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Abstract
We initiate the study of hypothesis selection under local differential privacy. Given samples from
an unknown probability distribution p and a set of k probability distributions Q, we aim to output,
under the constraints of ε-differential privacy, a distribution from Q whose total variation distance
to p is comparable to the best such distribution. This is a generalization of the classic problem
of k-wise simple hypothesis testing, which corresponds to when p ∈ Q, and we wish to identify
p. Absent privacy constraints, this problem requires O(log k) samples from p, and it was recently
shown that the same complexity is achievable under (central) differential privacy. However, the
naive approach to this problem under local differential privacy would require Õ(k2) samples.

We first show that the constraint of local differential privacy incurs an exponential increase in
cost: any algorithm for this problem requires at least Ω(k) samples. Second, for the special case
of k-wise simple hypothesis testing, we provide a non-interactive algorithm which nearly matches
this bound, requiring Õ(k) samples. Finally, we provide sequentially interactive algorithms for the
general case, requiring Õ(k) samples and only O(log log k) rounds of interactivity. Our algorithms
are achieved through a reduction to maximum selection with adversarial comparators, a problem
of independent interest for which we initiate study in the parallel setting. For this problem, we
provide a family of algorithms for each number of allowed rounds of interaction t, as well as lower
bounds showing that they are near-optimal for every t. Notably, our algorithms result in exponential
improvements on the round complexity of previous methods.
Keywords: Local differential privacy, hypothesis testing

1. Introduction

Perhaps the most fundamental question in statistics is that of simple hypothesis testing. Given two
known distributions p and q, and a dataset generated according to one of these distributions, the goal
is to determine which distribution the data came from. The optimal solution to this problem is the
likelihood-ratio test, as shown by Neyman and Pearson (1933). This problem can be generalized in
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two ways that we consider in this paper. First, rather than just two distributions, one can consider
a setting where the goal is to select from a set of k distributions. We refer to this setting as k-wise
simple hypothesis testing. Furthermore, the data may not have been generated according to any
distribution from the set of known distributions – instead, the goal is to just select a distribution
from the set which is competitive with the best possible (in an appropriate distance measure). This
problem is the core object of our study, and we denote it as hypothesis selection.

The hypothesis selection problem appears naturally in a number of settings. For instance, we
may have a collection of distribution learning algorithms that are effective under different assump-
tions on the data, but it is unknown which ones hold in advance. Hypothesis selection allows us
to simply run all of these algorithms in parallel and pick a good output from these candidate dis-
tributions afterwards. More generally, a learning algorithm may first “guess” various parameters of
the unknown distribution and for each guess produce a candidate output distribution. Hypothesis
selection allows us to pick a final result from this set of candidates. Finally, near-optimal sample
complexity bounds can often be derived by enumerating all possibilities within some parametric
class of distributions (i.e., a cover) and then applying hypothesis selection with this enumeration as
the set of hypotheses (Devroye and Lugosi, 2001).

Classical work (e.g., Yatracos (1985); Devroye and Lugosi (1996, 1997, 2001)) on these prob-
lems has shown that, even in the most general setting of hypothesis selection, there are effective
algorithms with sample complexity scaling only logarithmically in the number of candidate hy-
potheses. Building on this, there has been significant study into hypothesis selection with additional
desiderata, including computational efficiency, robustness, weaker access to hypotheses, and more.

One consideration which has not received significant attention in this setting is that of data
privacy. The dataset may be comprised of personally sensitive data, including medical records,
location history, or salary information, and classical hypothesis selection algorithms may violate
the privacy of individuals who provided the data. Motivated by this issue, our goal is to perform our
statistical analysis while ensuring that the output does not reveal significant information about any
individual datapoint. We will be concerned with the formalization of this principle as differential
privacy (Dwork et al., 2006), which can be seen as the gold standard for modern data privacy.

We first distinguish between two common definitions of differential privacy. The first is cen-
tral differential privacy (Dwork et al., 2006), in which users transmit their data to a central server
without any obfuscation, and the algorithm operates on this dataset with the restriction that its final
output must be appropriately privatized. The second is local differential privacy (LDP) (Warner,
1965; Evfimievski et al., 2003; Kasiviswanathan et al., 2011), in which users trust no one: each
individual privatizes their own data before sending it to the central server. In some sense, LDP
places the privacy barrier closer to the users, and as a result, has seen adoption in practice by a
number of companies that analyze sensitive user data, including Google (Erlingsson et al., 2014),
Microsoft (Ding et al., 2017), and Apple (Differential Privacy Team, Apple, 2017).

Recently, Bun, Kamath, Steinke, and Wu (Bun et al., 2019) showed that in the central model,
one can still perform hypothesis selection with sample complexity which scales logarithmically in
the number of hypotheses. A priori, it was not clear that this would be possible. Non-privately, one
can apply methods which essentially ask “Which of these two distributions fits the data better?” for
all O(k2) pairs of hypotheses. Crucially, one can reuse the same set of O(log k) samples for all
such comparisons (rather than drawing fresh samples for each one), and accuracy can be proved by
a Chernoff and union bound style argument. A naive privatization of this method would result in a
polynomial dependence on k, due to issues arising from sample reuse and the composition of privacy
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losses. Bun et al. (2019) avoid this issue by a careful application of tools from the differential privacy
literature (i.e., the exponential mechanism (McSherry and Talwar, 2007)), achieving an O(log k)
sample complexity. However, their method relies upon techniques which are not available in the
local model of differential privacy. Indeed, at first glance, it may not be clear how to improve upon
an Õ(k2) sample complexity in the local model, achieved by simply using a fresh set of samples for
each comparison, and using randomized response to privately perform the comparison. This raises
the question: what is the sample complexity of hypothesis selection under local differential privacy?
Can the problem be solved with a logarithmic dependence of the number of samples on the number
of candidate hypotheses? Or do we require a polynomial number of samples?

1.1. Results, Techniques, and Discussion

We assume the reader is familiar with the notion of ε-local differential privacy (ε-LDP) and total
variation distance dTV(p, q); formal definitions appear in Section 2. To describe our results, we
more formally define the problems of k-wise simple hypothesis testing and hypothesis selection.

Definition 1 Suppose we are given a set of n data pointsX1, . . . , Xn, which are sampled i.i.d. from
some (unknown) distribution p, and a set of k distributionsQ = {q1, . . . , qk}. The goal is to output
a distribution q̂ ∈ Q such that dTV(p, q̂) ≤ cminq∗∈Q dTV(p, q∗) + α, for some c = c(α, k).

We refer to the value of c(α, k) as the agnostic approximation factor. If c(α, k) is an ab-
solute constant, then we denote this problem as hypothesis selection. If c(α, k) grows with k
and 1

α , we refer to this problem as weak hypothesis selection. If we require that p ∈ Q, that
mini 6=j dTV(qi, qj) ≥ α, and that the algorithm must correctly identify p, then we denote this prob-
lem as k-wise simple hypothesis testing.

We show k-wise simple hypothesis testing (and thus, hypothesis selection) requires Ω(k) samples.

Theorem 2 Let ε ∈ (0, 1). Suppose M is an ε-LDP protocol that solves the k-wise simple hy-
pothesis testing problem with probability at least 1/3 when given n samples from some distribution
p ∈ Q, for any set Q = {q1, . . . , qk} such that mini 6=j dTV(qi, qj) ≥ α. Then n = Ω

(
k

α2ε2

)
.

Thus the cost of hypothesis testing is exponentially larger under LDP than under central differ-
ential privacy (i.e., Ω(k) versus O(log k)), even when the LDP protocol is fully interactive. The
construction used to prove this lower bound is the problem of 1-sparse mean estimation, previously
identified as a problem of interest by Duchi, Jordan, and Wainwright (Duchi et al., 2013, 2017). The
lower bound follows from results in Duchi and Rogers (2019). Given the construction, our result
can be seen as a translation of existing results, so the details are given in Appendix C.

With a lower bound of Ω(k) samples, and a naive upper bound of Õ(k2) samples, the problem
remains to identify the correct sample complexity. We give two algorithms which require Õ(k) sam-
ples, nearly matching this lower bound. The first is for the special case of k-wise simple hypothesis
testing, and is a non-interactive protocol – all users only send a message to the curator once, which
does not depend on the messages sent by other users. The second solves the more general problem
of hypothesis selection, but requires sequential interactivity (albeit only O(log log k) rounds of in-
teraction): users still only send a message to the curator once, but the curator may request different
types of messages from later users based on the messages sent by earlier users. Less interaction in
an protocol is generally preferred, and the role and power of interactivity in local differential privacy
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is one of the most significant questions in the area (see, e.g. Kasiviswanathan et al. (2011); Joseph
et al. (2019); Daniely and Feldman (2019); Duchi and Rogers (2019); Joseph et al. (2020)).

Our first algorithmic result gives a non-interactive mechanism with Õ(k) sample complexity for
sufficiently well separated instances. Define β := minq∈Q dTV(p, q).

Theorem 3 For every ε ∈ [0, 1), there is a non-interactive ε-LDP algorithm that with probability
at least 1 − 1/k2 outputs a distribution q̂ ∈ Q such that dTV(p, q̂) ≤ α, if the number of samples
n� k(log k)3/(α4ε2) and β � α2/ log k.1

We prove the theorem in Section 3. While somewhat more general, the above theorem immedi-
ately gives a non-interactive Õ(k)-sample algorithm for the important special case of LDP k-wise
simple hypothesis testing.

