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Abstract
We study the problem of estimating the parameters of a Boolean product distribution in d dimen-
sions, when the samples are truncated by a set S ⊂ {0, 1}d accessible through a membership oracle.
This is the first time that the computational and statistical complexity of learning from truncated
samples is considered in a discrete setting.

We introduce a natural notion of fatness of the truncation set S, under which truncated samples
reveal enough information about the true distribution. We show that if the truncation set is suffi-
ciently fat, samples from the true distribution can be generated from truncated samples. A stunning
consequence is that virtually any statistical task (e.g., learning in total variation distance, parameter
estimation, uniformity or identity testing) that can be performed efficiently for Boolean product
distributions, can also be performed from truncated samples, with a small increase in sample com-
plexity. We generalize our approach to ranking distributions over d alternatives, where we show
how fatness implies efficient parameter estimation of Mallows models from truncated samples.

Exploring the limits of learning discrete models from truncated samples, we identify three nat-
ural conditions that are necessary for efficient identifiability: (i) the truncation set S should be
rich enough; (ii) S should be accessible through membership queries; and (iii) the truncation by
S should leave enough randomness in all directions. By carefully adapting the Stochastic Gradi-
ent Descent approach of (Daskalakis et al., FOCS 2018), we show that these conditions are also
sufficient for efficient learning of truncated Boolean product distributions.
Keywords: Truncated Statistics, Boolean Product Distributions, Ranking Distributions, Stochastic
Gradient Descent

1. Introduction

Parameter estimation and learning from truncated samples is an important and challenging problem
in Statistics. The goal is to estimate the parameters of the true distribution based only on samples
that fall within a (possibly small) subset S of the distribution’s support.

Sample truncation occurs naturally in a variety of settings in science, engineering, economics,
business and social sciences. Typical examples include selection bias in epidemiology and medical
studies, and anecdotal “paradoxes” in damage and injury analysis explained by survivor bias. Statis-
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tical estimation from truncated samples goes back to at least Galton (1897), who analyzed truncated
samples corresponding to speeds of trotting horses, and includes classical results on the use of the
moments method (Pearson and Lee, 1908; Lee, 1914) and the maximum likelihood method (Fisher,
1931) for estimating a univariate Gaussian distribution from truncated samples.

In the last few years, there has been an increasing interest in computationally and statistically
efficient algorithms for learning multivariate Gaussian distributions from truncated samples (when
the truncation set is known (Daskalakis et al., 2018) or unknown (Kontonis et al., 2019)) and for
training linear regression on models based on truncated (or censored) data (Daskalakis et al., 2019).
In addition to the elegant and powerful application of Stochastic Gradient Descent to optimizing a
seemingly unknown maximum likelihood function from truncated samples, a significant contribu-
tion of (Daskalakis et al., 2018; Kontonis et al., 2019; Daskalakis et al., 2019) concerns necessary
conditions for efficient statistical estimation of multivariate Gaussian or regression models from
truncated samples. More recently, Nagarajan and Panageas (2019) showed how to use Expectation-
Maximization for learning mixtures of two Gaussian distributions from truncated samples.

Despite the strong results above for continuous settings, we are not aware of any previous work
on learning discrete models from truncated samples. We note that certain elements of the prior
approaches in inference from truncated data are inherently continuous and it is not clear if they can
be adapted to a discrete setting. E.g., statistical estimation from truncated samples in a discrete
setting should deal with a situation where the truncation removes virtually all randomness from
certain directions, something that cannot happen naturally in a continuous setting.

Our Setting. Motivated by this gap in relevant literature, we investigate efficient parameter es-
timation of discrete models from truncated samples. We start with the fundamental setting of a
Boolean product distribution D on the d-dimensional hypercube truncated by a set S, which is ac-
cessible through membership queries. The marginal of D in each direction i is an independent
Bernoulli distribution with parameter pi ∈ (0, 1). Our goal is to compute an estimation p̂ of the
parameter vector p of D such that ‖p − p̂‖2 ≤ ε, with probability of at least 1 − δ, with time and
sample complexity polynomial in d, 1/ε and log(1/δ). We note that such an estimation p̂ (or an
estimation ẑ of the logit parameters z = (log p1

1−p1 , . . . , log pd
1−pd ) of similar accuracy) implies an

estimation of the true distribution within total variation distance ε.

