
Proceedings of Machine Learning Research vol 125:1–16, 2020

On the Convergence of Stochastic Gradient Descent with Low-Rank
Projections for Convex Low-Rank Matrix Problems

Dan Garber DANGAR@TECHNION.AC.IL

Technion - Israel Institute of Technology, Haifa, Israel

Abstract
We revisit the use of Stochastic Gradient Descent (SGD) for solving convex optimization problems
that serve as highly popular convex relaxations for many important low-rank matrix recovery prob-
lems such as matrix completion, phase retrieval, and more. The computational limitation of apply-
ing SGD to solving these relaxations in large-scale is the need to compute a potentially high-rank
singular value decomposition (SVD) on each iteration in order to enforce the low-rank-promoting
constraint. We begin by considering a simple and natural sufficient condition so that these relax-
ations indeed admit low-rank solutions. This condition is also necessary for a certain notion of
low-rank-robustness to hold. Our main result shows that under this condition which involves the
eigenvalues of the gradient vector at optimal points, SGD with mini-batches, when initialized with
a “warm-start” point, produces iterates that are low-rank with high probability, and hence only a
low-rank SVD computation is required on each iteration. This suggests that SGD may indeed be
practically applicable to solving large-scale convex relaxations of low-rank matrix recovery prob-
lems. Our theoretical results are accompanied with supporting preliminary empirical evidence. As
a side benefit, our analysis is quite simple and short.
Keywords: low-rank matrix optimization, stochastic gradient descent, convex optimization, matrix
completion

1. Introduction

This paper is concerned with convex optimization formulations and algorithms for low-rank ma-
trix recovery. Low-rank matrix recovery problems have numerous applications in machine learn-
ing, statistics and related field and have received much attention in recent years, with some of the
most well known problems / applications being matrix completion Candès and Recht (2009); Recht
(2011); Jaggi and Sulovský (2010); Ge et al. (2016), phase retrieval Candes et al. (2015); Netra-
palli et al. (2013); Yurtsever et al. (2017), robust PCA Candès et al. (2011); Wright et al. (2009);
Netrapalli et al. (2014); Yi et al. (2016); Mu et al. (2016), and more. However, these optimization
problems are often NP-Hard to solve due to the explicit low-rank constraint / objective. To circum-
vent this difficulty, a significant body of work in recent years has been devoted to study convex
relaxations to these problems, which are computationally tractable, and also often well motivated
in terms of their ability to recover the correct low-rank solution (usually under certain statistical as-
sumptions), see for instance Candès and Recht (2009); Recht (2011); Candes et al. (2015); Candès
et al. (2011); Wright et al. (2009). These convex relaxations replace the explicit non-convex low-
rank constraint / objective with a convex surrogate such as the sum of the singular values of the
matrix, often called the nuclear norm, or the trace norm. Importantly, these convex relaxations can
be formulated in the following canonical form (see for instance Jaggi and Sulovský (2010)), which
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is also the main optimization problem under consideration in this paper:

min
X∈Sn

f(X). (1)

Here Sn denotes the spectrahedron in Sn (space of n×n real symmetric matrices), i.e., Sn := {X ∈
Sn | X � 0, Tr(X) = 1}. Throughout this work, f is assumed β-smooth (Lipschitz gradient) and
convex.

Additionally, motivated by cases in which f(X) admits a finite-sum structure, i.e., f(X) :=
1
m

∑m
i=1 fi(X), where the number of functions m is large and hence the computation of exact

gradients of f(·) is prohibitive, or when f(X) is given by an expectation w.r.t. some unknown
distribution, i.e., f(X) := Eg∼D[g(X)], and only a finite sample drawn i.i.d. form D is available
(e.g., in statistically-motivated scenarios), we consider stochastic optimization methods for solving
Problem (1). Concretely, we assume the standard generic model for first-order stochastic optimiza-
tion, in which f(·) is given by a stochastic first-order oracle, which when queried with some point
X ∈ Sn returns a random matrix ∇̂ ∈ Sn satisfying the following standard assumptions:

i. E[∇̂ |X] = ∇f(X), ii. ‖∇̂‖F ≤ G, ‖∇̂‖ ≤ B, iii. E[‖∇̂ − ∇f(X)‖2F |X] ≤ σ2,

for some G,B, σ2 > 0, where for any matrix M ∈ Sn. ‖M‖F denotes the Frobenius (Euclidean)
norm, and ‖M‖ denotes the spectral norm (largest singular value).

While Problem (1) is convex, it is still highly challenging to solve in large-scale via traditional
first-order methods, such as projected gradient methods Nesterov (2013); Bubeck et al. (2015);
Hazan and Kale (2014); Rakhlin et al. (2012) or conditional gradient-based methods Jaggi (2013);
Hazan and Kale (2012); Lan and Zhou (2016); Hazan and Luo (2016); Garber and Kaplan (2019),
since these require a potentially high-rank singular value decomposition (SVD) computation on
each iteration (which can take as much as O(n3) runtime), and / or to store potentially high-rank
matrices in memory (despite the often implicit assumption that the optimal solution is low-rank).

As a starting point let us recall the structure of the Euclidean projection onto the spectrahedron
Sn, which we denote as ΠSn [·].