Corollary 4 Suppose our instance of hypothesis testing is such that p ∈ Q and all distributions
in Q are Ω(α)-far from each other in total variation distance. For ε ∈ (0, 1], there exists a non-
interactive ε-LDP algorithm which identifies p with high probability, given n = O

(
k log3 k
α4ε2

)
sam-

ples.

Our algorithm is based on a noised log-likelihood test, though significant massaging and ma-
nipulation of the problem instance is required to achieve an acceptable sample complexity. In our
algorithm, the users are divided into k groups. Each user in the ith group sends the log-likelihood
(with some Laplace noise added for privacy) of observing the sample given to the user if the true
distribution was qi. The log-likelihoods from all the users in the ith group are aggregated and the
most likely distribution is output. Alternatively, we can also think of our algorithm as using the sam-
ples from the ith group to estimate KL-divergences between the unknown distribution and qi and
finally outputting the closest distribution. For this approach to work, we need all the log-likelihoods
to be bounded. We achieve this by a flattening lemma which makes all the distributions close to uni-
form, while preserving their total variation distances. Moreover, this flattening can be implemented
locally by the users transforming their samples from the original distribution. We believe that our
flattening lemma may have applications in other DP problems.

Our second algorithmic result is a O(log log k)-round sequentially interactive Õ(k)-sample al-
gorithm for LDP hypothesis selection.

Corollary 5 (Informal version of Corollary 25) Suppose we are given n samples from an un-
known distribution p and a set of descriptions of k distributionsQ. There exists an algorithm which
identifies a distribution q̂ ∈ Q, such that dTV(p, q̂) ≤ 27 minq∗∈Q dTV(p, q∗) + O(α) with prob-
ability 9/10. The algorithm is ε-LDP, requires O(log log k) rounds of sequential interactivity, and
n = O

(
k log k log log k

α2ε2

)
samples.

The k-wise simple hypothesis testing and hypothesis selection problems can also be studied in
the Statistical Queries (SQ) model of Kearns (1998). In this model, rather than being given samples
from a distribution p, the algorithm can ask queries specified by bounded functions φ, and get a

1. We use A � B to denote that A ≤ cB for some sufficiently small constant c > 0. Similarly we use A � B to
denote that A ≥ CB for some sufficiently large constant C > 0. A . B is used interchangeably with A = O(B).
Similarly A & B is used interchangeably with A = Ω(B).
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(possibly adversarial) additive τ -approximation to the expectation of φ under p, where the parameter
τ is usually called the tolerance. For distributional problems, Kasiviswanathan et al. (2011) showed
that sample complexity in the LDP model is equivalent up to polynomial factors to complexity in
the SQ model, measured in terms of the number of queries and the inverse tolerance 1

τ . In particular,
this connection and our lower bound in Theorem 2 imply that k-wise simple hypothesis testing in
the SQ model requires that either the number of queries or 1

τ be polynomial in k. Because of the
polynomial loss, however, our precise study of the sample complexity of these problems does not
immediately translate to the SQ model. We remark that both the 1-round algorithm in Corollary 4,
and the algorithm in Corollary 5 can be implemented in the SQ model, and require, respectively, 1
round and O(log log k) rounds of adaptive queries. Understanding the precise relationship between
the number of queries, the tolerance parameter, and the number of rounds of adaptivity for solving
hypothesis selection in the SQ model is an interesting direction for future work.

Corollary 5 is derived as a consequence of a connection to maximum selection with adversarial
comparators, a problem of independent interest. This connection was previously established in
works by Acharya, Falahatgar, Jafarpour, Orlitsky, and Suresh (Acharya et al., 2014, 2018a). Prior
work, however, has not exploited this connection under LDP constraints. Given the aforementioned
importance of interactivity in the LDP setting, we initiate a study of the maximum selection with
adversarial comparators problem from the perspective of understanding the trade-off between the
number of rounds of parallel comparisons, and the total number of comparisons. The problem is as
follows: we are given a set of items of unknown value, and we can perform comparisons between
pairs of items. If the value of the items is significantly different, the comparison will correctly report
the item with the larger value. If the values are similar, then the result of the comparison may be
arbitrary. The goal is to output an item with value close to the maximum. We wish to minimize the
total number of comparisons performed, as well as the number of rounds of interactivity.

Our main result for this setting gives a family of algorithms and lower bounds, parameterized
by the number of rounds used (denoted by t). Setting t = O(log log k) yields Corollary 5.

Theorem 6 (Restatement of Theorems 27 and 31) For every t ∈ Z+, there exists a t-round pro-
tocol which, with probability 9/10, approximately solves the problem of parallel approximate maxi-

mum selection with adversarial comparators from a set of k items. The algorithm requiresO(k
1+ 1

2t−1 t)

comparison queries. Furthermore, any algorithm which provides these guarantees requires Ω(k
1+ 1

2t−1

3t )
comparison queries.

For each number of rounds t, we prove an upper bound and an almost-matching lower bound. In
order to get down to a near-linear number of comparisons, we require O(log log k) rounds, which
is exponentially better than the O(log k) rounds required by previous algorithms. Interestingly, in
this setting, while maximum selection (with standard comparisons) with Õ(k) queries is achievable
in only 3 rounds, we show that Θ(log log k) rounds are both necessary and sufficient to achieve a
near-linear number of comparisons when the results might be adversarial.

Our upper bounds follow by carefully applying a recursive tournament structure: in each round,
we partition the input into appropriately-sized smaller groups, perform all pairwise-comparisons
within each group, and send only the winners to the next round. Additional work is needed to
prevent the quality of approximation from decaying as the number of rounds increases. For the lower
bound, we restate the problem as a game, in which the adversary constructs a random complete
directed graph with a unique sink, and the algorithm queries the directions of edges, and tries to
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identify the sink in the smallest number of queries and rounds. We give a strategy in which the
adversary constructs a layered graph with t+ 1 layers, where t is the number of rounds in the game.
We can guarantee that, if the algorithm does not make enough queries, then even after conditioning
on the answers to the queries in the first q rounds, the last t + 1 − q layers of the graph remain
sufficiently random, so that the algorithm cannot guess the sink with reasonable probability. In
particular, after t rounds, there is still enough randomness in the (t + 1)-st layer to make sure that
algorithm cannot guess the sink correctly with high probability.

A self-contained description of the connection between hypothesis selection and maximum se-
lection with adversarial comparators, as well as our upper and lower bounds, appear in Section 4.

1.2. Organization

We defer further discussion of related work to Appendix A. Preliminaries appear in Section 2,
though we defer some of the more standard ones (i.e., the definition of differential privacy) to
Appendix B. Our lower bounds for locally private hypothesis selection appear in Appendix C. Our
non-interactive upper bound for locally private simple hypothesis testing appears in Section 3. Our
sequentially interactive upper bound for locally private hypothesis selection, as well as our results
on parallel maximum selection with adversarial comparators, appear in Section 4. Our full upper
bound appears in Appendix G, and the lower bound for this setting appears in Appendix H.

2. Preliminaries

We note that there are many notions of interactivity in LDP, and we cover the two primary definitions
which we will be concerned with: non-interactive and sequentially interactive protocols.

Definition 7 An ε-LDP protocol is non-interactive if the number of rounds is t = 1, and U1 = [n],
i.e., every individual i outputs a single message mi, dependent only on their datapoint Xi.

An ε-LDP protocol is sequentially interactive with t rounds of interaction if the sets U1, . . . , Ut
of active individuals in each round are disjoint.

We recall the canonical ε-LDP algorithm, randomized response.

Lemma 8 Randomized response is the protocol when each user has a bit Xi ∈ {0, 1} and outputs
Xi with probability eε

1+eε and 1−Xi with probability 1
1+eε . It satisfies ε-local differential privacy.

There exists a simple folklore algorithm for ε-LDP 2-wise simple hypothesis testing: use ran-
domized response to privately count the number of samples which fall into the region where one
distribution places more mass, and output the distribution which is more consistent with the result-
ing estimate. This gives the following guarantees.

Lemma 9 There exists a non-interactive ε-LDP algorithm which solves 2-wise simple hypothesis
testing with probability 1− β, which requires n = O(log(1/β)/α2ε2) samples.

This can be extended to k-wise simple hypothesis testing by simply running said algorithm on
pairs of distributions and picking the one which never loses a hypothesis test. This gives us an
Õ(k2) baseline algorithm for locally private hypothesis selection.

Corollary 10 There exists a non-interactive ε-LDP algorithm which solves k-wise simple hypothe-
sis testing with high probability, which requires n = O(k2 log k/α2ε2) samples.

This algorithm also solves the more general problem of ε-LDP hypothesis selection (Section 4.2).
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3. Non-Interactive LPHS

In this section, we prove Theorem 3. For simplicity of notation, we assume without loss of gen-
erality that q1, q2, . . . , qk and p are discrete probability distributions on domain [N ], where [N ] :=
{1, 2, . . . , N}. See the discussion in Appendix E on how to deal with continuous distributions.
Here we propose an algorithm which uses n . k polylog(k)/(α4ε2) samples, and outputs a dis-
tribution q̂ ∈ Q which has TV distance of at most O(α) with p, when β � α2/ log k. Recall that
β := minq∈Q dTV(p, q). In this mechanism, the users are divided into k groups G1, G2, . . . , Gk of
size n/k each. LetXij ∼ p denote the sample with the jth user in the groupGi. Our non-interactive
mechanism is described in Algorithm 1.