Our Contributions. Significantly departing from the maximum likelihood estimation approach
of Daskalakis et al. (2018); Kontonis et al. (2019); Daskalakis et al. (2019), we introduce a natural
notion of fatness of the truncation set S, under which samples from the truncated distribution DS
reveal enough information about the true distribution D. Roughly speaking, a truncated Boolean
product distributionDS is α-fat in some direction i of the Boolean hypercube, if for an α probability
mass of the truncated samples, the neighboring sample with its i-th coordinate flipped is also in S.
Therefore, with probability α, conditional on the remaining coordinates, the i-th coordinate of a
sample is distributed as the marginal of the true distribution D in direction i. So, if the truncated
distribution DS is α-fat in all directions (e.g., the halfspace of all vectors with L1 norm at most
k is a fat subset of the Boolean hypercube), a sample from DS is quite likely to reveal significant
information about the true distribution D. Building on this intuition, we show how samples from
the true distribution D can be generated from few truncated samples (see also Algorithm 1):

Informal Theorem 1 With an expected number of O(log(d)/α) samples from the α-fat truncation
of a Boolean product distribution D, we can generate a sample x ∈ {0, 1}d distributed as in D.
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We show (Lemma 3) that fatness is also a necessary condition for Theorem 1. A stunning con-
sequence of Theorem 1 is that virtually any statistical task (e.g., learning in total variation distance,
parameter estimation, sparse recovery, uniformity or identity testing, differentially private unifor-
mity testing) that can be performed efficiently for a Boolean product distribution D, can also be
performed using truncated samples fromD, at the expense of a factor O(log(d)/α) increase in time
and sample complexity. In Section 3, we obtain, as simple corollaries of Theorem 1, that the statis-
tical tasks described in Acharya et al. (2015c); Diakonikolas et al. (2017b); Canonne et al. (2017,
2019b) for Boolean product distributions can be performed using only truncated samples!

To further demonstrate the power and the wide applicability of our approach, we extend the
notion of fatness to the richer and more complex setting of ranking distributions on d alternatives.
In Section 3.5, we show how to implement efficient statistical inference of Mallows models using
samples from a fat truncated Mallows distribution (see Theorem 11).

Natural and powerful though, fatness is far from being necessary for efficient parameter estima-
tion from truncated samples. Seeking a deeper understanding of the challenges of learning discrete
models from truncated samples, we identify, in Section 4, three natural conditions that we show to
be necessary for efficient parameter estimation in our setting:

Assumption 1: The support of the distribution D on S should be rich enough, in the sense that its
truncation DS should assign positive probability to a x∗ ∈ S and d other vectors that remain
linearly independent after we subtract x∗ from them.

Assumption 2: S is accessible through a membership oracle that reveals whether x ∈ S, for any
x in the d-dimensional hypercube.

Assumption 3: The truncation of D by S leaves enough randomness in all directions. More pre-
cisely, we require that in any direction w ∈ Rd, any two samples from the truncated distribu-
tion DS have sufficiently different projections on w, with non-negligible probability.

Assumption 2 ensures that the learning algorithm has enough information about S and is also
required in the continuous setting. Without oracle access to S, for any Boolean product distribution
D, we can construct a (possibly exponentially large) truncation set S such that sampling from the
truncated distribution DS appears identical to sampling from the uniform distribution, until the first
duplicate sample appears (our construction is similar to (Daskalakis et al., 2018, Lemma 12)).

Similarly to Daskalakis et al. (2018), Assumption 2 is complemented by the additional natural
requirement that the true distribution D should assign non-negligible probability mass to the trun-
cation set S (Assumption 4). The reason is that the only way for a parameter estimation algorithm
to evaluate the quality of its current estimation is by generating samples in S and comparing them
with samples from DS . Assumptions 2 and 4 ensure that this can be performed efficiently.

Assumptions 1 and 3 are specific to the discrete setting of the Boolean hypercube. Assumption 1
requires that we should be able to normalize the truncation set S, by subtracting a vector x∗, so
that its dimension remains d. If this is true, we can recover the parameters of a Boolean product
distributionD from truncated samples by solving a linear system with d equations and d unknowns,
which we obtain after normalization. We prove, in Lemma 12, that Assumption 1 is both sufficient
and necessary for parameter recovery from truncated samples in our setting.

Assumption 3 is a stronger version of Assumption 1 and is necessary for efficient parameter
estimation from truncated samples in the Boolean hypercube. It essentially requires that with suf-
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ficiently high probability, any set X of polynomially many samples from DS can be normalized,
subtracting a vector x∗, so that X includes a well-conditioned d× d matrix, after normalization.

Beyond showing that these assumptions are necessary for efficient identifiability, we show that
they are also sufficient and provide a computational efficient algorithm for learning Boolean product
distributions. Our algorithm is based on a careful adaptation of the approach of Daskalakis et al.
(2018) which uses Stochastic Gradient Descent on the negative log-likelihood. While the analysis
consists of the same conceptual steps as that of Daskalakis et al. (2018), it requires dealing with a
number of technical details that arise due to discreteness. One technical contribution of our work
is using the necessary assumptions for identifiability to establish strong-convexity of the negative
log-likelihood in a small ball around the true parameters. Our main result is that:

Informal Theorem 2 Under Assumptions 1 - 4, Algorithm 2 computes an estimation ẑ of the logit
vector z of the true distribution D such that ‖z − ẑ‖2 ≤ ε with probability at least 1 − δ, and
achieves time and sample complexity polynomial in d, 1/ε and log(1/δ).