Lemma 1 (Projection onto the spectrahedron) Let M ∈ Sn and write its eigen-decomposition
as M =

∑n
i=1 λiviv

>
i . Then, it holds that ΠSn [M] =

∑n
i=1 max{0, λi − λ}viv>i , where λ ∈ R

is the unique scalar satisfying
∑n

i=1 max{0, λi − λ} = 1.

From the lemma it is quite obvious why at worst-case computing this projection may require a
high-rank SVD (note that given the SVD of M, computing the threshold parameter λ could be done
in O(n log n) time via sorting). From this lemma we also make the following simple yet important
observation.

Observation 1 (Low-rank projection requires low-rank SVD) Given a matrix M ∈ Sn, if rank (ΠSn [M]) =
r, then only the top-r components in the SVD of M (corresponding to the rank-r matrix

∑r
i=1 λiviv

>
i )

are required to compute the projection. Hence, only a rank-r SVD of M is required. 1

1. In particular, according to Lemma 1, if M admits the eigen-decomposition
∑n

i=1 λiviv
>
i , then its projection onto

Sn is rank-r if and only if
∑r

i=1 λi ≥ 1 + r · λr+1.
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This observation implies that when the projected matrix is low-rank, the projection can be com-
puted via fast iterative methods (such as power iterations or the faster Lanczos method) with runtime
that is proportional to only r · nnz(M) (where nnz(·) denotes the number of non-zero entries), as
opposed to n3 required for a full-rank SVD.

Let us denote by X ∗ the set of optimal solutions to Problem (1). Our main result in this paper is
that given some optimal solution X∗ ∈ X ∗ with rank(X∗) = r, under a simple and natural condition
on the eigenvalues of the gradient vector ∇f(X∗), which we present next, the standard projected
stochastic gradient method with mini-batches (see Algorithm 1), when initialized close enough to
X∗, will converge with constant probability to the optimal value of Problem (1) - f∗, while requiring
on each iteration a single SVD computation of rank at most r to compute the projection.

Assumption 1 We say an optimal solution X∗ ∈ X ∗ of rank r satisfies the eigen-gap assumption
if λn−r(∇f(X∗))− λn(∇f(X∗)) > 0.

Importantly, the eigen-gap assumption, even without assuming explicitly that X∗ is of rank r,
is a sufficient condition for X∗ to have rank at most r. This follows from the following lemma (see
Lemma 7 in Garber (2019)). Thus, the additional requirement that X∗ is of rank exactly r could be
understood as a non-degeneracy requirement.

Lemma 2 Let X∗ ∈ X ∗ be any optimal solution and write its eigendecomposition as X∗ =∑r
i=1 λiviv

>
i . Then, the gradient vector ∇f(X∗) admits an eigendecomposition such that the set

of vectors {vi}ri=1 is a set of top eigen-vectors of (−∇f(X∗)) which corresponds to the eigenvalue
λ1(−∇f(X∗)) = −λn(∇f(X∗)).

In order to better motivate Assumption 1 we bring the following lemma which suggests that this
condition is required for the robustness of low-rank optimal solutions. The lemma shows that when
the eigengap assumption does not hold, performing a standard projected gradient step from this
optimal point w.r.t. to an arbitrarily small perturbation of the optimization problem, will result in a
higher-rank matrix. Here we recall the first-order optimality condition ΠSn [X∗ − β−1∇f(X∗)] =
X∗.

The lemma is a simple adaptation of Lemma 3 in Garber (2019) (which considers optimization
over trace-norm balls). A proof is given in the appendix for completeness.

Lemma 3 Let f : Sn → R be β-smooth and convex. Let X∗ ∈ Sn be an optimal solution of rank r
to the optimization problem minX∈Sn f(X). Let µ1, . . . , µn denote the eigenvalues of ∇f(X∗) in
non-increasing order. Then, µn−r = µn if and only if for any arbitrarily small ζ > 0 it holds that

rank(Π(1+ζ)Sn [X∗ − β−1∇f(X∗)]) > r,

where (1 + ζ)Sn = {(1 + ζ)X | X ∈ Sn}, and Π(1+ζ)Sn [·] denotes the Euclidean projection onto
the convex set (1 + ζ)Sn.

We also refer the reader to Garber (2019) (Table 2) for an empirical evidence that Assumption
1 seems to be quite practical for real-world datasets.

Formally, the main result of this paper is the proof of the following theorem.

3



CONVERGENCE OF SGD WITH LOW-RANK PROJECTIONS FOR CONVEX LOW-RANK MATRIX PROBLEMS

Algorithm 1 Projected Stochastic Gradient Descent with minibathces
1: input: initialization point X1 ∈ Sn, batch-size L, time horizon T , sequence of step-sizes
{ηt}t∈[T−1]

2: for t = 1 . . . T − 1 do
3: ∇̂t ← 1

L

∑L
i=1 ∇̂

(i)
t , where {∇̂(i)

t }Li=1 is produced by L calls to the stochastic oracle of f(·)
with the input point Xt

4: Xt+1 ← ΠSn [Xt − ηt∇̂t]
5: end for
6: return solution X̄ according to one of the following options:

X̄← Xt0 , t0 ∼ Uni{1, . . . , T} (option I) or X̄← 1

T

T∑
i=1

Xi (option II)

Theorem 4 Let X∗ ∈ X ∗ be an optimal solution of rank r which satisfies Assumption 1. Consider
running SGD (Algorithm 1) for T iterations with a fixed step-size η = R0

10G
√
T log(8T )

and when the

first iterate X1 satisfies rank(X1) ≤ r and ‖X1 −X∗‖F ≤ R0/2, where

R0 :=
1

8

(
rβ +

√
2rB

λr(X∗)

)−1
δ, 0 < δ ≤ λn−r(∇f(X∗))− λn(∇f(X∗)),

and with constant minibatch size L satisfying L ≥ L0 = O
(

max{(
(

σ
GR0

)2
, B

2r2

δ2
log(nT )}

)
.