Algorithm 1 Non-interactive ε-DP mechanism for LPHS
Input: Distributions Q = {q1, . . . , qk}, Samples (Xij)i,j from unknown distribution p, sen-

sitivity parameter for Laplace noise L, privacy parameter ε, function γ : [N ] → R+ such that
| log(γ(a)/qi(a))| ≤ L for all a ∈ [N ], i ∈ [k].2

Output: q̂ ∈ Q such that dTV(p, q̂) ≤ α with high probability.
1: for i ∈ [k] do
2: for j ∈ [N/k] do
3: The jth user in group Gi sends Zij := log(γ(Xij)/qi(Xij)) + Lap(L/ε)
4: end for
5: The central server computes Ci = 1

(n/k) ·
∑

j∈[n/k] Zij .
6: end for
7: return argminiCi.

The proof of the following lemma appears in Appendix D.

Lemma 11 Let ε ∈ (0, 1) be some fixed privacy parameter. Suppose β � α2/L and n �
k(log k)L2

α4ε2
. Then Algorithm 1 is ε-LDP and outputs q̂ ∈ Q with probability at least 1 − 1/k2 such

that dTV(p, q̂) ≤ α.

We will now prove that we can take L = O(log k) in Algorithm 1 and Lemma 11. For this we
will need the following lemma. Given a randomized map3 φ : [N ] → [N ′] and a distribution q on
[N ], the distribution φ ◦ q on [N ′] is defined as the distribution of φ(a) when a is sampled from q.
For the remaining part of this section, let UN ′ denote the uniform distribution on [N ′].

Lemma 12 (Flattening Lemma) Let q1, q2, . . . , qk be distributions over [N ]. There exists a ran-
domized map φ : [N ]→ [N ′] (depending on q1, . . . , qk) for some N ≤ N ′ ≤ (k + 1)N s.t.

1. for every a ∈ [N ′], i ∈ [k], 1
2N ′ ≤ (φ ◦ qi)(a) ≤ 1

N and

2. dTV(φ ◦ qi, φ ◦ qi′) = 1
2 · dTV(qi, qi′) for any two distributions qi, qi′ .

2. In other words, we require D∞(γ||qi), D∞(qi||γ) ≤ L for all i ∈ [k], i.e., all the distributions q1, q2, . . . , qk
are close to some distribution γ. To prove Theorem 3, we will instantiate Algorithm 1 with γ being the uniform
distribution on [N ], but we state Algorithm 1 with arbitrary γ for generality.

3. i.e., φ(a) has a distribution over [N ′] for each a ∈ [N ].
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Proof Let M(a) = maxi∈[k] qi(a) for a ∈ [N ]. Let N ′ =
∑

a∈[N ]dM(a) · Ne and let [N ′] =

∪a∈[N ′]Sa be a partition of [N ′] with |Sa| = dM(a) ·Ne. Define φ′ : [N ]→ [N ′] as follows: φ′(a)

is uniformly distributed over Sa. Now it is clear that for every for every b ∈ [N ′], (φ′ ◦ qi)(b) ≤ 1
N .

It is also clear that ||φ′ ◦ qi−φ′ ◦ qi′ ||`1 = ||qi− qi′ ||`1 for any two distributions qi, qi′ . We now mix
in the uniform distribution UN ′ into φ′, i.e., we define φ : [N ]→ [N ′] as follows: φ(a) is distributed
as φ′(a) with probability 1/2 and distributed as UN ′ with probability 1/2. Now for every b ∈ [N ′],

1
2N ′ ≤ (φ ◦ pi)(b) ≤ 1

N . And ||φ′ ◦ qi − φ′ ◦ qi′ ||`1 = 1
2 ||qi − qi′ ||`1 for any two distributions qi, qi′ .

We are now left with showing the upper bound on N. N ′ =
∑

a∈[N ]dM(a) ·Ne ≤
∑

a∈[N ](M(a) ·

N + 1) = N +
∑

a∈[N ]

(
maxi∈[k] qi(a)

)
N ≤ N +

∑
a∈[N ]

(∑
i∈[k] qi(a)

)
N = (k + 1)N .

Now we have all the ingredients to finish the proof of Theorem 3.
Proof (of Theorem 3) By using the randomized map φ as constructed in Lemma 12, the users first
map their sample a ∼ p to a sample φ(a). Note that φ(a) ∼ φ◦p. Next we run the Algorithm 1 with
distributions φ ◦ q1, . . . , φ ◦ qk and γ : [N ′] → R+ given by γ(b) = 1/N ′ for all b ∈ [N ′]. From
the first property mentioned in Lemma 12, we get L = log(k) +O(1). From the second property in
Lemma 12, we know the TV distances are preserved by φ. This completes the proof.

4. Hypothesis Selection via Adversarial Comparators

In this section, we give upper bounds for locally private hypothesis selection via a reduction to
adversarial comparators, as introduced by Acharya et al. (2014, 2018a). We begin by describ-
ing the reduction and how it can be implemented in the LDP setting in Section 4.1. This al-
lows us to immediately obtain a non-interactive private algorithm which takes Õ(k2) samples
and a sequentially-interactive algorithm which takes Õ(k) samples (Section 4.2). However, this
sequentially-interactive algorithm requires O(log k) rounds – we give an algorithm which improves
upon this round-complexity by an exponential factor. We start in Section 4.3 by giving a sim-
ple Õ(k4/3)-sample algorithm which takes 2 rounds: with the addition of only a single additional
round, the sample complexity becomes significantly subquadratic. This illustrates one of the main
ideas behind our full upper bound, an Õ(k)-sample algorithm which takes onlyO(log log k) rounds.
This is acheived by generalizing our 2 round algorithm to general t: we give t-round algorithms for
1 ≤ t ≤ O(log log k), with sample complexities which interpolate between Õ(k2) and Õ(k). Other
ideas are required to achieve an approximation which does not increase with t, due to space re-
strictions, this is described in Appendix G. We complement these upper bounds with lower bounds
which show that these algorithms in the adversarial comparator setting are essentially tight (for
every choice of t) (Appendix H).

4.1. Adversarial Comparators and Connections to Locally Private Hypothesis Selection

We describe the adversarial comparator setting of Acharya et al. (2014, 2018a), as well as their
reduction to this model for the hypothesis selection problem. The input is a set of k items, with
unknown values x1, . . . , xk ∈ R. An adversarial comparator is a function C, which takes two items
xi and xj ,4, and outputs max{xi, xj} if |xi − xj | > 1 and xi or xj (adversarially) if |xi − xj | ≤ 1.

4. In a slight abuse of notation, we use xi to refer to the item as well as its value.
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We note that such a comparator can be either non-adaptive or adaptive. In the former case,
the results of all comparisons must be fixed ahead of time, whereas in the latter case, results of
comparisons may depend on previous comparisons. All of the mentioned algorithms will work in
the (harder) adaptive case, and our lower bounds are for the (easier) non-adaptive case, and thus
both have the same implications in the alternate setting for adaptivity.

We sometimes denote a comparison as a query. The goal is to output an item with value
as close to the maximum as possible, with probability at least 2/3.5 More precisely, let x∗ =
max{x1, . . . , xk}. A number x is a τ -approximation of x∗ if x ≥ x∗ − τ . Simple examples (e.g.,
Lemma 2 of Acharya et al. (2018a)) show that it is impossible to output a τ -approximation with
probability ≥ 2/3 for any τ < 2 when we have k ≥ 3 items.

We initiate study of parallel approximate maximum selection under adversarial comparators.
Parallel maximum selection has recently been studied in other settings (including the standard
comparison setting and with noisy (but not adversarial) comparisons, see, e.g., Braverman et al.
(2016b)). In this setting, the algorithm has t rounds: in round i, the algorithm simultaneously sub-
mits mi pairs of items, and then simultaneously receives the results of the adversarial comparator
applied to all mi pairs. The total query complexity is

∑t
i=1mi.

We now discuss the connection between this problem and hypothesis selection, as presented in
Section 6 of Acharya et al. (2018a). We will then show how this connection still applies when con-
sidering the same problem under LDP. First, we recall the Scheffé test of Devroye and Lugosi (De-
vroye and Lugosi, 2001), as described in Algorithm 4.6 Given n samples from p, with probability
at least 1−β, it will output a distribution q̂ such that dTV(p, q̂) ≤ 3 min{dTV(p, q1), dTV(p, q2)}+√

2.5 log(1/β)
n . In other words, if min (dTV(p, q1), dTV(p, q2)) ≤ α, then n = O

(
log(1/β)
α2

)
samples

suffice to output a q̂ ∈ {q1, q2} such that dTV(p, q̂) ≤ (3 + γ)α, where γ can be taken to be an
arbitrarily small constant. Another way to phrase this is that the test returns q1 if dTV(p, q1) <

1
3+γdTV(p, q2), it returns q2 if dTV(p, q2) < 1

3+γdTV(p, q1), and it may return arbitrarily other-
wise. If we let xi = − log3+γ dTV(p, qi), then the test will output max{xi, xj} if |xi − xj | > 1,
or arbitrarily otherwise. Note that this is precisely an implementation of the adversarial comparator
function C as described above, and thus the hypothesis selection problem can be reduced to (ap-
proximate) maximum selection with adversarial comparators. In particular, a τ -approximation for
the maximum selection problem becomes a (3 + γ)τ agnostic approximation factor for hypothesis
selection, which becomes 3τ + γ′ if τ is a constant, for some other constant γ′ > 0 which can be
taken to be arbitrarily small. Each comparison is implemented using O

(
log(1/β)
α2

)
samples from

p– in fact, by a union bound argument, if we wish to perform m comparisons and require the total
failure probability under 1/3, all of them can be done with the same set of O

(
logm
α2

)
samples.