Related Work. As aforementioned, there has been a large number of recent works dealing in-
ference with truncated data from a Gaussian distribution (Daskalakis et al., 2018; Kontonis et al.,
2019; Daskalakis et al., 2019) or mixtures of Gaussians (Nagarajan and Panageas, 2019) but to the
best of our knowledge there is no work dealing with discrete distributions. An additional feature of
our work compared to those results is that our methods are not limited to parameter estimation but
enable any statistical task to be performed on truncated datasets by providing a sampler to the true
underlying distribution. While this requires a mildly stronger than necessary but natural assumption
on the truncation set, we show that the more complex SGD based methods developed in prior work
can also be applied in the discrete settings we consider.

The field of robust statistics is also very related to our work as it also deals with biased data-
sets and aims to identify the distribution that generated the data. Truncation can be seen as an
adversary erasing samples outside a certain set. Recently, there has been a lot of theoretical work
for computationally-efficient robust estimation of high-dimensional distributions in the presence of
arbitrary corruptions to a small ε fraction of the samples, allowing for both deletions of samples and
additions of samples (Diakonikolas et al., 2016; Charikar et al., 2017; Lai et al., 2016; Diakonikolas
et al., 2017a, 2018; Hopkins and Li, 2019). In particular, the work of Diakonikolas et al. (2016)
deals with the problem of learning binary-product distributions.

Another line of related work concerns learning from positive examples. The work of De et al.
(2014) considers a setting where samples are obtained from the uniform distribution over the hyper-
cube truncated on a set S. However, their goal is somewhat orthogonal to ours. It aims to accurately
learn the set S while the distribution is already known. In contrast, in our setting the truncation set
is known and the goal is to learn the distribution. More recently, (Canonne et al., 2020) extend these
results to learning the truncation set with truncated samples from continuous distributions.

Another related literature within learning theory aims to learn discrete distributions through
conditional samples. In the conditional sampling model that was recently introduced concurrently
by Chakraborty et al. (2013, 2016) and Canonne et al. (2014, 2015), the goal is again to learn an
underlying discrete distribution through conditional/truncated samples but the learner can change
the truncation set on demand. This is known to be a more powerful model for distribution learning
and testing than standard sampling (Canonne, 2015; Falahatgar et al., 2015; Acharya et al., 2015b;
Bhattacharyya and Chakraborty, 2018; Acharya et al., 2015a; Gouleakis et al., 2017; Kamath and
Tzamos, 2019; Canonne et al., 2019a).
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2. Preliminaries

We use lowercase bold letters x to denote d-dimensional vectors. We let ‖x‖p = (
∑d

i=1 |xi|p)1/p

denote the Lp norm and ‖x‖∞ = maxi∈[d]{|xi|} denote the L∞ norm of a vector x. We let

[d]
def
= {1, . . . , d} and F2 = {0, 1}. Πd = {0, 1}d denotes the d-dimensional Boolean hypercube.
For any vector x, x−i is the vector obtained from x by removing the i-th coordinate and (x−i, y)

is the vector obtained from x by replacing xi by y. Similarly, given a set S ⊆ Πd, we let S−i =
{x−i : (x−i, 0) ∈ S ∨ (x−i, 1) ∈ S} be the projection of S to Π[d]\{i}. For any x ∈ Πd and any
coordinate i ∈ [d], we let FLIP(x, i) = (x−i, 1− xi) denote x with its i-th coordinated flipped.

Bernoulli Distribution. For any p ∈ [0, 1], we let Be(p) denote the Bernoulli distribution with
parameter p. For any x ∈ F2, Be(p;x) = px(1 − p)1−x denotes the probability of value x under
Be(p). The Bernoulli distribution is an exponential family1, where the natural parameter, denoted
z, is the logit z = log p

1−p of the parameter p 2. The inverse parameter mapping is p = 1
1+exp(−z) .

Also, the base measure is h(x) = 1, the sufficient statistic is the identity mapping T (x) = x and
the log-partition function with respect to p is α(p) = − log(1− p).

Boolean Product Distribution. We mostly focus on a fundamental family of Boolean product
distributions on the d-dimensional hypercube Πd. A Boolean product distribution with parameter
vector p = (p1, . . . , pd), usually denoted by D(p), is the product of d independent Bernoulli distri-
butions, i.e., D(p) = Be(p1)⊗ · · · ⊗Be(pd). The Boolean product distribution can be expressed in
the form of an exponential family as follows:

D(z;x) =
exp(xTz)∏

i∈[d](1 + exp(zi))
, (1)

where z = (z1, . . . , zd) is the natural parameter vector with zi = log pi
1−pi for each i ∈ [d].

In the following, we always let D (or D(p) or D(z), when we want to emphasize the parameter
vector p or the natural parameter vector z) denote a Boolean product distribution. We denote z(p)
(or simply z, when p is clear from the context) the vector of natural parameters ofD. We letD(p;x)
and D(z;x) (or simply D(x), when p or z are clear from the context) denote the probability of
x ∈ Πd under D. Given a subset S ⊂ Πd of the hypercube, the probability mass assigned to S by
a distribution D(p), usually denoted D(p;S) (or simply D(S), when p is clear from the context),
D(p;S) =

∑
x∈S D(p;x).