Then, for any T sufficiently large, it holds with probability at least 1/2 that

1. f(X̄)− f∗ = O
(
GR0 log T√

T

)
,

2. ∀t ∈ [T − 1]: rank(Xt+1) ≤ r. Moreover, if option I is used for the returned solution, then
rank(X̄) ≤ r.

Thus, Theorem 4, together with Observation 1, imply that with constant probability, all the steps
of SGD can be computed via a rank-r SVD.

Corollary 5 (sample complexity) The overall sample complexity to achieve f(X̄)− f∗ ≤ ε with
probability at least 1/2, when initializing from a “warm-start”, is upper-bounded by Õ

(
ε−2 max{σ2, λ2r(X∗)rG2}

)
2

(note that λr(X∗) ≤ 1/r).

The proof is given in the appendix. We note this sample complexity is nearly optimal (up
to a logarithmic factor) in ε and optimal in σ,G (see for instance Bubeck et al. (2015)). Most
importantly, it is independent of the eigen-gap δ. 3

Remark 6 It is quite important to note that while verifying the validity of Assumption 1, or the
”warm start” condition, or even setting the step-size in Theorem 4 correctly, can be quite difficult

2. Throughout this paper we use the notation Õ(·) or Θ̃(·) to suppress poly-logarithmic factors.
3. Naturally, the sample complexity to obtain the required “warm-start” initialization will depend on δ, but will be

independent of the overall target accuracy ε.
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in practice, from a practical point of view, it is mainly important that the low-rank-SVD-based
projection is indeed the correct Euclidean projection. This however, could be easily verified in each
step t of the algorithm: if instead of computing a rank-r SVD of the point to project Xt − ηt∇̂t, we
compute a rank-(r+1) SVD, we can easily verify (using the condition on the thresholding parameter
λ in Lemma 1, see Footnote 1), if the correct projection is indeed of rank at most r, and hence verify
that the algorithm indeed converges correctly.

1.1. Related work

Our work is primarily motivated by the very recent work Garber (2019), which considered Problem
(1) in a purely deterministic setting, i.e., when exact gradients of f(·) are available. In that work
it is shown that, under Assumption 1, standard projected gradient methods, when initialized with a
“warm-start” point, converge with their original convergence guarantees to an optimal solution using
only low-rank SVD to compute the projection. However, these results are not directly extendable to
the stochastic setting for two reasons. First, the “warm-start” requirement in Garber (2019) requires
that the distance to an optimal solution is proportional to the step-size used. While this makes sense
in the deterministic setting, since the typical step-size for projected-gradient methods is just 1/β,
for SGD, the step-size (e.g., when chosen to be fixed) is proportional to the target accuracy ε, which
imposes an unrealistic initialization requirement (in particular, given that the function is Lipschitz,
such a condition already implies that the initial point satisfies f(X1)− f∗ = O(ε)). Therefore, our
main technical contribution is to provide an alternative analysis to the one used in Garber (2019), in
which the required initial distance to an optimal solution is independent of the step-size.

Second, since the analysis of Garber (2019) (as the one in this work) only applies in a certain
ball around an optimal solution, it relies on the property that the projected gradient method does not
increase the distance to the optimal set from one iteration to the next. This property does not hold
anymore for SGD, and here we introduce a martingale argument to show that with high probability
all the iterates indeed stay within the relevant ball.

For specific low-rank matrix recovery problems, the works De Sa et al. (2015); Jin et al. (2016);
Ge et al. (2016); Bhojanapalli et al. (2016b) yield global convergence guarantees for non-convex
SGD which forces the low-rank constraint by explicitly factorizing the matrix variable as the product
of two rank-r matrices. However, these only hold under very specific and quite strong statistical
assumptions on the data. On the contrary, in this work we do not impose any statistical generative
model on the data.

Finally, we note that works that analyze non-convex methods without relying on strong statisti-
cal models, such as Bhojanapalli et al. (2016a) (though they only consider the deterministic gradient
descent method), also require “warm-start” initialization which is qualitatively similar to ours, e.g.,
relies on the ratio between smallest and largest singular values of the optimal solution (see Theorem
4 above).

2. Analysis

The proof of Theorem 4 follows from combining the standard convergence analysis of SGD with
two main lemmas. Lemma 7, which is the main technical novelty we introduce in this paper, and
believe may be of independent interest, establishes (informally) that at any step t of Algorithm 1, if
Xt is sufficiently close to an optimal solution X∗ which satisfies the gap assumption (Assumption
1), and the stochastic gradient is not too noisy, then Xt+1 is low-rank (and hence can be computed,
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given Xt, ∇̂t, using only a low-rank SVD). Lemma 8 then uses a martingale concentration argument
to establish that, if X1 is sufficiently close to some optimal solution X∗, then with high probability,
all following iterates are also sufficiently close. Combining these two lemmas ensures that with
high probability, the projection onto Sn at each step of Algorithm 1 can be computed using only a
low-rank SVD computation.