It remains to justify that a similar reduction still holds under LDP constraints. Recall that each
individual possesses a single Xi, and they wish for their messages sent to the curator to be ε-
DP. Only Line 4 of Algorithm 4 depends on the private data, which is a statistical query, easily
implemented under LDP. More precisely, rather than sending the bit 1Xi∈S to the curator, the user
can send Yi, which is a version of it privatized by Randomized response (Lemma 8). The curator can
then form an ε-LDP estimate of p(S) by computing p̂(S) = eε+1

eε−1

(
1
n

∑
Yi − 1

eε+1

)
. Plugging this

5. Usual arguments allow us to boost this success probability to 1− β at a cost of O(log(1/β)) repetitions, which can
be done in parallel.

6. We comment that this can be implemented in near-linear time, and q1(S) and q2(S) can be estimated to sufficient
accuracy using Monte Carlo techniques.
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estimate into Line 4, it is not hard to show the modified procedure satisfies the following accuracy
guarantee: if min (dTV(p, q1), dTV(p, q2)) ≤ α, then n = O

(
log(1/β)
ε2α2

)
samples suffice to output

an ε-LDP q̂ ∈ {q1, q2} such that dTV(p, q̂) ≤ (3 + γ)α, where γ can be taken to be an arbitrarily
small constant.

The above addresses the case of a single comparison. If we wish to make m comparisons
(which are all correct with high probability), we partition users into m sets of size O

(
logm
ε2α2

)
and

use the data from each part to privately perform the appropriate comparison. This takes a total
of O

(
m logm
ε2α2

)
samples. In particular, we can not reuse the same set of O(logm) samples for

all comparisons (as in the non-private case), since it violate the privacy constraint, and doing so
would give rise to algorithms which violate our main lower bound for locally private hypothesis
selection (Theorem 2). Finally, we note that a t-round algorithm in the maximum selection setting
corresponds to a t-round sequentially interactive ε-LDP algorithm for hypothesis selection, as we
never query the same individual twice.

To conclude this section, we state the guarantees of the (trivial) algorithm which performs max-
imum selection from a set of 2 elements. For space reasons, we omit the corollary for LDP hypoth-
esis selection implied by the above reduction (as well as for further results in this section), these
corollaries appear in the full version (as well as representative corollaries in Appendix G).

Claim 13 There exists a 1-round algorithm which achieves a 1-approximation in the problem of
parallel approximate maximum selection with adversarial comparators, in the special case where
k = 2. The algorithm requires 1 query.

For the following subsections, we will focus on the problem of parallel approximate maximum
selection with adversarial comparators, stating corollaries to locally private hypothesis selection as
appropriate. Our primary concerns will be to simultaneously minimize the query/sample complex-
ity and the round complexity, while minimizing the approximation/agnostic approximation factor
is a secondary concern. Nevertheless, our new algorithms for maximum selection will have an
approximation constant of at most 3, very close to the information-theoretic optimum of 2.

4.2. Baseline Algorithms

In this section, we state some baseline results in this model, based on previously known algorithms.
This includes a O(k2)-query non-interactive algorithm, and a O(k)-query O(log k)-round algo-
rithm.

The first method is a “round-robin” tournament method, which, in a single round, performs
all pairwise comparisons and outputs the item which is declared to be the maximum the largest
number of times (Algorithm 2). This straightforward method is stated and analyzed in Acharya et al.
(2014, 2018a), and the equivalent procedure for hypothesis selection (absent privacy constraints)
was known prior (Devroye and Lugosi, 2001).

Claim 14 There exists a 1-round algorithm which achieves a 2-approximation in the problem of
parallel approximate maximum selection with adversarial comparators. The algorithm requires
O(k2) queries.

The clear drawback of this method is that the complexity of the resulting algorithms is quadratic
in k. Unfortunately, a simple argument shows that this is tight for any 1-round protocol: roughly, if

10
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Algorithm 2 1-Round Algorithm for Maximum Selection
Input: k items x1, . . . , xk
Output: Approximate maximum xi

1: procedure ROUND-ROBIN(x1, . . . , xk)
2: for all pairs xi, xj do
3: Compare xi and xj , record which one is reported to be the winner.
4: end for
5: return the xi which is reported to be the winner the most times.
6: end procedure

we do not compare the smallest and second smallest items, we do not know which is smaller, and
thus any algorithm which doesn’t perform all

(
k
2

)
comparisons in its 1 round will be wrong with

probability 1/2 (more formal lower bounds for more general settings appear in Appendix H). The
natural questions are, if we expend more rounds, can we reduce the sample complexity? And how
many rounds are needed to achieve the information-theoretic optimum of a linear query complex-
ity? Many recent works have focused on this question without concern for the number of rounds
expended (Ajtai et al., 2009; Daskalakis and Kamath, 2014; Suresh et al., 2014; Acharya et al., 2014,
2018a), culminating in algorithms with linear complexity. When the round complexity is analyzed,
it can be shown that all these methods take O(log k) rounds. We state the implied results for our
setting in the following claim, omitting details as we will shortly improve on the round complexity
to be O(log log k).

Claim 15 (Acharya et al. (2014, 2018a)) There exists anO(log k)-round algorithm which achieves
a 2-approximation in the problem of parallel approximate maximum selection with adversarial com-
parators. The algorithm requires O(k) queries.

4.3. A Sub-Quadratic Algorithm with 2 Rounds

In this section, we give a simple 2-round algorithm which results in a significantly better query
complexity of O(k4/3). In Appendix G, we generalize this to t-round protocols, but provide this as
a warm-up and to convey one of the main ideas.

Algorithm 3 2-Round Algorithm for Maximum Selection
Input: k items x1, . . . , xk
Output: Approximate maximum xi

1: procedure 2-ROUND(x1, . . . , xk)
2: Partition x1 through xk into k2/3 sets of size k1/3.
3: Run ROUND-ROBIN on each set to obtain k2/3 winners.
4: return the winner of ROUND-ROBIN on the set of k2/3 winners.
5: end procedure

Algorithm 3 describes the procedure, whose guarantees are summarized in the following theorem.

Theorem 16 There exists a 2-round algorithm which achieves a 4-approximation in the problem
of parallel approximate maximum selection with adversarial comparators. The algorithm requires
O(k4/3) queries.

11
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Figure 1: An illustration of Algorithm 3. In the first round, the input is partitioned into sets of size
k1/3 and a round-robin tournament is performed on each. In the second round, a single
round-robin tournament is performed on the winners from the previous round.

Proof The number of rounds is easily seen to be 2: Lines 2 and 3 can be performed in one round,
and Line 4, which depends on the results of the previous round, is performed in the second round.

We next analyze the number of queries. Line 3 performs the quadratic round-robin tournament
of Claim 14 on sets of size k1/3. The resulting number of queries for each set is O(k2/3), and since
there are k2/3 sets, the total number of queries here is O(k4/3). Line 4 performs the same quadratic
round-robin tournament on one set of size k2/3, which takes O(k4/3) queries. Therefore, the total
number of queries is O(k4/3).

Finally, we justify that this achieves a 4-approximation to the maximum. Consider the first
round: a maximum element is placed into one of the k2/3 sets, and by the guarantees of Claim 14,
the winner for this set will be a 2-approximation to the maximum. Therefore, the maximum among
the winners is a 2-approximation to the overall maximum, and again by the guarantees of Claim 14,
the winner of this round will be a 4-approximation to the maximum, as desired.
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Appendix A. Related Work

As mentioned before, our work builds on a long line of investigation on hypothesis selection. This
style of approach was pioneered by Yatracos (Yatracos, 1985), and refined in subsequent work by
Devroye and Lugosi (Devroye and Lugosi, 1996, 1997, 2001). After this, additional considera-
tions have been taken into account, such as computation, approximation factor, robustness, and
more (Mahalanabis and Stefankovic, 2008; Daskalakis et al., 2012; Daskalakis and Kamath, 2014;
Suresh et al., 2014; Acharya et al., 2014; Diakonikolas et al., 2016; Acharya et al., 2018a; Bous-
quet et al., 2019; Bun et al., 2019). Most relevant is the recent work of Bun, Kamath, Steinke, and
Wu (Bun et al., 2019), which studies hypothesis selection under central differential privacy. Our
results are for the stronger constraint of local differential privacy.

