1 y

(i), then from Chebyshev’s inequality, we have

Pr[|µ̂− E
x∼N d

[f(x)]| ≥ 2
√

Var[y]/m] ≤ 1/4 .

Thus with probability 3/4, it holds

|µ̂− E
x∼N d

[f(x)]| ≤ 2
√

Var[y]/m ≤ 2

√
Ex∼N d [f

2(x)]

m
+ 2

√
σ2

m

≤ 2 E
x∼N d

[f(x)]

√
kB2

m
+ 2

√
σ2

m
,

to get last inequality we used CauchySchwarz. Taking m = O(kB2) we get 1
2 Ex∼N d [f(x)] ≤

µ̂+ c
√

σ2

k and µ̂ ≤ 3
2 Ex∼N d [f(x)] + c

√
σ2

k .

Lemma 22 Let f(x) =
∑k

i=1 αiφ(〈wi,x〉), B2 = Et∼N [φ2(t)] and B4 = Et∼N [φ4(t)]. Then
Ex∼N d [f

4(x)] ≤ B4

B2
2
k2 Ex∼N d [f(x)2]2.

Proof To bound Ex∼N d [f
4(x)], using Cauchy-Schwartz, it holds that

√
E

x∼N d
[f4(x)] ≤

k∑
i=1

α2
i

√√√√ E
x∼N d

[( k∑
i=1

φ2(
〈
w(i),x

〉
)
)2]
≤

k∑
i=1

α2
i

√√√√kE
[ k∑
i=1

φ4(
〈
w(i),x

〉
)
]

≤ kB1/2
4

k∑
i=1

α2
i ≤ k

B
1/2
4

B2
E

x∼N d
[f(x)2] ,

where in the last inequality we used that
∑k

i=1 α
2
iB2 ≤ Ex∼N d [f

2(x)].

Lemma 23 Let f(x) =
∑k

i=1 αiφ(〈wi,x〉) and y = f(x) + ξ where ξ is zero mean subgaussian
with variance σ2. Moreover, let B2 = Et∼N [φ2(t)] and B4 = Et∼N [φ4(t)]. Then, if Yu =
1
m

∑m
i=1(fu(x(i))− y(i)))2,we can find Ŷu such that

|Ŷu − E
x∼N d

[Yu]| ≤ cε2k2B
1/2
4

B2

(
E

x∼N d
[f2(x)] + E

x∼N d
[f2
u(x)] + σ2

)
with probability 1− δ with O( 1

ε4
log(1/δ)) samples, where c is a universal constant.
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Proof Let Y = (fu(x)− y)2 = (fu(x)− f(x))2 + y2 − 2y(fu(x)− f(x)). Then the variance of
each term is

Var[(fu(x)− f(x))2] ≤ E
x∼N d

[(fu(x)− f(x))4] ≤ 4 E
x∼N d

[(f2
u(x) + f2(x))2]

≤ 8 E
x∼N d

[f4
u(x) + f4(x)] ≤ 8

B4

B2
2

k2
(

E
x∼N d

[f2(x)]2 + E
x∼N d

[f2
u(x)]2

)
,

where in the third and in the fourth inequality we used that (a± b)2 ≤ 2a2 + 2b2 and in the last one
we used Lemma 22. Thus,

Var[Y ] ≤ 8
B4

B2
2

k2
(

E
x∼N d

[f2(x)]2 + E
x∼N d

[f2
u(x)]2

)
+ 16e2σ4 + 2σ2

(
E

x∼N d
[f2(x)] + E

x∼N d
[f2
u(x)]

)
≤ ck4B4

B2
2

(
E

x∼N d
[f2(x)] + E

x∼N d
[f2
u(x)] + σ2

)2

,

where c is a universal constant. From Chebyshev’s inequality, we have that we need m = O( 1
ε4

)

for an error at most
√
cε2k2(

B
1/2
4
B2

(
Ex∼N d [f

2(x)] + Ex∼N d [f
2
u(x)] + σ2

)
. Then using the median

trick, we can boost the confidence to 1− δ with m log(1/δ) samples.