Throughout this work we let the operation A •B denote the standard inner product for any two
matrices A,B ∈ Rm×n, i.e., A •B = Tr(AB>).

Lemma 7 Let X∗ ∈ X ∗ be of rank r, and let µ1 . . . µn denote the eigenvalues of ∇f(X∗) in
non-increasing order. Let X ∈ Sn be a matrix such that rank(X) ≤ r, and suppose that

‖X−X∗‖F ≤
1

4

(
rβ +

√
2rB

λr(X∗)

)−1
(δ − 4rξ) , (2)

where δ := µn−r − µn. Finally, let ∇̃ be a matrix such that ‖∇̃ − ∇f(X)‖ ≤ ξ, ‖∇̃‖ ≤ B. Then,
for any step-size η > 0 it holds that rank

(
ΠSn [X− η∇̃]

)
≤ r.

Proof Let us denote Y = X − η∇̃. From Lemma 1 it follows that a sufficient condition so that
rank

(
ΠSn [X− η∇̃]

)
≤ r, is

∑r
i=1 λi(Y) ≥ 1+r·λr+1(Y) (since then the thresholding parameter

λ in Lemma 1 must satisfy λ ≥ λr+1(Y)).
Let X = VΛV> denote the eigen-decomposition of X. In case rank(X) < r, we extend this

decomposition to have rank=r by adding additional zero eigenvalues and corresponding eigenvec-
tors, so V ∈ Rd×r. It holds that

r∑
i=1

λi(Y) ≥ VV> •Y = VV> • (X− η∇̃) = Tr(X)− ηVV> • ∇̃ = 1− ηVV> • ∇̃.

Using the above inequality we also have

λr+1(Y) =

r+1∑
i=1

λi(Y)−
r∑

j=1

λj(Y) ≤
r+1∑
i=1

λi(Y)−
(

1− ηVV> • ∇̃
)

≤
(a)

r+1∑
i=1

(
λi(X) + λi(−η∇̃)

)
−
(

1− ηVV> • ∇̃
)

=
(b)

1 +

r+1∑
i=1

λi(−η∇̃)−
(

1− ηVV> • ∇̃
)

= ηVV> • ∇̃ − η
r+1∑
i=1

λn−i+1(∇̃),

where (a) follows from Ky Fan’s eigenvalue inequality, and (b) follows since
∑r+1

i=1 λi(X) =∑rank(X)
i=1 λi(X) = Tr(X) = 1. Thus, we arrive at the following sufficient condition so that

rank
(

ΠSn [X− η∇̃]
)
≤ r:

1− ηVV> • ∇̃ ≥ 1 + r

(
ηVV> • ∇̃ − η

r+1∑
i=1

λn−i+1(∇̃)

)
,

6
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which boils down to the sufficient condition

−VV> • ∇̃ ≥ − r

r + 1

r+1∑
i=1

λn−i+1(∇̃). (3)

Let V∗Λ∗V∗> denote the eigen-decomposition of X∗ and recall rank(X∗) = r. Then,

−VV> • ∇̃ ≥ −V∗V∗> • ∇̃ − ‖VV> −V∗V∗>‖∗‖∇̃‖

≥ −V∗V∗> • ∇f(X∗)− ‖V∗V∗>‖∗ · ‖∇̃ − ∇f(X∗)‖

− ‖VV> −V∗V∗>‖∗ · ‖∇̃‖

≥ −V∗V∗> • ∇f(X∗)− r‖∇̃ − ∇f(X∗)‖ −
√

2r‖∇̃‖ · ‖VV> −V∗V∗>‖F .

Since X∗ is an optimal solution, it follows from Lemma 2 that

−V∗V∗> • ∇f(X∗) = −rµn.

Also, since f(·) is β-smooth,

‖∇̃ − ∇f(X∗)‖ ≤ ‖∇̃ − ∇f(X)‖+ ‖∇f(X)−∇f(X∗)‖F ≤ ξ + β‖X−X∗‖F . (4)

Finally, using the Davis-Kahan sin θ theorem (see for instance Theorem 2 in Yu et al. (2014)),
we have that

‖VV> −V∗V∗>‖F ≤
2‖X−X∗‖F

λr(X∗)− λr+1(X∗)
=

2‖X−X∗‖F
λr(X∗)

.

Thus, combining these three bounds, we have that

−VV> • ∇̃ ≥ −rµn − rξ −
√
r‖X−X∗‖F

(
√
rβ +

2
√

2‖∇̃‖
λr(X∗)

)
. (5)

On the other-hand,

−
r+1∑
i=1

λn−i+1(∇̃) =

r+1∑
i=1

λi(−∇̃) =

r+1∑
i=1

λi(−∇f(X∗) + (∇f(X∗)− ∇̃)) (6)

≤
(a)

r+1∑
i=1

λi(−∇f(X∗)) +
r+1∑
i=1

λi(∇f(X∗)− ∇̃)

≤ −
r+1∑
i=1

λn−i+1(∇f(X∗)) + (r + 1)‖∇f(X∗)− ∇̃)‖

=
(b)
−((r + 1)µn + δ) + (r + 1)‖∇f(X∗)− ∇̃)‖

≤
(c)
−((r + 1)µn + δ) + (r + 1)(ξ + β‖X−X∗‖F ), (7)

7
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where (a) follows from Ky Fan’s eigenvalue inequality, and (b) follows from Lemma 2 and our
assumption on the eigenvalues of∇f(X∗), and (c) follows from (4).

