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Abstract
We consider the problem of online prediction in a marginally stable linear dynamical system sub-
ject to bounded adversarial or (non-isotropic) stochastic perturbations. This poses two challenges.
Firstly, the system is in general unidentifiable, so recent and classical results on parameter recovery
do not apply. Secondly, because we allow the system to be marginally stable, the state can grow
polynomially with time; this causes standard regret bounds in online convex optimization to be
vacuous. In spite of these challenges, we show that the online least-squares algorithm achieves
sublinear regret (improvable to polylogarithmic in the stochastic setting), with polynomial depen-
dence on the system’s parameters. This requires a refined regret analysis, including a structural
lemma showing the current state of the system to be a small linear combination of past states, even
if the state grows polynomially. By applying our techniques to learning an autoregressive filter,
we also achieve logarithmic regret in the partially observed setting under Gaussian noise, with
polynomial dependence on the memory of the associated Kalman filter.
Keywords: Dynamical systems, marginally stable systems, online least squares.

1. Introduction

We consider the problem of sequential state prediction in a linear time-invariant dynamical system,
subject to perturbations:

𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐵𝑢𝑡−1 + 𝜉𝑡.

This is a central object of study in control theory and time-series analysis, dating back to the foun-
dational work of Kalman (Kalman, 1960), and has recently received considerable attention from
the machine learning community. In a typical learning setting, the system parameters 𝐴,𝐵 are
unknown, and only the past states 𝑥𝑡 and exogenous inputs 𝑢𝑡 are observed. Sometimes, another
layer of difficulty is imposed: the latent state 𝑥𝑡 can only be observed noisily or through a low-rank
transformation. These models serve as an abstraction for learning from correlated data in stateful
environments, and have helped to understand empirical successes in reinforcement learning and of
recurrent neural networks.
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NO-REGRET PREDICTION IN MARGINALLY STABLE SYSTEMS

Many recent works (Simchowitz et al., 2018; Sarkar et al., 2019) are concerned with finite-
sample system identification, in which the matrices 𝐴,𝐵 can be recovered due to structure in the
perturbations or inputs. These results rely on matrix concentration inequalities and careful error
propagation applied to classic primitives in linear system identification, and have settled some im-
portant statistical questions about these methods. However, as in the classical control theory liter-
ature, these theorems require unrealistic assumptions of i.i.d. isotropic random perturbations and
recoverability of the system, and often require the user to select the “exploration” inputs 𝑢𝑡 (Sim-
chowitz et al., 2019; Dean et al., 2017). Furthermore, under model misspecification, the guarantees
of parameter identification pipelines break down.

Another line of work seeks to obtain more flexible guarantees via the online learning framework
(Hazan et al., 2016). Here, the goal of parameter recovery is replaced with regret minimization, the
excess prediction loss compared to the best-fit system parameters in hindsight (Kozdoba et al.,
2019; Hazan et al., 2017, 2018). This approach gives rise to algorithms which adapt to adversarially
perturbed data and model misspecification, and can be extended beyond prediction to obtain new
methods for robust control (Arora et al., 2018). However, these algorithms can diverge significantly
from the classical parameter identification pipeline. In particular, they can be improper, in that they
may use an intentionally misspecified (e.g. overparameterized) model. Thus, these algorithms can
be incompatible with parameter recovery and downstream methods.

In this work, we show that the same algorithm used for parameter identification (online least
squares) has a no-regret guarantee, even in the challenging setting of prediction under marginal
stability and adversarial perturbations, where recovery is impossible. More precisely, in this setting,
where the state is allowed to grow polynomially with time, we show that the regret of this algorithm
is sublinear, with a polynomial dependence on the system’s parameters. This does not follow from
the usual analysis of online least squares: the magnitude of loss functions (and associated gradient
bounds) can scale polynomially with time, causing standard regret bounds to become vacuous.
Instead, we conduct a refined regret analysis, including a structural volume doubling lemma showing
𝑥𝑡 to be a small linear combination of past states.

By replacing the worst-case structural lemma with a stronger martingale analysis, we also show
a polylogarithmic regret bound for least squares in the stochastic setting. Again, this analysis does
not go through parameter convergence, and thus applies in the setting of unidentifiable systems
and non-isotropic noise. The same techniques allow us to prove a logarithmic regret bound in the
partially observed setting under Gaussian noise, with polynomial dependence on the memory of the
associated Kalman filter.

Paper structure. In Section 2, we formally introduce the problem and the natural online least
squares algorithm. In Section 3, we give an overview of related work. In Section 4, we state our
main results. In Section 5, we sketch the proofs. In Section B, we show that a structural condition
on a time series gives a regret bound for online least squares. We then prove our main theorems
for fully observed LDS in the adversarial setting (Section C), fully observed LDS in the stochastic
setting (Section D), and for partially observed LDS in the stochastic setting (Section E), through
establishing this structural condition. Section G provides an alternative approach.

2. Problem setting and algorithm

The problem of online state prediction for a LDS falls within the framework of online least squares.
We first introduce the general problem of online least squares (Section 2.1), and then specialize to
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the prediction problem for a fully observed (Section 2.2) or partially observed (Section 2.3) LDS.
Because the observations come from a sequential process, they have extra structure that we will
leverage to obtain better guarantees than for black-box online least squares. In Section 2.4, we
describe the challenges associated with marginally stable systems.

2.1. The online least squares problem

In the problem of online least squares, at each time 𝑡 we are given 𝑥𝑡 ∈ R𝑚, and asked to predict
𝑦𝑡 ∈ R𝑛. We choose a matrix 𝐴𝑡 ∈ R𝑛×𝑚 and predict 𝑦𝑡 = 𝐴𝑡𝑥𝑡 ∈ R𝑛. The desired output 𝑦𝑡 is
then revealed and we suffer the squared loss ‖𝑦𝑡 − 𝑦𝑡‖2. A natural goal in this setting is to predict
as well as if we had known the best matrix in hindsight; hence, the performance metric is given by
the regret with respect to 𝐴, defined by

𝑅𝑇 (𝐴) =
𝑇∑
𝑡=1

‖𝐴𝑡𝑥𝑡 − 𝑦𝑡‖22 −
𝑇∑
𝑡=1

‖𝐴𝑥𝑡 − 𝑦𝑡‖22 .

Define the regret with respect to a given set 𝒦 ⊆ R𝑛×𝑚 by 𝑅𝑇 = sup𝐴∈𝒦 𝑅𝑇 (𝐴). In general, we
would like to achieve 𝑅𝑇 that is sublinear in 𝑇 , or equivalently, average regret 𝑅𝑇

𝑇 that converges to
0. In some cases, we can do better, and achieve regret 𝑅𝑇 that is polylogarithmic in 𝑇 .

A natural algorithm for online least squares is to choose 𝐴𝑡 that minimizes the total squared
prediction error for all the pairs (𝑥𝑠, 𝑦𝑠), 1 ≤ 𝑠 ≤ 𝑡− 1 seen so far, plus a regularization term:

Algorithm 1 Online Least Squares Regression
Input: Regularization parameter 𝜇.
for 𝑡 = 1 to 𝑇 do

Let 𝐴𝑡 = argmin𝐴∈R𝑛×𝑚

Ä
𝜇 ‖𝐴‖2𝐹 +

∑𝑡−1
𝑠=0 ‖𝐴𝑥𝑠 − 𝑦𝑠‖2

ä
.

Predict 𝑦𝑡 := 𝐴𝑡𝑥𝑡 and observe cost ‖𝑦𝑡 − 𝑦𝑡‖2.
end for

We state the standard regret bound for Algorithm 1. Note that Cesa-Bianchi and Lugosi (2006)
show the 𝑛 = 1 case, but the proof goes through in the multi-dimensional case (Appendix F).

Theorem 1 (OLS regret bound; Thm. 11.7, Cesa-Bianchi and Lugosi 2006) In the online least
squares setting, suppose that ‖𝑥𝑡‖ ≤𝑀 for all 𝑡. Then, Algorithm 1 incurs regret

𝑅𝑇 (𝐴) ≤ 𝜇 ‖𝐴‖2𝐹 + max
0≤𝑡≤𝑇−1

‖𝑦𝑡 −𝐴𝑡𝑥𝑡‖22𝑚 ln

Ç
1 +

𝑇𝑀2

𝑚

å
.

Thus, if there is a uniform bound on the prediction errors ‖𝑦𝑡 −𝐴𝑡𝑥𝑡‖, online least squares achieves
logarithmic regret. This follows immediately in the usual OLS setting, where 𝑥𝑡, 𝑦𝑡, are bounded
and 𝐴𝑡 is restricted to a bounded set. However, in the case where they can grow with time, as in
marginally stable systems, a more sophisticated analysis will be necessary to get sublinear regret.

2.2. Prediction in fully-observed linear dynamical systems

A special case of online least squares is state prediction in a time-invariant linear dynamical system
(LDS), defined as follows. Given an initial state 𝑥0 ∈ R𝑑, matrices 𝐴 ∈ R𝑑×𝑑 and 𝐵 ∈ R𝑑×𝑚,
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inputs 𝑢0, . . . , 𝑢𝑇−1 ∈ R𝑚 and a sequence of perturbations 𝜉1, . . . , 𝜉𝑇 ∈ R𝑑, the LDS produces a
time series of states 𝑥1, . . . , 𝑥𝑇 ∈ R𝑑 according to the following dynamics:

𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐵𝑢𝑡−1 + 𝜉𝑡, 1 ≤ 𝑡 ≤ 𝑇. (1)

This setting generalizes the linear Gaussian model from control theory and time-series analysis, in
which each 𝜉𝑡 is drawn i.i.d. from a Gaussian distribution. Aside from modeling disturbances, 𝜉𝑡
can also represent model uncertainty or misspecification.

In the prediction problem for LDS, we are asked to predict 𝑥𝑡+1 as a linear function of the
current 𝑥𝑡 and the input 𝑢𝑡. We can treat this as an online least squares problem, by casting (𝑥𝑡, 𝑢𝑡)
as the input at time 𝑡, and 𝑥𝑡+1 as the desired output. At each step, the learner produces 𝐴𝑡 and
𝐵𝑡 and predicts 𝑥̂𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡. Thus, we can adapt Algorithm 1 to this setting with the
substitution 𝑥𝑡 ←[ ( 𝑥𝑡

𝑢𝑡 ), 𝑦𝑡 ←[ 𝑥𝑡+1, 𝐴 ← [ (𝐴, 𝐵), (𝑛,𝑚) ←[ (𝑑, 𝑑 + 𝑚), and obtain Algorithm 2.
Translated to this setting, the goal of regret minimization becomes that of predicting as accurately
as if one had known the system’s underlying matrices 𝐴 and 𝐵.

Algorithm 2 Online Least Squares Regression (LDS setting)
1: Input: Regularization parameter 𝜇.
2: for 𝑡 = 0, . . . , 𝑇 − 1 do
3: Estimate dynamics as

(𝐴𝑡, 𝐵𝑡) := argmin
(𝐴,𝐵)

(
𝜇 ‖(𝐴,𝐵)‖2𝐹 +

𝑡−1∑
𝑠=0

‖𝐴𝑥𝑠 + 𝐵𝑢𝑠 − 𝑥𝑠+1‖2
)
.

4: Predict state: 𝑥̂𝑡+1 := 𝐴𝑡𝑥𝑡 + 𝐵𝑡𝑢𝑡 and suffer loss ‖𝑥̂𝑡+1 − 𝑥𝑡+1‖2.
5: end for

Note that in the stochastic setting, when the covariance of the noise is lower-bounded in each
direction, OLS gives a consistent estimator for 𝐴 and 𝐵; convergence rates for recovery are ana-
lyzed in Sarkar and Rakhlin (2019); Simchowitz et al. (2018). However, in the adversarial setting,
recovery of 𝐴 is an ill-posed problem. The perturbations can be biased or rank-deficient, causing
the recovery problem to be underdetermined in general, and the optimal 𝐴 may change as time.

2.3. Prediction in partially-observed linear dynamical systems

A partially-observed linear dynamical system is defined by

𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐵𝑢𝑡−1 + 𝜉𝑡 (2)

𝑦𝑡 = 𝐶ℎ𝑡 + 𝜂𝑡, (3)

where 𝑢𝑡 ∈ R𝑚 are inputs, 𝑥𝑡 ∈ R𝑑 are hidden states, 𝑦𝑡 ∈ R𝑛 are observations, 𝐴 ∈ R𝑑×𝑑,
𝐵 ∈ R𝑑×𝑚 and 𝐶 ∈ R𝑛×𝑑 are matrices, and 𝜉𝑡 ∈ R𝑑 and 𝜂𝑡 ∈ R𝑛 are perturbations. We consider
the stochastic setting, so that 𝜉𝑡 and 𝜂𝑡 are independent zero-mean noise terms. Crucially, only the
𝑦𝑡, and not the 𝑥𝑡, are observed.
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For prediction in this setting, we use Algorithm 3, regressing with the previous ℓ observations
and inputs, so we slightly modify the definition of the regret in (118) to start accruing from 𝑡 = ℓ+1:

𝑅𝑇 (𝐴,𝐵,𝐶) =
𝑇∑

𝑡=ℓ+1

‖𝑦𝑡 − 𝑦𝑡‖2 −
𝑇∑

𝑡=ℓ+1

‖𝑦KF,𝑡 − 𝑦𝑡‖2 ,

where 𝑦KF,𝑡 is the prediction of the steady-state Kalman filter for the system (𝐴,𝐵,𝐶); see Ap-
pendix E for a review and formal definitions. Note that we will learn the system in an improper
manner: that is, we will predict 𝑦𝑡 using a general autoregressive filter, rather than the Kalman filter
of some system.

Algorithm 3 Online Least Squares Autoregression for LDS
1: Input: Regularization parameter 𝜇, rollout length ℓ.
2: for 𝑡 = 0 to 𝑇 − 1 do
3: Estimate the autoregressive filter:

(𝐹𝑡, 𝐺𝑡) := argmin
𝐹∈R𝑛×ℓ𝑚,𝐺∈R𝑛×ℓ𝑛

Ñ
𝜇 ‖(𝐹,𝐺)‖2𝐹 +

𝑡−1∑
𝑠=ℓ−1

‖𝐹𝑢𝑠:𝑠−ℓ+1 + 𝐺𝑦𝑠:𝑠−ℓ+1 − 𝑦𝑠+1‖2
é

.

4: Predict state: 𝑦𝑡+1 := 𝐹𝑡𝑢𝑡:𝑡−ℓ+1 + 𝐺𝑡𝑦𝑡:𝑡−ℓ+1 and suffer cost ‖𝑦𝑡+1 − 𝑦𝑡+1‖2.
5: end for

2.4. Marginally stable systems

In this work, we are interested in prediction in marginally stable systems. In both the fully-observed
and partially-observed cases, the spectral radius 𝜌(𝐴) of the system is defined to be the magnitude
of the largest eigenvalue of the transition matrix 𝐴, as in Equations 1 and 2. An LDS is marginally
stable if 𝜌(𝐴) = 1.

As opposed to strictly stable systems (ones for which 𝜌(𝐴) < 1), these systems model phe-
nomena where the state does not reset itself over time, often representing physical systems which
experience little or no dissipation. As discussed in Section 3, their capacity to represent long-term
dependences presents algorithmic and statistical challenges. An inverse spectral gap factor 1

1−𝜌(𝐴)
appears in the computational and statistical guarantees for many learning algorithms in these set-
tings (see, e.g. Hardt et al. (2016)), as a finite-impulse truncation length or mixing time, rendering
those results inapplicable.

Among marginally stable systems, the hardest cases are those with large Jordan blocks corre-
sponding to large eigenvalues. Defining the Jordan matrix

𝐽𝜆,𝑟 :=


𝜆 1 0 · · · 0
0 𝜆 1 · · · 0
...

...
...

. . .
...

0 0 0 𝜆 1
0 0 0 0 𝜆

 ∈ R𝑟×𝑟,
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we see that for marginally stable systems, ‖𝐽 𝑡
𝜆,𝑟‖2 = Ω(𝜆𝑡−𝑟+1𝑡𝑟−1) can grow polynomially in

𝑡. These occur naturally in physical systems as discrete-time integrators of 𝑟-th degree ordinary
differential equations. The primary challenge we overcome in this work is to show the sublinear
regret of least squares, even when the state grows polynomially. As is also the case in our work,
recent advances in parameter recovery of marginally stable systems (Simchowitz et al., 2018; Sarkar
and Rakhlin, 2019) exhibit exponential dependences on the largest Jordan block order 𝑟.

3. Related work

Linear dynamical systems have been studied in a number of disciplines, including control theory
(Ghahramani and Hinton, 1996; Kalman, 1963), astronomy (Chiappori et al., 1992), econometrics
(Hendry and Doornik, 1994), biology (Saunders, 1994), and chemical kinetics. They capture many
popular models in statistics and machine learning (Ghahramani and Hinton, 1996). We first describe
the results on parameter estimation and prediction in fully observed systems, and then describe
results more broadly applicable to partially observed systems. Unless noted otherwise, the results
hold under the assumption that the noise is i.i.d.; some results also require that it be Gaussian.

Fully-observed LDS. Dean et al. (2017) show that when given independent rollouts of a LDS, the
least-squares estimator of the parameters is sample-efficient. Using this, they obtain sub-optimality
bounds for control. Simchowitz et al. (2018) consider the more challenging case when only a single
trajectory is given, and show that the least-squares estimator is still efficient, despite correlations
across timesteps. Their results hold for marginally stable systems. Improving over Simchowitz
et al. (2018) and Faradonbeh et al. (2018), Sarkar and Rakhlin (2019) offer bounds applicable even
to explosive systems, with the restriction that explosive eigenvalues have unit geometric multiplicity.
In order to obtain results for parameter recovery, all these results assume that the covariance of the
noise is lower bounded. Because we are concerned with prediction, this requirement will not be
necessary for our results.

Partially-observed LDS. For a system with known parameters, the celebrated Kalman filter (Kalman,
1960) provides an analytic solution for the posterior distribution of the latent states and future ob-
servations given a series of observations. When the underlying parameters are unknown, the Ex-
pectation Maximization (EM) algorithm can be used to learn them (Ghahramani and Hinton, 1996).
However, due to nonconvexity of the problem, EM is only guaranteed to converge to local optima.
In the absence of process noise 𝜉𝑡, Hardt et al. (2016) show that gradient descent on the maxi-
mum likelihood objective converges to the global minimum; however, they require the roots of the
associated characteristic polynomial to be well-separated and the system to be strictly stable.

Subspace identification methods circumvent the nonconvexity of maximum likelihood estima-
tion. For strictly stable systems, Oymak and Ozay (2018) demonstrate that the Ho-Kalman algo-
rithm learns the Markov parameters of the underlying system at an optimal rate (in 𝑇 ), and identifies
the parameters approximately up to an equivalent realization (at a rate of 𝑇−1/4) under further as-
sumptions of observability1 and controllability. Simchowitz et al. (2019) showed that a prefiltered
variant of least-squares offers stronger guarantees that apply even to marginally stable systems and
systems with adversarial noise. For strictly stable stochastic systems, Sarkar et al. (2019) improve
upon previous works to give an optimal rate for parameter identification. We note that these works
require the control inputs, and often the noise, to be Gaussian. This may not hold when the control

1. This notion of “observable” is not to be confused with the system being partially observable.
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inputs are exogenous (not under user control). In contrast, our results can handle arbitrary (bounded)
control inputs.

In a notable departure from this trend, Tsiamis and Pappas (2019) demonstrate optimal recovery
of system parameters in the absence of control inputs for marginally stable systems. Under similar
conditions, Tsiamis et al. (2019) prove the first result that integrates former system identification
results with a perturbation analysis for the Kalman filter to obtain error bounds on prediction. These
results only apply to stochastic systems subject to persistent excitation, which our stochastic-case
result does not require.

Prediction via improper learning. For strictly stable partially observed systems without process
noise, it is sufficient to learn a finite impulse response (FIR) filter on the inputs, as observed by
e.g., Hardt et al. (2016). Tu et al. (2017) give near-optimal sample complexity bounds for learning
a FIR filter under design inputs. Hazan et al. (2017, 2018); Arora et al. (2018) instead use spectral
filtering on the inputs to achieve regret bounds that apply in the presence of adversarial dynamics
and marginally stable systems, much like the present work. However, in the presence of process
noise, the regret compared to the optimal filter can grow linearly. This is an inherent limitation of
any FIR-based approach; see Lee and Zhang (2019) for a discussion.

If the LDS is observable, then the associated Kalman filter is strictly stable (Anderson and
Moore, 2012). Using this, Kozdoba et al. (2019) show that in this case, the Kalman filter can be
arbitrarily well-approximated by an autoregressive (AR) model. Anava et al. (2013) give algorithms
for prediction in ARMA models with adversarial noise. However, their results hold under conditions
more stringent than even strict stability. Kozdoba et al. (2019) show that online gradient descent
on the AR model gives regret bounds scaling with the size of the observations. As discussed in
Section 2.4, in the marginally stable case, this could be polynomial in the time 𝑇 . Lee and Zhang
(2019) give guarantees for learning an autoregressive filter in a stricter notion of ℋ∞ norm, but
require the system to be strictly stable. In concurrent work, Tsiamis and Pappas (2020) establish
polylogarithmic regret in the marginally stable case, but their guarantee depends on the coefficients
of the characteristic polynomial, which may be exponentially large (see Section 5.3 and C.1).

Online learning. We use tools from online learning (see Hazan et al. (2016); Shalev-Shwartz
et al. (2012); Cesa-Bianchi and Lugosi (2006) for a survey). The standard regret bounds for online
least-squares scale with an upper bound on the maximum instantaneous loss, through the gradient
norm or the exp-concavity factor Zinkevich (2003); Hazan et al. (2007). Our core argument shows
that this quantity is sublinear in 𝑇 in the LDS setting. This cannot be true for online least-squares
for arbitrary polynomially growing 𝑥𝑡, so black-box results cannot apply; see Appendix A. We
note the similarity of our approach to Rakhlin and Sridharan (2012, 2013) where the authors show
that approximate knowledge of cost functions or gradients revealed one step in advance can give
“beyond worst-case” regret bounds.