Since the dimension of the subspace, that we have learned, is at most k, the following standard
lemma gives us that a grid with (k/ε)O(k) candidates suffices.

Lemma 24 (Corollary 4.2.13 of Vershynin (2018)) There exists be an ε-cover of the unit ball in
Rk, with respect the `2 norm, of size at most (1 + 2/ε)k.

We now restate and prove our main theorem, Theorem 5, which we restate for convenience.

Theorem 25 (Learning sum of Lipschitz Activations) Let f(x) =
∑k

i=1 αiφ
( 〈

w(i),x
〉 )

with
αi > 0 for all i ∈ [k], where φ(t) is an L-Lipschitz, non-negative activation function such that
Et∼N [φ(t)] ≥ C, Et∼N [φ(t)(t2−1)] ≥ C, where C > 0 and Et∼N [φ2(t)] is finite. There exists an
algorithm that given k ∈ N, ε > 0, and sample access to a noisy set of samples from f : Rd → R+,
draws m = d ·poly(k, 1/ε) ·poly(L/C) samples, runs in time poly(m) + Õ((1/ε)k

2
), and outputs

a proper hypothesis h that, with probability at least 9/10, satisfies

E
x∼N d

[(f(x)− h(x))2] ≤ ε2poly(L/C)

(
σ2 + E

x∼N d
[f(x)2]

)
.

Proof Denote Mf = Ex∼N d [f(x)] and Mf2 = Ex∼N d [f(x)2]. Using Lemma 8, we get that with

m = Õ(d k3/ε2) samples with high constant probability it holds that
∥∥∥M̂−Ex∼N d [f(x)xxT ]

∥∥∥
2
≤

ε
k (Mf

L
C + σ). From Lemma 10, we obtain that there exists a matrix V ∈ Rk×d whose rows are

vectors of the subspace V such that Ex∼N d [(fV(x) − f(x))2] ≤ 2ε2L
2

C (M2
f
L
C + Mfσ). From

Fact 21, let µ̂ be an upper bound toMf (that is µ̂ ≤ 2µ+2c
√
σ2/k where µ is the estimated value),

then using Fact 26, with the value µ̂/k, we get an approximation of each ai with error εµ̂/k.

18



ALGORITHMS AND SQ LOWER BOUNDS FOR PAC LEARNING ONE-HIDDEN-LAYER RELU NETWORKS

Using Lemma 24, the size of a cover is |G| ≤
(
(1 + 4k/ε)k log(kε)/ε

)k, because we need
vectors with norm from εMf to Mf , our cover is created using the upper bound on Mf . We have
that there exists U whose rows are vectors in the cover G such that

E
x∼N d

[(fU(x)− fV(x))2] ≤ c(ε2M2
fL

2 + L2ε2µ̂2)

≤ cε2L2(M2
f +Mfσ + σ2)

≤ cε2L2(Mf + σ)2 , (8)

where in the first inequality we used Lemma 20 and in the second one Fact 21. The error of the best
hypothesis(i.e., the one that minimizes the error) in the cover, will be

E
x∼N d

[(fU(x)− f(x))2] ≤ 2 E
x∼N d

[(fU(x)− fV(x))2] + 2 E
x∼N d

[(fV(x)− f(x))2]

≤ 2cε2L2(Mf + σ)2 + 4ε2
L2

C
(M2

f

L

C
+Mfσ)

≤ ε2poly(L/C)(Mf + σ)2 . (9)

Finally, using the estimator from Line 7, Lemma 23, we conclude that m′′ = O(k
4

ε4
log(|G|)) sam-

ples are sufficient to test all the vectors of the cover G and find the one that minimizes the error
with high probability. For each element i ∈ G, let ei = Ex∼N d [(f(x) − fi(x))2] + σ2, which is
the square error of the i-th hypothesis in G and let êi be the estimated value. We have with high
probability that

|êi − E
x∼N d

[êi]| ≤ ε2poly(L/C)(σ2 +Mf2) , (10)

where we used Ex∼N d [fU(x)] ≤ kµ̂ ≤ kMf + 2c′σ
√
k. Set h(x) = argmini∈G |êi −Ex∼N d [êi]|,

using Equations (9) and (10), then

E
x∼N d

[(f(x)− h(x))2] ≤ ε2poly(L/C)(σ2 +Mf2) + E
x∼N d

[(fU(x)− f(x))2]

≤ ε2poly(L/C)(σ2 +Mf2) + ε2poly(L/C) (σ +Mf )2

≤ ε2poly(L/C)
(
σ2 +Mf2

)
,

where the last inequality follows from Jensen’s inequality.