Truncated Boolean Product Distribution. Given a Boolean product distributionD, we define the
truncated Boolean product distribution DS , for any fixed S ⊂ Πd. DS has DS(x) = D(x)/D(S),
for all x ∈ S, and DS(x) = 0, otherwise. We often refer to DS as the truncation of D (by S) and
to S as the truncation set.

It is sometimes convenient (especially when we discuss assumptions 1 and 3, in Section 4), to
refer to some fixed element of S. We observe that by swapping 1 with 0 (and pi with 1 − pi) in
certain directions, we can normalize S so that 0 ∈ S and DS(0) > 0. In the following, we always
assume, without loss of generality, that S is normalized so that 0 ∈ S and DS(0) > 0.

1. The exponential family E(T , h) with sufficient statistics T , carrier measure h and natural parameters η is the
family of distributions E(T , h) = {Pη : η ∈ HT ,h}, where the probability distribution Pη has density
pη(x) = h(x) exp(ηTT (x)− α(η)).

2. The base of the logarithm function log used throughout the paper is insignificant.
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Notions of Distance between Distributions. LetP,Q be two probability measures in the discrete
probability space (Ω,F). The total variation distance between P and Q, denoted DTV (P,Q),
is defined as DTV (P,Q) = 1

2

∑
x∈Ω |P(x) − Q(x)| = maxA∈F |P(A) − Q(A)|. The Kull-

back–Leibler divergence (or simply, KL divergence), denotedDKL(P ‖ Q), is defined asDKL(P ‖
Q) = Ex∼P

[
log P(x)

Q(x)

]
=
∑

x∈Ω P(x) log P(x)
Q(x) . The following summarizes some standard upper

bounds on the total variation distance and the KL divergence of two Boolean product distributions.

Proposition 1 Let P(p) and Q(q) be two Boolean product distributions, and let z(p) and z(q)
be the vectors of their natural parameters. Then:

(i) DKL(P ‖ Q) ≤ ‖z(p)− z(q)‖22

(ii) DTV (P,Q) ≤
√

2
2 ‖z(p)− z(q)‖2

(iii) DTV (P,Q) ≤
√∑d

i=1
(pi−qi)2
pi+qi

Identifiability and Learnability. A Boolean product distribution D(p) is identifiable from its
truncation DS(p), if given DS(p;x), for all x ∈ S, we can recover the parameter vector p.

A Boolean product distribution D(p) is efficiently learnable from its truncation DS(p), if for
any ε, δ > 0, we can compute an estimation p̂ of the parameter vector p (or an estimation ẑ of the
natural parameter vector z) ofD such that ‖p− p̂‖2 ≤ ε (or ‖z− ẑ‖2 ≤ ε), with probability at least
1− δ, with time and sample complexity polynomial in d, 1/ε and log(1/δ) using truncated samples
from DS(p). By Proposition 1, an upper bound on the L2 distance between ẑ and z (or between
p̂ and p) translates into an upper bound on the total variation distance between the true distribution
and D(ẑ) (or D(p̂)).

3. Boolean Product Distributions Truncated by Fat Sets

In this section, we discuss fatness of the truncation set, a strong sufficient (and in a certain sense,
necessary) condition, under which we can generate samples from a Boolean product distribution D
using samples from its truncation DS (and access to S through a membership oracle).

Definition 2 A truncated Boolean product distribution DS is α-fat in coordinate i ∈ [d], for some
α > 0, if Px∼DS [FLIP(x, i) ∈ S] ≥ α. A truncated Boolean product distribution DS is α-fat, for
some α > 0, if DS is α-fat in every coordinate i ∈ [d].

If DS is fat, it happens often that a sample x ∼ DS has both (x−i, 0), (x−i, 1) ∈ S. Then,
conditional on the remaining coordinates x−i, the i-th coordinate xi of x is distributed as Be(pi).
We next focus on truncated Boolean product distributions DS that are α-fat.

There are several natural classes of truncation subsets that give rise to fat truncated product
distributions. E.g., for each k ∈ [d], the halfspace S≤k = {x ∈ Πd : x1 + . . .+ xd ≤ k} results in
an α-fat truncated distribution, if Px∼DS≤k [xi = 1] ≥ α, for all i ∈ [d]. The same holds if S is any

downward closed3 subset of Πd and Px∼DS [xi = 1] ≥ α, for all i ∈ [d].
Fatness in coordinate i ∈ [d] is necessary, if we want to distinguish between two truncated

Boolean distributions based on their i-th parameter only, if the remaining coordinates are correlated.