Plugging (5) and (6) into (3), we arrive at the following sufficient condition so that rank
(

ΠSn [X− η∇̃]
)
≤

r,

−rµn − rξ −
√
r‖X−X∗‖

(
√
rβ +

2
√

2‖∇̃‖
λr(X∗)

)
≥ −r

(
µn +

δ

r + 1

)
+ r (ξ + β‖X−X∗‖F ) ,

which is equivalent to the condition ‖X−X∗‖F ≤
(

2rβ + 2
√
2r‖∇̃‖

λr(X∗)

)−1 (
r
r+1δ − 2rξ

)
. Sim-

plifying the above expression gives the result.

Lemma 8 Fix p ∈ (0, 1). Let X1, . . . ,XT be a sequence generated by Algorithm 1 such that
for all t ∈ [T − 1], ηt = η for some η > 0 satisfying 1/η = Θ̃(

√
T ), and with mini-batch size

L = O(poly(log T )). Then, for any X∗ ∈ X ∗ and any T large enough, it holds with probability at
least 1− p that for all t ∈ [T ]:

‖Xt −X∗‖2F ≤ ‖X1 −X∗‖2F +G2Tη2 +
√

40Tη2σ2/L
√

log(T/p).

Proof Define the auxiliary sequence {Yt}Tt=1 as follows: Y1 = X1 and for all t ∈ [T − 1],
Yt+1 := Xt − ηt∇̂t. Recall that with these definitions we have that for all t ∈ [T ], Xt = ΠSn [Yt].

Throughout the proof let us fix some optimal solution X∗ ∈ X ∗. We begin with the observation
that for all t ∈ [T − 1] it holds that

E[‖Yt+1 −X∗‖2F |Xt] = E[‖Xt − ηt∇̂t −X∗‖2F |Xt]

≤ ‖Xt −X∗‖2F − 2ηtE[(Xt −X∗) • ∇̂t |Xt] + η2tG
2

= ‖Xt −X∗‖2F − 2ηt(Xt −X∗) • ∇f(Xt) + η2tG
2

≤
(a)
‖Xt −X∗‖2F − 2ηt(f(Xt)− f(X∗)) + η2tG

2 ≤
(b)
‖Yt −X∗‖2F + η2tG

2,

where (a) follows from the convexity of f(·), and (b) follows since Xt is the projection of Yt onto
Sn.

For all t ∈ [T ] define the random variable Zt := ‖Yt −X∗‖2F − G2
∑t−1

i=1 η
2
i . Note that

Z1, . . . , ZT forms a submartingale sequence w.r.t. the filtration F := {Ft := {X1, . . . ,Xt}}T−1t=1 .
This holds since using the above inequality, we have that for all t ∈ [T − 1]:

E[Zt+1|Ft] = E[‖Yt+1 −X∗‖2F |Xt]−G2
t∑

i=1

η2i ≤ ‖Yt −X∗‖2F +G2η2t −G2
t∑

i=1

η2i = Zt.

We continue to show that this submartingale has bounded-differences and to upper-bound its vari-
ance. It holds for all 2 ≤ t ≤ T that

Zt − E[Zt|Ft−1] = ‖Yt −X∗‖2F − E[‖Yt −X∗‖2F |Xt−1]

= ‖Xt−1 −X∗ − ηt−1∇̂t−1‖2F − E[‖Xt−1 −X∗ − ηt−1∇̂t−1‖2F |Xt−1]

≤ −2ηt−1(Xt−1 −X∗) • ∇̂t−1 + η2t−1‖∇̂t−1‖2F + 2ηt−1(Xt−1 −X∗) • E[∇̂t−1|Xt−1]

≤
(a)

4
√

2ηt−1G+ η2t−1G
2 ≤

(b)
6ηG,

8
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where (a) follows the Cauchy-Schwarz inequality and plugging the Euclidean diameter of Sn and
the bound G on the norm of the stochastic gradients, and (b) holds for any T sufficiently large. We
continue to upper-bound the conditional variance. For any 2 ≤ t ≤ T we have that

Var (Zt|Ft−1) = Var
(
‖Yt −X∗‖2F |Ft−1

)
= Var

(
‖Xt−1 −X∗ − ηt−1∇̂t−1‖2F |Xt−1

)
= Var

(
η2t−1‖∇̂t−1‖2F − 2ηt−1(Xt−1 −X∗) • ∇̂t−1|Xt−1

)
≤
(a)

2η4t−1Var
(
‖∇̂t−1‖2F |Xt−1

)
+ 8η2t−1Var

(
(Xt−1 −X∗) • ∇̂t|Xt−1

)
.