Fact 26 Let G be a set of unit vectors of size m. Then, we can construct a new set G′ of size
m log(1/ε)/ε with the property: For every α ∈ [0, B] and every vector v ∈ G, there exists a w ∈ G′

such that ‖αv −w‖22 ≤ ε2B2 and
∥∥∥v − w

‖w‖2

∥∥∥2

2
= 0.

Proof For each vector v ∈ G, add the vectors (1 − ε)iBv for i = 0, . . . , log(1/ε)/ε to G′. Then,
for all α ∈ [0, B] and for every vector v ∈ G there exists a w ∈ G′ such that ‖αv −w‖22 ≤∥∥(1− ε)t+1v − v(1− ε)tB

∥∥2

2
≤ ε2B2, for a value t such that α ∈ [(1− ε)t+1B, (1− ε)tB].
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Appendix B. Empirical Estimates of Chow Parameters

In this section we show that roughlyO(dk/ε2) samples are sufficient to estimate the Degree-2 Chow
parameters in spectral norm.

Lemma 27 (Estimation of Degree-2 Chow parameters) Let fα,W(x) =
∑k

i=1 αiφ(〈w(i),x〉),
where φ(x) is an L-Lipschitz, positive activation function such that Ex∼N [φ(x)] ≥ C. Let Σ =
Ex∼N d [fα,W(x)x⊗x] be the degree-2 Chow parameters of fα,W. Then, for some N = Õ(dk/ε2)
samples (x(i), y(i)), where y(i) = fα,W(x(i)) + ξi and ξi is a zero-mean, subgaussian noise with
variance σ2, it holds with probability at least 99% that∥∥∥∥∥ 1

N

N∑
i=1

x(i) ⊗ x(i)y(i) −Σ

∥∥∥∥∥
2

≤ ε
(
σ +

L

C
E

x∼N d
[fα,W(x)]

)
.

We are going to use the following lemma from Vershynin (2010) about concentration of matrices
with heavy-tailed independent rows.

Lemma 28 (Theorem 5.48 of Vershynin (2010)) Let A be an N × d matrix whose rows Ai are
independent random vectors in Rd with the common second moment matrix Σ = E[AiA

T
i ]. Let

m = E[maxi≤N ‖Ai‖22]. Then

E

[∥∥∥∥ 1

N
ATA−Σ

∥∥∥∥
2

]
≤ max(‖Σ‖1/22 δ, δ2) , where δ = C

√
m log(min(N, d))

N
.

We are also going to use the following concentration result on sums of random matrices.

Lemma 29 (Rudelson’s Inequality Corollary 5.28 in Vershynin (2010)) Let x(1), . . . ,x(N) be
fixed vectors in Rd. Let ξ(1), . . . , ξ(N) be zero mean sub-Gaussian with variance σ2 random vari-
ables. Then

E

[∥∥∥ N∑
i=1

ξ(i)x(i) ⊗ x(i)
∥∥∥

2

]
≤ Cσ

√
log d ·max

i≤N

∥∥∥x(i)
∥∥∥

2

∥∥∥ N∑
i=1

x(i) ⊗ x(i)
∥∥∥1/2

2
.

We are going to also use the following well-known result on concentration of polynomials of inde-
pendent Gaussian random variables. See for example O’Donnell (2014).

Lemma 30 (Gaussian Hypercontractivity) Let p(x) : Rd 7→ R be a degree m polynomial. Then

Pr
x∼N d

[∣∣∣∣p(x)− E
y∼N d

[p(y)]

∣∣∣∣ > t

]
≤ e2 exp

(
−
( t2

C Varx∼N d [p(x)]

)1/m
)
,

where C > 0 is an absolute constant.