4. Our results

4.1. Fully-observed LDS

For prediction in a fully-observed LDS, we show that we can achieve sublinear regret in the adver-
sarial setting and polylogarithmic regret in the stochastic setting.

We will make the following assumptions for both theorems:
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Assumption 2 The linear dynamical system

𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐵𝑢𝑡−1 + 𝜉𝑡

with 𝑢𝑡 ∈ R𝑚, 𝑥𝑡, 𝜉𝑡 ∈ R𝑑, 𝐴 ∈ R𝑑×𝑑, 𝐵 ∈ R𝑑×𝑚 satisfies the following:

∙ The initial state is bounded: ‖𝑥0‖ ≤ 𝐶0.

∙ The inputs are bounded: ‖𝑢𝑡‖ ≤ 𝐶𝑢.

∙ The perturbations are bounded: ‖𝜉𝑡‖ ≤ 𝐶𝜉 for 1 ≤ 𝑡 ≤ 𝑇 .

∙ ‖(𝐴,𝐵)‖𝐹 ≤ 𝑅, 𝜌(𝐴) ≤ 1, and 𝐴 can be written in Jordan form as 𝐴 = 𝑆𝐽𝑆−1 where 𝐽
has Jordan blocks of size ≤ 𝑟 and ‖𝑆‖2

∥∥𝑆−1
∥∥
2 ≤ 𝐶𝐴.

∙ 𝐵 satisfies ‖𝐵‖2 ≤ 𝐶𝐵 .

We will let 𝐶sys = max{𝐶0, 𝐶𝐴, 𝐶𝐵, 𝐶𝜉}.

We note that the bound on the perturbations 𝐶𝜉 is necessary. This prevents, for example, the
pathological case when the system switches between two very different linear dynamical systems
𝑥𝑡 = 𝑥𝑡−1 + 𝑢𝑡−1 and 𝑥𝑡 = −(𝑥𝑡−1 + 𝑢𝑡−1) and linear regret is unavoidable. We also note
that ‖𝑆‖2

∥∥𝑆−1
∥∥
2 (the condition number of 𝑆) is a standard quantity that often appears in learning

guarantees.
Our main theorem in the adversarial setting is the following; see the appendix more precise

dependences on individual constants.

Theorem 3 (Sublinear regret in the adversarial setting) Suppose Assumption 2 holds. Then,
there is an explicit choice of regularizer 𝜇 such that Algorithm 1 achieves regret

𝑅𝑇 (𝐴,𝐵) ≤ 𝑇
2𝑟+1
2𝑟+2 poly(𝐶sys, 𝑅, (𝑑 + 𝑚), (ln𝑇 ), (ln𝐶sys)) (4)

+ 𝑇
1

2𝑟+2 poly(𝐶sys, 𝑅, (𝑑 + 𝑚)𝑟, (ln𝑇 )𝑟, (ln𝐶sys)
𝑟).

If 𝐶sys = 𝑂(1) and ‖(𝐴,𝐵)‖𝐹 = 𝑂(𝑑 + 𝑚),

𝑅𝑇 (𝐴,𝐵) = 𝑂
(
(𝑑 + 𝑚)4𝑑2 𝑟2 · 𝑇

2𝑟+1
2𝑟+2 ln3 𝑇

)
as 𝑇 →∞. The dependence of 𝜇 on 𝑇 is 𝑇

2𝑟+1
2𝑟+2 .

Remark This is a pessimistic bound. The worst case is when the eigenvalues of the large Jordan
blocks are close to 1. If

∥∥∥𝐴𝑘
∥∥∥ ≤ 𝐶 ′𝑘𝑟

′
, then we can replace the dependence on 𝑟 with 𝑟′, and

instead suffer a poly(𝐶 ′) dependence.

In the case where 𝐴 is diagonalizable, Theorem 3 implies 𝑂̃(𝑇 3/4) regret:

Corollary 4 Suppose Assumption 2 holds, and further suppose 𝐴 is diagonalizable. There is an
explicit choice of regularizer 𝜇 such that Algorithm 2 achieves regret

𝑅𝑇 (𝐴,𝐵) ≤ 𝑇 3/4 poly(𝐶sys, 𝑅, 𝑑,𝑚, ln𝑇 ). (5)

When 𝐶sys = 𝑂(1) and 𝑅 = 𝑂(𝑑 + 𝑚), we have 𝑅𝑇 (𝐴,𝐵) = 𝑂((𝑑 + 𝑚)3.5𝑑 𝑇 3/4 ln3 𝑇 ) as
𝑇 →∞. The dependence of 𝜇 on 𝑇 is 𝑇 3/4.

8



NO-REGRET PREDICTION IN MARGINALLY STABLE SYSTEMS

Our main theorem in the stochastic setting is the following.

Theorem 5 (Polylogarithmic regret in stochastic setting) Suppose Assumption 2 holds, and fur-
ther that 𝜉𝑡 is a random variable satisfying E[𝜉𝑡|𝜉𝑡−1, . . . , 𝜉1] = 0. Then with probability at least
1− 𝛿, Algorithm 2 with 𝜇 = 1 achieves regret

𝑅𝑇 (𝐴,𝐵) ≤ poly (𝐶sys, 𝑅, 𝑑𝑟, (ln𝑇 )𝑟, (ln𝐶sys)
𝑟, ln (1/𝛿)) . (6)

Note that there is no requirement that the noise be i.i.d., nor that their covariance is greater than some
multiple of the identity. At the expense of a ln𝑇 factor, the theorem can be applied to subgaussian
random variables, by first conditioning on the event that ‖𝜉𝑡‖ ≤ 𝐶𝜉 for all 1 ≤ 𝑡 ≤ 𝑇 .

4.2. Partially-observed LDS

Our assumptions in the partially observed setting are the following. We will assume that the noise is
i.i.d. Gaussian; this is the analogue of the linear-quadratic estimation (LQE) setting where we only
care about predicting the observation.

Assumption 6 The partially-observed LDS defined by (2)–(3) satisfies the following: The pertur-
bations are i.i.d. Gaussian with 𝜉𝑡 ∼ 𝑁(0,Σ𝑥) and 𝜂𝑡 ∼ 𝑁(0,Σ𝑦). Moreover, the system matrix
pair (𝐴,𝐶) is observable (i.e., 𝑂𝑛 = [𝐶;𝐶𝐴; . . . ;𝐶𝐴𝑛−1] has rank 𝑛)2, the pair (𝐴,Σ

1/2
𝑥 ) is

controllable (i.e., [Σ
1/2
𝑥 , 𝐴Σ

1/2
𝑥 , . . . , 𝐴𝑛−1Σ

1/2
𝑥 ] has rank 𝑛), and Σ𝑦 ≻ 0.

Assumption 7 The partially-observed LDS defined by (2)–(3) satisfies the following:

∙ The initial state has steady-state covariance: 𝑥0 ∼ 𝒩 (𝑥−0 ,Σ0) with ‖𝑥−0 ‖ ≤ 𝐶0.

∙ The inputs are bounded: ‖𝑢𝑡‖ ≤ 𝐶𝑢.

∙ The perturbations are Gaussian: 𝜉𝑡 ∼ 𝑁(0,Σ𝑥) and 𝜂𝑡 ∼ 𝑁(0,Σ𝑦).

∙ ‖𝐴‖𝐹 ≤ 𝑅, 𝜌(𝐴) ≤ 1, and 𝐴 can be written in Jordan form as 𝐴 = 𝑆𝐽𝑆−1 where 𝐽 has
Jordan blocks of size ≤ 𝑟 and ‖𝑆‖2

∥∥𝑆−1
∥∥
2 ≤ 𝐶𝐴.

∙ 𝐵 and 𝐶 satisfy ‖𝐵‖2 ≤ 𝐶𝐵 and ‖𝐶‖2 ≤ 𝐶𝐶 .

We will let 𝐶sys = max{𝐶0, 𝐶𝐴, 𝐶𝐵, 𝐶𝐶 , ‖Σ0‖ , ‖Σ𝑥‖ , ‖Σ𝑦‖}.

For simplicity, our result assumes that 𝑥0 has steady-state covariance. If this is not the case, then
one would need quantitative bounds on how quickly the time-varying Kalman filter converges to the
steady-state Kalman filter, to bound the additional regret incurred by using a fixed filter.

The theorem also depends on the sufficient length 𝑅(𝜀) of the Kalman filter, which is roughly
the length at which we can truncate the unrolled filter to incur an error of at most 𝜀; see Definition 33
for a precise account. If the filter decays exponentially, then 𝑅(𝜀) = 𝑂 (ln (1/𝜀)). It remains an
interesting problem to handle the case where the filter is also marginally stable.

2. We use [𝐴1;𝐴2; . . .] to denote a block-column matrix.
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Theorem 8 (Polylogarithmic regret for LQE) Assume Assumptions 6 and 7. Suppose the corre-
sponding Kalman filter is given by 𝐴KF, 𝐵KF, and 𝐶KF. Let 𝑅(·) denote the sufficient length of the

Kalman filter system, and choose ℓ = 𝑅

Å
𝛿
[
𝑇 𝑟𝐶𝐶𝐶𝐴

(
𝐶𝐵𝐶𝑢 + 10 ‖Σ𝑥‖

√
𝑑 ln
Ä
𝑇
𝛿

ä)]−1
ã

. Let

(𝐹𝑡, 𝐺𝑡) = 𝐶KF𝐴
𝑡
KF𝐵KF be the unrolled Kalman filter, and suppose

∑ℓ−1
𝑡=0 ‖𝐹𝑡‖2 + ‖𝐺𝑡‖2 ≤ 𝑅2.

Then with probability 1− 𝛿, Algorithm 3 with 𝜇 = 1 achieves regret

𝑅𝑇 (𝐴,𝐵,𝐶) ≤ poly (ℓ, 𝐶sys, 𝑅, (𝑑 + 𝑚)𝑟, (ln𝑇 )𝑟, (ln𝐶)𝑟, ln (1/𝛿)) . (7)

5. Outlines of main proofs

In this section, we explain the key ideas behind our results, using a fully observable LDS with
adversarial noise as an example. For simplicity, we sketch the proof in the case that the matrix 𝐴 is
diagonalizable, matrix 𝐵 is zero, and ‖𝜉𝑠‖2 = 𝑂(1), which already captures the core difficulty of
the problem. In the proof sketch, we assume that all relevant parameters for the LDS are 𝑂(1). Full
proofs are in Sections B–E.

5.1. Regret bounds for online least squares with large inputs

Our starting point is the regret bound for online least squares, Theorem 1, which depends on the
maximum prediction error max0≤𝑡≤𝑇−1 ‖𝑦𝑡 −𝐴𝑡𝑥𝑡‖2. To obtain sublinear regret using this bound,
we must show that the maximum prediction error is 𝑜(𝑇/ log 𝑇 ). We show in Theorem 12 that
this holds as long as the following structural condition (formally defined in Definition 11) on the
regressor sequence holds:

Definition 9 (Anomaly-free sequences; informal) A sequence (𝑥𝑡)𝑡<𝑇 is anomaly-free if when-
ever the projection of any 𝑥𝑡 onto a unit vector 𝑤 is large, then there must have been Ω(|𝑤⊤𝑥𝑡|)
indices 𝑠 < 𝑡 for which the projection of 𝑥𝑠 to 𝑤 has norm at least Ω(|𝑤⊤𝑥𝑡|).

Intuitively, the inputs are anomaly-free if no input 𝑥𝑡 is large in a direction where we have not
already seen many inputs. Note this does not hold in the general case of polynomially-bounded
𝑥𝑡; see the counterexample in Appendix A. To prove Theorem 12, we first express 𝐴𝑡𝑥𝑡 − 𝑦𝑡 in
terms of the preceding states and errors {𝑥𝑠, 𝜉𝑠}𝑠<𝑡 (Lemma 13). Next, we show this expression
is bounded in the 1-dimensional case (Lemma 14). Finally, we reduce the general 𝑑-dimensional
case to the 1-dimensional case by diagonalizing the sample covariance matrix

∑𝑡−1
𝑠=0 𝑥𝑠𝑥

⊤
𝑠 . In the

reduction, we project onto the eigendirections; this is why we want there to be many large inputs
when projected to any direction 𝑤.

Note that Theorem 12 is stated more generally, allowing Ω(|𝑤⊤𝑥𝑡|𝛼) indices where |𝑤⊤𝑥𝑠| is
large. This allows superlinear growth in the 𝑥𝑡, and hence can be applied to dynamical systems with
matrices having Jordan blocks.

5.2. Proving LDS states are anomaly-free

Our main result (Theorem 3) follows by verifying that LDS states are anomaly-free. The main idea
is that the evolution of the LDS ensures that 𝑥𝑡 is always approximately a linear combination of past
states with small coefficients. More precisely, we need 𝑥𝑡 =

Ä∑𝑡−1
𝑠=0 𝑎𝑠𝑥𝑠

ä
+𝑣 with small

∑𝑡−1
𝑠=0 |𝑎𝑠|

and ‖𝑣‖2 (Lemma 20). Once we have this, projecting onto 𝑤 gives 𝑤⊤𝑥𝑡 =
Ä∑𝑡−1

𝑠=0 𝑎𝑠𝑤
⊤𝑥𝑠
ä
+𝑤⊤𝑣,

10
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showing that one of the projections |𝑤⊤𝑥𝑠| is large. To obtain many indices 𝑠 for which this is
large, we apply the same argument to the 𝑘-step dynamical systems defined by 𝐴2, 𝐴3, and so
forth, keeping track of how many times an index can be overcounted. This shows the states are
anomaly-free and finishes the proof of Theorem 3.

We provide two approaches to decompose 𝑥𝑡 into previous states as needed. The simpler ap-
proach provides coefficients of size exp(𝑑), while a more involved approach provides poly(𝑑) sized
coefficients. In order to have a poly(𝑑) dependence in the final regret bound, the latter approach is
necessary.

5.3. exp(𝑑)-sized coefficients using the Cayley-Hamilton theorem

To show that 𝑥𝑡 is always a linear combination of previous states with small coefficients, a first idea
is to use the Cayley-Hamilton theorem. In the noiseless case, the theorem implies that the 𝑥𝑡 satisfy
a recurrence 𝑥𝑡 =

∑𝑑
𝑖=1 𝑎𝑖𝑥𝑡−𝑖, where 𝑎𝑖 are the coefficients of the characteristic polynomial of 𝐴.

Adding the noise back, we may get an error term 𝑣 of size
∑𝑑

𝑖=1 |𝑎𝑖| by inspecting how the noise
propagates through this recurrence. Even though

∑𝑑
𝑖=0 |𝑎𝑖| can be as large as 2𝑑, this suffices to

get a bound that is sublinear in 𝑇 while exponential in 𝑑. For ease of reading, we first present this
weaker result in Lemma 17 in Section C.1.3

5.4. poly(𝑑)-sized coefficients via volume doubling

As an alternative, we now present a novel volume-doubling argument leading to a recurrence with
only poly(𝑑) coefficient size, which may be of independent interest. For the ease of presentation,
we introduce some notation below:

∙ ℓ1-span of 𝑆. ∆(𝑆) := {∑𝑢∈𝑆 𝑎𝑢𝑢 : 𝑎𝑢 ∈ R,∑𝑢∈𝑆 |𝑎𝑢| ≤ 1}. For short, we denote ∆𝑡 :=
∆
(
{𝑥𝑠}𝑡𝑠=0

)
.

∙ Norm with respect to ∆(𝑆). ‖𝑥‖Δ(𝑆) := min𝑎𝑠,𝑣
∑𝑡

𝑠=0 |𝑎𝑠|+‖𝑣‖2 s.t. 𝑥 =
(∑𝑡

𝑠=0 𝑎𝑠𝑥𝑠
)
+

𝑣 for 𝑥𝑠 ∈ 𝑆.

∙ Set of “outlier” indices. 𝐼𝑡 :=
¶

0 ≤ 𝑠 ≤ 𝑡 : ‖𝑥𝑠‖Δ𝑠−1
≥ 2

ln 2𝑑
©

.

Now, our goal is summarized as bounding ‖𝑥𝑡‖Δ𝑡−1
. To this end, we first prove a upper bound

the size of |𝐼𝑡| using a general potential-based argument, and then relate it to the norm ‖𝑥𝑡‖Δ𝑡−1
by

unrolling the dynamics appropriately.

Bounding the number of outliers. We have to show that |𝐼𝑡| is at most polynomial in 𝑑 and
logarithmic in 𝑡. We prove a general lemma that if ‖𝑥‖Δ(𝑆) is large enough (‖𝑥‖Δ(𝑆) ≥

2
ln 2𝑑),

then adding 𝑥 to the 𝑆 increases its volume significantly: Vol (∆(𝑆 ∪ {𝑥})) ≥ 2 Vol (∆(𝑆))
(Lemma 22). Applied to our situation, this shows that if ‖𝑥𝑡‖Δ𝑡−1

≥ 2
ln 2𝑑, then Vol(∆𝑡) ≥

2 Vol(∆𝑡−1). The total volume is bounded by (max1≤𝑠≤𝑡 ‖𝑥𝑠‖)𝑑, so the number of outliers at
or before time 𝑡 is bounded by log2

î
(max1≤𝑠≤𝑡 ‖𝑥𝑠‖)𝑑

ó
, which is polynomial in 𝑑 and logarithmic

in 𝑡 (Lemma 23).

3. We note that an alternate approach to the one we present below is to find a multiple of the characteristic polynomial
with small coefficients; see Appendix G.

11



NO-REGRET PREDICTION IN MARGINALLY STABLE SYSTEMS

Bounding
∑𝑡−1

𝑠=0 |𝑎𝑠| and ‖𝑣‖2. We obtain an inequality showing that ‖𝑥𝑡‖Δ𝑡−1
is not much larger

than ‖𝑥𝑡−𝑘‖Δ𝑡−𝑘−1
for small delays 𝑘. To see this, note that 𝑥𝑡 is generated from 𝑥𝑡−𝑘 by evolving

the LDS 𝑘 times, keeping track of noise. The contribution from the noise here is at most poly(𝑘).
Now, it suffices to find a small 𝑘 such that ‖𝑥𝑡−𝑘‖Δ𝑡−𝑘−1

is small, or in other words 𝑡 − 𝑘 is not
an outlier. Because the number of outliers is 𝑂(𝑑 log 𝑡), we can choose 𝑘 = 𝑂(𝑑 log 𝑇 ), and we
conclude ‖𝑥𝑡‖Δ𝑡−1

is at most poly(𝑑 log 𝑡). This argument is formalized in the proof of Lemma 20.

Controlling overcounting using prime index gaps. One technicality is that we have to apply the
same argument to the dynamical systems 𝑥𝑡 ≈ 𝐴𝑝𝑥𝑡−𝑝 for different values of 𝑝. For each value of
𝑝, we get an index 𝑡 − 𝑝𝑘 such that 𝑤⊤𝑥𝑡−𝑝𝑘 is large. To make sure we obtain enough indices this
way, in the proof of Lemma 26 we only take 𝑝 to be prime, and we use a lower bound on primorials∏

prime 𝑝≤𝑋 𝑝 to show that we can collect enough distinct indices.

5.5. Stochastic cases

Finally, we provide a brief comment on how to prove Theorems 5 and 8. In the fully-observed
setting, we can use a martingale argument, rather than the structural result, to obtain poly log(𝑇 )
regret. To do this, we show that with high probability, max0≤𝑡≤𝑇−1 ‖𝐴𝑡𝑣𝑡 − 𝑣𝑡+1‖ is bounded by
poly log(𝑇 ) (Lemma 28).

Let 𝐴𝑡 be the matrix predicted by online least squares with regularization parameter 𝜇. By
Lemma 13, 𝐴𝑡𝑥𝑡−𝑥𝑡+1 =

∑𝑡−1
𝑠=0 𝜉𝑠+1𝑣

⊤
𝑠 Σ−1

𝑡 𝑣𝑡−𝜇𝐴Σ−1
𝑡 𝑥𝑡−𝜉𝑡+1. The main term we need to bound

is the first one. Let 𝑏𝑠 = 𝑣⊤𝑠 Σ−1
𝑡 𝑣𝑡. Pretending for a moment that 𝑏𝑠 is ℱ𝑠 = 𝜎(𝜉1, . . . , 𝜉𝑠)-valued,

by Azuma’s inequality it suffices to bound the variation
∑𝑡−1

𝑠=0 𝑏
2
𝑠. We have already shown that

𝑣𝑡 =
∑𝑡−1

𝑠=0 𝑎𝑠𝑣𝑠 with
∑𝑡−1

𝑠=0 𝑎
2
𝑠 ≤
Ä∑𝑡−1

𝑠=0 |𝑎𝑠|
ä2 ≤ 𝑂(1), so we can bound the variation

∑𝑡−1
𝑠=0 𝑏

2
𝑠 in

terms of
∑𝑡−1

𝑠=0

∥∥∥∥Σ− 1
2

𝑡 𝑣𝑠

∥∥∥∥2. By definition Σ𝑡 = 𝜇𝐼 +
∑𝑡−1

𝑠=0 𝑣𝑠𝑣
⊤
𝑠 , so

∑𝑡−1
𝑠=0

∥∥∥∥Σ− 1
2

𝑡 𝑣𝑠

∥∥∥∥2 ≤ 𝑑.

However, we can’t apply Azuma’s inequality directly, since 𝑏𝑠 depends on 𝑣𝑡, and thus is notℱ𝑠-
valued. However, the dependence on non-ℱ𝑠-valued random variables is only through 𝑧𝑡 = Σ−1

𝑡 𝑣𝑡,
which does not depend on 𝑠, so we can use Azuma’s inequality on an 𝜀-net of possible values for
𝑧 = Σ−1

𝑡 𝑣𝑡. More precisely, note that 𝑧𝑡 has the property that
∑𝑡−1

𝑠=0(𝑣
⊤
𝑠 𝑧𝑡)

2 is small, so it suffices
to bound

∑𝑡−1
𝑠=0 𝜉𝑠+1(𝑣

⊤
𝑠 𝑧) for a 𝜀-net of 𝑧 such that

∑𝑡−1
𝑠=0(𝑣

⊤
𝑠 𝑧)2 is small. These 𝑧’s live in a

𝑑-dimensional space, so we only incur factors of 𝑑.
For the partially-observed setting, we reduce to Theorem 5 by lifting the state: we choose a large

enough horizon ℓ such that truncating the unrolled Kalman filter to length ℓ incurs an approximation
error of at most 𝜀. Then, by letting the state space be the past ℓ observations and inputs, the par-
tially observed LDS is approximately described by a fully-observed LDS. This incurs an additional
polynomial factor in the length ℓ.