3. A set S ⊆ Πd is downward closed if for any x ∈ S and any y with yi ≤ xi, in all directions i ∈ [d], y ∈ S.
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Algorithm 1 Sampling from D using samples from DS
1: procedure SAMPLER(DS) . DS is α-fat.
2: y ← (−1, . . .− 1)
3: while ∃yi = −1 do
4: Draw sample x ∼ DS
5: for i← 1, . . . , d do
6: if FLIP(x, i) ∈ S then . We assume oracle access to S
7: yi ← xi

8: return y

Specifically, we can show that ifDS is 0-fat in some coordinate i, there exists a Boolean distribution
with qi 6= pi (and |qi− pi| large enough) whose truncation by S appears identical to DS . Therefore,
if the other coordinates are arbitrarily correlated, it is impossible to distinguish between the two
distributions based on their i-th parameter alone. However, as we discuss in Section 4, if S is rich
enough, but not necessarily fat, we can recover the entire parameter vector4 of D.

Lemma 3 Let i ∈ [d], let S be any subset of Πd with FLIP(x, i) 6∈ S, for all x ∈ S, and consider
any 0 < p < q < 1. Then, for any Boolean distribution D−i with D−i(S−i) ∈ (0, 1), there exists a
distribution D′−i such that (Be(p)⊗D−i)S ≡ (Be(q)⊗D′−i)S .

3.1. Sampling from a Boolean Product Distribution using Samples from its Fat Truncation

An interesting consequence of fatness is that we can efficiently generate samples from a Boolean
product distribution D using samples from any α-fat truncation of D. The idea is described in
Algorithm 1. Theorem 4 shows that for any sample x drawn from DS and any i ∈ [d] such that
FLIP(x, i) ∈ S, conditional on x−i, xi is distributed as Be(pi). So, we can generate a random
sample y ∼ D by putting together d such values. α-fatness of the truncated distribution DS implies
that the expected number of samples x ∼ DS required to generate a y ∼ D is O(log(d)/α).

Theorem 4 LetD be a Boolean product distribution over Πd and letDS be any α-fat truncation of
D. Then, (i) the distribution of the samples generated by Algorithm 1 is identical to D; and (ii) the
expected number of samples from DS before a sample is returned by Algorithm 1 is O(log(d)/α).

3.2. Parameter Estimation and Learning in Total Variation Distance

Based on Algorithm 1, we can recover the parameters of any Boolean product distribution D using
samples from any fat truncation of D.

Theorem 5 Let D(p) be a Boolean product distribution and let DS(p) be a truncation of D. If
DS is α-fat in any fixed coordinate i, then, for any ε, δ > 0, we can compute an estimation p̂i of the
parameter pi of D such that |pi− p̂i| ≤ ε, with probability at least 1− δ, using an expected number
of O(log(1/δ)/(ε2α)) samples from DS .

4. For a concrete example, where we can recover the entire parameter vector of a truncated Boolean product distribution
DS , we consider S = {000, 110, 011, 101} ⊂ Π3, which is not fat in any coordinate, and let px = DS(x), for each
x ∈ S. Then, setting zi = log pi

1−pi
, for each i, we can recover (p1, p2, p3), by solving the following linear system:

z1 +z2 = log p110
p000

, z2 +z3 = log p011
p000

, z1 +z3 = log p101
p000

. This is a special case of the more general identifiability
condition discussed in Lemma 12.
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Using n = log(2d/δ)/ε2 samples y(1), . . . ,y(n) generated by Algorithm 1, we can estimate all
the parameters p ofD, by taking p̂i =

∑n
`=1 y

(`)
i /n, for each i ∈ [d]. The following is an immediate

consequence of theorems 4 and 5.

Corollary 6 Let D(p) be a Boolean product distribution and DS(p) be any α-fat truncation of D.
Then, for any ε, δ > 0, we can compute an estimation p̂ such that ‖p− p̂‖∞ ≤ ε, with probability
at least 1− δ, using an expected number of O(log(d) log(d/δ)/(ε2α)) samples from DS .

3.3. Identity and Closeness Testing with Access to Truncated Samples

Theorem 4 implies that if we have sample access to an α-fat truncation DS of a Boolean product
distribution D, we can pretend that we have sample access to the original distribution D, at the
expense of an increase in the sample complexity (from DS) by a factor of O(log(d)/α). Therefore,
we can extend virtually all known hypothesis testing and learning algorithms for Boolean product
distributions to fat truncated Boolean product distributions.

For identity testing of Boolean product distributions, based on samples from fat truncated ones,
we combine Algorithm 1 with the algorithm of (Canonne et al., 2017, Sec. 4.1). Combining Theo-
rem 4 with (Canonne et al., 2017, Theorem 6), we obtain the following:

Corollary 7 (Identity Testing) Let Q(q) be a Boolean product distribution described by its pa-
rameters q, and letD be a Boolean product distribution for which we have sample access to its α-fat
truncation DS . For any ε > 0, we can distinguish between DTV (Q,D) = 0 and DTV (Q,D) > ε,
with probability 2/3, using an expected number of O(log(d)

√
d/(αε2)) samples from DS .

We can extend Corollary 7 to closeness testing of two Boolean product distributions, for which
we only have sample access to their fat truncations. We combine Algorithm 1 with the algorithm
of (Canonne et al., 2017, Sec. 5.1). The following is an immediate consequence of Theorem 4 and
(Canonne et al., 2017, Theorem 9).