Thus,

Var (Zt|Ft−1) ≤ 2η4t−1Var
(
‖∇̂t−1‖2F |Xt−1

)
+ 8η2t−1Var

(
(Xt−1 −X∗) • (∇̂t −∇f(Xt−1))|Xt−1

)
≤ 2η4t−1E

[
‖∇̂t−1‖4F |Xt−1

]
+ 8η2t−1E

[(
(Xt−1 −X∗) • (∇̂t−1 −∇f(Xt−1))

)2
|Xt−1

]
≤
(b)

8η2t−1‖Xt−1 −X∗‖2FE
[
‖∇̂t−1 −∇f(Xt−1)‖2F |Xt−1

]
+ 2η4t−1G

4

≤
(c)

2η4t−1G
4 + 16η2t−1σ

2/L,

where (a) follows since Var(X + Y ) ≤ 2(Var(X) + Var(Y )), (b) follows from the Cauchy-
Schwarz inequality, and (c) follows from plugging the Euclidean diameter of Sn and the variance
of the mini-batch stochastic gradient.

Now, using a standard concentration argument for submartingales (see Theorem 7.3 in Chung
and Lu (2006), which we apply with parameters ai = 0, φi = 0), we have that for any ∆ =
O(poly(log T )), L = O(poly(log T )), 1/η = Θ̃(

√
T ), and T large enough,

Pr (Zt ≥ Z1 + ∆) ≤ exp

(
−∆2∑t−1

i=1 (4η4iG
4 + 32η2i σ

2/L) + 4ηG∆

)

≤ exp

(
−∆2

4Tη4G4 + 32Tη2σ2/L+ 4ηG∆

)
≤ exp

(
−∆2

40Tη2σ2/L

)
.

Thus, for ∆ :=
√

40Tη2σ2/L
√

log 1
p′ it holds that with probability at least 1−p′ that ‖Yt −X∗‖2F ≤

‖Y1 −X∗‖2F +G2
∑t−1

i=1 η
2
i + ∆ ≤ ‖Y1 −X∗‖2F +G2Tη2 + ∆.

Now, recalling that Y1 = X1, and since Xt is the projection of Yt onto Sn, we have that with
probability at least 1 − p′ it holds that ‖Xt −X∗‖2F ≤ ‖X1 −X∗‖2F + G2Tη2 + ∆. The Lemma
now follows from setting p′ = p/T and using the union-bound for all t ∈ [T ].

We can now prove Theorem 4.
Proof [Proof of Theorem 4]

Suppose for now that the iterates X1, . . . ,XT are computed using exact Euclidean projection.
Then, standard results (see for instance proof of Theorem 6.1 in Bubeck et al. (2015)) give that for
any step-size η > 0 it holds that

E
[ 1

T

T∑
t=1

f(Xt)
]
− f∗ = O

(
‖X1 −X∗‖2F

ηT
+ ηG2

)
.

9
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Thus, for both options of the returned solution X̄ in Algorithm 1 (using the convexity of f(·)
for option II), we have that

E
[
f(X̄)

]
− f∗ = O

(
‖X1 −X∗‖2F

ηT
+ ηG2

)
.

In particular, using Markov’s inequality, we have that with probability at least 3/4 it holds that

f(X̄)− f∗ = O

(
‖X1 −X∗‖2F

ηT
+ ηG2

)
.

Using a standard Matrix Hoeffding concentration argument (see for instance Tropp (2012)), we
have that with probability at least 9/10, under the batch-size listed in the theorem, it holds that
∀t ∈ [T − 1]: ‖∇̂t −∇f(Xt)‖ ≤ δ/(2r).

Also, using Lemma 8, we have for any T sufficiently large that with probability at least 7/8 it
holds that for all 1 ≤ t ≤ T−1 ‖Xt −X∗‖2F ≤ ‖X1 −X∗‖2F+G2Tη2+

√
40η2σ2T/L

√
log(8T ).

Thus, we have that for η = R0

10G log(8T )
√
T

and L ≥ (σ/G)2R−20 , combining all of the above

guarantees, we have that with probability at least 1/2, all following three guarantees hold:

i) f(X̄)− f∗ = O
(
GR0 log T√

T

)
, ii) ∀t ∈ [T − 1] : ‖Xt −X∗‖F ≤ R0,

iii) ∀t ∈ [T − 1] : ‖∇̂t −∇f(Xt)‖ ≤ δ
2r .

Thus, by invoking Lemma 7, with the above probability, for all t ∈ [T ] it holds that rank(Xt) ≤ r.
In particular, using option I in Algorithm 1, the returned solution X̄ is also of rank at most r.

3. Preliminary Empirical Evidence

Table 1: Information on experiments. Column rank(X∗) is taken from Garber (2019). Column
“SVD rank” records the SVD rank used to compute the projection on each iteration, and the column
“max rank” records the maximum rank of any of the iterates produced by the algorithm.

setting low rank SGD high rank SGD
trace (τ ) rank(X∗) step-size SVD rank max rank step-size SVD rank max rank

3000 10 0.02 10 10 1/
√
t 250 250

3500 41 0.007 41 41 1/
√
t 250 250

4000 70 0.005 70 70 1/
√
t 250 250

The goal of this section is to motivate our theoretical investigation from an empirical point of
view. Our main result, Theorem 4, relies on an eigen-gap assumption (Assumption 1), a “warm-
start” initialization, and certain choice of step-size which depends on several parameters. In Garber
(2019) it was already demonstrated that Assumption 1 holds empirically for the highly popular
matrix completion task. Here, we demonstrate empirically, that SGD with low-rank projections
converges correctly (i.e., the projection with low-rank SVD is always the accurate projection) for
matrix completion with a very simple initialization scheme, and is competitive with a standard
implementation of SGD, which uses high-rank SVD.