6. Conclusion

We have shown that online least-squares, with a carefully chosen regularization and a refined analy-
sis, has a sublinear regret guarantee in marginally stable linear dynamical systems, even in the most
difficult cases when the state can grow polynomially. In the stochastic setting, adopting the same
view of low-regret prediction as opposed to parameter recovery, we have shown logarithmic regret
bounds and bypassed usual isotropic noise assumptions. We list a few plausible lines of further
inquiry in appendix H.
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Appendix A. Impossibility of sublinear regret without the LDS

For sake of completeness, we include a simple one-dimensional counterexample showing the insuf-
ficiency of black-box regret bounds for online least-squares when it is only assumed that an upper
bound for the regressors grows with time. Even without adversarial perturbations, this information-
theoretic lower bound shows that we require a refined notion of gradual growth of regressors 𝑥𝑡, as
in the structural results of Section 5.2, to achieve sublinear regret.

Proposition 10 There is a joint distribution over 𝑎 ∈ [−1, 1] and length-𝑇 sequences 𝑥𝑡, 𝑦𝑡 ∈ R,
for which 𝑦𝑡 = 𝑎𝑥𝑡 and |𝑥𝑡| ≤ 𝑡, but any online algorithm incurs at least 𝑇 2 expected regret.

Proof We construct this distribution, choosing 𝑎 = ±1 with equal probability. We choose 𝑥𝑡 =
𝑦𝑡 = 0 for all 1 ≤ 𝑡 ≤ 𝑇 − 1, then choose 𝑥𝑇 = 𝑇 , so that 𝑦𝑇 = 𝑎𝑥𝑇 . In this example, at time 𝑇 ,
all previous feedback (𝑥𝑡, 𝑦𝑡) is independent of 𝑎, so the best prediction at time 𝑇 is 𝑦𝑇 = 0, which
suffers expected least-squares loss 𝑇 2.

Appendix B. Anomaly-free inputs imply sublinear OLS regret

We begin by defining a structural condition on OLS inputs, whereby if any time 𝑥𝑡 is large in a
direction then many previous 𝑥𝑠’s are also large in that direction.
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Definition 11 (Anomaly-free sequences) A sequence (𝑥𝑡) is (𝑐, 𝑐1, 𝑐2, 𝛼)-anomaly-free if for any
𝑡 and any unit vector 𝑤 ∈ R𝑑, if |𝑤⊤𝑥𝑡| = 𝑀 > 𝑐, there exist at least 𝑐1𝑀𝛼 indices 𝑠 < 𝑡 such
that |𝑤⊤𝑥𝑠| ≥ 𝑐2𝑀 .

We show that when every 𝑦𝑡 is obtained from anomaly-free 𝑥𝑡 from a fixed linear transformation,
plus a bounded perturbation, then OLS attains sublinear regret.

Theorem 12 For constants 𝐶𝜉, 𝑐, 𝑐1, 𝑐2, 𝛼 ∈ (0, 1], 𝑐1 ≤ 1
2 , 𝑐 ≥ 1

𝑐1
, suppose an online least-

squares problem satisfies the following conditions:

1. There exists 𝐴* ∈ R𝑛×𝑚 such that for all 𝑡, 𝑦𝑡 = 𝐴*𝑥𝑡 + 𝜉𝑡 with ‖𝜉𝑡‖ ≤ 𝐶𝜉.

2. The input vectors are bounded: ‖𝑥𝑡‖ ≤ 𝐵.

3. (𝑥𝑠)𝑠<𝑡 is (𝑐, 𝑐1, 𝑐2, 𝛼)-anomaly-free.

Then online least squares with regularization parameter 𝜇 incurs regret

𝑅𝑡(𝐴) ≤ 𝜇 ‖𝐴‖2𝐹 + 𝑂

(
𝑚3 max

𝐶𝜉𝑐
2𝑡

𝜇
+ ‖𝐴‖2 𝑐,

𝐶𝜉

𝑐22
,

1

𝑐
1

𝛼+2

1 𝑐
2

𝛼+2

2

(
‖𝐴‖2 𝜇

1
𝛼+2 +

𝐶𝜉𝑡
1
2

𝜇
1
2
− 1

𝛼+2

)
2

· ln
Ç

1 +
𝑡𝐵2

𝑚

å)
.

If (1a) 𝜇 ≥ 𝑐
4(𝛼+2)
𝛼+4 𝑐

2
𝛼+4

1 𝑐
4

𝛼+4

2 𝑡
𝛼+2
𝛼+4 , (1b) ‖𝐴‖2 ≤

𝐶𝜉𝑐𝑡
𝜇 , (2) 𝜇 ≤ 𝑐

4(𝛼+2)
𝛼

2 𝑡
𝛼+2
𝛼

𝑐
2
𝛼
1

, and (3) 𝜇 ≤ 𝑡
𝐶2

𝜉
‖𝐴‖2 ,

then 𝑅𝑡(𝐴) ≤ 𝜇 ‖𝐴‖2𝐹 + 𝑂

(
𝑚3𝐶2

𝜉 𝑡

𝑐
2

𝛼+2
1 𝑐

4
𝛼+2
2 𝜇

1− 2
𝛼+2

)
. If ‖𝐴‖𝐹 = 𝑂(𝑚), 𝐶𝜉 = 𝑂(1), and 𝜇 =

𝑚
𝛼+2
𝛼+1 𝑡

𝛼+2
2(𝛼+1)

𝑐
1

𝛼+1
1 𝑐

2
𝛼+1
2

satisfies these conditions, then

𝑅𝑡(𝐴) = 𝑂

Ñ
𝑚2+ 1

𝛼+1 𝑡
𝛼+2

2(𝛼+1) ln
Ä
1 + 𝑡𝐵2

𝑚

ä
𝑐

1
𝛼+1

1 𝑐
2

𝛼+1

2

é
(8)

Note that if 𝑡→∞ while the other constants are fixed, the inequalities do hold for the choice of 𝜇.
The only inequality that is not immediately clear is (1a); it follows from comparing the exponents
of 𝑡: 𝛼+2

2(𝛼+1) ≥
𝛼+2
𝛼+4 for 𝛼 ≤ 1.

By Theorem 1, it suffices to bound ‖𝐴𝑡𝑥𝑡 − 𝑦𝑡‖, which is done in Lemma 15. We start with the
following calculation.

Lemma 13 Let 𝑥𝑡 ∈ R𝑚, 𝐴 ∈ R𝑛×𝑚, 𝜉𝑡 ∈ R𝑛 for 0 ≤ 𝑠 ≤ 𝑡 − 1. Suppose 𝑦𝑠 = 𝐴𝑥𝑠 + 𝜉𝑠 for
each 0 ≤ 𝑠 ≤ 𝑡− 1. Let 𝐴𝑡 = argmin𝐴∈R𝑛×𝑚

î
𝜇 ‖𝐴‖2𝐹 +

∑𝑡−1
𝑠=0 ‖𝑦𝑡 −𝐴𝑥𝑡‖22

ó
. Let

Σ𝑡 = 𝜇𝐼𝑚 +
𝑡−1∑
𝑠=0

𝑥𝑠𝑥
⊤
𝑠 .

Then

𝐴𝑡𝑥𝑡 − 𝑦𝑡 =
𝑡−1∑
𝑠=0

𝜉𝑠𝑥
⊤
𝑠 Σ−1

𝑡 𝑥𝑡 − 𝜇𝐴Σ−1
𝑡 𝑥𝑡 − 𝜉𝑡. (9)
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Proof We calculate

𝐴𝑡 = argmin𝐴

[
𝜇 ‖𝐴‖2𝐹 +

𝑡−1∑
𝑠=0

‖𝑦𝑡 −𝐴𝑥𝑡‖22

]

=
𝑡−1∑
𝑠=0

𝑦𝑠𝑥
⊤
𝑠 Σ−1

𝑡 =
𝑡−1∑
𝑠=0

Ä
𝐴𝑥𝑠𝑥

⊤
𝑠 Σ−1

𝑡 + 𝜉𝑠𝑥
⊤
𝑠 Σ−1

𝑡

ä
𝐴 = 𝐴

(
𝑡−1∑
𝑠=0

𝑥𝑠𝑥
⊤
𝑠 + 𝜇𝐼𝑚

)
Σ−1
𝑡 =

𝑡−1∑
𝑠=0

𝐴𝑥𝑠𝑥
⊤
𝑠 Σ−1

𝑡 + 𝜇𝐴Σ−1
𝑡

𝐴𝑡 −𝐴 =
𝑡−1∑
𝑠=0

𝜉𝑠𝑣
⊤
𝑠 Σ−1

𝑡 − 𝜇𝐴Σ−1
𝑡

𝐴𝑡𝑥𝑡 − 𝑦𝑡 = (𝐴𝑡 −𝐴)𝑥𝑡 − 𝜉𝑡

=
𝑡−1∑
𝑠=0

𝜉𝑠𝑥
⊤
𝑠 Σ−1

𝑡 𝑥𝑡 − 𝜇𝐴Σ−1
𝑡 𝑥𝑡 − 𝜉𝑡.

We now bound the size of the residual when condition 3 from Theorem 12 holds. We focus on
the one-dimensional case in Lemma 14 where the scale of the unknown parameter is 𝑎. Afterwards,
we bound the residuals in the general case by diagonalization and reduction to the one-dimensional
result in Lemma 15.

Lemma 14 Let 𝑐, 𝑐1, 𝑐2 be constants, 𝑐1 ≤ 1
2 , 𝑐 ≥ 1

𝑐1
. Let 0 < 𝛼 ≤ 1. Suppose that (𝑥𝑠)𝑠<𝑡 is

(𝑐, 𝑐1, 𝑐2, 𝛼)-anomaly-free and suppose |𝜉𝑠| ≤ 𝐶𝜉 for each 𝑠, then for 𝑎 > 0,

𝑡−1∑
𝑠=0

∣∣∣∣∣∣𝜉𝑠𝑥𝑠
(
𝜇 +

𝑡−1∑
𝑟=0

𝑥2𝑟

)−1

𝑥𝑡

∣∣∣∣∣∣+ 𝑎

∣∣∣∣∣∣𝜇
(
𝜇 +

𝑡−1∑
𝑠=0

𝑥2𝑠

)−1

𝑥𝑡

∣∣∣∣∣∣
≤ 𝑂

Ñ
max

𝐶𝜉𝑐
2𝑡

𝜇
+ 𝑎𝑐,

𝐶𝜉

𝑐22
,

1

𝑐
1

𝛼+2

1 𝑐
2

𝛼+2

2

(
𝑎𝜇

1
𝛼+2 +

𝐶𝜉𝑡
1
2

𝜇
1
2
− 1

𝛼+2

)
é

.

Recall, from Theorem 1, the univariate regret then scales as the square of this quantity plus a regu-

larization term scaling linearly in 𝜇. For the case 𝛼 = 1, to balance the terms, we set
Å

𝑡
1
2

𝜇
1
6

ã2
∼ 𝜇,

so 𝜇 = 𝑡
3
4 with regret ‹𝑂(𝑡

3
4 ).

Proof Let 𝑀 = max0≤𝑠≤𝑡−1 |𝑥𝑠|.
First suppose 𝑀 ≤ 𝑐. Then∣∣∣∣∣∣

𝑡∑
𝑠=0

𝜉𝑠𝑥𝑠

(
𝜇 +

𝑡−1∑
𝑟=0

𝑥2𝑟

)−1

𝑥𝑡

∣∣∣∣∣∣ ≤ 𝐶𝜉𝑐
2𝑡

𝜇

and the second term satisfies ∣∣∣∣∣∣𝜇
(
𝜇 +

𝑡−1∑
𝑠=0

𝑥2𝑠

)−1

𝑥𝑡

∣∣∣∣∣∣ ≤ 𝑐.
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Now suppose 𝑀 > 𝑐. Then there exists a subsequence 𝑥𝑖1 , . . . , 𝑥𝑖𝑛 where 𝑛 = ⌈𝑐1𝑀𝛼⌉ > 1
and 𝑖𝑗 < 𝑡, |𝑥𝑖𝑗 | ≥ 𝑐2𝑀 for each 𝑗. Let 𝑆 = {𝑖1, . . . , 𝑖𝑛}. We have

𝑛∑
𝑘=1

|𝑥𝑖𝑘 | ≤ ⌈𝑐1𝑀
𝛼⌉𝑀 = 𝑂(𝑐1𝑀

𝛼+1)
𝑛∑

𝑘=1

𝑥2𝑖𝑘 ≥ ⌈𝑐1𝑀
𝛼⌉ (𝑐2𝑀)2 = Ω(𝑐1𝑐

2
2𝑀

𝛼+2).

Thus

𝑡−1∑
𝑠=0

∣∣∣∣∣∣𝜉𝑠+1𝑥𝑠

(
𝜇 +

𝑡−1∑
𝑟=0

𝑥2𝑟

)−1
∣∣∣∣∣∣+ 𝑎

∣∣∣∣∣∣𝜇
(
𝜇 +

𝑡−1∑
𝑠=0

𝑥2𝑠

)−1
∣∣∣∣∣∣ ≤ 𝑎𝜇 + 𝐶𝜉

∑𝑡−1
𝑠=1 |𝑥𝑠|

𝜇 +
∑𝑡−1

𝑠=1 𝑥
2
𝑠

-
𝑎𝜇 + 𝐶𝜉(𝑐1𝑀

𝛼+1 +
∑

𝑖∈[𝑡−1]∖𝑆 |𝑥𝑖|)
𝜇 + 𝑐1𝑐22𝑀

𝛼+2 +
∑

𝑖∈[𝑡−1]∖𝑆 𝑥2𝑖

≤ max
0≤𝑥′

𝑖≤𝑀 for 1≤𝑖≤𝑡−1−𝑛

𝑎𝜇 + 𝐶𝜉(𝑐1𝑀
𝛼+1 +

∑𝑡−1−𝑛
𝑖=1 𝑥′𝑖)

𝜇 + 𝑐1𝑐22𝑀
𝛼+2 +

∑𝑡−1−𝑛
𝑖=1 𝑥′2𝑖

≤ max
0≤𝑥≤𝑀

𝑎𝜇 + 𝐶𝜉(𝑐1𝑀
𝛼+1 + (𝑡− 1− 𝑛)𝑥)

𝜇 + 𝑐1𝑐22𝑀
𝛼+2 + (𝑡− 1− 𝑛)𝑥2

where the last inequality follows by Jensen’s inequality since 𝑥 ↦→ 𝑥2 is convex (holding
∑𝑡−1−𝑛

𝑖=1 𝑥′𝑖
constant, the smallest value of

∑𝑡−1−𝑛
𝑖=1 𝑥′2𝑖 is attained when they are equal). Continuing,

≤ max
0≤𝑥≤𝑀

Ç
𝐶𝜉𝑐1𝑀

𝛼+1

𝜇 + 𝑐1𝑐22𝑀
𝛼+2

+
𝑎𝜇 + 𝐶𝜉(𝑡− 1− 𝑛)𝑥

𝜇 + 𝑐1𝑐22𝑀
𝛼+2 + (𝑡− 1− 𝑛)𝑥2

å
≤ max

0≤𝑥≤𝑀

Ç
𝐶𝜉𝑐1𝑀

𝛼+1

𝜇 + 𝑐1𝑐22𝑀
𝛼+2

+
𝑎𝜇 + 𝐶𝜉𝑡𝑥

𝜇 + 𝑐1𝑐22𝑀
𝛼+2 + 𝑡𝑥2

å
because 𝑥 ↦→ 𝑎𝑥

𝑏+𝑐𝑥 is increasing for 𝑎, 𝑏, 𝑐 > 0 and 𝑥 ≥ 0. Thus

𝑡−1∑
𝑠=0

∣∣∣∣∣∣𝜉𝑠𝑥𝑠
(
𝜇 +

𝑡−1∑
𝑟=0

𝑥2𝑟

)−1

𝑥𝑡

∣∣∣∣∣∣+ 𝑎

∣∣∣∣∣∣𝜇
(
𝜇 +

𝑡−1∑
𝑠=0

𝑥2𝑠

)−1

𝑥𝑡

∣∣∣∣∣∣
- 𝑀 · max

0≤𝑥≤𝑀

Ç
𝐶𝜉𝑐1𝑀

𝛼+1

𝜇 + 𝑐1𝑐22𝑀
𝛼+2

+
𝑎𝜇 + 𝐶𝜉𝑡𝑥

𝜇 + 𝑐1𝑐22𝑀
𝛼+2 + 𝑡𝑥2

å
≤ max

0≤𝑥≤𝑀

Ç
𝐶𝜉

𝑐22
+

𝑎𝑀𝜇 + 𝐶𝜉𝑀𝑡𝑥

𝜇 + 𝑐1𝑐22𝑀
𝛼+2 + 𝑡𝑥2

å
Applying the weighted weighted arithmetic-geometric mean inequality, the second term is bounded
by

𝑎𝑀𝜇

Å
1

𝜇

ã𝛼+1
𝛼+2

Ç
1

𝑐1𝑐22𝑀
𝛼+2

å 1
𝛼+2

+ 𝐶𝜉𝑀𝑡𝑥

Å
1

𝜇

ã 1
2
− 1

𝛼+2

Ç
1

𝑐1𝑐22𝑀
𝛼+2

å 1
𝛼+2
Å

1

𝑡𝑥2

ã 1
2

≤ 1

𝑐
1

𝛼+2

1 𝑐
2

𝛼+2

2

(
𝑎𝜇

1
𝛼+2 +

𝐶𝜉𝑡
1
2

𝜇
1
2
− 1

𝛼+2

)
.

Now we are ready to bound (9) in the multidimensional case.

18



NO-REGRET PREDICTION IN MARGINALLY STABLE SYSTEMS

Lemma 15 Suppose the conditions specified in Theorem 12 are satisfied, then for each 0 ≤ 𝑡 ≤
𝑇 − 1,

‖𝐴𝑡𝑥𝑡 − 𝑦𝑡‖ ≤ 𝑂

Ñ
𝑚max

𝐶𝜉𝑐
2𝑡

𝜇
+ ‖𝐴‖2 𝑐,

𝐶𝜉

𝑐22
,

1

𝑐
1

𝛼+2

1 𝑐
2

𝛼+2

2

(
‖𝐴‖2 𝜇

1
𝛼+2 +

𝐶𝜉𝑡
1
2

𝜇
1
2
− 1

𝛼+2

)
é

.

Proof We bound each of the terms in (9).
Because

∑𝑡−1
𝑠=0 𝑥𝑠𝑥

⊤
𝑠 is symmetric, we can find an orthogonal matrix 𝑈 such that 𝑈

Ä∑𝑡−1
𝑠=0 𝑥𝑠𝑥

⊤
𝑠

ä
𝑈⊤

is diagonal. Let 𝑧𝑠 = 𝑈𝑥𝑠. Then

𝑡−1∑
𝑠=0

𝜉𝑠𝑥
⊤
𝑠

(
𝜇𝐼𝑚 +

𝑡−1∑
𝑟=0

𝑥𝑟𝑥
⊤
𝑟

)−1

𝑥𝑡 =
𝑡−1∑
𝑠=0

𝜉𝑠𝑥
⊤
𝑠 𝑈

⊤
(
𝜇𝐼𝑚 +

𝑡−1∑
𝑟=0

𝑈𝑥𝑟𝑥
⊤
𝑟 𝑈

⊤
)−1

𝑈𝑥𝑡

=
𝑡−1∑
𝑠=0

𝜉𝑠𝑧
⊤
𝑠

(
𝜇𝐼𝑚 +

𝑡−1∑
𝑟=0

𝑧𝑟𝑧
⊤
𝑟

)−1

𝑧𝑡

=
𝑚∑
𝑖=1

𝑡−1∑
𝑠=0

𝜉𝑠𝑧𝑠𝑖

(
𝜇 +

𝑡−1∑
𝑟=0

𝑧2𝑟𝑖

)−1

𝑧𝑡𝑖 (10)

where we can “decouple” the coordinates because 𝜇𝐼 +
∑𝑡−1

𝑠=1 𝑧𝑠𝑧
⊤
𝑠 is diagonal. Similarly,

𝜇𝐴

(
𝜇𝐼𝑚 +

𝑡−1∑
𝑠=0

𝑥𝑠𝑥
⊤
𝑠

)−1

𝑥𝑡 = 𝜇𝐴𝑈⊤
(
𝜇𝐼 +

𝑡−1∑
𝑠=0

𝑧𝑠𝑧
⊤
𝑠

)−1

𝑧𝑡

=
𝑚∑
𝑖=1

(𝐴𝑈⊤)·𝑖𝜇

(
𝜇𝐼𝑚 +

𝑡−1∑
𝑠=0

𝑧2𝑠𝑖

)−1

𝑧𝑡𝑖 (11)∥∥∥∥∥∥𝜇𝐴
(
𝜇𝐼𝑚 +

𝑡−1∑
𝑠=0

𝑥𝑠𝑥
⊤
𝑠

)−1

𝑥𝑡

∥∥∥∥∥∥ ≤ max
1≤𝑖≤𝑚

∥∥∥(𝐴𝑈⊤)·𝑖
∥∥∥ 𝑚∑
𝑖=1

∣∣∣∣∣∣𝜇
(
𝜇𝐼 +

𝑡−1∑
𝑠=0

𝑧2𝑠𝑖

)−1

𝑧𝑡𝑖

∣∣∣∣∣∣
≤ ‖𝐴‖2

𝑚∑
𝑖=1

∣∣∣∣∣∣𝜇
(
𝜇𝐼𝑚 +

𝑡−1∑
𝑠=0

𝑧2𝑠𝑖

)−1

𝑧𝑡𝑖

∣∣∣∣∣∣
From the hypothesis of the lemma and the fact that 𝑧𝑡𝑖 = 𝑈𝑖·𝑥𝑡, we conclude that 𝑧𝑡𝑖 satisfies the
conditions of Lemma 14. Apply Lemma 14 to the 𝑧𝑡𝑖 to obtain bounds for

𝑡−1∑
𝑠=0

‖𝜉𝑠‖

∣∣∣∣∣∣𝑧𝑠𝑖
(
𝜇𝐼 +

𝑡−1∑
𝑟=0

𝑧2𝑟𝑖

)−1

𝑧𝑡𝑖

∣∣∣∣∣∣+ ‖𝐴‖2
∣∣∣∣∣∣𝜇
(
𝜇𝐼 +

𝑡−1∑
𝑠=0

𝑧2𝑠𝑖

)−1

𝑧𝑡𝑖

∣∣∣∣∣∣
for each 𝑖. Summing over over 𝑖 gives a factor of 𝑚, and gives a bound for (10) + (11). Finally, the
term −𝜉𝑡 contributes at most 𝐶𝜉, which can be absorbed into the bound.