Versions of our problem have been studied under both central and local differential privacy.
In the local model, the most pertinent result is that of Duchi, Jordan, and Wainwright (Duchi
et al., 2013, 2017), showing a lower bound on the sample complexity for simple hypothesis test-
ing between two known distributions. This matches folklore upper bounds for the same problem.
However, the straightforward way of extending said protocol to k-wise simple hypothesis testing
would incur a cost of Õ(k2) samples. Other works on hypothesis testing under local privacy in-
clude Gaboardi and Rogers (2018); Sheffet (2018); Acharya et al. (2019a,b); Joseph et al. (2019). In
the central model, some of the early work was done by the Statistics community (Vu and Slavković,
2009; Uhler et al., 2013). More recent work can roughly be divided into two lines – one attempts
to provide private analogues of classical statistical tests (Wang et al., 2015; Gaboardi et al., 2016;
Kifer and Rogers, 2017; Kakizaki et al., 2017; Campbell et al., 2018; Swanberg et al., 2019; Couch
et al., 2019), while the other focuses more on achieving minimax sample complexities for testing
problems (Cai et al., 2017; Acharya et al., 2018c; Aliakbarpour et al., 2018; Acharya et al., 2018b;
Canonne et al., 2019b; Aliakbarpour et al., 2019; Amin et al., 2019). While most of these focus on
composite hypothesis testing, we highlight Canonne et al. (2019a) which studies simple hypothesis
testing. Work of Awan and Slavkovic (Awan and Slavković, 2018) gives a universally optimal test
for binomial data, however Brenner and Nissim (Brenner and Nissim, 2014) give an impossibil-
ity result for distributions with domain larger than 2. For further coverage of differentially private
statistics, see Kamath and Ullman (2020).

We are the first to study parallel maximum selection with adversarial comparators. Prior work
has investigated (non-parallel) maximum selection and sorting with adversarial comparators (Ajtai
et al., 2009; Acharya et al., 2014, 2018a). Works by Acharya, Falahatgar, Jafarpour, Orlitsky, and
Suresh established the connection with hypothesis selection (Acharya et al., 2014, 2018a). The
parallelism model we study here was introduced by Valiant (1975), for parallel comparison-based
problems with non-adversarial comparators. This has inspired a significant literature on parallel
sorting and selection (Häggkvist and Hell, 1981; Ajtai et al., 1983; Bollobás and Thomason, 1983;
Kruskal, 1983; Leighton, 1984; Bollobás and Hell, 1985; Alon, 1985; Alon et al., 1986; Azar and
Vishkin, 1987; Pippenger, 1987; Alon and Azar, 1988a,b; Azar and Pippenger, 1990; Bollobás and
Brightwell, 1990; Feige et al., 1994; Braverman et al., 2016b, 2019; Cohen-Addad et al., 2020).
Also, note that the noisy comparison models considered in some of these papers (where compar-
isons are incorrect with a certain probability) is different from the adversarial comparator model
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we study. Thematically similar investigations on round complexity exist in the context of best arm
identification for multi-armed bandits (Agarwal et al., 2017; Tao et al., 2019).

Appendix B. More Preliminaries

We recall the definition of total variation distance between probability distributions.

Definition 17 The total variation distance between distributions p and q on Ω is defined as

dTV(p, q) = max
S⊆Ω

p(S)− q(S) =
1

2

∫
x∈Ω
|p(x)− q(x)|d =

1

2
‖p− q‖1 ∈ [0, 1].

We now define differential privacy, and the variants which we are concerned with.

Definition 18 (Dwork et al. (2006)) An algorithm M with domain X n is ε-differentially private if,
for all S ⊆ Range(M) and all inputs x, y ∈ X n which differ in exactly one point,

Pr[M(x) ∈ S] ≤ eε Pr[M(y) ∈ S].

This definition is also called pure differential privacy.

In the local setting of differential privacy, we imagine that each user has a single datapoint. We
require that each individual’s output is differentially private.

Definition 19 (Warner (1965); Evfimievski et al. (2003); Kasiviswanathan et al. (2011)) Suppose
there are n individuals, where the ith individual has datapoint Xi. In each round q of the protocol,
there is a set Uq ⊆ [n] of active individuals, and each individual i in Uq computes some (random-
ized) function of their datapoint Xi, and of all messages {mr,j : r ≤ q, j ∈ Ur} output by all
individuals in previous rounds, and outputs a message mq,i. A protocol is ε-locally differentially
private (LDP) if the set {mq,i : q ∈ [t], i ∈ Uq} of all messages output during the t rounds of the
protocol is ε-differentially private with respect to the inputs (X1, . . . , Xn).

Appendix C. Lower Bounds for Locally Private Hypothesis Selection

In this section we state sample complexity lower bound results on locally private hypothesis se-
lection. We will first focus on the lower bound for non-interactive protocols, and leverage a known
lower bound on locally private selection due to Ullman (2018) (a similar statement appears in Duchi
et al. (2017)), which also follows from the lower bound for sparse estimation in Duchi et al. (2017).
Let d ∈ N, α ∈ [0, 1], and let Ud be a uniform distribution over {±1}d. For every b ∈ {±1} and
j ∈ [d], we define distribution pb,j = (1 − α)Ud + α (Ud | xj = b), that is, the distribution that is
uniform over {±1}d except that Xj = b with probability 1/2 + α.

Theorem 20 (Theorem 3.1 of Ullman (2018)) Let ε ∈ (0, 1). Let d > 32, B be distbuted uni-
formly over {±1}, and let J be distributed uniformly over [d]. Suppose M is an non-interactive
ε-LDP protocol and n is such that

Pr
B,J,X1,...,Xn∼(pB,J |B,J)

[M(X1, . . . , Xn) = (B, J)] ≥ 1/3.

Then

n = Ω

(
d log d

α2ε2

)
.

20



LOCALLY PRIVATE HYPOTHESIS SELECTION

To obtain a lower bound on hypothesis selection, we will rely on the following fact that bounds
the total variation distance between the distributions pb,j (see e.g., Lemma 6.4 in Kamath et al.
(2019)).

Fact 21 Let q and q′ be two product distributions over {±1}d with mean vectors µ and µ′ respec-
tively, such that µi ∈ [−1/3, 1/3] for all j ∈ [d]. Suppose that ‖µ− µ′‖2 ≥ α for any α ≤ α0 with
some absolute constant 0 < α0 ≤ 1. Then dTV(q, q′) ≥ Cα, for some absolute constant C.

Theorem 22 (Non-interactive lower bound) Let ε ∈ (0, 1). Suppose M is a non-interactive an
ε-LDP protocol that solves the k-wise simple hypothesis testing problem with probability at least
1/3 when given n samples from some distribution p ∈ Q, whereQ = {q1, . . . , qk} are distributions
such that mini 6=j dTV(qi, qj) ≥ α. Then

n ≥ Ω

(
k log k

α2ε2

)
.

Proof Let Q = {pb,j | b ∈ {±1}, j ∈ [d]} be a set of k = 2d probability distributions. For any pair
of distributions q, q′ ∈ Q, we know from Fact 21 that dTV(q, q′) ≥ α/C for some absolute constant
C. Thus, our stated bound follows from Theorem 20.

Next we will derive a sample complexity lower bound for general locally private protocols. We
will build on a result due to Duchi and Rogers (2019) and consider the set of 1-sparse Gaussian
distributions {N (θ, Id) | θ ∈ Θ}, where Θ = {θ ∈ Rd | ‖θ‖2 = α, ‖θ‖0 = 1} is the set of vectors
that have a single non-zero coordinate, equal to −α or +α.

Following the result of Duchi and Rogers (2019) (and the framework of Braverman et al.
(2016a)), we can obtain a general lower bound analogous to Theorem 20.

Theorem 23 (Corollary 6 of Duchi and Rogers (2019), Theorem 4.5 of Braverman et al. (2016a))
Let ε ∈ (0, 1). Let U be a uniform distbution over Θ. Suppose M is an ε-LDP protocol, and n is

such that
Pr

θ∼U,X1,...,Xn∼N (θ,I)
[M(X1, . . . , Xn) = θ] ≥ 1/3.

Then

n ≥ Ω

(
d

α2ε2

)
.

Theorem 2 Let ε ∈ (0, 1). Suppose M is an ε-LDP protocol that solves the k-wise simple hy-
pothesis testing problem with probability at least 1/3 when given n samples from some distribution
p ∈ Q, for any set Q = {q1, . . . , qk} such that mini 6=j dTV(qi, qj) ≥ α. Then n = Ω

(
k

α2ε2

)
.

Proof For any two 1-sparse vectors θ, θ′ ∈ Θ such that θ 6= θ′, the total variation distance between
their Gaussian distributions is given by ‖θ − θ′‖2 =

√
2α (see, e.g., Devroye et al. (2018)). Thus,

our stated bound follows from Theorem 23.
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Appendix D. Proof of Lemma 11

From our assumption, | log(γ(a)/qi(a))| ≤ L for a ∈ [N ], i ∈ [k]. The algorithm adds noise
sampled from Lap(L/ε), hence ε-LDP guarantee follows easily from the properties of the Laplace
mechanism Dwork and Roth (2014). We will now prove correctness. Let i∗ ∈ [k] be such that
dTV(p, qi∗) = β. Fix a group Gi and consider,

EXij∼p[Ci] =
1

(n/k)
· E

 ∑
j∈[n/k]

Zij


= Ea∼p

[
log

(
γ(a)

qi(a)

)]
(By the linearity of expectation and E[Lap(L/ε)] = 0)

=
∑
a∈[N ]

p(a) log

(
γ(a)

qi(a)

)

=
∑
a∈[N ]

qi∗(a) log

(
qi∗(a)

qi(a)

)
+
∑
a∈[N ]

(p(a)− qi∗(a)) log

(
γ(a)

qi(a)

)
+
∑
a∈[N ]

qi∗(a) log

(
γ(a)

qi∗(a)

)

= DKL(qi∗ ||qi) +
∑
a∈[N ]

(p(a)− qi∗(a)) log

(
γ(a)

qi(a)

)
−DKL(qi∗ ||γ).