Proof [Proof of Lemma 8:] We have∥∥∥∥∥ 1

N

N∑
i=1

x(i) ⊗ x(i)fα,W(x(i)) + ξi)−Σ

∥∥∥∥∥
2

≤

∥∥∥∥∥ 1

N

N∑
i=1

x(i) ⊗ x(i)fα,W(x(i))−Σ

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

N

N∑
i=1

ξ(i)x(i) ⊗ x(i)

∥∥∥∥∥
2

.
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We next bound the probability that ‖x‖22 fα,W(x) is large. We have

Pr
x∼N d

[ ‖x‖22 fα,W ≥ t] = Pr
x∼N d

 k∑
j=1

αj ‖x‖22 φ
(〈

x,w(j)
〉)
≥ t


≤

k∑
j=1

Pr
x∼N d

[
‖x‖22 φ

(〈
x,w(j)

〉)
≥ t

k
∑k

j=1 αj

]
≤ k Pr

x∼N d

[
‖x‖22 |x1| ≥

t

Lk
∑k

j=1 αj

]
,

(11)

where for the second inequality we used the union bound and for the last one we used the rotation
invariance of the normal distribution and the Euclidean norm to set w(j) = e1. Moreover, we used
the fact that φ(x1) ≤ L|x1| since φ(·) is L-Lipschitz.

Pr
x∼N d

[
‖x‖22 |x1| ≥ t

]
= Pr

x∼N d

[∣∣∣∣‖x‖22 x1 − E
x∼N d

[‖x‖22 x1]

∣∣∣∣ ≥ t] ≤ exp(2− (t2/(C ′d2))1/3) .

(12)

where we used Lemma 30 and the fact that Varx∼N d [‖x‖
2
2 x1] = Ex∼N d [‖x‖

4
2 x

2
1] = d2 + 4d +

10 ≤ 15d2 for all d ≥ 1. Note thatC ′ = 15C, whereC is the absolute constant of Lemma 30. Com-
bining Equation (11), Equation (12) and the fact that

∑k
j=1 αj = Ex∼N d [fα,W(x)]/Et∼N [φ(t)] :=

B we obtain

Pr
x∼N d

[‖x‖22 fα,W(x) ≥ t] ≤ k exp(2− (t2/(4C ′L2B2k2d2))1/3) .

Define the random variables yi =
∥∥x(i)

∥∥2

2
fα,w(x(i)). Set S = O(kdBL) andQ = O(S log k log3N)

we have

E

[
max
i≤N

yi

]
−Q =

∫ ∞
0

Pr

[
max
i≤N

yi ≥ t+Q

]
dt ≤ Nk

∫ ∞
0

Pr [y1 ≥ t+Q] dt

≤ Nk
∫ ∞

0
exp(−(t/S)2/3)dt = Õ(dkBL)

Now, that we have a bound on the expected maximum deviation we can apply Lemma 28 with
A = 1

N

∑N
i=1 x(i) ⊗ x(i)fα,W(x(i)) ∈ RN×d and m = Õ(dkBL). Since ‖Σ‖2 ≤ (1 + 1/

√
2π)B

we obtain that for N = Õ(dk/ε2) it holds E
∥∥(1/N)ATA−Σ

∥∥
2
≤ BLε.

To finish the proof it remains to bound the norm of the sum 1
N

∑N
i=1 ξ

(i)x(i) ⊗ x(i). From
Lemma 29 we obtain that it is bounded above by

Cσ
√

log d E
x(1),...,x(N)

[
max
i≤N

∥∥∥x(i)
∥∥∥

2

∥∥∥ N∑
i=1

x(i) ⊗ x(i)
∥∥∥1/2

2

]
.

We now use Cauchy-Schwarz for the above expectation and observe that

E
x(1),...,x(N)

[
max
i≤N

∥∥∥x(i)
∥∥∥2

2

]
≤ Õ(d logN) ,
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which follows from Lemma 30 similarly as our previous bound. Moreover, from Lemma 28 we
obtain that

E
x(1),...,x(N)

[∥∥∥ 1

N

N∑
i=1

x(i) ⊗ x(i)
∥∥∥

2

]
≤ Õ(

√
d/N) .