Proof [Proof of Theorem 12] The theorem follows from plugging in the bound on ‖𝐴𝑡𝑥𝑡 − 𝑦𝑡‖ in
Lemma 15 into the regret bound of Theorem 1.

19



NO-REGRET PREDICTION IN MARGINALLY STABLE SYSTEMS

For the second statement, we check that (1a) implies
𝐶2

𝜉 𝑐
2𝑡

𝜇 ≤ 1

𝑐
1

𝛼+2
1 𝑐

2
𝛼+2
2

· 𝐶𝜉𝑡
1
2

𝜇
1
2− 1

𝛼+2
, (1b) implies

that ‖𝐴‖2 𝑐 ≤
𝐶𝜉𝑐

2𝑡
𝜇 , (2) implies that 𝐶𝜉

𝑐22
≤ 1

𝑐
1

𝛼+2
1 𝑐

2
𝛼+2
2

· 𝐶𝜉𝑡
1
2

𝜇
1
2− 1

𝛼+2
, and (3) implies that ‖𝐴‖2 𝜇

1
𝛼+2 ≤

𝐶𝜉𝑡
1
2

𝜇
1
2− 1

𝛼+2
. Then the maximum term is 𝑂

(
1

𝑐
1

𝛼+2
1 𝑐

2
𝛼+2
2

· 𝐶𝜉𝑡
1
2

𝜇
1
2− 1

𝛼+2

)
.

For the third statement, we note 𝜇 was chosen to equate the two terms.

Appendix C. Proof of Theorem 3 (fully observed system, adversarial noise)

We complete the details for the proof outline from Section 5. We start with the following simple
observation: if 𝑥𝑇 is a linear combination of previous 𝑥𝑡’s with small coefficients, and 𝑥𝑇 has large
projection in some direction, then at least one of the 𝑥𝑡’s also has large projection in that direction.

Lemma 16 Suppose there exist 𝑎𝑡 ∈ R and 𝑣 ∈ R𝑑 such that

𝑥𝑇 =
𝑇−1∑
𝑡=0

𝑎𝑡𝑥𝑡 + 𝑣 (12)

and
∑𝑇−1

𝑡=0 |𝑎𝑡| ≤ 𝐿𝑎, ‖𝑣‖2 ≤ 𝐿𝑣.
Then for any unit vector 𝑤 ∈ R𝑑, there exists 0 ≤ 𝑡 ≤ 𝑇 − 1 such that

∣∣∣𝑤⊤𝑥𝑡
∣∣∣ ≥ |𝑤⊤𝑥𝑇 | − 𝐿𝑣

𝐿𝑎
. (13)

Proof We have

𝑤⊤𝑥𝑇 =
𝑇−1∑
𝑡=0

𝑎𝑡𝑤
⊤𝑥𝑡 + 𝑤⊤𝑣 . (14)

Applying Hölder’s inequality, there exists 0 ≤ 𝑡 ≤ 𝑇 − 1 such that

|𝑤⊤𝑥𝑡| ≥
|𝑤⊤𝑥𝑇 − 𝑤⊤𝑣|∑𝑇−1

𝑡=0 |𝑎𝑡|
≥ |𝑤

⊤𝑥𝑇 | − |𝑤⊤𝑣|
𝐿𝑎

. (15)

We then note that |𝑤⊤𝑣| ≤ ‖𝑣‖ as 𝑤 is a unit vector, and the result follows.

C.1. State is a small ℓ1 combination of previous states (exp(𝑑) version)

As a warm-up, we first give a simpler proof that obtains a bound on
∑𝑇−1

𝑡=1 |𝑎𝑡| that is exponential
in 𝑑. This subsection is for exposition purposes only and may be skipped. In the next subsection we
obtain a poly(𝑑) bound. (We note that an alternate way of obtaining a poly(𝑑) bound is by using
Lemma 17 with multiple of the characteristic polynomial with small coefficients; see Appendix G.)
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Lemma 17 (Large past 𝑥’s via Cayley-Hamilton) Given Assumptions 2 with 𝐵 = 𝑂, suppose
that 𝐴 is diagonalizable as 𝐴 = 𝑉 𝐷𝑉 −1 where ‖𝑉 ‖

∥∥𝑉 −1
∥∥ ≤ 𝐶𝐴. Then for any unit vector

𝑤 ∈ R𝑑, there exist min
{ ⌊

|𝑤⊤𝑥𝑡|
𝑑22𝑑+1𝐶𝐴𝐶𝜉

⌋
,
ö

𝑡
𝑑2

ù}
values of 𝑠, 0 ≤ 𝑠 ≤ 𝑡− 1, such that

|𝑤⊤𝑥𝑠| ≥
|𝑤⊤𝑥𝑡|
2𝑑+1

.

Note that in fact the 𝑑 in the bound can be replaced with the degree of the minimal polynomial.
Proof By the Cayley-Hamilton Theorem, if 𝑝(𝑥) =

∑𝑑
𝑖=0 𝑎

(1)
𝑖 𝑥𝑖 is the characteristic polynomial of

𝐴, then
∑𝑑

𝑖=0 𝑎
(1)
𝑖 𝐴𝑖 = 𝑂. We can bound the size of the coefficients as follows. Let 𝑟1, . . . , 𝑟𝑑 be

the roots of 𝑝(𝑥) = 0. Then 𝑝(𝑥) =
∏𝑑

𝑖=1(𝑥 − 𝑟𝑖). Because 𝜌(𝐴) ≤ 1, every root satisfies |𝑟𝑖| ≤
1. By the triangle inequality, the coefficients of 𝑝(𝑥) are at most the corresponding coefficients
of 𝑞(𝑥) =

∏𝑑
𝑖=1(𝑥 + |𝑟𝑖|) in absolute value. The sum of coefficients of 𝑞(𝑥) is 𝑞(1) ≤ 2𝑑, so∑𝑑

𝑖=0 |𝑎
(1)
𝑖 | ≤ 2𝑑.

We now proceed to bound the error term due to the noise. By unfolding the recurrence we obtain

𝑥𝑡 = 𝐴𝑑𝑥𝑡−𝑑 +
𝑑∑

𝜏=1

𝐴𝑑−𝜏𝜉𝑡−𝑑+𝜏

=
𝑑−1∑
𝑖=0

−𝑎(1)𝑖 𝐴𝑖𝑥𝑡−𝑑 +
𝑑∑

𝜏=1

𝐴𝑑−𝜏𝜉𝑡−𝑑+𝜏

=
𝑑−1∑
𝑖=0

−𝑎(1)𝑖

(
𝑥𝑡−𝑑+𝑖 −

𝑖∑
𝜏=1

𝐴𝑖−𝜏𝜉𝑡−𝑑+𝜏

)
+

𝑑∑
𝜏=1

𝐴𝑑−𝜏𝜉𝑡−𝑑+𝜏

=
𝑑−1∑
𝑖=0

−𝑎(1)𝑖 𝑥𝑡−𝑑+𝑖 +
𝑑−1∑
𝑖=0

𝑎
(1)
𝑖

𝑖∑
𝜏=1

𝐴𝑖−𝜏𝜉𝑡−𝑑+𝜏 +
𝑑∑

𝜏=1

𝐴𝑑−𝜏𝜉𝑡−𝑑+𝜏︸ ︷︷ ︸
=:𝑣(1)

(16)

Note that
∥∥∥𝐴𝑖𝜉

∥∥∥ ≤ ∥∥∥𝑉 𝐷𝑖𝑉 −1
∥∥∥ ‖𝜉‖ ≤ 𝐶𝐴 ‖𝜉‖ ≤ 𝐶𝐴𝐶𝜉. We write 𝑥𝑡 = −∑𝑑−1

𝑖=1 𝑎
(1)
𝑖 𝑥𝑡−𝑑+𝑖 + 𝑣(1)

where

‖𝑣(1)‖ =

∥∥∥∥∥∥
𝑑−1∑
𝑖=0

𝑎
(1)
𝑖

𝑖∑
𝜏=1

𝐴𝑖−𝜏𝜉𝑡−𝑑+𝜏 +
𝑑∑

𝜏=1

𝐴𝑑−𝜏𝜉𝑡−𝑑+𝜏

∥∥∥∥∥∥
≤

𝑑−1∑
𝑖=0

|𝑎(1)𝑖 |
𝑖∑

𝜏=1

𝐶𝐴‖𝜉𝑡−𝑑+𝜏‖+
𝑑∑

𝜏=1

𝐶𝐴‖𝜉𝑡−𝑑+𝜏‖

≤ 2𝑑(𝑑− 1)𝐶𝐴𝐶𝜉 + 𝑑𝐶𝐴𝐶𝜉 ≤ 𝑑2𝑑𝐶𝐴𝐶𝜉

If 𝑤 ∈ R𝑑 is a unit vector such that |𝑤⊤𝑥𝑡| ≥ 𝑑2𝑑+1𝐶𝐴𝐶𝜉, we have |𝑤⊤𝑥𝑡| ≥ 2
∥∥∥𝑣(1)∥∥∥. Noting

that 𝑤⊤𝑥𝑡 =
∑𝑑−1

𝑖=0 −𝑎
(1)
𝑖 𝑥𝑡−𝑑+𝑖 +𝑣(1), by Lemma 16 there exists an index 0 ≤ 𝑖 ≤ 𝑑−1 such that

|𝑤⊤𝑥𝑡−𝑑+𝑖| ≥
|𝑤⊤𝑥𝑡| − ‖𝑣(1)‖∑𝑑−1

𝑖=0 |𝑎
(1)
𝑖 |

≥ |𝑤⊤𝑥𝑡|
2
∑𝑑−1

𝑖=0 |𝑎
(1)
𝑖 |
≥ |𝑤

⊤𝑥𝑡|
2𝑑+1
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In order to obtain many large past 𝑥’s, we apply the same argument on sequences 𝑥𝑡, 𝑥𝑡−𝑘, . . . , 𝑥𝑡−𝑘𝑑

by considering the recurrence

𝑥𝑡 = 𝐴′𝑥𝑡−𝑘 + 𝜉
(𝑘)
𝑡 (17)

𝐴′ = 𝐴𝑘 (18)

𝜉
(𝑘)
𝑡 =

𝑘∑
𝑗=1

𝐴𝑘−𝑗𝜉𝑡−𝑘+𝑗 . (19)

Let 𝑝𝑘(𝑥) =
∑𝑑

𝑖=0 𝑎
(𝑘)
𝑖 𝑥𝑖 be the characteristic polynomial of 𝐴𝑘. Defining 𝑣(𝑘) similarly to 𝑣(1),

we have

‖𝑣(𝑘)‖ =

∥∥∥∥∥∥
𝑑−1∑
𝑖=0

𝑎
(𝑘)
𝑖

𝑖∑
𝜏=1

𝐴′𝑖−𝜏𝜉
(𝑘)
𝑡−𝑑𝑘+𝜏𝑘 +

𝑑∑
𝜏=1

𝐴′𝑑−𝜏𝜉
(𝑘)
𝑡−𝑑𝑘+𝜏𝑘

∥∥∥∥∥∥ (20)

≤ 𝑘2𝑑(𝑑− 1)𝐶𝐴𝐶𝜉 + 𝑘𝑑𝐶𝐴𝐶𝜉 ≤ 𝑘𝑑2𝑑𝐶𝐴𝐶𝜉 (21)

so that we obtain 𝑥𝑡 = −∑𝑑−1
𝑖=1 𝑎

(𝑘)
𝑖 𝑥𝑡−𝑘(𝑑−𝑖)+𝑣(𝑘) with

∑𝑑
𝑖=0 |𝑎

(𝑘)
𝑖 | ≤ 2𝑑 and ‖𝑣(𝑘)‖ ≤ 𝑘𝑑2𝑑𝐶𝐴𝐶𝜉.

We then pick 𝑘 = 1, 2, . . . ,min
{⌊

|𝑤⊤𝑥𝑡|
2𝑑2𝑑𝐶𝐴𝐶𝜉

⌋
,
⌊ 𝑡
𝑑

⌋}
. For each choice of 𝑘, we know by design that

|𝑤⊤𝑥𝑡| ≥ 2‖𝑣(𝑘)‖2, and therefore there must exist an 𝑥 in the sequence 𝑥𝑡−𝑘, . . . , 𝑥𝑡−𝑘𝑑 such that
|𝑤⊤𝑥| ≥ |𝑤⊤𝑥𝑡|

2𝑑+1 . In this way, we are able to collect in total 𝐿 = min
{⌊

|𝑤⊤𝑥𝑡|
2𝑑2𝑑𝐶𝐴𝐶𝜉

⌋
,
⌊ 𝑡
𝑑

⌋}
many

such 𝑥’s. To finish the argument, we note that out of the 𝐿 collected 𝑥’s, there are at least ⌊𝐿𝑑 ⌋
distinct ones, since one 𝑥 can appear in at most 𝑑 different sequences.

Plugging in the conclusion of Lemma 17 into Theorem 12, we can obtain the following theorem.

Theorem 18 Assume Assumptions 2, and furthermore suppose 𝐴 is diagonalizable and 𝑢𝑡 = 0 for
each 𝑡. Then online least squares (Algorithm 1) with 𝜇 = 𝑇

3
4 achieves regret

𝑅𝑇 (𝐴,𝐵) ≤ 𝑇
3
4 exp(𝑂(𝑑)) poly(𝐶,𝑅, ln𝑇 ).

We omit the details, as we will prove the stronger Theorem 3.

C.2. State is a small ℓ1 combination of previous states (poly(𝑑) version)

We will use the following notation to keep track of the growth of 𝐴𝑘.

Definition 19 Given a matrix 𝐴 ∈ R𝑑×𝑑, define 𝑓𝐴(𝑘) :=
∥∥∥𝐴𝑘

∥∥∥.

Given a set 𝐾 ⊆ R𝑑, define 𝑓𝐴,𝐾(𝑘) := max𝜉∈𝐾
∥∥∥𝐴𝑘𝜉

∥∥∥.

For a rougher bound, note we can bound 𝑓𝐴,𝐾(𝑘) ≤ 𝑓𝐴(𝑘) max𝜉∈𝐾 ‖𝜉‖, but keeping 𝑓𝐴,𝐾 separate
allows us to separately bound the dependence on the size of the starting state and on the perturba-
tions.

The first step of the proof is to show the following. Denote the 𝐿2 ball of radius 𝑟 in 𝑑 dimensions
by 𝐵𝑑

𝑟 =
¶
‖𝑥‖2 ≤ 𝑟 : 𝑥 ∈ R𝑑

©
.
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Lemma 20 Suppose that 𝑥0 ∈ 𝐾0 ⊂ R𝑑 and 𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝜉𝑡 with 𝐴 ∈ R𝑑×𝑑 and 𝜉𝑡 ∈ 𝐾 for
1 ≤ 𝑡 ≤ 𝑇 . Suppose 𝑀 ≥ 1 and ‖𝑥𝑡‖ ≤ 𝑀 for 0 ≤ 𝑡 ≤ 𝑇 . Then there exist 𝑎𝑡 ∈ R and 𝑣 ∈ R𝑑

such that

𝑥𝑇 =
𝑇−1∑
𝑡=0

𝑎𝑡𝑥𝑡 + 𝑣 (22)

and letting 𝑘′ = ⌊𝑑 log2(𝑀)⌋,

𝑇−1∑
𝑡=0

|𝑎𝑡| ≤
2

ln 2
𝑑 (23)

‖𝑣‖2 ≤ max
0≤𝑘≤𝑘′

𝑓𝐴,𝐾0∪𝐵𝑑
2

ln 2
𝑑

(𝑘) +

Ñ
𝑘′−1∑
𝑘=0

𝑓𝐴,𝐾(𝑘)

éÅ
2

ln 2
𝑑 + 1

ã
. (24)

We emphasize that we will only need the existence of 𝑎𝑡, 𝑥𝑡, and 𝑣; the algorithm will not need to
compute the linear decomposition. We mention that the related notion of volumetric spanners based
on the 𝐿2 norm that has been applied to online convex optimization (Hazan and Karnin, 2016).

Note that we can bound 𝑓(𝑘) in terms of the size of the Jordan blocks (Lemma 24). To prove
Lemma 20, we will use two lemmas (Lemma 22 and Lemma 23).

C.2.1. BOUNDING 𝐼𝑡

Define the convex set spanned by a set 𝑆 ⊂ R𝑑 by

∆(𝑆) : =

{∑
𝑢∈𝑆

𝑎𝑢𝑢 : 𝑎𝑢 ∈ R,
∑
𝑢∈𝑆
|𝑎𝑢| ≤ 1, 𝑎𝑢 = 0 for all but finitely many 𝑢

}
. (25)

Suppose that 𝑆 is compact and spans R𝑑. The centrally symmetric convex set ∆(𝑆) defines the
norm (called the Minkowski functional of ∆(𝑆))

‖𝑥‖Δ(𝑆) = inf
𝑥 =

∑
𝑢∈𝑆

𝑎𝑢𝑢

𝑎𝑢 = 0 f.a.b.f.m. 𝑢

∑
𝑢∈𝑆
|𝑎𝑢|, (26)

where f.a.b.f.m. abbreviates “for all but finitely many.” First we note that we can in fact replace the
inf with the min over linear combinations of 𝑑 + 1 terms.

Proposition 21 Suppose 𝑆 ⊂ R𝑑 is compact and spans R𝑑. The following hold:

∆(𝑆) =

{
𝑑+1∑
𝑖=1

𝑎𝑖𝑢𝑖 : 𝑎𝑖 ∈ R, 𝑢𝑖 ∈ 𝑆,
𝑑+1∑
𝑖=1

|𝑎𝑖| ≤ 1

}

‖𝑥‖Δ(𝑆) = min
𝑥=
∑𝑑+1

𝑖=1
𝑎𝑖𝑢𝑖,𝑢𝑖∈𝑆

𝑑+1∑
𝑖=1

|𝑎𝑖|.
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Proof If 𝑣 ∈ ∆(𝑆) has a representation 𝑣 =
∑

𝑢∈𝑆 𝑎𝑢𝑢 in the form of (25), then by Carathéodory’s
Theorem on 𝑣∑

𝑢∈𝑆
|𝑎𝑢| , it can be written also as 𝑣 =

∑𝑑+1
𝑖=1 𝑏𝑖𝑢𝑖 for

∑𝑑+1
𝑖=1 |𝑏𝑖| ≤

∑
𝑢∈𝑆 |𝑎𝑢|, 𝑢𝑖 ∈ 𝑆.

Next, we claim that ∆(𝑆) is closed. To see this, note that ∆(𝑆) is the image of the compact set
𝑆𝑑+1 ×

¶
(𝑎𝑖)

𝑑+1
𝑖=1 ∈ R𝑑+1 :

∑𝑑+1
𝑖=1 |𝑎𝑖| ≤ 1

©
under the continuous map

((𝑎𝑖)
𝑑+1
𝑖=1 , (𝑢𝑖)

𝑑+1
𝑖=1 ) ↦→

𝑑+1∑
𝑖=1

𝑎𝑖𝑢𝑖.

The image of a compact set is compact, and a compact set in R𝑑 is closed and bounded, by the
Heine-Borel Theorem.

Finally, this implies ‖𝑥‖Δ(𝑆) = inf𝑥=
∑

𝑢∈𝑆
𝑎𝑢𝑢

∑
𝑢∈𝑆 |𝑎𝑢| = min

𝑥=
∑𝑑+1

𝑖=1
𝑎𝑖𝑢𝑖,𝑢𝑖∈𝑆

∑𝑑+1
𝑖=1 |𝑎𝑖|.

Define

∆′(𝑆) = ∆(𝑆 ∪ {𝑣 : ‖𝑣‖2 ≤ 1}) =

{(∑
𝑢∈𝑆

𝑎𝑢𝑢

)
+ 𝑣 : 𝑎𝑢 ∈ R, 𝑎𝑢 = 0 f.a.b.f.m. 𝑢, 𝑣 ∈ R𝑑,

∑
𝑢∈𝑆
|𝑎𝑢|+ ‖𝑣‖2 ≤ 1

}
(27)

(note that the 𝐿2 norm is used with 𝑣). Then

‖𝑥‖Δ′(𝑆) = min
𝑦=(
∑

𝑢∈𝑆
𝑎𝑢𝑢)+𝑣

(∑
𝑢∈𝑆
|𝑎𝑢|+ ‖𝑣‖2

)
. (28)

Now define

∆𝑡 = ∆′({𝑥𝑠 : 0 ≤ 𝑠 ≤ 𝑡}) (29)

for −1 ≤ 𝑡 ≤ 𝑇 . We need to keep track of the number of times when 𝑥𝑡 is not a small linear
combination of previous 𝑥𝑠’s, so let

𝐼𝑡 =

ß
0 ≤ 𝑠 ≤ 𝑡 : ‖𝑥𝑠‖Δ𝑠−1

≥ 2

ln 2
𝑑

™
. (30)

We first show that if 𝑠 ∈ 𝐼𝑡, then there is a large increase in volume between ∆𝑠−1 and ∆𝑠. Then,
we use a bound on the volume of ∆𝑇 to bound |𝐼𝑇 |.