Corollary 8 (Closeness Testing) Let Q, D be two Boolean product distributions for which we
have sample access to their α1-fat truncation QS1 and α2-fat truncation DS2 . For any ε > 0, we
can distinguish between DTV (Q,D) = 0 and DTV (Q,D) > ε, with probability at least 2/3, using
an expected number of O

(
( log(d)

α1
+ log(d)

α2
) max{

√
d/ε2, d3/4/ε}

)
samples from QS1 and DS2 .

3.4. Learning in Total Variation Distance

Using Algorithm 1, we can learn a Boolean product distribution D(p), within ε in total variation
distance, using samples from its fat truncation. The following uses a standard analysis of the sample
complexity of learning a Boolean product distribution (see e.g., Kamath et al. (2018)).

Corollary 9 Let D(p) be a Boolean product distribution and let DS be any α-fat truncation
of D. Then, for any ε, δ > 0, we can compute a Boolean product distribution D̂(p̂) such that
DTV (D, D̂) ≤ ε, with probability at least 1− δ, using O(d log(d/δ)/(ε2α)) samples from DS .

We can improve the sample complexity in Corollary 9, if the original distribution D is sparse.
We say that a Boolean product distribution D(p) is (k, c)-sparse, for some k ∈ [d] and c ∈ [0, 1],
if there is an index set I ⊂ [d], with |I| = d − k, such that for all i ∈ I , pi = c. Namely, we
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know that d − k of D’s parameters are equal to c (but we do not know which of them). Then, we
first apply Corollary 6 and estimate all parameters of D within distance ε/

√
k. We set each pi with

|pi − c| ≤ ε/
√
k to pi = c. thus, we recover the index set I . For the remaining k parameters, we

apply Corollary 9. The result is summarized by the following:

Corollary 10 Let D(p) be a (k, c)-sparse Boolean product distribution and let DS be any α-fat
truncation of D. Then, for any ε, δ > 0, we can compute a Boolean product distribution D̂(p̂) such
that DTV (D, D̂) ≤ ε, with probability at least 1 − δ, using O

(
k log(d) log(d/δ)

ε2α

)
samples from the

truncate distribution DS .

3.5. Learning Ranking Distributions from Truncated Samples

An interesting application of Theorem 4 is parameter estimation of ranking distributions from trun-
cated samples. For clarity, we next focus on Mallows distributions. Our techniques imply similar
results for other well known models of ranking distributions, such as Generalized Mallows distri-
butions Fligner and Verducci (1986) and the models of Plackett (1975); Luce (1959), Bradley and
Terry (1952) and B. Babington Smith (1950).

Definition and Notation. We start with some notation specific to this section. Let Sd be the
symmetric group over the finite set of items [d]. Given a ranking π ∈ Sd, we let π(i) denote the
position of item i in π. We say that i precedes j in π, denoted by i �π j, if π(i) < π(j). The
Kendall tau distance of two rankings π and σ, denoted by Dτ (π, σ), is the number of discordant
item pairs in π and σ. Formally, Dτ (π, σ) =

∑
1≤i<j≤d 1 {(π(i)− π(j))(σ(i)− σ(j)) < 0}.

The Mallows model Mallows (1957) is a family of ranking distributions parameterized by the
central ranking π0 ∈ Sd and the spread parameter φ ∈ [0, 1]. Assuming the Kendall tau distance
between rankings, the probability mass function isM(π0, φ;π) = φDτ (π0,π)/Z(φ), where the nor-
malization factor is Z(φ) =

∏d
i=1

1−φi
1−φ . For a given Mallows distribution M(π0, φ), we denote

pij = Pπ∼M[i �π j] the probability that item i precedes item j in a random sample fromM.

Truncated Mallows Distributions. We consider parameter estimation for a Mallows distribu-
tion M(π0, φ) with sample access to its truncation MS by a subset S ⊂ Sd. Then, MS(π) =
M(π)/M(S), for each π ∈ S, and MS(π) = 0, otherwise. Next, we generalize the notion of
fatness to truncated ranking distributions and prove the equivalent of Theorem 5 and Corollary 6.

For a ranking π, we let FLIP(π, i, j) denote the ranking π′ obtained from π with the items i and
j swapped. Formally, π′(`) = π(`), for all items ` ∈ [d] \ {i, j}, π′(j) = π(i) and π′(i) = π(j).
We say that a truncated Mallows distributionMS is α-fat for pair (i, j), if Pπ∼MS

[FLIP(π, i, j) ∈
S] ≥ α, for some α > 0. A truncated Mallows distribution MS(π0, φ) is α-fat, if MS is α-fat
for all pairs (i, j), and neighboring α-fat, ifMS is α-fat for all pairs (i, j) that occupy neighboring
positions in the central ranking π0, i.e., for all pairs (i, j) with |π0(i)− π0(j)| = 1.