Putting everything together we obtain that with N = Õ(d/ε2) samples, the expected norm of
1
N

∑N
i=1 ξ

(i)x(i) ⊗ x(i) is at most O(σε). The result now follows from Markov’s inequality.

Appendix C. Details of the Lower Bound

C.1. Preliminaries: Multilinear Algebra

Here we introduce some multilinear algebra notation. An order k tensor A is an element of the
k-fold tensor product of subspaces A ∈ V1 ⊗ . . . ⊗ Vk. We will be exclusively working with
subspaces of Rd so a tensor A can be represented by a sequence of coordinates, that is Ai1,...,ik .
The tensor product of a order k tensor A and an order m tensor B is an order k +m tensor defined
as (A ⊗ B)i1,...,ik,j1,...,jm = Ai1,...,ikBj1,...,jm . We are also going to use capital letters for multi-
indices, that is tuples of indices I = (i1, . . . , ik). We denote by Ei the multi-index that has 1 on
its i-th co-ordinate and 0 elsewhere. For example the previous tensor product can be denoted as
AIBJ To simplify notation we are also going to use Einstein’s summation where we assume that
we sum over repeated indices in a product of tensors. For example if A ∈ Rd ⊗ Rd, v ∈ Rd,
u ∈ Rd we have

∑d
i,j=1 viujAij = viujAij . We define the dot product of two tensors (of the

same order) to be 〈A,B〉 = Ai1,...,ikBi1,...,ik = AIBI . We also denote the `2-norm of a tensor by
‖A‖2 =

√
〈A,A〉. We denote by A(X) a function that maps the tensor X to a tensor A(X). Let

V be a vector space and let A(x) : Rd 7→ V⊗k be a tensor valued function. We denote by ∂iA(x)
the tensor of partial derivatives of A(x), ∂iA(x) = ∂iAJ(x) is a tensor of order k+1 in V⊗k⊗Rd.
We also denote this tensor ∇A(x) = ∂iAJ(x). Similarly we define higher-order derivatives, and
we denote

∇mA(x) = ∂i1 . . . ∂imAJ(x) ∈ V⊗k ⊗ (Rd)⊗m

C.2. Preliminaries: Hermite Polynomials

We are also going to use the Hermite polynomials that form a orthonormal system with respect to
the Gaussian measure. We denote by L2(Rd,N ) the vector space of all functions f : Rd → R such
that Ex∼N d [f

2(x)] < ∞. The usual inner product for this space is Ex∼N d [f(x)g(x)]. The L2

norm of a function f is then defined as ‖f‖2 =
√

Ex∼N d [f
2(x)]. While, usually one considers the

probabilists’s or physicists’ Hermite polynomials, in this work we define the normalized Hermite
polynomial of degree i to be H0(x) = 1, H1(x) = x,H2(x) = x2−1√

2
, . . . ,Hi(x) = Hei(x)√

i!
, . . .

where by Hei(x) we denote the probabilists’ Hermite polynomial of degree i. These normalized
Hermite polynomials form a complete orthonormal basis for the single dimensional version of the
inner product space defined above. To get an orthonormal basis for L2(Rd,N d), we use a multi-
index J ∈ Nd to define the d-variate normalized Hermite polynomial as HJ(x) =

∏d
i=1Hvi(xi).

The total degree of HJ is |J | =
∑

vi∈J vi. Given a function f ∈ L2 we compute its Hermite
coefficients as f̂(J) = Ex∼N d [f(x)HJ(x)] and express it uniquely as

∑
J∈Nd f̂(J)HJ(x). For

more details on the Gaussian space and Hermite Analysis (especially from the theoretical computer
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science perspective), we refer the reader to O’Donnell (2014). Most of the facts about Hermite
polynomials that we use in this work are well known properties and can be found, for example, in
Szegö (1967).