Lemma 22 Let 𝑤 be such that ‖𝑤‖Δ(𝑆) ≥ 2𝐶𝑑. Then

Vol(∆(𝑆 ∪ {𝑤})) ≥ (1 + 2𝑒−1/𝐶) Vol(∆(𝑆)). (31)

Proof Consider the set ∆(𝑆) slightly shrunk, and translated along the direction of 𝑤:

± 1

𝐶𝑑
𝑤 +

Å
1− 1

𝐶𝑑

ã
∆(𝑆) ⊆ ∆(𝑆 ∪ {𝑤}). (32)
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Now for 𝑢 ∈ ∆(𝑆),
∥∥∥± 1

𝐶𝑑𝑤 +
Ä
1− 1

𝐶𝑑

ä
𝑢
∥∥∥
Δ(𝑆)

≥ 1
𝐶𝑑 ‖𝑤‖Δ(𝑆) − ‖𝑢‖Δ(𝑆) >

1
𝐶𝑑(2𝐶𝑑)− 1 ≥ 1.

Hence, ± 1
𝐶𝑑𝑤 +

Ä
1− 1

𝐶𝑑

ä
∆(𝑆) does not intersect ∆(𝑆). This means that

Vol(∆(𝑆 ∪ {𝑤})) ≥ Vol(∆(𝑆)) + Vol

Å
± 1

𝐶𝑑
𝑤 +

Å
1− 1

𝐶𝑑

ã
∆(𝑆)

ã
(33)

≥ Vol(∆(𝑆)) + 2

Å
1− 1

𝐶𝑑

ã𝑑
Vol(∆(𝑆)) (34)

≥ (1 + 2𝑒−1/𝐶) Vol(∆(𝑆)). (35)

Lemma 23 Let 𝑀 = max0≤𝑡≤𝑇 ‖𝑥𝑡‖. Then |𝐼𝑇 | ≤ 𝑑 log2𝑀 .

Proof If |𝐼𝑡| > |𝐼𝑡−1|, then by definition ‖𝑥𝑡‖Δ𝑡−1
≥ 2

ln 2𝑑. By Lemma 22, Vol(∆𝑡) ≥ 2 Vol(∆𝑡−1).
Hence

2|𝐼𝑇 | Vol(𝐵𝑑
1) = 2|𝐼𝑇 | Vol(∆−1) ≤ Vol(∆𝑇 ) ≤𝑀𝑑 Vol(𝐵𝑑

1). (36)

Taking logarithms gives |𝐼𝑇 | ≤ 𝑑 log2𝑀 .

C.2.2. BOUNDING ‖𝑥𝑡‖Δ𝑡−1

Proof [Proof of Lemma 20] First we show that if 𝑥𝑡 is a linear combination of previous 𝑥𝑠’s with
small coefficients, then so is 𝑥𝑡+𝑘 for small 𝑘. Suppose that

𝑥𝑡 =
𝑡−1∑
𝑠=0

𝑎𝑠𝑥𝑠 + 𝑣. (37)

We claim by induction that for any 𝑘 ≥ 0,

𝑥𝑡+𝑘 =
𝑡−1∑
𝑠=0

𝑎𝑠𝑥𝑠+𝑘 + 𝐴𝑘𝑣 +
𝑘∑

𝑗=1

𝐴𝑘−𝑗

(
𝑡−1∑
𝑠=0

−𝑎𝑠𝜉𝑠+𝑗 + 𝜉𝑡+𝑗

)
. (38)

Indeed, if this holds for 𝑘, then

𝑥𝑡+𝑘+1 = 𝐴𝑥𝑡+𝑘 + 𝜉𝑡+𝑘+1 (39)

= 𝐴

Ñ
𝑡−1∑
𝑠=0

𝑎𝑠𝑥𝑠+𝑘 + 𝐴𝑘𝑣 +
𝑘∑

𝑗=1

𝐴𝑘−𝑗

(
𝑡−1∑
𝑠=0

−𝑎𝑠𝜉𝑠+𝑗 + 𝜉𝑡+𝑗

)é
+ 𝜉𝑡+𝑘+1 (40)

=

Ñ
𝑡−1∑
𝑠=0

𝑎𝑠𝐴𝑥𝑠+𝑘 + 𝐴𝑘+1𝑣 +
𝑘∑

𝑗=1

𝐴𝑘+1−𝑗

(
𝑡−1∑
𝑠=0

−𝑎𝑠𝜉𝑠+𝑗 + 𝜉𝑡+𝑗

)é
+ 𝜉𝑡+𝑘+1 (41)

=

Ñ
𝑡−1∑
𝑠=0

𝑎𝑠(𝑥𝑠+𝑘+1 − 𝜉𝑠+𝑘+1) + 𝐴𝑘+1𝑣 +
𝑘∑

𝑗=1

𝐴𝑘+1−𝑗

(
𝑡−1∑
𝑠=0

−𝑎𝑠𝜉𝑠+𝑗 + 𝜉𝑡+𝑗

)é
+ 𝜉𝑡+𝑘+1

(42)

=
𝑡−1∑
𝑠=0

𝑎𝑠𝑥𝑠+𝑘+1 + 𝐴𝑘+1𝑣 +
𝑘+1∑
𝑗=1

𝐴𝑘+1−𝑗

(
𝑡−1∑
𝑠=0

−𝑎𝑠𝜉𝑠+𝑗+1 + 𝜉𝑡+𝑗+1

)
. (43)
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Now we consider the sizes of the coefficients in (38). If
∑𝑡−1

𝑠=0 |𝑎𝑠| = 𝐿𝑎 and ‖𝑣‖2 = 𝐿𝑣, then (38)
expresses 𝑥𝑡+𝑘+1 as a linear combination with

𝑡−1∑
𝑠=0

|𝑎𝑠| = 𝐿𝑎 (44)∥∥∥∥∥∥𝐴𝑘𝑣 +
𝑘∑

𝑗=1

𝐴𝑘−𝑗

(
𝑡−1∑
𝑠=0

−𝑎𝑠𝜉𝑠+𝑗 + 𝜉𝑡+𝑗

)∥∥∥∥∥∥ ≤
∥∥∥𝐴𝑘𝑣

∥∥∥+

(
𝑘−1∑
𝑠=0

𝑓𝐴,𝐾(𝑠)

)((
𝑡−1∑
𝑠=0

|𝑎𝑠|
)

+ 1

)
(45)

≤
∥∥∥𝐴𝑘𝑣

∥∥∥+

(
𝑘−1∑
𝑠=0

𝑓𝐴,𝐾(𝑠)

)
(𝐿𝑎 + 1). (46)

By Lemma 23, |𝐼𝑇 | ≤ 𝑑 log2𝑀 , so for 1 ≤ 𝑡 ≤ 𝑇 , there exists 𝑘 ≤ |𝐼𝑇 | ≤ 𝑘′ = ⌊𝑑 log2(𝑀)⌋ such
that either

∙ 𝑡− 𝑘 ̸∈ 𝐼𝑇 , so ‖𝑥𝑡−𝑘‖Δ𝑡−𝑘−1
≤ 2

ln 2𝑑, or

∙ 𝑡− 𝑘 = 0, so 𝑥𝑡−𝑘 = 𝑥0 ∈ 𝐾0.

In either case, we can write 𝑥𝑡−𝑘 =
∑𝑡−𝑘−1

𝑠=0 𝑎𝑠𝑥𝑠 + 𝑣 with
∑𝑡−𝑘−1

𝑠=0 |𝑎𝑠| ≤ 𝐿𝑎 := 2
ln 2𝑑 and

𝑣 ∈ 𝐾0 ∪𝐵𝑑
2

ln 2
𝑑
. Then by (44) and (46), we can write 𝑥𝑡 as

𝑥𝑡 =
𝑡−1∑
𝑠=0

𝑎′𝑠𝑥𝑠 + 𝑣′ (47)

with

𝑡−1∑
𝑠=0

|𝑎′𝑠| ≤
2

ln 2
𝑑 (48)

‖𝑣‖2 ≤
∥∥∥𝐴𝑘𝑣

∥∥∥+

Ñ
𝑘′−1∑
𝑠=0

𝑓𝐴,𝐾(𝑠)

é
(𝐿𝑎 + 1) (49)

≤ max
0≤𝑘≤𝑘′

𝑓𝐴,𝐾0∪𝐵𝑑
2

ln 2
𝑑

(𝑘) +

Ñ
𝑘′−1∑
𝑘=0

𝑓𝐴,𝐾(𝑘)

éÅ
2

ln 2
𝑑 + 1

ã
. (50)

C.2.3. BOUND IN TERMS OF JORDAN FORM

Lemma 24 Suppose that 𝐴 has spectral radius ≤ 1 and 𝐴 = 𝑆𝐽𝑆−1 with ‖𝑆‖2
∥∥𝑆−1

∥∥
2 ≤ 𝐶𝐴

and 𝐽 has Jordan blocks of rank ≤ 𝑟. Then∥∥∥𝐴𝑘
∥∥∥
2
≤
Ç
𝑘 + 𝑟

𝑟 − 1

å
𝐶𝐴 ≤ (𝑘 + 1)𝑟−1𝐶𝐴 (51)

𝑘∑
𝑠=0

‖𝐴𝑠‖2 ≤
Ç
𝑘 + 𝑟 + 1

𝑟

å
𝐶𝐴 ≤ (𝑘 + 1)𝑟𝐶𝐴 (52)
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Proof Let 𝐽𝜆,𝑟 =

Ö
𝜆 1

𝜆
. . .
. . . 1

𝜆

è
∈ R𝑟×𝑟. Then entrywise, 𝐽𝑘

𝜆,𝑟 has absolute value at most 𝐽𝑘
1,𝑟 =Ü

1 (𝑘1) ··· ( 𝑘
𝑟−1)

1
. . .

...
. . . (𝑘1)

1

ê
. We have for 𝑘 ≥ 1 that

∥∥∥𝐽𝑘
𝜆,𝑟

∥∥∥
2
≤
∥∥∥𝐽𝑘

𝜆,𝑟

∥∥∥
1,1
≤
∥∥∥𝐽𝑘

1,𝑟

∥∥∥
1,1

(53)

≤
𝑟−1∑
𝑞=0

𝑞∑
𝑗=0

Ç
𝑘

𝑗

å
≤

𝑟−1∑
𝑞=0

𝑞∑
𝑗=0

Ç
𝑘 + 𝑗 − 1

𝑗

å
≤

𝑟−1∑
𝑞=0

Ç
𝑘 + 𝑞

𝑞

å
(54)

≤
Ç
𝑘 + 𝑟

𝑟 − 1

å
≤ (𝑘 + 1)𝑟

(𝑟 − 1)!
· (𝑘 + 𝑟) · · · (𝑘 + 2)

(𝑘 + 1)𝑟
≤ (𝑘 + 1)𝑟−1 (55)

By decomposing into Jordan blocks, we find that∥∥∥𝐴𝑘
∥∥∥
2
≤ ‖𝑆‖2

∥∥∥𝐽𝑘
𝜆,𝑟

∥∥∥
2

∥∥∥𝑆−1
∥∥∥
2
≤ 𝐶𝐴

∥∥∥𝐽𝑘
𝜆,𝑟

∥∥∥
2
. (56)

Together (55) and (56) give (51). Summing over 𝑘 gives (52).

C.3. Concluding the states are anomaly-free

We need the following number-theoretic lemma.

Lemma 25 (Nathanson 2013, Theorem 6.3) There exists a constant 𝐶 > 0 such that for all 𝑥 ≥
2, ∏

1<𝑝≤𝑥,𝑝 prime

𝑝 ≥ 𝑥𝐶𝑥.

The next lemma, Lemma 26, is technical to state, so we first explain the idea. Recall that we
want the sequence (𝑥𝑡) to be anomaly-free in order to apply the bound on regret in Theorem 12,
i.e., we want a lot of 𝑥𝑠’s such that |𝑤⊤𝑥𝑠| is large relative to 𝑤⊤𝑥𝑇 . Lemma 20 together with
Lemma 16 only gives a single large |𝑤⊤𝑥𝑠|, so the idea is to apply the lemmas to the dynamical
systems 𝑥𝑡 ≈ 𝐴𝑝𝑥𝑡−𝑝 for different values of 𝑝. We choose prime 𝑝’s and use Lemma 25 to control
overcounting.

We separate out the core argument from the numerical bounds, so Lemma 26 is stated in terms of
the functions 𝐿𝑣 and 𝑄. In the lemma, 𝐿𝑣(𝑝) tracks how large the residual term in (24) can get. This
is the term left over when writing 𝑥𝑇 as a linear combination of previous terms. We will instantiate
𝐿𝑣(𝑝) = 𝑂((𝑝𝑘′)𝑟(𝑑 + 𝑚)) in the proof of Theorem 3 (ignoring constants related to the LDS). In
order to apply Lemma 16, we would like to only consider 𝑝 small enough so that 2𝐿𝑣(𝑝) ≤ |𝑤⊤𝑥𝑇 |,

or (𝑝𝑘′)𝑟(𝑑 + 𝑚) = 𝑂(|𝑤⊤𝑥𝑇 |). Roughly, this is true for 𝑝 = 𝑂

Å
1
𝑘′

(
|𝑤⊤𝑥𝑇 |
𝑑+𝑚

)1/𝑟ã
. This RHS

is approximately the 𝑄 appearing in the lemma, 𝑄(𝑥) ≈ 1
𝑘′

Ä
𝑥

𝑑+𝑚

ä1/𝑟
. For each of these primes

𝑝 ≤ 𝑄(|𝑤⊤𝑥𝑇 |), we obtain some 𝑥𝑠 such that |𝑤⊤𝑥𝑠| is large. This gives almost 𝑄(|𝑤⊤𝑥𝑇 |) many
large 𝑥𝑠’s. We lose logarithmic factors, since we restrict to primes and account for overcounting.
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The key dependence to note here is that on 𝑟, the size of the largest Jordan block: the residual
𝐿𝑣(𝑝) has 𝑟th power dependence, so the number of large |𝑤⊤𝑥𝑠|’s has 1

𝑟 -power dependence. Any
constant power gives a sublinear regret bound in Theorem 12, with a smaller value of 𝛼 = 1

𝑟 giving
a worse regret bound.

Lemma 26 Let 𝑇 > 0. Suppose that ‖𝑥0‖ ≤ 𝐶0 and 𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝜉𝑡 with 𝜉𝑡 ∈ 𝐾 for 1 ≤ 𝑡 ≤ 𝑇 .
Let 𝑘′ = ⌊𝑑 log2(𝑀)⌋ and let

𝐿𝑣(𝑝) = max
0≤𝑘≤𝑝(𝑘′+1)−1

𝑓𝐴(𝑘) max

ß
2

ln 2
𝑑,𝐶0

™
+

Ñ
𝑝(𝑘′+1)−2∑

𝑘=0

𝑓𝐴,𝐾(𝑘)

éÅ
2

ln 2
𝑑 + 2

ã
(57)

Suppose the following hold.

∙ (Bound on 𝑥𝑡) 𝑀 ≥ 1, ‖𝑥𝑡‖ ≤𝑀 for 1 ≤ 𝑡 ≤ 𝑇 .

∙ (|𝑤⊤𝑥𝑇 | is large enough) 𝑐 ≥ 4
ln 2𝑑𝐶0, and |𝑤⊤𝑥𝑇 | > 𝑐.

∙ (𝑄 gives the range of 𝑝 that are “good” for Lemma 16) 𝑄(𝑥) is a function such that whenever
𝑥 > 𝑐, then 2 ≤ 𝑄(𝑥) and for all 𝑝 ≤ 𝑄(𝑥), we have 𝑥 ≥ 2𝐿𝑣(𝑝).

Then there are at least Ω
(
𝑄(|𝑤⊤𝑥𝑇 |)

ln𝑇

)
values of 𝑠, 0 ≤ 𝑠 < 𝑡, such that

∣∣∣𝑤⊤𝑥𝑠
∣∣∣ ≥ ln 2

4𝑑
|𝑤⊤𝑥𝑇 |. (58)

Proof For 𝑝 ≤ 𝑇 , we apply Lemma 16 with the bounds from Lemma 20 with the sequence
𝑥𝑇 mod 𝑝, . . . , 𝑥𝑇−𝑝, 𝑥𝑇 . This satisfies the conditions of Lemma 20 with

𝑥𝑡 = 𝐴′𝑥𝑡−𝑝 + 𝜉
(𝑝)
𝑡 (59)

𝐴′ = 𝐴𝑝 (60)

𝑥𝑇 mod 𝑝 ∈ 𝐾 ′
0 := 𝐴𝑇 mod 𝑝𝐵𝑑

𝐶0
+ 𝐴(𝑇 mod 𝑝)−1𝐾 + · · ·+ 𝐾 (61)

𝜉
(𝑝)
𝑡 =

𝑝∑
𝑗=1

𝐴𝑝−𝑗𝜉𝑡−𝑝+𝑗 ∈ 𝐾 ′ :=
𝑝∑

𝑗=1

𝐴𝑝−𝑗𝐾. (62)

Using this, we write 𝑓𝐴′,𝐾′
0∪𝐵

𝑑
2

ln 2
𝑑

(𝑘) in terms of 𝑓𝐴 and 𝑓𝐴,𝐾 . We upper bound by taking the

maximum inside the sum, to get the following.

max
0≤𝑘≤𝑘′

𝑓𝐴′,𝐾′
0∪𝐵

𝑑
2

ln 2
𝑑

(𝑘) (63)

= max

{
max

0 ≤ 𝑘 ≤ 𝑘′

𝑣 ∈ 𝐵𝑑
𝐶0

, 𝜉1, . . . , 𝜉𝑇 mod 𝑝 ∈ 𝐾

Ñ
𝐴(𝑇 mod 𝑝)+𝑘𝑝𝑣 +

𝑇 mod 𝑝∑
𝑗=1

𝐴(𝑇 mod 𝑝)−𝑗+𝑘𝑝𝜉𝑗

é
, (64)

max
0≤𝑘≤𝑘′

∥∥∥𝐴𝑘𝑝
∥∥∥
2

2

ln 2
𝑑

}

≤ max
0≤𝑘≤𝑝(𝑘′+1)−1

𝑓𝐴(𝑘) max

ß
2

ln 2
𝑑,𝐶0

™
+

𝑝(𝑘′+1)−2∑
𝑘=0

𝑓𝐴,𝐾(𝑘). (65)
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Similarly,

𝑘′−1∑
𝑘=0

𝑓𝐴′,𝐾′(𝑘) =
𝑘′−1∑
𝑘=0

max
𝜉0,...,𝜉𝑝−1∈𝐾

∥∥∥∥∥∥
𝑝∑

𝑗=1

𝐴𝑝𝑘+𝑝−𝑗𝜉𝑗

∥∥∥∥∥∥ ≤
𝑘′𝑝−1∑
𝑘=0

max
𝜉∈𝐾

∥∥∥𝐴𝑘𝜉
∥∥∥ =

𝑝𝑘′−1∑
𝑘=0

𝑓𝐴,𝐾(𝑘). (66)

Then for the sequence 𝑥𝑇 mod 𝑝, . . . , 𝑥𝑇 , the 𝐿𝑣 in Lemma 20 equals

max
0≤𝑘≤𝑘′

𝑓𝐴′,𝐾′
0∪𝐵

𝑑
2

ln 2
𝑑

(𝑘) +

Ñ
𝑘′−1∑
𝑘=0

𝑓𝐴′,𝐾′(𝑘)

éÅ
2

ln 2
𝑑 + 1

ã
(67)

≤ max
0≤𝑘≤𝑝(𝑘′+1)−1

𝑓𝐴(𝑘) max

ß
2

ln 2
𝑑,𝐶0

™
+

Ñ
𝑝(𝑘′+1)−2∑

𝑘=0

𝑓𝐴,𝐾(𝑘)

éÅ
2

ln 2
𝑑 + 2

ã
=: 𝐿𝑣(𝑝) (68)

using (65) and (66). Apply Lemma 16 to get that there exists 𝑘 ∈ N such that

|𝑤⊤𝑥𝑇−𝑘𝑝| ≥
|𝑤⊤𝑥𝑇 | − 𝐿𝑣(𝑝)

2
ln 2𝑑

. (69)

When |𝑤⊤𝑥𝑇 | > 𝑐, and 𝑝 ≤ 𝑄(|𝑤⊤𝑥𝑇 |), by assumption |𝑤⊤𝑥𝑇 | ≥ 2𝐿𝑣(𝑝) and hence |𝑤⊤𝑥𝑇 |−𝐿𝑣(𝑝)
2

ln 2
𝑑

≥
|𝑤⊤𝑥𝑇 |

4
ln 2

𝑑
. Then equation (69) becomes: there exists 𝑘 ∈ N such that

|𝑤⊤𝑥𝑇−𝑘𝑝| ≥
ln 2

4𝑑
|𝑤⊤𝑥𝑇 | (70)

Put another way, there exists 𝑠 such that |𝑤⊤𝑥𝑠| ≥ ln 2
4𝑑 |𝑤

⊤𝑥𝑇 | and 𝑝 divides 𝑇 − 𝑠. Let 𝑄 =
𝑄(|𝑤⊤𝑥𝑇 |). This means that

∏
|𝑤⊤𝑥𝑠|≥ ln 2

4𝑑
|𝑤⊤𝑥𝑇 |(𝑇 − 𝑠) has to be divisible by all primes 𝑝 ≤

min{𝑄,𝑇} = 𝑄. (Note 𝑄 ≤ 𝑇 because otherwise, (70) would hold for 𝑝 = 𝑇 < 𝑄 and we have
𝐶0 ≥ |𝑤⊤𝑥0| > ln 2

4𝑑 |𝑤
⊤𝑥𝑇 | ≥ ln 2

4𝑑 𝑐, contradiction.) Let 𝑁 =
∣∣∣¶𝑠 : |𝑤⊤𝑥𝑠| ≥ ln 2

4𝑑 |𝑤
⊤𝑥𝑇 |

©∣∣∣. By
Lemma 25, for some 𝐶 ′ > 0,

𝑇𝑁 ≥
∏

|𝑤⊤𝑥𝑠|≥ ln 2
4𝑑

|𝑤⊤𝑥𝑇 |

(𝑇 − 𝑠) ≥
∏

prime 𝑝≤𝑄

𝑝 ≥ 𝑄𝐶′𝑄. (71)

Thus

𝑁 ≥ 𝐶 ′𝑄 ln𝑄

ln𝑇
≥ Ω

Å
𝑄

ln𝑇

ã
. (72)

C.4. Finishing the proof

Lemma 27 Assume Assumption 2. Then

max
0≤𝑘≤𝑇

‖𝑥𝑘‖ ≤ (𝑇 + 1)𝑟−1𝐶𝐴𝐶0 + 𝑇 𝑟𝐶𝐴(𝐶𝐵𝐶𝑢 + 𝐶𝜉). (73)
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Proof Using Lemma 24 we have

𝑥𝑡 = 𝐴𝑡𝑣 +
𝑡−1∑
𝑘=0

𝐴𝑘𝐵𝑢𝑡−1−𝑘 +
𝑡−1∑
𝑘=0

𝐴𝑘𝜉𝑡−𝑘

max
0≤𝑘≤𝑇

‖𝑥𝑘‖ ≤ max
0≤𝑘≤𝑇

∥∥∥𝐴𝑘
∥∥∥𝐶0 +

𝑇−1∑
𝑘=0

∥∥∥𝐴𝑘𝐵
∥∥∥𝐶𝑢 +

𝑇−1∑
𝑘=0

∥∥∥𝐴𝑘
∥∥∥𝐶𝜉

≤ (𝑇 + 1)𝑟−1𝐶𝐴𝐶0 + 𝐶𝐴𝐶𝐵𝐶𝑢𝑇
𝑟 + 𝐶𝐴𝐶𝜉𝑇

𝑟.