Let B = −DKL(qi∗ ||γ). By re-arranging the above term we get∣∣EXij∼q[Ci]−DKL(qi∗ ||qi)−B
∣∣ ≤ ∑

a∈[N ]

|p(a)− qi∗(a)| · |log (γ(a)/qi(a))|

≤ sup
a∈[N ]

∣∣∣∣log

(
γ(a)

qi(a)

)∣∣∣∣ ·
∑
a∈[N ]

|p(a)− qi∗(a)|


≤ L · 2dTV(p, qi∗)

≤ 2Lβ ≤ 0.1α2.

Now observe that each Zij can be expressed as Wij + Yij , where Yij ∼ Lap(L/ε), and the support
of random variable Wij is in the interval [−L,L] from our assumption. Therefore, we can apply
the standard Hoeffding’s inequality and concentration of Laplace random variables (see Hoeffding
(1994); Chan et al. (2011) for example) to obtain Pr

[
|Ci − E[Ci]| ≥ 0.1α2

]
≤ exp

(
−Ω(1) · (n/k)α4

(L/ε)2

)
≤

1
k3

.
By taking the union bound, with probability at least 1−1/k2, |Ci−DKL(qi∗ ||qi)−B| ≤ 0.2α2

for all i ∈ [k]. In particular, Ci∗ ≤ B + 0.2α2. This implies that if i′ = argminiCi, then
Ci′ ≤ B + 0.2α2. It remains to argue that dTV(p, qi′) < α. Suppose not. Consider any qi such
that dTV(p, qi) > α. This implies that dTV(qi∗, qi) > α/2 based on our assumption. Now consider
Ci ≥ B + DKL(qi∗ ||qi) − 0.2α2 ≥ B + 2dTV(qi∗ , qi)

2 − 0.2α2 ≥ B + 0.3α2, where we used
Pinsker’s inequality.
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Appendix E. Discussion on Handling Continuous Distributions

The arguments in our proof can be easily generalized to continuous probability distributions. How-
ever, as our results do not depend on the domain size, it is intuitive to think of the following simple
mapping from continuous distributions to discrete distributions on the domain [N ]. First, we can
approximate (to any precision) a set of continuous distributions by a set of discrete distributions on
a finite support such that TV distances are preserved. We can then map any set of discrete distribu-
tions on a finite support to a set of discrete distributions on the domain [N ], where N will depend
on the desired precision.

Furthermore, if we are able to get L = O(α), then we get the nearly optimal sample complexity
of n = O

(
kpolylog(k)

α2ε2

)
.

Appendix F. Algorithm 4

Algorithm 4 Scheffé Test
Input: n samples X1, . . . , Xn from unknown p, distributions q1 and q2

Output: Distribution q1 or q2

1: procedure SCHEFFÉ(X, q1, q2)
2: Let S = {x : q1(x) > q2(x)}.
3: Let q1(S) and q2(S) be the probability mass that q1 and q2 assign to S .
4: Let p̂(S) = 1

n

∑n
i=1 1Xi∈S be the empirical mass assigned by X1, . . . , Xn to S.

5: if |q1(S)− p̂(S)| < |q2(S)− p̂(S)| then
6: return q1.
7: else
8: return q2.
9: end if

10: end procedure

Appendix G. A Near-Linear-Sample Algorithm with O(log log k) Rounds

In this section, we describe our main result in this setting, a family of algorithms for approxi-
mate maximum selection parameterized by t, which is the allowed number of rounds. By setting
t = O(log log k), we will get an O(k log log k)-query algorithm which requires only O(log log k)
rounds, improving exponentially on the round complexity of previous approaches. In particular, the
following corollaries are obtained from Theorem 27 and Corollary 28 with an optimized setting of
parameters.

Corollary 24 There exists anO(log log k)-round algorithm which, with probability 9/10, achieves
a 3-approximation in the problem of parallel approximate maximum selection with adversarial com-
parators. The algorithm requires O(k log log k) queries.

Corollary 25 There exists an O(log log k)-round algorithm which achieves a (27 + γ)-agnostic
approximation factor for locally private hypothesis selection with probability 9/10, where γ > 0 is
an arbitrarily small constant. The sample complexity of the algorithm is O

(
k log k log log k

ε2α2

)
.
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The method is a careful recursive application of the approach described in Algorithm 3. Specif-
ically, given t allowed rounds of adaptivity, we partition the items into several smaller sets, perform
the round-robin algorithm on each, and then feed the winners into the algorithm which is allowed
t− 1 rounds of adaptivity. A judicious setting of parameters will allow the number of comparisons
to decay quite rapidly as the number of rounds is increased. This construction is described and an-
alyzed in Appendix G.1. One challenge is that each round of the algorithm will potentially lose an
additive 2 in the approximation, resulting in an overall 2t-approximation. To avoid this, we employ
ideas from Daskalakis and Kamath (2014): we simultaneously apply two algorithms, at least one of
which will be effective depending on whether the density of elements close to the maximum is high
or low. We describe the necessary modification and analyze the resulting approach in Appendix G.2.

G.1. A Recursive Application of the 2-Round Method

Our main result of this section will be the following lemma. While the round and query complex-
ity are essentially optimal (see Appendix H), the quality of approximation is unsatisfactory – our
approach to improving this approximation is described in G.2.

Lemma 26 There exists a t-round algorithm which achieves a 2t-approximation in the problem
of parallel approximate maximum selection with adversarial comparators. The algorithm requires

O(k
1+ 1

2t−1 t) queries.

The method is described in Algorithm 5. Note that for t = 1 or t = 2, this simplifies to
Algorithms 2 and 3, respectively.

Algorithm 5 t-Round Algorithm for Maximum Selection
Input: k items x1, . . . , xk, number of rounds t
Output: Approximate maximum xi

1: procedure MULTI-ROUND(x1, . . . , xk, t)
2: if t = 1 then
3: return the winner of ROUND-ROBIN on x1, . . . , xk.
4: end if
5: Set ηt = 1

2t−1 .
6: Partition x1 through xk into k1−ηt sets of size kηt .
7: Run ROUND-ROBIN on each set to obtain k1−ηt winners.
8: return the winner of MULTI-ROUND on the set of k1−ηt winners with t− 1 rounds.
9: end procedure

We proceed with proving that this algorithm satisfies the guarantees stated in Lemma 26.
Proof We prove the guarantees by induction. The base case corresponds to t = 1. As mentioned
before, this is exactly equal to Algorithm 2, and thus by Claim 14, the lemma holds.

Now, we prove the lemma for a general t > 1, assuming it holds for t − 1. The number of
rounds is trivial: 1 round is spent performing Lines 6 and 7, and t − 1 rounds are spent on the
recursive call in Line 8. The approximation is also easy to reason about: the maximum element
in the input appears in one of the sets in the partition in Line 6, and therefore the winner of the
corresponding set will be a 2-approximation of the maximum. Thus, the set of winners which are
fed into the recursive call in Line 8 will have a 2-approximation of the maximum. The inductive
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Figure 2: An illustration of Algorithm 5. The input is partitioned into several sets and a round-robin
tournament is performed on each. In subsequent rounds, winners are merged into fewer
but larger sets, until we have only a single winner.

hypothesis guarantees that the winner of the recursive call will be a 2(t − 1)-approximation to this
item, making it a 2t-approximation to the maximum.

Finally, it remains to reason about the query complexity. Comparisons are only performed in
Lines 7 and 8. In the former, we perform the round-robin tournament on k1−ηt sets of size kηt , so
the total number of comparisons is k1−ηt · O(k2ηt) = O(k1+ηt). In the latter, the recursive call
has an input of size k1−ηt , so by the inductive hypothesis, the number of comparisons done in the

recursive call isO
((
k1−ηt

)1+ 1
2t−1−1 (t− 1)

)
. Substituting in the value ηt = 1

2t−1 , these two terms

sum to O(k
1+ 1

2t−1 t), as desired.

G.2. Bounding the Approximation Factor

While the guarantees of Lemma 26 are strong in terms of the round and query complexity, the
approximation leaves something to be desired. We alleviate this issue in a similar way as Daskalakis
and Kamath (2014), by running a very simple strategy in parallel to the main method of Algorithm 5.
The intuition is as follows: if an item with maximum value x∗ is never compared with an item with
value x′ such that x∗ > x′ ≥ 1 (i.e., numbers which are 1-approximations to the maximum), it will
never lose a comparison. If the fraction of such elements is low, then an item with value x∗ will
make it to the final round, thus guaranteeing that the overall winner will be a 2-approximation to the
maximum. On the other hand, if the fraction of such elements is high, then we can sample a small
number of items such that we select at least one 1-approximation to x∗, and running the round-robin
algorithm on this set will guarantee a 3-approximation to the maximum.

Our method is described more precisely in Algorithm 6, and the guarantees are described in
Theorem 27.
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Algorithm 6 Better t-Round Algorithm for Maximum Selection
Input: K items x1, . . . , xk, number of rounds t
Output: Approximate maximum xi

1: procedure BETTER-MULTI-ROUND(x1, . . . , xk, t)
2: Run MULTI-ROUND on a random permutation of x1, . . . xk with t rounds, but halt when
t = 1 and let L be the set of all remaining items.