We denote by f [k](x) the degree k part of the Hermite expansion of f , f [k](x) =
∑
|J |=k f̂(J) ·

HJ(x). We say that a polynomial q is harmonic of degree k if it is a linear combination of degree k
Hermite polynomials, that is q can be written as

q(x) = q[k](x) =
∑

J :|J |=k

cJHJ(x)

For a single dimensional Hermite polynomial it holds H ′m(x) =
√
mH ′m−1(x). Using this we

obtain that for a multivariate Hermite polynomial HM (x), where M = (m1, . . . ,md) it holds

∇HM (x) =
√
miHM−Ei(x) ∈ Rd, (13)

where Ei = ei is the multi-index that has 1 position i and 0 elsewhere. From this fact and the
orthogonality of Hermite polynomials we obtain

E
x∼N d

[〈∇HM (x),∇HL(x)〉] = |M |δM,L. (14)

The following fact gives us a formula for the inner product of

Fact 31 Let p, q be a harmonic polynomials of degree k. Then

E
x∼N

[〈
∇`p(x),∇`q(x)

〉]
= k(k − 1) . . . (k − `+ 1) E

x∼N
[p(x)q(x)].

In particular, 〈
∇kp(x),∇kq(x)

〉
= k! E

x∼N
[p(x)q(x)].

Proof Write p(x) =
∑

M :|M |=k bMHM (x) and q(x) =
∑

M :|M |=k cMHM (x). Since the Her-
mite polynomials are orthonormal we obtain Ex∼N [p(x)q(x)] =

∑
M :|M |=k cMbM . Now, using

Equation 13 iteratively we obtain

E
x∼N

[〈
∇`HM (x),∇`HL(x)

〉]
= k(k − 1) . . . (k − `+ 1)δM,L.

Using this equality we obtain

E
x∼N

[〈
∇`p(x),∇`q(x)

〉]
= E

x∼N

[〈∑
M

bM∇`HM (x),
∑
L

cL∇`HL(x)

〉]
=
∑
M,L

bMcL E
x∼N

[〈
∇`HM (x),∇`HL(x)

〉]
=
∑
M,L

bMcLk(k − 1) . . . (k − `+ 1)δM,L.

= k(k − 1) . . . (k − `+ 1) E
x∼N

[p(x)q(x)].
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Observe that for every harmonic polynomial p(x) of degree k we have that ∇kp(x) is a symmetric
tensor of order k. Since the degree of the polynomial is k and we differentiate k times this tensor
no longer depends on x. Using Fact 31 we observe that this operation (modulo a division by

√
k!)

preserves the L2 norm of the harmonic polynomial p, that is Ex∼N d [p
2(x)] =

∥∥∇kp(x)
∥∥2

2
/k!.

Lemma 32 Let p(x) : R2 7→ R be a function and let U,V ∈ R2×d be linear maps such that
UUT = VVT = I ∈ R2×2. Then, Ex∼N d [p(Ux)p(Vx)] ≤

∑∞
m=0

∥∥UVT
∥∥m

2
Ex∼N d [(p

[m](x))2].

Proof To simplify notation write f(x) = p(Ux) and g(x) = p(Vx). The (total) degree of f is
the same as the degree of p. Write f(x) =

∑∞
m=0 f

[m](x) and g(x) =
∑∞

m=0 g
[m](x). Then using

Fact 31 we obtain

E
x∼N d

[f(x)g(x)] =
∞∑
m=0

E
x∼N d

[f [m](x)g[m](x)] =
∞∑
m=0

1

m!

〈
∇mf [m](x),∇mg[m](x)

〉
=

∞∑
m=0

1

m!

〈
∇mp[m](Ux),∇mp[m](Vx)

〉
. (15)

Denote by U ⊆ Rd the image of the linear map UT . Now observe that, using the chain rule, for
any function h(Ux) : Rd 7→ R it holds ∇h(Ux) = ∂ih(Ux)Uij ∈ U , where we used Einstein’s
summation notation for repeated indices. Applying the above rule m-times we have that

∇h(Ux) = ∂im . . . ∂i1h(Ux)Ui1j1 . . .Uimjm ∈ U⊗m .