Proof [Proof of Theorem 3] Let 𝐴′ =
(
𝐴 𝐵
𝑂 𝑂

)
. We apply Lemma 26 to the systemÇ

𝑥𝑡
𝑢𝑡

å
= 𝐴′

Ç
𝑥𝑡−1

𝑢𝑡−1

å
+

Ç
𝜉𝑡
𝑢𝑡

å
(74)

with
Ä
𝜉𝑡
𝑢𝑡

ä
∈ 𝐾 := 𝐵𝑑

𝐶𝜉
⊕ 𝐵𝑑

𝐶𝑢
for 1 ≤ 𝑡 ≤ 𝑇 . Let 𝑘′ = ⌊(𝑑 + 𝑚) log2(𝑀)⌋ and 𝐶 = 𝐶𝐴(𝐶𝜉 +

𝐶𝐵𝐶𝑢). Note that

𝑓𝐴′,𝐾(𝑘) = max
( 𝜉
𝑢 )∈𝐾

Ñ∥∥∥𝐴𝑘𝜉
∥∥∥
2

+


∥∥∥𝐴𝑘−1𝐵𝑢

∥∥∥
2
, 𝑘 ≥ 1

𝐶𝑢, 𝑘 = 0

é
𝑝(𝑘′+1)−2∑

𝑘=0

𝑓𝐴′,𝐾(𝑘) ≤
𝑝(𝑘′+1)−2∑

𝑘=0

(𝑓𝐴(𝑘)𝐶𝜉 + 𝑓𝐴(𝑘)𝐶𝐵𝐶𝑢) + 𝐶𝑢 (75)

Then using Lemma 24, 𝐿𝑣(𝑝) in Lemma 26 equals

𝐿𝑣(𝑝) = max
0≤𝑘≤𝑝(𝑘′+1)−1

𝑓𝐴′(𝑘) max

ß
2

ln 2
(𝑑 + 𝑚), 𝐶0

™
+

Ñ
𝑝(𝑘′+1)−2∑

𝑘=0

𝑓𝐴′,𝐾(𝑘)

éÅ
2

ln 2
(𝑑 + 𝑚) + 2

ã
≤ max

0≤𝑘≤𝑝(𝑘′+1)−1
𝑓𝐴′(𝑘) max

ß
2

ln 2
(𝑑 + 𝑚), 𝐶0

™
+

Ñ
𝑝(𝑘′+1)−2∑

𝑘=0

(𝑓𝐴(𝑘)𝐶𝜉 + 𝑓𝐴(𝑘)𝐶𝐵𝐶𝑢) + 𝐶𝑢

éÅ
2

ln 2
(𝑑 + 𝑚) + 2

ã
≤ (𝑝(𝑘′ + 1))𝑟−1 max

ß
2

ln 2
(𝑑 + 𝑚), 𝐶0

™
+ [𝐶(𝑝(𝑘′ + 1))𝑟 + 𝐶𝑢]

Å
2

ln 2
(𝑑 + 𝑚) + 2

ã
≤ 𝑝𝑟(𝑘′ + 1)𝑟

Å
2

ln 2
(𝑑 + 𝑚)(𝐶 + 1) + 𝐶0 + 2

ã
+ 𝐶𝑢

Å
2

ln 2
(𝑑 + 𝑚) + 2

ã
. (76)

Let

𝑄(𝑥) : =

Ñ
𝑥− 2𝐶𝑢( 2

ln 2(𝑑 + 𝑚) + 2)

2𝐶(𝑘′ + 1)𝑟
Ä

2
ln 2(𝑑 + 𝑚)(𝐶 + 1) + 𝐶0 + 2

äé 1
𝑟

𝑐 : = max

ß
2𝑟+1𝐶(𝑘′ + 1)𝑟

Å
2

ln 2
(𝑑 + 𝑚)(𝐶 + 1) + 𝐶0 + 2

ã
+ 4𝐶𝑢

Å
2

ln 2
(𝑑 + 𝑚) + 2

ã
,
4𝑑𝐶0

ln 2

™
.
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It is easy to check that when 𝑥 ≥ 𝑐, then 2 ≤ 𝑄(𝑥) and for all 𝑝 ≤ 𝑄(𝑥), 𝑥 ≥ 2𝐿𝑣(𝑝). Moreover,

for 𝑥 ≥ 𝑐, we have 𝑥 ≥ 4𝐶𝑢

Ä
2

ln 2(𝑑 + 𝑚) + 2
ä
, so 𝑄(𝑥) ≥

Å
𝑥

4𝐶(𝑘′+1)𝑟( 2
ln 2

(𝑑+𝑚)(𝐶+1)+𝐶0+2)

ã 1
𝑟

.

By Lemma 26, the states are (𝑐, 𝑐1, 𝑐2, 𝛼)-anomaly-free, with

𝛼 =
1

𝑟

𝑐 = max

ß
2𝑟+1𝐶(𝑘′ + 1)𝑟

Å
2

ln 2
(𝑑 + 𝑚)(𝐶 + 1) + 𝐶0 + 2

ã
+ 4𝐶𝑢

Å
2

ln 2
(𝑑 + 𝑚) + 2

ã
,
4𝑑𝐶0

ln 2

™
𝑐1 = Θ

Ö
1

𝐶
1
𝑟 (𝑘′ + 1)

Ä
2

ln 2(𝑑 + 𝑚)(𝐶 + 1) + 𝐶0

ä 1
𝑟 ln𝑇

è
𝑐2 =

ln 2

4𝑑
,

satisfying the hypothesis of Theorem 12. By Theorem 12, the regret is

𝑅𝑇 ≤ 𝜇𝑅2 + 𝑂

(
(𝑑 + 𝑚)3 max

𝐶𝜉𝑐
2𝑇

𝜇
+ ‖(𝐴,𝐵)‖2 𝑐,

𝐶𝜉

𝑐22
,

1

𝑐
1

𝛼+2

1 𝑐
2

𝛼+2

2

(
‖(𝐴,𝐵)‖2 𝜇

1
𝛼+2 +

𝐶𝜉𝑇
1
2

𝜇
1
2
− 1

𝛼+2

)
2

· ln
Ç

1 +
𝑇𝑀2

𝑑 + 𝑚

å)
.

Plugging in 𝜇 = 𝑇
2𝑟+1
2𝑟+2 , and using the bound 𝑀 ≤ (𝑇 + 1)𝑟−1𝐶𝐴𝐶0 + 𝑇 𝑟𝐶𝐴(𝐶𝐵𝐶𝑢 + 𝐶𝜉) from

Lemma 27, we obtain the theorem. Note that the only terms with an 𝑟th power are the two terms
involving 𝑐. The dependence on 𝑇 of the larger such term is 𝑇

𝜇 = 𝑇
1

2𝑟+2 , hence the additive term
in (4).

We now simplify the bound when all the constants are 𝑂(1) and ‖(𝐴,𝐵)‖𝐹 = 𝑂(𝑑 + 𝑚).

We have 𝑐1 = Ω

Å
1

(𝑑+𝑚)𝑟 ln𝑇 (𝑑+𝑚)
1
𝑟 ln𝑇

ã
and 𝑐2 = Ω

Ä
1
𝑑

ä
. Using (8) in Theorem 12, with 𝜇 =

(𝑑+𝑚)
𝛼+2
𝛼+1 𝑇

𝛼+2
2(𝛼+1)

𝑐
1

𝛼+1
1 𝑐

2
𝛼+1
2

, we obtain the bound (as 𝑇 →∞)

𝑅𝑇 = 𝑂

Ñ
(𝑑 + 𝑚)2(𝑑 + 𝑚)

𝑟
𝑟+1𝑇

2𝑟+1
2𝑟+2 𝑟 ln𝑇

𝑐
𝑟

𝑟+1

1 𝑐
2𝑟
𝑟+1

2

é
= 𝑂

Å
(𝑑 + 𝑚)2+

𝑟
𝑟+1𝑇

2𝑟+1
2𝑟+2 𝑟 ln𝑇 ·

(
(𝑑 + 𝑚)

𝑟+1
𝑟 𝑟(ln𝑇 )2

) 𝑟
𝑟+1

𝑑
2𝑟
𝑟+1

ã
= 𝑂

(
(𝑑 + 𝑚)2+

𝑟
𝑟+1𝑑1+

𝑟−1
𝑟+1 (𝑑 + 𝑚)𝑇

2𝑟+1
2𝑟+2 𝑟2(ln𝑇 )3

)
(77)

= 𝑂
(
(𝑑 + 𝑚)4𝑑2𝑟2𝑇

2𝑟+1
2𝑟+2 (ln𝑇 )3

)
.

Note that Corollary 4 follows from plugging 𝑟 = 1 into (77).
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Appendix D. Proof of Theorem 5 (fully observed system, stochastic noise)

Lemma 28 Let 𝑣𝑡, 𝑤𝑡 ∈ R𝑑 for 0 ≤ 𝑡 ≤ 𝑇 − 1. Suppose that the following hold.

∙ For any 0 ≤ 𝑡 ≤ 𝑇 − 1, there exist 𝑎𝑠 ∈ R such that

𝑣𝑡 =
𝑡−1∑
𝑠=0

𝑎𝑠𝑣𝑠 + 𝑣,

Ã
𝑡−1∑
𝑠=0

𝑎2𝑠 ≤ 𝐿𝑎, ‖𝑣‖2 ≤ 𝐿𝑣. (78)

∙ 𝑤𝑡 = 𝐴𝑣𝑡 + 𝜀𝑡+1 + 𝜉𝑡+1 where ‖𝐴‖2 ≤ 𝑅, ‖𝜀𝑡‖ ≤ 𝐶𝜀, and 𝜉𝑡, 1 ≤ 𝑡 ≤ 𝑇 are random
variables such that 𝜉𝑡+1|𝜉1, . . . , 𝜉𝑡 is mean 0 and 𝐶𝜉-subgaussian for 0 ≤ 𝑡 ≤ 𝑇 − 1.

∙ ‖𝑣𝑡‖ ≤ 𝑔(𝑡) for 0 ≤ 𝑡 ≤ 𝑇 − 1.

Let 𝐿′ > 0, and let

𝜀net =
1∑𝑇−1

𝑠=0 𝑔(𝑠)
(79)

𝑅𝑧 = 𝜇− 1
2

Ç
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å 1
2

𝑑
1
2 (80)

𝑆𝑏 =
√

2

ÇÇ
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å
𝑑2 + 1

å 1
2

(81)

𝐿 =
√

2𝐶𝜉𝑆𝑏

Å
𝑑 ln

Å
1 +

2𝑅𝑧

𝜀net

ã
+ ln

Å
𝑇

𝛿

ãã 1
2

. (82)

Then

P

Ñ
max

0≤𝑡≤𝑇−1
‖𝐴𝑡𝑣𝑡 − 𝑣𝑡+1‖2 ≤ 𝐿 + (𝜇

1
2𝑅 + 𝐶𝜀𝑑

1
2

√
𝑇 )

Ç
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å 1
2

𝑑
1
2 + 2𝐶𝜉 + 𝐶𝜀

é
≥ 1− 𝛿.

(83)

The reason for the choice of values of 𝜀net, 𝑅𝑧 , 𝑆𝑏, and 𝐿 can be seen in (103), (97), (99), and (106),
respectively.

We note several lemmas we will need.

Lemma 29 Let 𝑣𝑠 ∈ R𝑑 for 1 ≤ 𝑠 ≤ 𝑡. Suppose that
∑𝑡

𝑠=1 𝑣𝑠𝑣
⊤
𝑠 ⪯ Σ. Then

𝑡∑
𝑠=1

𝑣⊤𝑠 Σ−1𝑣𝑠 ≤ 𝑑. (84)

Proof We can choose 𝑣′𝑠 ∈ R𝑑, 1 ≤ 𝑠 ≤ 𝑡′ such that
∑𝑡

𝑠=1 𝑣𝑠𝑣
⊤
𝑠 +

∑𝑡′
𝑠=1 𝑣

′
𝑠𝑣

′⊤
𝑠 = Σ. Then

𝑡∑
𝑠=1

𝑣⊤𝑠 Σ−1𝑣𝑠 +
𝑡′∑

𝑠=1

𝑣′⊤𝑠 Σ−1𝑣′𝑠 = Tr

Ñ
Σ−1

Ñ
𝑡∑

𝑠=1

𝑣𝑠𝑣
⊤
𝑠 +

𝑡′∑
𝑠=1

𝑣′𝑠𝑣
′⊤
𝑠

éé
= Tr(𝐼𝑑) = 𝑑 (85)

=⇒
𝑡∑

𝑠=1

𝑣⊤𝑠 Σ−1𝑣𝑠 = 𝑑−
𝑡′∑

𝑠=1

𝑣′⊤𝑠 Σ−1𝑣′𝑠 ≤ 𝑑. (86)
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Lemma 30 (Vershynin 2010, Lemma 5.2) There is an 𝜀-net of 𝐵𝑑
1 of size

Ä
1 + 2

𝜀

ä𝑑
.

Lemma 31 (Generalization of Azuma’s Inequality (Simchowitz et al., 2018, Lemma 4.2)) Let
{ℱ𝑡}𝑡≥0 be a filtration, and {𝑍𝑡}𝑡≥1 and {𝑊𝑡}𝑡≥1 be real-valued processes adapted to ℱ𝑡 and
ℱ𝑡+1 respectively. Moreover, assume 𝑊𝑡|ℱ𝑡 is mean 0 and 𝜎2-sub-Gaussian. Then for any positive
real numbers 𝐿 and 𝛽,

P
[{

𝑇∑
𝑡=1

𝑊𝑡𝑍𝑡 ≥ 𝐿

}
∩
{

𝑇∑
𝑡=1

𝑍2
𝑡 ≤ 𝛽

}]
≤ exp

Ç
− 𝐿2

2𝜎2𝛽

å
Proof [Proof of Lemma 28] Let

Σ𝑡 = 𝜇𝐼𝑑 +
𝑡−1∑
𝑠=0

𝑣𝑠𝑣
⊤
𝑠 . (87)

By Lemma 13,

𝐴𝑡𝑣𝑡 − 𝑤𝑡 =
𝑡−1∑
𝑠=0

(𝜀𝑠+1 + 𝜉𝑠+1)𝑣
⊤
𝑠 Σ−1

𝑡 𝑣𝑡 − 𝜇Σ−1
𝑡 𝑣𝑡 − 𝜀𝑡+1 − 𝜉𝑡+1. (88)

Bounding
∑𝑡−1

𝑠=0 𝜉𝑠+1𝑣
⊤
𝑠 Σ−1

𝑡 𝑣𝑡. Let 𝑏𝑠 = 𝑣⊤𝑠 Σ−1
𝑡 𝑣𝑡.

To use Azuma’s inequality, we need to bound the following. Using Cauchy-Schwarz (⟨𝑣, 𝑤⟩2 ≤
‖𝑣‖2 ‖𝑤‖2),

𝑡−1∑
𝑠=0

𝑏2𝑠 ≤
𝑡−1∑
𝑠=0

∥∥∥∥𝑣⊤𝑠 Σ
− 1

2
𝑡

∥∥∥∥2
2

∥∥∥∥Σ− 1
2

𝑡 𝑣𝑡

∥∥∥∥2
2

(89)

=

(
𝑡−1∑
𝑠=0

𝑣⊤𝑠 Σ−1
𝑡 𝑣𝑠

)∥∥∥∥Σ− 1
2

𝑡 𝑣𝑡

∥∥∥∥2
2

(90)

Choosing 𝑎𝑠 and 𝑣 as in (78),

∥∥∥∥Σ− 1
2

𝑡 𝑣𝑡

∥∥∥∥2
2

=

∥∥∥∥∥∥Σ− 1
2

𝑡

(
𝑡−1∑
𝑠=0

𝑎𝑠𝑣𝑠 + 𝑣

)∥∥∥∥∥∥
2

2

=

∥∥∥∥∥∥
𝑡−1∑
𝑠=0

𝑎𝑠Σ
− 1

2
𝑡 𝑣𝑠 + Σ

− 1
2

𝑡 𝑣

∥∥∥∥∥∥
2

2

(91)

≤
(

𝑡−1∑
𝑠=0

𝑎2𝑠 +
‖𝑣‖2

𝜇

)(
𝑡−1∑
𝑠=0

∥∥∥∥Σ− 1
2

𝑡 𝑣𝑠

∥∥∥∥2
2

+
𝜇

‖𝑣‖2
∥∥∥∥Σ− 1

2
𝑡 𝑣

∥∥∥∥2
2

)
by Cauchy-Schwarz (92)

≤
Ç
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å(𝑡−1∑
𝑠=0

𝑣⊤𝑠 Σ−1
𝑡 𝑣𝑠 + 𝜇

𝑣⊤

‖𝑣‖
Σ−1
𝑡

𝑣

‖𝑣‖

)
. (93)

Now 𝑣𝑠𝑣
⊤
𝑠 + 𝜇 𝑣𝑣⊤

‖𝑣‖2 ⪯ Σ𝑡 satisfies the hypothesis of Lemma 29, so

𝑡−1∑
𝑠=0

𝑣⊤𝑠 Σ−1
𝑡 𝑣𝑠 + 𝜇

𝑣⊤

‖𝑣‖
Σ−1
𝑡

𝑣

‖𝑣‖
≤ 𝑑 (94)
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and so (93) gives ∥∥∥∥Σ− 1
2

𝑡 𝑣𝑡

∥∥∥∥2 ≤
Ç
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å
𝑑. (95)

From (90), (94), and (95), we get

𝑡−1∑
𝑠=0

𝑏2𝑠 ≤
Ç
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å
𝑑2. (96)

Let 𝑧𝑡 = Σ−1
𝑡 𝑣𝑡. By (93) and (95),

‖𝑧𝑡‖ =

∥∥∥∥Σ− 1
2

𝑡

∥∥∥∥
2

∥∥∥∥Σ− 1
2

𝑡 𝑣𝑡

∥∥∥∥
2
≤ 𝜇− 1

2

Ç
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å 1
2

𝑑
1
2 = 𝑅𝑧 (97)

so 𝑧𝑡 ∈ 𝐵𝑑
𝑅𝑧

. By Lemma 30, there is an 𝜀net-net 𝒩 of 𝐵𝑑
𝑅𝑧

of size
Ä
1 + 2𝑅𝑧

𝜀net

ä𝑑
. Since 𝑧𝑡 ∈ 𝐵𝑑

𝑅𝑧
,

there exists ‖∆𝑧‖ ≤ 𝜀net such that 𝑧𝑡 + ∆𝑧 ∈ 𝒩 . Note that

𝑡−1∑
𝑠=0

|𝑣⊤𝑠 (𝑧𝑡 + ∆𝑧)|2 ≤ 2

(
𝑡−1∑
𝑠=0

|𝑣⊤𝑠 𝑧𝑡|2 + |𝑣⊤𝑠 ∆𝑧|2
)
≤ 2

((
𝑡−1∑
𝑠=0

𝑏2𝑠

)
𝑑2 +

𝑡−1∑
𝑠=0

𝑔(𝑠)2𝜀2net

)
(98)

≤ 2

ÇÇ
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å
𝑑2 + 1

å
=: 𝑆2

𝑏 . (99)

For a fixed 𝑧, consider the event 𝐸𝑧 = {∑𝑡−1
𝑠=0 |𝑦⊤𝑠 𝑧|2 > 𝑆2

𝑏 or
∑𝑡−1

𝑠=0 𝜉𝑠+1𝑦
⊤
𝑠 𝑧 ≤ 𝐿}. Then by the

generalization of Azuma’s inequality 31,

P(𝐸𝑐
𝑧) ≤ P

(
𝑡−1∑
𝑠=0

|𝑦⊤𝑠 𝑧|2 ≤ 𝑆2
𝑏 and

𝑡−1∑
𝑠=0

𝜉𝑠+1𝑦
⊤
𝑠 𝑧 > 𝐿

)
(100)

≤ exp

(
− 𝐿2

2𝐶2
𝜉𝑆

2
𝑏

)
. (101)

Now we use the triangle inequality to bound the sum by the maximum value on the 𝜀net-net.∥∥∥∥∥∥
𝑡−1∑
𝑠=0

𝜉𝑠+1𝑣
⊤
𝑠 𝑧

∥∥∥∥∥∥ ≤
∥∥∥∥∥∥
𝑡−1∑
𝑠=0

𝜉𝑠+1𝑣
⊤
𝑠 (𝑧 + ∆𝑧)

∥∥∥∥∥∥+

∥∥∥∥∥∥
𝑡−1∑
𝑠=0

𝜉𝑠+1𝑣
⊤
𝑠 (∆𝑧)

∥∥∥∥∥∥ (102)

≤ max
𝑧′ ∈ 𝒩∑𝑡−1

𝑠=0 |𝑣
⊤
𝑠 𝑧′|2 ≤ 𝑆2

𝑏

∣∣∣∣∣∣
𝑡−1∑
𝑠=0

𝜉𝑠+1𝑣
⊤
𝑠 𝑧

′

∣∣∣∣∣∣+ 𝐶𝜉

𝑡−1∑
𝑠=0

𝑔(𝑠)𝜀net (103)

= max
𝑧′ ∈ 𝒩∑𝑡−1

𝑠=0
|𝑣⊤𝑠 𝑧′|2 ≤ 𝑆2

𝑏

∣∣∣∣∣∣
𝑡−1∑
𝑠=0

𝜉𝑠+1𝑣
⊤
𝑠 𝑧

′

∣∣∣∣∣∣+ 𝐶𝜉 (104)
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Under the event
⋂

𝑧′∈𝒩 𝐸𝑧′ , we have that the maximum above is ≤ 𝐿. Thus

P

Ñ∥∥∥∥∥∥𝑡−1∑
𝑠=0

𝜉𝑠+1𝑣
⊤
𝑠 𝑧

∥∥∥∥∥∥ > 𝐶𝜉 + 𝐿

é
≤ P

Ñ ⋃
𝑧′∈𝒩

𝐸𝑐
𝑧′

é
(105)

≤
Å

1 +
2𝑅𝑧

𝜀net

ã𝑑
exp

(
− 𝐿2

2𝐶2
𝜉𝑆

2
𝑏

)
≤ 𝜀

𝑇
. (106)

by the choice of 𝐿.