Parameter Estimation and Learning of Mallows Distributions from Truncated Samples. We
use a learning algorithm that draws a sample from the truncated Mallows distribution MS and
updates a vector q with estimations p̂ij = qij/(qij + qji) of the probability pij that item i precedes
item j in a sample from the true Mallows distributionM. Thus, we can show the following:

Theorem 11 LetM(π0, φ) be a Mallows distribution with π0 ∈ Sd and φ ∈ [0, 1 − γ], for some
constant γ > 0, and letMS be any neighboring α-fat truncation ofM. Then,

9
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(i) For any δ > 0, we can learn the central ranking π0, with probability at least 1− δ, using an
expected number of O(log(d) log(d/δ)/(γ2α)) samples fromMS .

(ii) Assuming that the central ranking π0 is known, for any ε, δ > 0, we can compute an estima-
tion φ̂ of the spread parameter such that |φ− φ̂| ≤ O(ε), with probability at least 1−δ, using
an expected number of O(log(1/δ)/(ε2α)) samples fromMS .

(iii) For any ε, δ > 0, we can compute a Mallows distribution M̂(π0, φ̂) so that DTV (M,M̂) ≤
O(ε), with probability at least 1−δ, using an expected number ofO(log(d) log(d/δ)/(γ2α)+
d log(1/δ)/(ε2α)) samples fromMS .

4. Efficient Learnability from Truncated Samples: Necessary Conditions

We next discuss necessary conditions for identifiability and efficient learnability of a Boolean prod-
uct distribution from truncated samples. For Assumption 1 and Lemma 12, we recall that we can
assume without loss of generality that S is normalized so that DS(0) > 0. The proof of Lemma 12
demonstrates that recovering p requires the solution to a linear system, similar to that in Footnote 4,
which is solvable if and only if Assumption 1 holds.

Assumption 1 For the truncated Boolean product distribution DS , DS(0) > 0 (after possible
normalization) and there are d linearly independent x(1), . . . ,x(d) ∈ S withDS(x(j)) > 0, j ∈ [d].

Lemma 12 A Boolean product distribution D(p) on Πd is identifiable from its truncation DS if
and only if Assumption 1 holds.

We proceed to show two necessary conditions for efficient learnability. Our first condition is
that we have oracle access to the truncation set S. More formally, we assume that:

Assumption 2 S is accessible through a membership oracle, which reveals whether x ∈ S, for
any x ∈ Πd.

Based on the proof of (Daskalakis et al., 2018, Lemma 12), we show that if Assumption 2 does
not hold, we can construct a (possibly exponentially large) truncation set S so that DS appears
identical to the uniform distribution U on Πd as long as all the samples are distinct.

Lemma 13 For any Boolean product distribution D(p), there is a truncation set S so that without
additional information about S, we cannot distinguish between sampling from DS and sampling
from the uniform distribution U on Πd, before an expected number of Ω(

√
|S|) samples are drawn.

Our second necessary condition for efficient learnability is that the truncated distribution is not
extremely well concentrated in any direction. Intuitively, we need the Boolean product distribution
D, and its truncation DS , to behave well, so that we can get enough information about D based
on few samples from DS . More formally, we quantify DS’s anticoncentration using λ∗, which is
the maximum positive number so that for all unit vectors w ∈ Rd, ‖w‖2 = 1, and all c ∈ R,
Px∼DS [wTx 6∈ (c− λ∗, c+ λ∗)] ≥ λ∗. Assumption 3 requires that λ∗ is polynomially large.

Assumption 3 There exists a λ ≥ 1/poly(d) such that for all unit vectors w ∈ Rd, ‖w‖2 = 1,
and all c ∈ R, Px∼DS [wTx 6∈ (c− λ, c+ λ)] ≥ λ.

10



TRUNCATED BOOLEAN PRODUCT DISTRIBUTIONS

We note that Assumption 3 is a stronger version of Assumption 1. It also implies that all pa-
rameters pi ∈ (0, 1) are bounded away from 0 and 1 by a safe margin. We next show that if DS
is well concentrated in some direction, estimating the parameter vector p requires a large number
of samples from DS . More specifically, we show that either estimating DS(0), which is needed for
normalizing the linear system in Lemma 12, or sampling d vectors that result in a well-conditioned
linear system, require Ω(1/λ∗) samples from DS . Therefore, if Assumption 3 does not hold, esti-
mating p with truncated samples from DS has superpolynomial sample complexity.

Lemma 14 Let D(p) be a Boolean product distribution and let DS be a truncation of D. Then,
computing an estimation p̂ of the parameter vector p of D such that ‖p − p̂‖2 ≤ o(1) requires an
expected number of Ω(1/λ∗) samples from DS .

Proof (sketch) For a unit vector w ∈ Rd, we let Hw = {x ∈ S : wTx ∈ (c − λ, c + λ)}.
Intuitively, if λ∗ is very small, there is a direction w such that virtually all samples x ∼ DS lie in
Hw. Formally, by the definition of λ∗, for any λ > λ∗, there is a unit vector w ∈ Rd and a c ∈ R
such that Px∼DS [x 6∈ Hw] < λ, or equivalently, Px∼DS [x ∈ Hw] ≥ 1− λ.