Now, we denote R = ∇mp[m](x) and observe that this tensor does not depend on x. More-
over, denote M = UVT , S = ∇mp[m](Ux) = (UT )⊗mR ∈ U⊗m, and T = ∇mp[m](Vx) =
(VT )⊗mR ∈ V⊗m. We have

〈S,T〉 =
〈
(UT )⊗mR, (VT )⊗mR

〉
=
〈
R,M⊗mR

〉
≤
∥∥M⊗m∥∥

2
‖R‖22 = m! ‖M‖m2 E

x∼N d
[(p[m](x))2] ,

where to get the last equality we used again Fact 31. To finish the proof we combine this inequality
with Equation (15).

In the following simple lemma we prove that random 2-dimensional subspaces in high dimen-
sions are roughly orthogonal.

Lemma 33 For any 0 < c < 1/2, there exists a set S of at least 2Ω(dc) matrices in R2×d such that
for each pair A,B ∈ S, it holds

∥∥ABT
∥∥

2
≤ O(dc−1/2).

Proof We are going to use the following lemma.

Lemma 34 (Lemma 3.7 of Diakonikolas et al. (2017)) For any 0 < c < 1/2, there is a set S of
at least 2Ω(dc) unit vectors in Rd such that for each pair of distinct u,v ∈ S, it hold | 〈u,v〉 | ≤
O(dc−1/2).
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Let matrices A1, . . .Aj in R2×d, where Ai =
(
uTi,1,u

T
i,2

)
, for some unit vectors ui,j in Rd. Then

∥∥AjA
T
i

∥∥
2

=
∥∥AT

j Ai

∥∥
2

=

√√√√ 2∑
x,y=1

(uTi,xuj,y)
2 ≤ 2 max

ui,x,uj,y
| cos θ(ui,x,uj,y)| .

From Lemma 34, it holds that there exists a set of 2Ω(dc) of unit vectors such that | cos θ(u,v)| ≤
O(dc−1/2), taking this vectors as columns in each matrix the result follows.

Lemma 35 Let fσ,φ ∈ H. For every polynomial p(x) of degree at most k, it holds Ex∼D[fσ,φ(x) ·
p(x)] = 0.

Proof Let w(m) = (cos 2πm
2k , sin

2πm
2k ) and αm = (−1)m, form = 1, . . . , 2k. LetRπ/k be an oper-

ator over functions that rotates the coordinates by π/k (i.e., (x, y) 7→ (x cos πk +y sin π
k ,−x sin π

k +
y cos πk )). Then

Rπ/k[f ](x, y) = f
(
(x cos

π

k
+ y sin

π

k
,−x sin

π

k
+ y cos

π

k
)
)

= σ

(
2k−1∑
m=1

αmφ
(〈

x,w(m+1)
〉)

+ α2kφ
(〈

x,w(1)
〉))

= σ

(
2k∑
m=1

−αmφ
(〈

x,w(m)
〉))

= −f(x, y) , (16)

where to get the second equality we used thatαiφ
(〈

(x cos πk + y sin π
k ,−x sin π

k + y cos πk ),w(i)
〉)

=

αiφ
(〈

(x, y),w(i+1)
〉)

from basic trigonometric identities and in the last one we used that σ is an
odd function. Let p(x, y) = (x+ iy)a(x− iy)b, where i is the imaginary unit, then we are going to
prove that Ex∼D[f(x)p(x)] = 0 as long as a− b 6≡ k mod 2k. We have

Rπ/k[p](x, y) = Rπ/k[(x+ iy)a(x− iy)b] = Rπ/k[(x
2 + y2)a+be−iθ(a−b)]

= (x2 + y2)a+bei(θ+π/k)(a−b) = ei(π/k)(a−b)p(x, y) , (17)

where θ is the argument (or the “phase”) of x + iy. This means that p(x, y) is an eigenfunction of
Rπ/k and ei(π/k)(a−b) the corresponding eigenvalue. Thus, it holds

ei(π/k)(a−b) E
x∼D

[f(x)p(x)] = E
x∼D

[f(x)Rπ/k[p](x)] = E
x∼D

[R−π/k[f ](x)p(x)] = − E
x∼D

[f(x)p(x)] ,

where we used that Rπ/k is an adjoint operator in the inner product space of continuous functions
along with Equations (16), (17). Thus, Ex∼D[f(x)p(x)] = 0 when ei(π/k)(a−b) 6= −1, which
happens when a − b 6≡ k mod 2k. To conclude the proof, note that every polynomial at most
degree k is a linear combination of the polynomials p(x, y) = (x + iy)a(x− iy)b where a, b ≤ k.
This can be seen by setting x = z+z̄