Bounding
∑𝑡−1

𝑠=0 𝜀𝑠+1𝑣
⊤
𝑠 Σ−1

𝑡 𝑣𝑡. A crude bound suffices here. We have by (96) that

𝑡−1∑
𝑠=0

𝜀𝑠+1𝑣
⊤
𝑠 Σ−1

𝑡 𝑣𝑡 ≤ 𝐶𝜀

𝑡−1∑
𝑠=0

|𝑣⊤𝑠 (Σ𝑡)
−1𝑣𝑡| (107)

≤ 𝐶𝜀

√
𝑡

Ã
𝑡−1∑
𝑠=0

|𝑣⊤𝑠 (Σ𝑡)−1𝑣𝑡|2 (108)

≤ 𝐶𝜀

√
𝑇

Ç
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å 1
2

𝑑. (109)

Bounding 𝜇𝐴Σ−1
𝑡 𝑣𝑡. We have by (97) that

∥∥∥𝜇𝐴Σ−1
𝑡 𝑣𝑡

∥∥∥ ≤ 𝜇𝐴𝑅𝑧 = 𝜇
1
2𝑅

Ç
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å 1
2

𝑑
1
2 (110)

From (88), (106), (109), and (110), and noting that ‖𝜀𝑡+1 + 𝜉𝑡+1‖ ≤ 𝐶𝜉 + 𝐶𝜀, we get that

P

Ñ
‖𝐴𝑡𝑣𝑡 − 𝑤𝑡‖ > 𝐿 + (𝜇

1
2𝑅 + 𝐶𝜀𝑑

1
2

√
𝑇 )

Ç
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å 1
2

𝑑
1
2 + 2𝐶𝜉 + 𝐶𝜀

é
≤ 𝜀

𝑇
. (111)

Union-bounding over 0 ≤ 𝑡 ≤ 𝑇 − 1 finishes the proof.

Proof [Proof of Theorem 5] We apply Lemma 28 to the system (74). Let 𝑘′ = ⌊(𝑑 + 𝑚) log2(𝑀)⌋
and 𝐶 = 𝐶𝐴(𝐶𝐵𝐶𝑢+𝐶𝜉). By (76) with 𝑝 = 1, we can write 𝑥𝑡 =

∑𝑡
𝑠=0 𝑎𝑠𝑥𝑠+𝑣 with

∑𝑡−1
𝑠=0 |𝑎𝑠| ≤

𝐿𝑎 and ‖𝑣‖2 ≤ 𝐿𝑣, where

𝐿𝑎 =
2

ln 2
(𝑑 + 𝑚) (112)

𝐿𝑣 = (𝑘′ + 1)𝑟
Å

2

ln 2
(𝑑 + 𝑚)(𝐶 + 1) + 𝐶0 + 2

ã
+ 𝐶𝑢

Å
2

ln 2
(𝑑 + 𝑚) + 2

ã
. (113)

using (75) in the last step.
Then Lemma 28 is satisfied with these values of 𝐿𝑎, 𝐿𝑣, and (by Lemma 27), 𝑔(𝑡) = (𝑡 +

1)𝑟−1𝐶𝐴𝐶0 + 𝑡𝑟𝐶𝐴(𝐶𝐵𝐶𝑢 + 𝐶𝜉). Defining 𝜀net, 𝑅𝑧 , 𝑆𝑏, 𝐿 as in Lemma 28, we get that

P

Ñ
max

0≤𝑡≤𝑇−1
‖𝐴𝑡𝑣𝑡 − 𝑣𝑡+1‖2 ≤ 𝐿 + 𝜇

1
2

Ç
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å 1
2

𝑑 + 2𝐶𝜉

é
≥ 1− 𝜀. (114)
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Then with probability 1− 𝜀, we have by Theorem 1 that

𝑅𝑇 (𝐴,𝐵) ≤ 𝜇𝑅2 +

Ñ
𝐿 + 𝜇

1
2

Ç
𝐿2
𝑎 +

𝐿2
𝑣

𝜇

å 1
2

𝑑 + 2𝐶𝜉

é2

(𝑑 + 𝑚) ln

Ç
1 +

𝑇𝑀2

𝑑 + 𝑚

å
(115)

where 𝐿𝑎, 𝐿𝑣, 𝐿,𝑀 have the desired parameter dependences; take 𝜇 = 1.

Appendix E. Proof: Partially observable system, stochastic setting

E.1. Learning the steady-state Kalman filter

In the prediction problem, at each time step 𝑡, we have observed 𝑦0, . . . , 𝑦𝑡 and 𝑢0, . . . , 𝑢𝑡, and
are asked to predict 𝑦𝑡+1. Note that this does not immediately fit in the framework for online least
squares, because 𝑦𝑡+1 is a linear function of the unobserved 𝑥𝑡 (the latent state) plus noise. However,
as we will see, we can still place it in this framework if we use an linear autoregressive estimator.

The Kalman filter (Kalman, 1960; Kamen and Su, 1999) gives the optimal linear estimator in
the case that the parameters of the LDS, the noises, and the initial state are drawn from known
Gaussian distributions, i.e. 𝑥0 ∼ 𝑁(𝑥−0 ,Σ0), 𝜉𝑡 ∼ 𝑁(0,Σ𝑥), 𝜂𝑡 ∼ 𝑁(0,Σ𝑦). We can compute
matrices 𝐴(𝑡)

KF, 𝐵(𝑡)
KF, and 𝐶

(𝑡)
KF = 𝐶 such that the optimal linear estimate of the latent state ℎ̂𝑡 and the

observation 𝑦𝑡 are given by a time-varying LDS (taking the 𝑦𝑡 as feedback) with those matrices :

𝑥−𝑡 = 𝐴
(𝑡)
KF𝑥

−
𝑡−1 + 𝐵

(𝑡)
KF

Ç
𝑢𝑡−1

𝑦𝑡−1

å
(116)

𝑦𝑡 = 𝐶
(𝑡)
KF𝑥

−
𝑡 . (117)

This is known as the predictor form of the system Qin (2006). We will denote 𝐵𝐾𝐹 = (𝐵𝐾𝐹,𝑢 𝐵𝐾𝐹,𝑦),
where 𝐵𝐾𝐹,𝑢 and 𝐵𝐾𝐹,𝑦 are the submatrices acting on 𝑢𝑡−1 and 𝑦𝑡−1, respectively. In this case,
𝑥−𝑡 and 𝑦𝑡 are the maximum a posteriori (MAP) estimators, and the actual hidden state 𝑥𝑡 and the
observation 𝑦𝑡 are Gaussians when conditioned on ℱ𝑡−1 = 𝜎(𝑦0, . . . , 𝑦𝑡−1) (the observations up to
time 𝑡− 1): 𝑥𝑡|ℱ𝑡−1 ∼ 𝑁(𝑥−𝑡−1,Σ

(𝑡)
KF,𝑥) and 𝑦𝑡|ℱ𝑡−1 ∼ 𝑁(𝑦𝑡,Σ

(𝑡)
KF,𝑦) for some covariance matrices

Σ
(𝑡)
KF,𝑥, Σ

(𝑡)
KF,𝑦. Our goal is to predict as well as the Kalman filter without knowing the parameters of

the original LDS.
If the original system satisfies Assumption 6 (most notably, it is observable and the noise is

i.i.d.), taking 𝑡 → ∞, the matrices 𝐴
(𝑡)
KF, and 𝐵

(𝑡)
KF approach certain fixed matrices 𝐴KF and 𝐵KF,

and the covariance matrices Σ
(𝑡)
KF,𝑥 and Σ

(𝑡)
KF,𝑦 approach fixed matrices ΣKF,𝑥 and ΣKF,𝑦 (Harrison,

1997; Anderson and Moore, 2012). In the Gaussian case, at steady-state, the actual hidden state
𝑥𝑡 and observation 𝑦𝑡 will be distributed as 𝑥𝑡|ℱ𝑡−1 ∼ 𝑁(𝑥−𝑡 ,Σ𝑥) and 𝑦𝑡|ℱ𝑡−1 ∼ 𝑁(𝑦𝑡,Σ𝑦). To
simplify the problem, we will assume that the LDS starts with the steady-state covariance4, so that
the steady-state Kalman filter is the optimal filter for all time.

4. Note that steady-state refers to the covariance of the 𝑥𝑡|ℱ𝑡−1 and 𝑦𝑡|ℱ𝑡−1 being constant, rather than the distribution
of 𝑥𝑡|ℱ𝑡−1 and 𝑦𝑡|ℱ𝑡−1 being constant. If the system is not strictly stable, it does not have a steady state in the
open-loop setting, because 𝑥𝑡 will diverge.

36



NO-REGRET PREDICTION IN MARGINALLY STABLE SYSTEMS

As before, our task is to predict 𝑦𝑡+1 at time step 𝑡. The regret is now defined by

𝑅𝑇 (𝐴,𝐵,𝐶) = E
[
𝑇−1∑
𝑡=0

‖𝑦𝑡+1 − 𝑦𝑡+1‖22 −
𝑇−1∑
𝑡=0

‖𝑦𝑡+1,KF − 𝑦𝑡+1‖22

]
(118)

where 𝑦𝑡+1,KF is the prediction given by (117). The challenge to competing with the Kalman filter
prediction is that the Kalman filter has memory: its prediction depends on a state estimate 𝑥−𝑡 kept
in memory. We can remove this dependence by “unrolling” the Kalman filter and then truncating.
Then we find that 𝑦𝑡+1,KF is approximately a linear function of 𝑢𝑡−ℓ+1, . . . , 𝑢𝑡 and 𝑦𝑡−ℓ+1, . . . , 𝑦𝑡
for large enough ℓ: letting 𝐶KF = 𝐶,

𝑦𝑡+1,KF = 𝐹𝑢𝑡:𝑡−ℓ+1 + 𝐺𝑦𝑡:𝑡−ℓ+1

where 𝐹 = (𝐶KF𝐵KF,𝑢, 𝐶KF𝐴KF𝐵KF,𝑢, . . . , 𝐶KF𝐴
ℓ−1
KF 𝐵KF,𝑢)

and 𝐺 = (𝐶KF𝐵KF,𝑦, 𝐶KF𝐴KF𝐵KF,𝑦, . . . , 𝐶KF𝐴
ℓ−1
KF 𝐵KF,𝑦).

In other words, we can approximate the Kalman filter with an autoregressive filter of length ℓ.
The framework of online least-squares (Algorithm 1) now applies with 𝑥𝑡 ←[

( 𝑢𝑡:𝑡−ℓ+1
𝑦𝑡:𝑡−ℓ+1

)
, 𝑦𝑡 ←[

𝑦𝑡+1, 𝐴←[ (𝐹, 𝐺), 𝑛←[ 𝑛, and 𝑚←[ ℓ(𝑑 + 𝑚), giving Algorithm 3. We let 𝑢𝑠 = 0 and 𝑦𝑠 = 0 for
𝑠 < 0.

E.2. Norms and sufficient length

First we define the sufficient length of a system. Roughly speaking, the sufficient length 𝑅(𝜀) is
the length at which we can truncate a finite impulse response (FIR) filter, so that when inputs are
bounded by 1, we incur at most 𝜀 prediction error at any time step. This notion was introduced
by Tu et al. (2017) in the one-dimensional setting.

We first recall some concepts from control theory. In particular, the definition of sufficient length
depends on theℋ∞ norm.

Definition 32 Let 𝐹 be a stable, linear time-invariant (LTI) system, represented as the transfer
function 𝐹 (𝑧) =

∑∞
𝑗=0 𝐹𝑗𝑧

−𝑗 ∈ R𝑛×𝑚[[𝑧−1]]. (This is a matrix-valued Laurent series whose
coefficients (𝐹0, 𝐹1, . . .) form the impulse response function, that is, the response to input 𝑣 ∈ R𝑚

is (𝐹0𝑣, 𝐹1𝑣, . . .).) Define theℋ∞ norm of 𝐹 to be ‖𝐹‖ℋ∞
:= max|𝑧|=1 ‖𝐹 (𝑧)‖2.

Definition 33 (Sufficient length condition, (Tu et al., 2017, Definition 1)) We say that a Laurent
series (or LTI system) 𝐹 has stability radius 𝜌 ∈ (0, 1) if 𝐹 converges for {𝑥 ∈ C : |𝑥| > 𝜌}. Let 𝐹
be stable with stability radius 𝜌 ∈ (0, 1). Fix 𝜀 > 0. Define the sufficient length

𝑅(𝜀) =

¢
inf

𝜌<𝛾<1

1

1− 𝛾
ln

Ç
‖𝐹 (𝛾𝑧)‖∞
𝜀(1− 𝛾)

å•
. (119)

Note that having a dependence on sufficient length is analogous to having a 1
1−𝜌(𝐴) dependence on

the spectral radius of 𝐴, for learning a LDS. Roughly, if we ignore factors depending on condi-
tion numbers, for a LDS with dynamics given by 𝐴, the sufficient length 𝑅(𝜀) is on the order of
𝑂
(

1
1−𝜌(𝐴) · ln

Ä
1
𝜀

ä)
.

The following lemma says that if we are content with an error of 𝜀, we can safely truncate
the impulse response function at length 𝑅(𝜀). Note that Tu et al. (2017) give the proof for the
one-dimensional case, but the same proof works in the multi-dimensional setting.
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Lemma 34 (Tu et al. 2017, Lemma 4.1) Suppose 𝐹 is stable with stability radius 𝜌 ∈ (0, 1). Then

‖𝐹≥𝐿‖1 :=
∑

𝑘≥𝐿 ‖𝐹 (𝑘)‖ ≤ max𝜌<𝛾<1
‖𝐹 (𝛾𝑧)‖∞𝛾𝐿

1−𝛾 . Hence, if 𝐿 ≥ 𝑅(𝜀), then ‖𝐹≥𝐿‖1 ≤ 𝜀.

If the LDS is not stable, then we cannot truncate the dependence on past inputs. The key
observation is that even if the original LDS is not stable, the LDS defined by the Kalman filter is
stable (Anderson and Moore, 2012). Hence, there is some sufficient length at which we can truncate
the unrolled Kalman filter.

Theorem 35 ((Anderson and Moore, 2012, S4.4)) When the LDS (2)–(3) satisfies Assumption 6,
the associated Kalman filter (as defined in Section 2.3) is strictly stable: 𝜌(𝐴𝐾𝐹 ) < 1.

E.3. Proof of Theorem 8

Proof [Proof of Theorem 8] We first condition on all the noise terms ‖𝜉𝑡‖ ≤ ‖Σ𝑥‖𝑂
(√

𝑑 ln
Ä
𝑇
𝛿

ä)
=:

𝐶𝜉, ‖𝜂𝑡‖ ≤ ‖Σ𝑦‖𝑂
(√

𝑛 ln
Ä
𝑇
𝛿

ä)
=: 𝐶𝜂. Choosing the constants large enough, we can ensure this

happens with probability ≥ 1− 𝛿
3 .

Let 𝑣𝑡 = (ℎ𝑡; . . . ;ℎ𝑡−ℓ+1;𝑢𝑡; . . . ;𝑢𝑡−ℓ+1) For convenience set ℎ𝑡 = 0, 𝑢𝑡 = 0 for 𝑡 < 0. Then
(𝑣′𝑡)

𝑇
𝑡=0 satisfies the following:

𝑣′𝑡 = 𝐴′𝑣′𝑡−1 + 𝜉′𝑡 (120)

𝐴′ =



𝐴 𝑂

𝐼 𝑂
.. .

...
𝐼 𝑂

𝐵 𝑂 · · · 𝑂

𝑂
.. .

...
...
𝑂 · · · 𝑂

𝑂 · · · 𝑂 𝑂

𝐼 𝑂
.. .

...
𝐼 𝑂


(121)

𝑣′0 =

á
ℎ0
0

𝑢0
0

ë
∈ 𝐾 ′

0 := 𝐵𝑑
𝐶0
⊕ {0}(ℓ−1)𝑑 ⊕𝐵𝑚

𝐶𝑢
⊕ {0}(ℓ−1)𝑚 (122)

𝜉′𝑡 =

á
𝜉𝑡
0

𝑢𝑡
0

ë
∈ 𝐾 ′ := 𝐵𝑑

𝐶𝜉
⊕ {0}(ℓ−1)𝑑 ⊕𝐵𝑚

𝐶𝑢
⊕ {0}(ℓ−1)𝑚. (123)

If ℎ0 = ℎ, 𝑢0 = 𝑢, and 𝑢𝑡 = 0 for 𝑡 ≥ 1, and there is no noise, then ℎ𝑡 = 𝐴𝑡ℎ+𝐴𝑡−1𝐵𝑢 for 𝑡 ≥ 1.
Hence∥∥∥∥∥∥∥∥∥(𝐴

′)𝑘
′

á
ℎ
0

𝑢
0

ë∥∥∥∥∥∥∥∥∥
2

≤
√
ℓ

ï
max

0≤𝑘≤𝑘′
𝑓𝐴(𝑘) ‖ℎ‖+

Å
max

0≤𝑘≤𝑘′−1
𝑓𝐴(𝑘)𝐶𝐵 + 1

ã
‖𝑢‖
ò
. (124)
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Note also that

max
𝑣∈𝐵ℓ(𝑑+𝑚)

𝑟

∥∥∥(𝐴′)𝑘
′
𝑣
∥∥∥ = max

(ℎ;𝑢)∈𝐵𝑑+𝑚
𝑟

∥∥∥∥∥∥∥∥∥(𝐴
′)𝑘

′

á
ℎ
0

𝑢
0

ë∥∥∥∥∥∥∥∥∥ (125)

because we can check that∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
(𝐴′)𝑘

′



ℎℓ−1

...
ℎ0
𝑢ℓ−1

...
𝑢0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥∥∥∥
(𝐴′)𝑘

′

à ‖ℎℓ−1:0‖
‖ℎℓ−1‖ ℎℓ−1

0
‖𝑢ℓ−1:0‖
‖𝑢ℓ−1‖ 𝑢ℓ−1

0

í∥∥∥∥∥∥∥∥∥∥
We will apply Lemma 20. Let 𝑘′ = ⌊ℓ(𝑑 + 𝑚) log2(𝑀)⌋ and 𝐶 ′ = 𝐶𝐴𝐶0 + 𝐶𝐴𝐶𝐵𝐶𝑢 + 𝐶𝑢. We
bound (24). By (124), (125), and Lemma 24,

𝑓
𝐴′,𝐾′

0∪𝐵
ℓ(𝑑+𝑚)
2

ln 2
ℓ(𝑑+𝑚)

(𝑘) =
√
ℓ
[

max
0≤𝑘≤𝑘′

𝑓𝐴(𝑘)

Å
𝐶0 +

2

ln 2
ℓ(𝑑 + 𝑚)

ã
+

Å
max

0≤𝑘≤𝑘′−1
𝑓𝐴(𝑘) + 1

ãÅ
𝐶𝑢 +

2

ln 2
ℓ(𝑑 + 𝑚)

ã ]
≤
√
ℓ
[
𝐶𝐴(𝑘′ + 1)𝑟−1

Å
𝐶0 +

2

ln 2
ℓ(𝑑 + 𝑚)

ã
+ (𝐶𝐴𝐶𝐵(𝑘′)𝑟−1 + 1)

Å
𝐶𝑢 +

2

ln 2
ℓ(𝑑 + 𝑚)

ã ]
≤
√
ℓ

ï
𝐶 ′(𝑘′ + 1)𝑟−1 + (𝐶𝐴(𝐶𝐵 + 1) + 1)

2

ln 2
ℓ(𝑑 + 𝑚)

ò
𝑘′−1∑
𝑘=0

𝑓𝐴′,𝐾′(𝑘) ≤
√
ℓ

𝑘′−1∑
𝑘=0

max
0≤𝑗≤𝑘

𝑓𝐴(𝑘)𝐶𝜉 +

Ñ
𝑘′−2∑
𝑘=0

max
0≤𝑗≤𝑘

𝑓𝐴(𝑘)𝐶𝐵 + 1

é
𝐶𝑢


≤
√
ℓ[(𝑘′)𝑟𝐶𝜉 + ((𝑘′ − 1)𝑟𝐶𝐵 + 1)𝐶𝑢].

By Lemma 20, for 0 ≤ 𝑡 ≤ 𝑇 , there exist 𝑎𝑠 ∈ R and 𝑣 ∈ Rℓ(𝑑+𝑚) such that 𝑣𝑡 =
∑𝑡−1

𝑠=0 𝑎𝑠𝑣𝑠 + 𝑣
with

𝑇−1∑
𝑡=0

|𝑎𝑡| ≤
2

ln 2
ℓ(𝑑 + 𝑚) =: 𝐿′

𝑎

‖𝑣‖ ≤ max
0≤𝑘≤𝑘′

𝑓
𝐴′,𝐾′

0∪𝐵
ℓ(𝑑+𝑚)
2

ln 2
ℓ(𝑑+𝑚)

(𝑘) +

Ñ
𝑘′−1∑
𝑘=0

𝑓𝐴′,𝐾′(𝑘)

éÅ
2

ln 2
ℓ(𝑑 + 𝑚) + 1

ã
=
√
ℓ
[
𝐶 ′(𝑘′ + 1)𝑟−1 + (𝐶𝐴(𝐶𝐵 + 1) + 1 + (𝑘′)𝑟𝐶𝜉

+ ((𝑘′ − 1)𝑟𝐶𝐵 + 1)𝐶𝑢)

Å
2

ln 2
ℓ(𝑑 + 𝑚) + 1

ã ]
=: 𝐿′

𝑣
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Now let 𝑣𝑡 = (𝑦𝑡; · · · ; 𝑦𝑡−ℓ+1;𝑢𝑡; · · · ;𝑢𝑡−ℓ+1). Then

𝑣𝑡 = 𝐶 ′𝑣′𝑡 +

Ç
𝜂𝑡:𝑡−ℓ+1

0

å
where 𝐶 ′ =

Ç
𝐼ℓ ⊗ 𝐶 𝑂

𝑂 𝐼ℓ𝑚

å
.