3: Let H be a random subset of {x1, . . . , xk} of size O
(
k

2t−1

2t−1

)
.

4: Run ROUND-ROBIN on L ∪H and return the winner.
5: end procedure

Figure 3: An illustration of Algorithm 6. Similar to Algorithm 5, but in the last round, we perform a
round-robin tournament additionally involving a random sample of items from the input.

Theorem 27 There exists a t-round algorithm which, with probability 9/10, achieves a 3-approximation
in the problem of parallel approximate maximum selection with adversarial comparators. The al-

gorithm requires O(k
1+ 1

2t−1 t) queries.

This gives the following corollary for LDP hypothesis selection.

Corollary 28 There exists a t-round algorithm which achieves a (27 + γ)-agnostic approximation
factor for locally private hypothesis selection with probability 9/10, where γ > 0 is an arbitrarily

small constant. The sample complexity of the algorithm is O
(
k
1+ 1

2t−1 t log k
ε2α2

)
.

Corollaries 24 and 25 follow from these statements with an appropriate setting of t.
To conclude, we prove Theorem 27.
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Proof The number of rounds is straightforward to analyze: Line 2 takes t− 1 rounds (since we stop
one round early), and Lines 3 and 4 can be done in 1 last round.

To analyze the number of comparisons, we require the following claim, which quantifies the
number of items that make it to the last round of MULTI-ROUND.

Claim 29 |L| = k
2t−1

2t−1 .

Proof We recall the ηt notation of Algorithm 5. The number of items which begin the first round
of the algorithm is clearly k. Since these are partitioned into k1−ηt groups, each producing a single
winner which progresses to the next round, we have k1−ηt items which begin the second round of
the algorithm. A similar reasoning implies that the number of items entering the third round of
the algorithm is

(
k1−ηt

)1−ηt−1 . Noting that |L| is the number of items entering the t-th (i.e., final)
round of the algorithm, the same logic shows that

logk |L| =
t−2∏
i=0

(
1− 1

2t−i − 1

)
=

t−2∏
i=0

(
2(2t−i−1 − 1)

2t−i − 1

)
=

2t−1

2t − 1
,

as desired. The latter equality can be seen by a telescoping argument, as the numerators cancel the
subsequent denominators.

With this in hand, the number of comparisons is the number of comparisons due to Line 2 (which is
O
(
k

1+ 1
2t−1 (t− 1)

)
by the same argument as in the proof of Lemma 26) plus the number of com-

parisons due to Line 4, which isO
(
(|H|+ |L|)2

)
= O

((
k

2t−1

2t−1

)2
)

= O
(
k

1+ 1
2t−1

)
. Combining

both of these gives the desired number of comparisons.
Finally, we justify the accuracy guarantee. We split the analysis into two cases, based on the

density of items which have value comparable to the maximum. Let ζ = maxi xi be the maximum
value, let B = {i : ζ > xi ≥ ζ − 1} be the set of items which are 1-approximations to (but not
strictly equal to) the maximum value, and let γ = |B|

k be their density.

First, suppose that γ ≥ 1/10k
2t−1

2t−1 . If we let the hidden constant in the size of H be 100

(i.e., |H| = 100k
2t−1

2t−1 ), then Markov’s inequality says that at least one item in H will be a 1-
approximation to the maximum value with probability at least 9/10. By the guarantees of ROUND-
ROBIN (quantified in Claim 14), the result of Line 4 will be a 3-approximation to the maximum
value, as desired.

On the other hand, suppose that γ ≤ 1/10k
2t−1

2t−1 . We argue that an item with value ζ makes it to
the final round of MULTI-ROUND and is included in L – if this happens, then by the guarantees of
ROUND-ROBIN, the result of Line 4 will be a 2-approximation to ζ and the proof is complete. This
happens if an item with value ζ is never compared to any element fromB within the first t−1 rounds.
Fix some such item: the probability it is compared with some element from B is upper bounded by
the probability that any element of B appears in the same subtree of depth t − 1 leading up to the

final round. The number of elements contained in this subtree is k/|L| = k
2t−1−1
2t−1 , by Claim 29.

The expected number of items from B in this subtree is bounded as γ · k/|L| ≤ 1

10k
1

2t−1

≤ 1/10,

and the result follows again from Markov’s inequality.
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Appendix H. A Lower Bound for Selection via Adversarial Comparators

In this section, we provide a lower bound for adversarial maximum selection with constrained
interactivity. In Appendix H.1, we consider a special case when t = 2 and prove that any 2-
round algorithm requires Ω

(
k

4
3

)
comparisons to find an approximate maximum. In Appendix H.2,

we generalize our result and technique to t rounds and prove that any t-round algorithm requires

Ω

(
k
1+ 1

2t−1

3t

)
comparisons. These lower bounds hold even for a non-adaptive adversary.

H.1. A Lower Bound for 2-round Algorithms

We warm up with a simpler case which illustrates the main ideas, namely, a lower bound for 2-
round algorithms. Specifically, we show that no matter how large the approximation factor τ is,
any 2-round algorithm which solves the parallel approximate maximum selection problem requires
Ω(k

4
3 ) comparisons.

Theorem 30 For any τ > 1, any 2-round algorithm which achieves a τ -approximation in the
problem of parallel approximate maximum selection with non-adaptive adversarial comparators
requires Ω(k

4
3 ) queries.

We remark that, since our result is proved in the setting of non-adaptive adversarial comparators,
it also automatically holds for adaptive comparators as well.

In our lower bound constructions, we reformulate the parallel approximate maximum selection
problem as a game between an adversary and the algorithm. Before the game starts, the adversary
commits to a random tournament (i.e., a complete directed graph)7 on k nodes, each identified
with one of the k items. We will require that the tournament has, with probability 1, a single
sink node. Then, the algorithm player asks m1 queries to the adversary, each query corresponding
to a comparison between items xi and xj . If the corresponding edge between xi and xj in the
tournament is directed from xi to xj , then the adversary answers that xj > xi, and, otherwise, the
adversary answers that xi > xj . Equivalently, the algorithm asks for the directions of m1 edges,
which are revealed by the adversary. Afterwards, the player asks m2 additional queries, based on
the information gained from the initial m1 queries, and the adversary answers them according to
the directions of edges in the tournament. The game continues in this manner for t rounds, where
in round q the algorithm asks mq queries, possibly dependent on all the query answers so far. After
the t-th round, the algorithm must declare the “winner”, i.e., the sink in the tournament.

Note that we can always produce item values so that the query answers are valid for the adver-
sarial comparators model, and the sink node is the unique τ -approximate maximum. Let C1, . . . C`
be the strongly connected components of the tournament, ordered so that, if i < j, then all edges
between Ci and Cj are directed from Ci to Cj . Then we can set, for example, xj = 2iτ for all xj in
Ci. This way all queries to two items in the same strongly connected component can be answered
arbitrarily, and all queries to items in two different components can be answered according to the
direction of edges in the tournament. Moreover, we want to mention two special components. First,
since there is a unique sink node xi∗ , C` must be equal to {xi∗}, and therefore, xi∗ is the unique
τ -approximate maximum. Second, in order to “fool” the player, the adversary sets C`−1 = {xi′},
where all edges incident on xi′ are directed towards xi′ , except the edge from xi′ to xi∗ . Thus, if the

7. Note that in this section we use “tournament” in the graph theoretic sense.
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algorithm can achieve a τ -approximation in the parallel approximate maximum selection problem,
it can identify the sink node in the game above, and especially, distinguish it from xi′ .

We are now ready to prove Theorem 30.
Proof We model the problem as the game described above, with t = 2. By Yao’s minimax principle,
we can assume, without loss of generality, that the algorithm player makes deterministic choices.
We start with the construction of the random tournament. From now on, to make the notation more
convenient, we will denote nodes/items by their indices, i.e., we will write i rather than xi. Let U0

denote the complete set of the nodes. Firstly, the adversary picks a uniformly random subset U1 of
k

2
3 nodes from U0. Then from the adversary picks two nodes i∗ and i′ uniformly at random from

U1.
Now we describe the directions of the edges of the tournament. For convenience, we define

V0 := U0\U1 and V1 := U1\{i∗, i′}. All edges incident on i∗ are directed towards i∗, i.e., i∗ is
our sink node. All edges incident on i′ are directed towards i′, except the edge from i′ to i∗. All
edges from V0 to V1 are directed towards the node in V1. Finally, the direction of any edge between
two nodes in V0 or two nodes in V1 is chosen uniformly and independently from all other random
choices.

Now we switch to the side of the player. As noted above, any algorithm which achieves τ -
approximation must correctly identify i∗ as the sink, with probability higher than 2

3 . Given m1 =

m2 = 1
100k

4
3 , we want to show that any algorithm which asks m = m1 + m2 queries can not find

i∗ with this probability. In the first round, the player asks m1 = 1
100k

4
3 number of queries. We use

ej = {αj , βj} to denote the j-th query, where j ∈ [m1]. Let S denote the set of the nodes in U1

which have ever competed with some other nodes from U1, i.e., S = {i1 ∈ U1 : ∃i2 ∈ U1, ∃j ∈
[m1], ej = {i1, i2}}. Now we want to show that the following two “bad” events happen with a
small probability:

A1 = {i′ ∈ S ∪ i∗ ∈ S}, A2 = {|V1 ∩ S| ≥
1

2
· k

2
3 }.