10
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Figure 1: Performance of low rank SGD vs. (standard) high rank SGD. Each graph is the average
of 5 i.i.d runs.

We use the standard MovieLens100K dataset (943x1682 matrix with 100,000 observed entries)
Harper and Konstan (2016). 4 Formally, our objective is the following:

min
X∈Rm×n:‖X‖∗≤τ

1

|S|
∑

(i,j,r)∈S

(Xi,j − r)2, (8)

where S is the set of observed entries (each entry is a triplet consisting of a matrix entry (i, j) and
a scalar ranking (r)), and ‖ · ‖∗ is the trace norm of a matrix (sum of singular values). Problem (8)
could be directly formulated in the form of the canonical problem (1) using standard manipulations
(see for instance Jaggi and Sulovský (2010)).

Following the experiments in Garber (2019), we use different values for the trace norm bound
τ , which in turn affects the rank of the optimal solution X∗. For both variants of SGD and for all
experiments we use a batch-size of L = 5000 (5% of the data).

For low rank SGD we always compute the projection using thin SVD with rank equal that of
the optimal solution (see Table 1). Also, we use a fixed step-size on all iterations which is tuned
manually for every value of τ , so that indeed throughout all iterations, the rank of the true projection
is at most the rank of the SVD used (which we verify by examining the condition on the threshold

4. We focus on this dataset and not larger ones because of the difficulty in scaling standard SGD, which requires high
rank SVDs, to larger datasets.
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parameter λ in Lemma 1). Thus, to be clear, with this tuned step-size, the low rank projection
is always (up to negligible numerical error) the correct projection, which matches our theoretical
investigation.

For the standard (high rank) implementation of SGD, in order to allow for more realistic imple-
mentation, we set the SVD rank used to compute the projection to 250 (instead of min{m,n}, see
Table 1). In all experiments we use a diminishing step-size of ηt = 1/

√
t which follows the stan-

dard theoretical convergence results on SGD (up to constants, see Bubeck et al. (2015) for instance),
without additional tuning.

We initialize both variants with the same point (based on assigning each unobserved entry the
mean value of the observed ones and taking a low rank SVD with rank that matches that of the
optimal solution). Each experiment is the average of 5 i.i.d runs (due to the randomness in the
mini-batch). The experiments were implemented in MATLAB with the svds command used to
compute thin SVD. We record the objective value (8) as a function of the number of iterations (for
both variants we calculate the objective at the average of iterates obtained so far), and the runtime (in
seconds). Additionally, to give an approximate measure of time that is implementation-independent,
we also plot the function value vs. the number of iterations scaled by the SVD rank used by each
algorithm. This is because in theory (and also often in practice) the time to compute a thin SVD
scales linearly with the rank of the SVD required.

It can be seen in Figure 1 that standard SGD (with step size 1/
√
t) seems to exhibit faster

converge rates in terms of #iterations (perhaps with τ = 3000 being the exception), due to the
smaller step-size required by the low rank variant to guarantee low rank projections. However,
when examining either the runtime or the convergence rate scaled by SVD rank, we see that as
expected, low rank SGD is significantly faster. Also, as recorded in Table 1, while all iterates of low
rank SGD indeed remain low rank, the iterates of high rank SGD always reach at some point the
maximal rank used of 250, indicating that using a larger step-size indeed comes with a price.

4. Discussion

The main message we hope to convey in this work is that, perhaps in contrast to current popular be-
lief, convex optimization methods can indeed be efficient for large-scale low-rank matrix problems,
from the point of view of both theory and practice. We thus believe that it is worthwhile to continue
studying their efficient implementations, perhaps under suitable assumptions.

There are two avenues for further research which could be of interest. First, Theorem 4 holds
only with constant probability and not with high probability. Second, our analysis requires taking
mini-batches. Since our objective is smooth, we may expect that these mini-batches will improve the
convergence rate (see for instance Theorem 6.3 in Bubeck et al. (2015) which, roughly speaking,
shows the rate improves by a factor of

√
L, where L is the mini-batch size). Unfortunately, our

current analysis requires taking too small step-sizes (in order for the iterates to stay close enough to
the optimal solution, see Lemma 8) to leverage the variance reduction due to the mini-batch.
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Martin Jaggi and Marek Sulovský. A simple algorithm for nuclear norm regularized problems. In
Proceedings of the 27th International Conference on Machine Learning, ICML, 2010.

Chi Jin, Sham M Kakade, and Praneeth Netrapalli. Provable efficient online matrix completion via
non-convex stochastic gradient descent. In Advances in Neural Information Processing Systems,
pages 4520–4528, 2016.

Guanghui Lan and Yi Zhou. Conditional gradient sliding for convex optimization. SIAM Journal
on Optimization, 26(2):1379–1409, 2016.

Cun Mu, Yuqian Zhang, John Wright, and Donald Goldfarb. Scalable robust matrix recovery:
Frank–wolfe meets proximal methods. SIAM Journal on Scientific Computing, 38(5):A3291–
A3317, 2016.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Praneeth Netrapalli, Prateek Jain, and Sujay Sanghavi. Phase retrieval using alternating minimiza-
tion. In Advances in Neural Information Processing Systems, pages 2796–2804, 2013.

Praneeth Netrapalli, UN Niranjan, Sujay Sanghavi, Animashree Anandkumar, and Prateek Jain.
Non-convex robust pca. In Advances in Neural Information Processing Systems, pages 1107–
1115, 2014.