Now if 𝑣′𝑡 =
∑𝑡−1

𝑠=0 𝑎𝑠𝑣
′
𝑠 + 𝑣 with

∑𝑡−1
𝑠=0 𝑎𝑠 ≤ 𝐿𝑎 and ‖𝑣‖ ≤ 𝐿𝑣, then

𝐶 ′𝑣′𝑡 =
𝑡−1∑
𝑠=0

𝑎𝑠𝐶
′𝑣′𝑠 + 𝐶 ′𝑣

=⇒ 𝑣𝑡 −
Ç
𝜂𝑡:𝑡−ℓ+1

0

å
=

𝑡−1∑
𝑠=0

𝑎𝑠

Ç
𝑣𝑠 −

Ç
𝜂𝑠:𝑠−ℓ+1

0

åå
+ 𝐶 ′𝑣

=⇒ 𝑣𝑡 =
𝑡−1∑
𝑠=0

𝑎𝑠𝑣𝑠 +

Ç
𝜂𝑠:𝑠−ℓ+1

0

å
−

𝑡−1∑
𝑠=0

𝑎𝑠

Ç
𝜂𝑠:𝑠−ℓ+1

0

å
+ 𝐶 ′𝑣

so it can be written as a linear combination of previous 𝑣𝑠’s with

𝐿𝑎 = 𝐿′
𝑎

𝐿𝑣 = 𝐶𝐶𝐿
′
𝑣 + (𝐿𝑎 + 1)

√
ℓ𝐶𝜂

If 𝑥0 ∼ 𝑁(0,ΣKF,𝑥), then 𝑥−0 = 0, the steady-state Kalman filter applies, and unfolding the Kalman
filter recurrence gives

𝑦𝑡+1 =
𝑡∑

𝑠=0

𝐹𝑠𝑢𝑡−𝑠 +
𝑡∑

𝑠=0

𝐺𝑠𝑦𝑡−𝑠 +������
𝐶KF𝐴

𝑡+1
KF 𝑥−0 + 𝜁𝑡+1

where 𝜁𝑡+1|ℱ𝑡 ∼ 𝑁(0,ΣKF,𝑦) is ‖ΣKF,𝑦‖2-subgaussian. Then (𝑦𝑡) satisfies Lemma 28 with 𝐿𝑎, 𝐿𝑣,
and with 𝑤𝑡 = 𝑦𝑡+1 where

𝑦𝑡+1 = (𝐹, 𝐺)

Ç
𝑢𝑡:𝑡−ℓ+1

𝑦𝑡:𝑡−ℓ+1

å
+ 𝜀𝑡+1 + 𝜁𝑡+1

𝜀𝑡+1 =
𝑡∑

𝑠=ℓ

(𝐹𝑠𝑢𝑡−𝑠 + 𝐺𝑠𝑦𝑡−𝑠).

By Lemma 27,

max
0≤𝑠≤𝑡−ℓ

max{‖𝑢𝑡‖ , ‖𝑦𝑡‖} ≤ 𝑇 𝑟𝐶𝐶𝐶𝐴(𝐶𝐵𝐶𝑢 + 𝐶𝜉) =: 𝐾.

By choice of ℓ = 𝑅(𝜀′), where 𝜀′ = 𝜀
𝐾 , we get

‖𝜀𝑡+1‖ =

∥∥∥∥∥∥
𝑡∑

𝑠=ℓ

(𝐹𝑠𝑢𝑡−𝑠 + 𝐺𝑠𝑦𝑡−𝑠)

∥∥∥∥∥∥ ≤ 𝜀′ max
0≤𝑠≤𝑡−ℓ

max{‖𝑢𝑡‖ , ‖𝑦𝑡‖} ≤ 𝜀.

We also know 𝜉𝑡+1|ℱ𝑡 ∼ 𝑁(0,ΣKF,𝑦). Apply Lemma 28 to get a polynomial bound on
max0≤𝑡≤𝑇−1 ‖𝐹𝑡𝑢𝑡:𝑡−ℓ+1 + 𝐺𝑡𝑦𝑡:𝑡−ℓ+1 − 𝑦𝑡+1‖ and Theorem 1 to finish.
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Appendix F. OLS regret bound

We show Theorem 1.
We note that Cesa-Bianchi and Lugosi (2006) show the case where 𝐴 ∈ R1×𝑚; the case for

𝐴 ∈ R𝑛×𝑚 essentially follows the same proof. Note that the objective function for 𝐴 decomposes
as a sum of objective functions for each row 𝐴𝑖:

𝜇 ‖𝐴‖2𝐹 +
𝑡−1∑
𝑠=0

‖𝐴𝑥𝑠 − 𝑦𝑠‖2 =
𝑛∑

𝑖=1

(
𝜇 ‖𝐴𝑖‖2 +

𝑡−1∑
𝑠=0

‖𝐴𝑖𝑥𝑠 − (𝑦𝑠)𝑖‖2
)
.

Hence, running Algorithm 1 is equivalent to running the algorithm on each coordinate of 𝑦𝑡 ∈ R𝑛

separately.
Note, however, that if we use (Cesa-Bianchi and Lugosi, 2006, Thm. 11.7) as a black box, and

apply it to every row of 𝐴𝑡, we get the bound

𝑅𝑇 (𝐴) ≤ 𝜇 ‖𝐴‖2𝐹 +
𝑛∑

𝑖=1

max
0≤𝑡≤𝑇−1

((𝑦𝑡)𝑖 − (𝐴𝑡)𝑖𝑥𝑡)
2
2𝑚 ln

Ç
1 +

𝑇𝑀2

𝑚

å
≤ 𝜇 ‖𝐴‖2𝐹 + max

0≤𝑡≤𝑇−1
‖𝑦𝑡 −𝐴𝑡𝑥𝑡‖22𝑚𝑛 ln

Ç
1 +

𝑇𝑀2

𝑚

å
where the second inequality follows from using the naive bound ((𝑦𝑡)𝑖 − (𝐴𝑡)𝑖𝑥𝑡)

2
2 ≤ ‖𝑦𝑡 −𝐴𝑡𝑥𝑡‖22

and has an extra factor of 𝑚.
We refer to Cesa-Bianchi and Lugosi (2006) for the notation we will use.

Proof [Proof of Theorem 1] For consistency with (Cesa-Bianchi and Lugosi, 2006, Thm. 11.7), we
index starting from 𝑡 = 1. Define the objective function Φ*

𝑡 : R𝑛×𝑚 → R by

Φ*
𝑡 (𝐴) = 𝜇 ‖𝐴‖2𝐹 +

𝑡∑
𝑠=1

‖𝐴𝑥𝑠 − 𝑦𝑠‖2

and the component objective functions Φ*
𝑡,𝑖 : R1×𝑚 → R (for 1 ≤ 𝑖 ≤ 𝑛) by

Φ*
𝑡,𝑖(𝑎) = 𝜇 ‖𝑎‖2 +

𝑡∑
𝑠=1

‖𝑎𝑥𝑠 − (𝑦𝑠)𝑖‖2

so that

Φ*
𝑡 (𝐴) =

𝑛∑
𝑖=1

Φ*
𝑡,𝑖(𝐴𝑖).

Hence the Bregman divergence also decomposes. Let Σ𝑡 = 𝜇𝐼+
∑𝑡

𝑠=1 𝑥𝑠𝑥
⊤
𝑠 . Using the calculation

in (Cesa-Bianchi and Lugosi, 2006, pg. 319)

𝐷Φ*
𝑡
(𝐴𝑡−1, 𝐴𝑡) =

𝑛∑
𝑖=1

𝐷Φ*
𝑡,𝑖

((𝐴𝑡−1)𝑖, (𝐴𝑡)𝑖)

=
𝑛∑

𝑖=1

((𝐴𝑡−1)𝑖𝑥𝑡 − (𝑦𝑡)𝑖)
2𝑥⊤𝑡 Σ−1

𝑡 𝑥𝑡

= ‖𝐴𝑡−1𝑥𝑡 − 𝑦𝑡‖2 𝑥⊤𝑡 Σ−1
𝑡 𝑥𝑡.
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The rest of the proof then follows the proof of Theorem 11.7, together with the remark following

the proof. The only difference is that
∥∥∥𝑤⊤

𝑡−1𝑥𝑡 − 𝑦𝑡
∥∥∥2 has been replaced by ‖𝐴𝑡−1𝑥𝑡 − 𝑦𝑡‖2. Note

also that they take 𝜇 = 1, but the calculations go through with arbitrary 𝜇 > 0.

Appendix G. Alternate approach to proving anomaly-freeness

In this section we give an alternate proof of anomaly-freeness, which we discovered after the first
draft of the paper. This approach does not require the number-theoretic lemma, Lemma 25. How-
ever, the polynomial bounds are worse than the proof via the volume doubling argument.

They key fact is that the characteristic polynomial has a multiple of not-too-large degree with
small coefficients. Then we can apply the same approach as Lemma 17. The following lemma is an
adaptation of (Chen et al., 2016, Lemma 5.4).

Lemma 36 For any 𝑘 ≥ 1 and any 𝑧1, . . . , 𝑧𝑘 ∈ C of absolute value at most 1, there exists a
degree 𝑛 = 𝑂(𝑘2 ln 𝑘) polynomial 𝑃 (𝑧) =

∑𝑛
𝑗=0 𝑐𝑗𝑧

𝑗 with the following properties:

𝑘∏
𝑖=1

(𝑧 − 𝑧𝑖) | 𝑃 (𝑧)

𝑐𝑛 = 1

|𝑐𝑗 | ≤ 11, ∀𝑗 ∈ {1, . . . , 𝑛}.

Lemma 37 (Claim A.4, Chen et al. (2016)) Let 𝑧1, . . . , 𝑧𝑘 ∈ C have absolute value at most 1,
and let 𝑄(𝑧) =

∏𝑘
𝑖=1(𝑧 − 𝑧𝑖). For any 𝑚 = Ω(𝑘2 ln 𝑘) and 𝑃 *(𝑧) =

∑𝑚
𝑖=0 𝛼𝑖𝑧

𝑖 with coefficients
|𝛼𝑖| ≤ 10 for any 𝑖 ∈ {0, 1, . . . ,𝑚}, such that every coefficient of 𝑃 *(𝑧) mod 𝑄(𝑧) is bounded by
2−𝑚/𝑘.

Note this is a corrected statement of Claim A.4. (The original statement erroneously had 2−𝑚

instead of 2−𝑚/𝑘.) The proof is an elegant and delightful application of the pigeonhole principle.
Note that Chen et al. (2016) state the theorem for 𝑧1, . . . , 𝑧𝑘 on the unit circle, but the exact same
proof goes through if they are allowed to be inside the unit circle.

Proof [Proof of Lemma 36] Take 𝑚 = Θ(𝑘2 ln 𝑘), so that 2−𝑚/𝑘 ≤ 𝜀 := 1
12 , and so that Lemma 37

applies. Let 𝑃 *(𝑧) =
∑𝑛

𝑖=0 𝛼𝑖𝑧
𝑖 be as in Lemma 37, with 𝑛 ≤ 𝑚 and nonzero leading coefficient

𝛼𝑛 ̸= 0, and let 𝑟(𝑧) = 𝑃 *(𝑧) mod 𝑄(𝑧) =
∑𝑘−1

𝑖=0 𝛾𝑖𝑧
𝑖. Set 𝛾𝑖 = 0 for 𝑖 ≥ 𝑘. Because 𝑟(𝑧) is the

residue, 𝑃 *(𝑧)− 𝑟(𝑧) is divisible by
∏𝑘

𝑖=1(𝑧 − 𝑧𝑖).
Let

𝑃 (𝑧) =
𝑃 *(𝑧)− 𝑟(𝑧)

𝛼𝑛 − 𝛾𝑛
.

Note that 𝑃 (𝑧) is monic, and every coefficient is bounded in absolute value by 10+𝜀
1−𝜀 ≤ 11. This is

the desired polynomial.

Using the multiple of the characteristic polynomial given by Lemma 36 instead of the charac-
teristic polynomial in Lemma 17 gives the following result on anomaly-freeness.
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Lemma 38 Given Assumptions 2 with 𝐵 = 𝑂, suppose that 𝐴 ∈ R𝑑×𝑑 is diagonalizable as 𝐴 =
𝑉 𝐷𝑉 −1 where ‖𝑉 ‖

∥∥𝑉 −1
∥∥ ≤ 𝐶𝐴. Suppose that |𝑤⊤𝑥𝑡| = Ω(𝑑2(ln 𝑑)𝐶𝐴𝐶𝜉) and 𝑡 = Ω(𝑑2 ln 𝑑).

Then for any unit vector 𝑤 ∈ R𝑑, there exist 𝑂
(
min

{
|𝑤⊤𝑥𝑡|

𝑑4(ln 𝑑)2𝐶𝐴𝐶𝜉
, 𝑡
𝑑4(ln 𝑑)2

})
values of 𝑠, 0 ≤

𝑠 ≤ 𝑡− 1, such that

|𝑤⊤𝑥𝑠| ≥ Ω

Ç
|𝑤⊤𝑥𝑡|
𝑑2 ln 𝑑

å
.

Proof Because 𝜌(𝐴) ≤ 1, all zeros of the characteristic polynomial of 𝐴 have absolute value ≤ 1.
By Lemma 36, there exists a multiple 𝑝(𝑥) =

∑𝑚
𝑖=0 𝑎

(1)
𝑖 𝑥𝑖 of the characteristic polynomial of 𝐴

such that:

∙ 𝑝 has degree 𝑛 = 𝑂(𝑘 ln 𝑘).

∙ 𝑝 is monic (𝑎(1)𝑛 = 1).

∙ All coefficients are bounded: |𝑎(1)𝑖 | ≤ 11.

Then by unfolding the recurrence as in (16), we obtain

𝑥𝑡 =
𝑛−1∑
𝑖=0

−𝑎(1)𝑖 𝑥𝑡−𝑛+𝑖 +
𝑛−1∑
𝑖=0

𝑎
(1)
𝑖

𝑖∑
𝜏=1

𝐴𝑖−𝜏𝜉𝑡−𝑛+𝜏 +
𝑛∑

𝜏=1

𝐴𝑑−𝜏𝜉𝑡−𝑛+𝜏︸ ︷︷ ︸
=:𝑣(1)

Note that
∥∥∥𝐴𝑖𝜉

∥∥∥ ≤ ∥∥∥𝑉 𝐷𝑖𝑉 −1
∥∥∥ ‖𝜉‖ ≤ 𝐶𝐴 ‖𝜉‖ ≤ 𝐶𝐴𝐶𝜉. We write 𝑥𝑡 = −∑𝑛−1

𝑖=1 𝑎
(1)
𝑖 𝑥𝑡−𝑛+𝑖 +𝑣(1)

where

‖𝑣(1)‖ =

∥∥∥∥∥∥
𝑛−1∑
𝑖=0

𝑎
(1)
𝑖

𝑖∑
𝜏=1

𝐴𝑖−𝜏𝜉𝑡−𝑛+𝜏 +
𝑛∑

𝜏=1

𝐴𝑛−𝜏𝜉𝑡−𝑛+𝜏

∥∥∥∥∥∥
≤

𝑛−1∑
𝑖=0

|𝑎(1)𝑖 |
𝑖∑

𝜏=1

𝐶𝐴‖𝜉𝑡−𝑛+𝜏‖+
𝑛∑

𝜏=1

𝐶𝐴‖𝜉𝑡−𝑛+𝜏‖

≤ 11(𝑛− 1)𝐶𝐴𝐶𝜉 + 𝑛𝐶𝐴𝐶𝜉 ≤ 12𝑛𝐶𝐴𝐶𝜉

If 𝑤 ∈ R𝑑 is a unit vector such that |𝑤⊤𝑥𝑡| ≥ 24𝑛𝐶𝐴𝐶𝜉, we have |𝑤⊤𝑥𝑡| ≥ 2
∥∥∥𝑣(1)∥∥∥. Noting that

𝑤⊤𝑥𝑡 =
∑𝑛−1

𝑖=0 −𝑎
(1)
𝑖 𝑥𝑡−𝑛+𝑖 + 𝑣(1), by Lemma 16 there exists an index 0 ≤ 𝑖 ≤ 𝑛− 1 such that

|𝑤⊤𝑥𝑡−𝑛+𝑖| ≥
|𝑤⊤𝑥𝑡| − ‖𝑣(1)‖∑𝑛−1

𝑖=0 |𝑎
(1)
𝑖 |

≥ |𝑤⊤𝑥𝑡|
2
∑𝑛−1

𝑖=0 |𝑎
(1)
𝑖 |
≥ |𝑤

⊤𝑥𝑡|
22𝑛

In order to obtain many large past 𝑥’s, we apply the same argument on sequences 𝑥𝑡, 𝑥𝑡−𝑘, . . . , 𝑥𝑡−𝑘𝑑

by considering the recurrence

𝑥𝑡 = 𝐴′𝑥𝑡−𝑘 + 𝜉
(𝑘)
𝑡

𝐴′ = 𝐴𝑘

𝜉
(𝑘)
𝑡 =

𝑘∑
𝑗=1

𝐴𝑘−𝑗𝜉𝑡−𝑘+𝑗 .
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Let 𝑝𝑘(𝑥) =
∑𝑛

𝑖=0 𝑎
(𝑘)
𝑖 𝑥𝑖 be a multiple of the characteristic polynomial of 𝐴𝑘 given by Lemma 36,

for some 𝑛 = 𝑂(𝑑2 ln 𝑑). We obtain 𝑥𝑡 = −∑𝑛−1
𝑖=1 𝑎

(𝑘)
𝑖 𝑥𝑡−𝑘(𝑛−𝑖) + 𝑣(𝑘) with

‖𝑣(𝑘)‖ =

∥∥∥∥∥∥
𝑛−1∑
𝑖=0

𝑎
(𝑘)
𝑖

𝑖∑
𝜏=1

𝐴′𝑖−𝜏𝜉
(𝑘)
𝑡−𝑛𝑘+𝜏𝑘 +

𝑛∑
𝜏=1

𝐴′𝑛−𝜏𝜉
(𝑘)
𝑡−𝑛𝑘+𝜏𝑘

∥∥∥∥∥∥ (126)

≤ 11𝑘(𝑛− 1)𝐶𝐴𝐶𝜉 + 𝑘𝑛𝐶𝐴𝐶𝜉 ≤ 12𝑘𝑛𝐶𝐴𝐶𝜉 (127)

and
∑𝑛−1

𝑖=0 |𝑎
(𝑘)
𝑖 | ≤ 11𝑛. We then pick 𝑘 = 1, 2, . . . , 𝑂

(
min

{
|𝑤⊤𝑥𝑡|

𝑑2(ln 𝑑)𝐶𝐴𝐶𝜉
, 𝑡
𝑑2 ln 𝑑

})
. For each

choice of 𝑘, we know by design that |𝑤⊤𝑥𝑡| ≥ 2‖𝑣(𝑘)‖2, and therefore there must exist an 𝑥 in
the sequence 𝑥𝑡−𝑘, . . . , 𝑥𝑡−𝑘𝑑 such that |𝑤⊤𝑥| = Ω

(
|𝑤⊤𝑥𝑡|
𝑑2 ln 𝑑

)
. In this way, we are able to collect in

total 𝐿 = 𝑂
(
min

{
|𝑤⊤𝑥𝑡|

𝑑2(ln 𝑑)𝐶𝐴𝐶𝜉
, 𝑡
𝑑2 ln 𝑑

})
many such 𝑥’s. To finish the argument, we note that out

of the 𝐿 collected 𝑥’s, there are at least 𝑂
Ä

𝐿
𝑑2 ln 𝑑

ä
distinct ones, since one 𝑥 can appear in at most

𝑂(𝑑2 ln 𝑑) different sequences.

Appendix H. Open Questions

Several fundamental questions come to mind:

1. Is the 𝑇
2𝑟+1
2𝑟+2 rate optimal? Even in the diagonalizable (𝑟 = 1) case, this is unresolved.

2. What is the rate for partially observed LDS when the noise is not Gaussian? We stated
Theorem 8 for Gaussian noise only, but a similar result will hold as long as at steady state,
E[𝑦𝑡|ℱ𝑡−1] is given by a linear function of 𝑦𝑡−1:0, 𝑢𝑡−1:0, and the estimated state 𝑥−0 . This is
required in order for the random variable 𝑦𝑡|ℱ𝑡−1 to be a linear function of past observations
and inputs, plus a random variable 𝜁𝑡 with zero mean. In general, if the noise 𝜉𝑡 is not Gaus-
sian, then 𝜁𝑡 is not zero-mean (even if 𝜉𝑡 is zero-mean). We use the same machinery as in
the proof of Theorem 5 to conclude Theorem 8, so our proof strategy cannot handle arbitrary
zero-mean noise 𝜉𝑡.

For non-Gaussian zero-mean noise 𝜉𝑡, we can instead treat the 𝜁𝑡 as adversarial noise, and use
the machinery behind Theorem 3 to obtain a 𝑇

2𝑟+1
2𝑟+2 regret bound. It is an interesting question

whether we can obtain polylogarithmic regret with respect to the best linear filter in this case.

3. Can we obtain bounds depending on system order 𝑑 rather than rollout length ℓ? Theorem 8
depends polynomially on the sufficient rollout length ℓ, rather than the intrinsic dimension-
ality of the problem given by 𝑑 amd 𝑚. This seems to be a limitation of using the improper
autoregressive approach; can we do better using techniques from system identification?

We leave these for future work.
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