2 and y = z−z̄
2i , where z = x+ iy and z̄ = x− iy.
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C.3. Interpretation of the classH

In order for the lower bound construction of Section 4 to produce useful lower bounds, it will
be necessary that the function given in Lemma 18 is non-vanishing. It turns out that this is the
case under fairly weak conditions. In order to state our final result, we will first introduce some
terminology:

Definition 36 For an integer k the k-parity-part of a function φ : R → R is the odd part of φ if k
is odd and the even part of φ if k is even.

Definition 37 For functions f on R2 define the operators Rk to be the rotation by π/k and define
Sk(f) =

∑2k
s=1(−1)sRsk(f).

Given these we have the following result implying that Skφ(x) 6= 0 for a number of functions
of interest. For example, if φ(x) = max(0, x), is a ReLU, then the even part of φ is the absolute
value function, so Skφ 6= 0 for any even k. Similarly, if φ is a sigmoid, Skφ 6= 0 for any odd k.

Proposition 38 Let φ : R→ R be a function with E[φ2(x)] <∞. Then Skφ(x) = 0 if and only if
the k-parity-part of φ is a polynomial of degree less than k.

Proof We begin by noting that Skφ(x) 6= 0 if and only if (Skφ(x))[m] 6= 0 for some m. We
note that as a rotation Rk preserves the degree-m Hermite parts of a function, and therefore so
does Sk. In particular, (Skφ(x))[m] = (Skφ(x)[m]). In order to analyze this, we consider the
variables z = x + iy and z̄ = x− iy. We note that if φ(x) in one variable is given by the Hermite
expansion φ(x) =

∑∞
t=0 atht(x), that the two-variable version is given by

∑∞
t=0 athm((z+ z̄)/2).

Furthermore, we have that (φ(x))[m] = amhm((z + z̄)/2).
Now if am = 0, then (φ(x))[m] = 0 and therefore Sk(φ(x))[m] = 0. Otherwise, amhm(x) has

non-vanishing xt coefficients for all t ≤ m with t ≡ m (mod 2). Therefore, in this case (φ(x))[m]

will have a non-vanishing zaz̄b coefficient for all a, b ≥ 0 with a+ b ≤ m and a+ b ≡ m (mod 2).
Next, we need to understand what Sk does to zaz̄b.

For this we note that Rz = eπi/kz and Rz̄ = e−πi/kz̄. Thus R(zaz̄b) = eπi(a−b)/kzaz̄b.
Therefore,

Sk(z
az̄b) = zaz̄b

2k∑
t=1

e2πi(a−b+k)/(2k) =

{
2kzaz̄b if a− b ≡ k (mod 2k)

0 else

Thus, Sk(φ(x))[m] will be non-vanishing if and only if am 6= 0 and there are some a, b ≥ 0 with
a + b ≤ m, a + b ≡ m (mod 2) and a − b ≡ k (mod 2k). We claim that such a, b exist if and
only if m ≡ k (mod 2) and m ≥ k. The only if part of this condition is clear. For the if part, we
note that if these conditions are satisfied, we may take a = m+k

2 and b = m−k
2 .

Therefore, we have that Skφ(x) 6= 0 if and only if there is some m ≡ k (mod 2) with am 6= 0
and m ≥ k. Note that the k-parity-part of φ has the same Hermite coefficients as φ for m ≡ k
(mod 2) and 0 coefficient for m 6≡ k (mod 2). Thus, φ has a non-vanishing coefficient for some
m ≥ k,m ≡ k (mod 2) if and only if the k-parity-part of φ has some non-vanishing coefficient of
degree m ≥ k. Of course this happens if and only if the k-parity-part of φ is not a polynomial with
degree less than k. This completes our proof.
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