Alexander Rakhlin, Ohad Shamir, and Karthik Sridharan. Making gradient descent optimal for
strongly convex stochastic optimization. In Proceedings of the 29th International Coference on
International Conference on Machine Learning, pages 1571–1578. Omnipress, 2012.

Benjamin Recht. A simpler approach to matrix completion. The Journal of Machine Learning
Research, 12:3413–3430, 2011.

Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computa-
tional Mathematics, 12(4):389–434, Aug 2012.

John Wright, Arvind Ganesh, Shankar Rao, Yigang Peng, and Yi Ma. Robust principal component
analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Advances in
neural information processing systems, pages 2080–2088, 2009.

Xinyang Yi, Dohyung Park, Yudong Chen, and Constantine Caramanis. Fast algorithms for robust
pca via gradient descent. In Advances in neural information processing systems, pages 4152–
4160, 2016.

Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem for
statisticians. Biometrika, 102(2):315–323, 2014.

14



CONVERGENCE OF SGD WITH LOW-RANK PROJECTIONS FOR CONVEX LOW-RANK MATRIX PROBLEMS

Alp Yurtsever, Madeleine Udell, Joel A. Tropp, and Volkan Cevher. Sketchy decisions: Con-
vex low-rank matrix optimization with optimal storage. In Proceedings of the 20th Interna-
tional Conference on Artificial Intelligence and Statistics, AISTATS 2017, 20-22 April 2017, Fort
Lauderdale, FL, USA, pages 1188–1196, 2017. URL http://proceedings.mlr.press/
v54/yurtsever17a.html.

Appendix A. Proof of Lemma 3

We first restate the lemma and then prove it.

Lemma 9 Let f : Sn → R be β-smooth and convex. Let X∗ ∈ Sn be an optimal solution of rank r
to the optimization problem minX∈Sn f(X). Let µ1, . . . , µn denote the eigenvalues of ∇f(X∗) in
non-increasing order. Then, µn−r = µn if and only if for any arbitrarily small ζ > 0 it holds that

rank(Π(1+ζ)Sn [X∗ − β−1∇f(X∗)]) > r,

where (1 + ζ)Sn = {(1 + ζ)X | X ∈ Sn}, and Π(1+ζ)Sn [·] denotes the Euclidean projection onto
the convex set (1 + ζ)Sn.

Proof Let us write the eigen-decomposition of X∗ as X∗ =
∑r

i=1 λiviv
>
i . It follows from the

optimality of X∗ that for all i ∈ [r], vi is also an eigenvector of ∇f(X∗) which corresponds to
the smallest eigenvalue µn (see Lemma 7 in Garber (2019)). Thus, if we let ρ1, . . . , ρn denote the
eigenvalues (in non-increasing order) of Y := X∗ − β−1∇f(X∗), it holds that

∀i ∈ [r] : ρi = λi − β−1µn;

∀i > r : ρi = λi − β−1µn−i+1.

Recall that
∑r

i=1 λi = 1 and λr+1 = 0.
It is well known that for any matrix M ∈ Sn with eigen-decomposition M =

∑n
i=1 σiuiu

>
i ,

the projection of M onto the set (1 + ζ)Sn, for any ζ ≥ 0 is given by

Π(1+ζ)Sn [M] =
n∑
i=1

max{0, σi − σ}uiu>i ,

where σ ∈ R is the unique scalar such that
∑n

i=1 max{0, σi − σ} = 1 + ζ.
Now, we can see that rank(Π(1+ζ)Sn [Y]) ≤ r if and only if σ ≥ ρr+1 = −β−1µn−r. However,

in this case, we have

1 + ζ =

n∑
i=1

max{0, ρi − σ} =

r∑
i=1

max{0, ρi − σ} ≤
r∑
i=1

max{0, ρi − (−β−1µn−r)}

=

r∑
i=1

(ρi − (−β−1µn−r)) =

r∑
i=1

(λi + β(µn−r − µn))

= 1 + βr(µn−r − µn) < 1 + ζ ∀ζ > βr(µn−r − µn).

Thus, for any fixed ζ > 0, it follows that rank(Π(1+ζ)Sn [Y]) ≤ r if and only if βr(µn−r−µn) ≥
ζ. This proves the lemma.
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Appendix B. Proof of Corollary 5

We first restate the corollary.

Corollary 10 The overall sample complexity to achieve f(X̄) − f∗ ≤ ε with probability at least
1/2, when initializing from a “warm-start”, is upper-bounded by Õ

(
ε−2 max{σ2, λ2r(X∗)rG2}

)
(note that λr(X∗) ≤ 1/r).

Proof The overall sample complexity is given simply by the number of iterations to reach ε error
times the size of the minibatch and is thus upper-bounded by:

Õ

(
G2R2

0

ε2
· max{(σ/G)2R−20 ,

B2r2

δ2
}
)

= Õ

(
1

ε2
max{σ2,

R2
0G

2B2r2

δ2
}
)

=

Õ

(
1

ε2
max{σ2,

(
λr(X∗)

λr(X∗)rβ +
√
rB

)2

G2B2r2}

)
=

Õ

(
1

ε2
max{σ2,

(
λr(X∗)√

rB

)2

G2B2r2}

)
= Õ

(
1

ε2
max{σ2, λ2r(X∗)rG2}

)
.
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