Intuitively, recovering (z and) p boils down to the solution of a linear system as that in Foot-
note 4 and in Lemma 12. For that, we need d linearly independent vectors x(1), . . . ,x(d) ∈ S and
an additional fixed element x∗ ∈ S for the normalization of the probabilities in the right-hand side.
With high probability, all x(1), . . . ,x(d) ∈ Hw. If x∗ is also in Hw, normalizing the system by x∗

results in an ill-conditioned system. The reason is that for any λ > λ∗ and any x(i),x(j) ∈ Hw,

(x(i) − x∗)T (x(j) − x∗) = (wT (x(i) − x∗))T (wT (x(j) − x∗)) < 4λ2 .

In fact, we can show that the condition number of the system is Ω(1/λ∗). Therefore, solving the
linear system efficiently requires sampling a vector x∗ 6∈ Hw for normalization. However, the
probability that we sample (and thus, can use for normalization) a vector x∗ 6∈ Hw is at most λ∗.

For the efficient estimation of z, we also need to assume that the truncation set S is large enough.

Assumption 4 For the truncation set S, there is an α > 0 so that the Boolean product distribution
D has D(S) ≥ α.

In the following section, we present a Projected Stochastic Gradient Descent algorithm and
show that assumptions 2, 3 and 4 are sufficient for the efficient estimation of the natural parameter
vector z of the Boolean product distribution D by sampling from its truncation DS .

5. Stochastic Gradient Descent for Learning Truncated Boolean Products

We next show how to estimate efficiently the natural parameter vector z∗ of a Boolean product
distribution D(z∗) using samples from its truncation DS(z∗). Similarly to Daskalakis et al. (2018),
we use Projected Stochastic Gradient Descent (SGD) on the negative log-likelihood of the truncated
samples. Our SGD algorithm is described in Algorithm 2. We should highlight that Algorithm 2
runs in the space of the natural parameters z of the Boolean product distribution. Changing the
parameters from p to z results in a linear system, similar to that in Footnote 4, and simplifies the
analysis of the log-likelihood function. Furthermore, by Proposition 1, estimating z∗ within error
at most ε in L2 norm results in a distribution within total variation distance at most ε to D(z∗).

11
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Algorithm 2 Projected Stochastic Gradient Descent with Samples from DS(p∗).
1: procedure SGD(M,η) . M : number of steps, η : parameter
2: z(0) ← ẑ
3: for i = 1..M do
4: Sample x(i) from DS
5: repeat
6: Sample y from D(z(i−1))
7: until y ∈ S . We assume oracle access to S
8: v(i) ← −x(i) + y
9: z(i) ← ΠB(z(i−1) − 1

iηv
(i)) . ηi = 1/(iη): step size

10: return z ← 1
M

∑M
i=1 z

(i)

Throughout the analysis of Algorithm 2, we make use of Assumptions 2 - 4. For the analysis,
we first derive the negative log-likelihood function that Algorithm 2 optimizes. Since the truncation
set S is only accessed through membership queries, we do not have a closed form of the log-
likelihood. However, we can show that it is convex for any truncation set S. We prove that the
natural parameter vector ẑ corresponding to the empirical estimator p̂S is a good initialization for
Algorithm 2. Specifically, we show that p̂S is close to the true parameter vector p∗ in L2 distance,
and that this proximity holds for the corresponding natural parameter vectors as well.

For the correctness of Algorithm 2, it is essential that it runs in a convex region. We can show
that there exists a ball B, centered at the initialization point ẑ, which contains z∗. The radius
of the ball depends only on the lower bound α of D(S) (Assumption 4). We can prove that As-
sumptions 3 and 4 always hold inside B. That is, for any vector z ∈ B (and the corresponding
parameter vector p), the anti-concentration assumption holds for DS(p) and the mass assigned to
the truncation set S by DS(p) can be lower bounded by a polynomial function of α. Under these
two assumptions, we can prove that the negative log-likelihood is strongly-convex inside the ball
B. Hence, while Algorithm 2 iterates inside B, the truncation set has always constant mass and the
negative log-likelihood remains strongly-convex. Consequently, Algorithm 2 converges to the true
vector of natural parameters z∗. The following is a direct consequence of the steps described above:

Theorem 15 Given oracle access to a measurable set S ⊂ Πd (Assumption 2), whose measure un-
der some unknown Boolean product distribution D(z∗) is at least α > 0 (Assumption 4) and where
the truncated distributionDS(z∗) satisfies Assumption 3 with parameter λ, and given samples from
the truncation DS(z∗), there exists a polynomial-time algorithm that recovers an estimation z of
z∗. For any ε > 0, the algorithm uses poly(1/α, 1/λ)Õ(d/ε2) truncated samples from DS(z∗)
and membership queries to S and guarantees that ‖z∗ − z‖2 ≤ ε, with probability 99%. Under
these conditions, DTV (D(z∗),D(z)) ≤ O(ε) and the dependence of the sample complexity on d
and ε is optimal (up to logarithmic factors), even when there is no truncation.
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