We bound the probability of event A1 and A2, respectively. For the rest of the proof, we will
assume that k is a large enough constant. By a union bound,

Pr[A1] ≤ Pr
[
i′ ∈ S

]
+ Pr[i∗ ∈ S] ≤ 2 ·m1 ·

k
2
3 − 1(
k
2

) ≤ 0.05.

With respect to A2, let ej = {αj , βj}, where j ∈ [m1]. We note that |V1 ∩ S| ≤ 2 ·∑
j∈[m1] I(αj ∈ V1, βj ∈ V1), where ∀j, E(I(αj ∈ V1, βj ∈ V1)) =

(
k
2
3

2

)
\
(
k
2

)
= k

2
3−1
k−1 · k

− 1
3 .

Furthermore, ∀j1 6= j2, I(αj1 ∈ V1, βj1 ∈ V1) and I(αj2 ∈ V1, βj2 ∈ V1) are negatively correlated.
Therefore,

E

 ∑
j∈[m1]

I(αj ∈ V1, βj ∈ V1)

 = m1 ·
k

2
3 − 1

k − 1
· k−

1
3 =

1

100
· k

k − 1
· (k

2
3 − 1),

Var

 ∑
j∈[m1]

I(αj ∈ V1, βj ∈ V1)

 ≤ m1·
k

2
3 − 1

k − 1
·k−

1
3 ·

(
1− k

2
3 − 1

k − 1
· k−

1
3

)
<

1

100
· k

k − 1
·(k

2
3−1).
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By Chebyshev’s inequality,

Pr[A2] ≤ Pr

 ∑
j∈[m1]

I(αj ∈ V1, βj ∈ V1) ≥ 1

4
· k

2
3

 ≤ k− 2
3 ≤ 0.05,

where in the last inequality, we assume k ≥ 100.
Now we move to the second round. From now on, we condition on neither A1 nor A2 holding,

which happens with probability at least 0.9. Then, conditional on A1 and on the answers to the first
m1 queries, the pair {i∗, i′} is distributed uniformly in the set R = {i∗, i′} ∪ (V1 \ S). Moreover,
if the algorithm does not query {i∗, i′} in the second round, then i∗ and i′ will have the same
distribution conditional on all m queries, and the algorithm will not be able to identify i∗ with
probability higher than 0.5. Then, conditional on A1, A2, and the queries from the first round, the
probability that the algorithm queries {i∗, i′} in the second round is at most

m2 ·
1(|R|
2

) ≤ k4/3

50 · 1
2k

2/3 · (1
2k

2/3 − 1)
≤ 0.1.

Therefore, the success rate of any deterministic 2-round algorithm making at most k
2/3

100 queries is
at most 0.1 + 0.1 + 0.5 < 9

10 . As already noted, by Yao’s minimax principle this also implies the
result for randomized algorithms.

H.2. A Lower Bound for t-round Algorithms

In this section, we extend our 2-round lower bound to t rounds. Specifically, we want to prove the
following theorem.

Theorem 31 For any τ > 1, any t-round algorithm which achieves τ -approximation in the prob-
lem of parallel approximate maximum selection with non-adaptive adversarial comparators re-

quires Ω

(
k
1+ 1

2t−1

3t

)
queries.

We continue to model the problem as the game described in the previous subsection, but now
with general t. We start with the construction of the random tournament, where a similar hierarchical
structure to the 2-round construction is adopted. In the structure in Appendix H.1, we can view
node i∗ and i′ as layer 2, nodes in set V1 as layer 1, and all the other nodes as layer 0. We have
thus designed a 3-layer hierarchical structure in the proof of the 2-round lower bound, where edges
are directed from lower to higher layers, and edges in the same layer are directed randomly. In this
section, we generalize this construction to the following (t+ 1)-layer hierarchical structure, which
we denote as (k, t)-construction.

Let U0 denote the complete set of the nodes. In the first round, the adversary uniformly at

random picks k
2t−2
2t−1 different nodes from U0, which are denoted as U1; etc.; in the q-th round, the

adversary uniformly randomly picks k
2t−2q

2t−1 from Uq−1, denoted as Uq, where q ∈ [t − 1]. Finally,
the adversary uniformly at random picks two nodes from Ut−1, denoted as i∗ and i′, respectively,
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and we let Ut = {i∗, i′} for the purpose of consistency. For convenience, we define V0 = U0\U1,
· · · , Vq = Uq\Uq+1, where 0 ≤ q ≤ t − 1, and Vt = Ut = {i∗, i′}. For i < j, we direct all edges
from Vi to Vj ; for q 6= t, edges between two nodes in Vq are given a uniformly random direction;
finally, the edge between i∗ and i′ is directed towards i∗. Thus, i∗ is the unique sink in the graph.

The following is the core lemma in this section.

Lemma 32 Given a (k, t)-construction, and ∀γ < 1, every deterministic t-round algorithm which

finds i∗ with probability higher than
(

1
2 + γ

100 · 3
t
)

requires Ω
(
γ
(
k

1+ 1
2t−1

))
queries.

It is not hard to show that Theorem 31 can be viewed as a corollary of the lemma, since given
the random (k, t)-construction, by setting γ = 1

3t , the lemma tells that every t-round algorithm

which finds i∗ with constant probability makes at least Ω

(
k
1+ 1

2t−1

3t

)
queries, and any algorithm

which achieves τ -approximation should find i∗ with constant probability. Finally, by Yao’s minimax
principle, this also holds for randomized algorithms. Therefore, our remaining task is to prove
Lemma 32.
Proof We prove the lemma by induction. Throughout the proof we assume that k is large enough
with respect to t and 1

γ . We will assume that the algorithm makes at most γ
100

(
k

1+ 1
2t−1

)
queries,

and show inductively that it succeeds in identifying i∗ with probability at most 1
2 + γ

100 · 3
t.

For the base case when t = 2, the lemma holds from the argument in the previous section. For
the inductive step, let t be any integer where t ≥ 3. Recall that the number of queries asked by the
algorithm in the first round is m1 ≤ γ

100k
1+ 1

2t−1 . We use ej = (αj , βj) to denote the j-th query,
where j ∈ [m1]. By analogy with the 2-round proof, let S denote the set of nodes in U1 which have
ever competed with some other nodes from U1, i.e., S = {i1 ∈ U1 : ∃i2 ∈ U1,∃j ∈ [m1], ej =
(i1, i2)}. Now we want to show that the following t “bad” events happen with a small probability:

∀q ∈ [t− 1], Aq = {|Vq ∩ S| ≥
1

10
· k

2t−2q

2t−1 }, At = {i′ ∈ S ∪ i∗ ∈ S}.

We bound the probability of event At first. By a union bound,

Pr[At] ≤ Pr
[
i′ ∈ S

]
+ Pr[i∗ ∈ S] ≤ 2 ·m1 ·

k
2t−2
2t−1 − 1(

k
2

) ≤ 0.05γ.

With respect to Aq, q ∈ [t − 1], let ej = (αj , βj), where j ∈ [m1]. We note that |Vq ∩ S| ≤

2 ·
∑

j∈[m1] I(αj ∈ V1, βj ∈ Vq), where ∀j, E(I(αj ∈ V1, βj ∈ Vq)) = k
2t−2
2t−1 ·k

2t−2q

2t−1

(k2)
, which is

roughly k−
2q

2t−1 . Furthermore, ∀j1 6= j2, I(αj1 ∈ V1, βj1 ∈ Vq) and I(αj2 ∈ V1, βj2 ∈ Vq) are
negatively correlated. Therefore,

E

 ∑
j∈[m1]

I(αj ∈ V1, βj ∈ Vq)

 = m1 ·
k

2t−2
2t−1 · k

2t−2q

2t−1(
k
2

) ≤ 1

50
· k

2t−2q

2t−1 ,

Var

 ∑
j∈[m1]

I(αj ∈ V1, βj ∈ Vq)

 ≤ m1 ·
k

2t−2
2t−1 · k

2t−2q

2t−1(
k
2

) ·

1− k
2t−2
2t−1 · k

2t−2q

2t−1(
k
2

)
 ≤ 1

50
· k

2t−2q

2t−1 .
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By Chebyshev’s inequality,

Pr[Aq] ≤ Pr

 ∑
j∈[m1]

I(αj ∈ V1, βj ∈ Vq) ≥
1

20
· k

2t−2q

2t−1

 ≤ 25k
− 2t−1

2t−1 ≤ 0.05γ

t
,

where in the last inequality, we assume k ≥ Ct2

γ2
for a large enough constant C.

From now on, we condition on none of the bad events A1, . . . , At holding, which happens
with probability at least 1 − 0.1γ. We also condition on the answers to the first m1 queries. We
would like to say that the conditional distribution on the graph induced on U1 \ S is identical to
that of a (k′, t − 1)-construction for k′ = U1 \ S. However, because of the random choice of S,
the sizes of Uq \ S are not exactly as prescribed in the definition of a (k′, t − 1) construction. In

order to finish the induction, we consider the following process. For k′ = 1
2k

2t−2
2t−1 , we first denote

V ′t = {i∗, i′}; then, we uniformly at random draw (k′)
2t−2

2t−1−1 − 2 nodes from from Vt−1\S, and

denote them as V ′t−1; from Vq\S, q ∈ [t−1], we uniformly at random draw (k′)
2t−1−2q−1

2t−1−1 −|V ′q+1| <(
1
2

) 2t−1−2q−1

2t−1−1 · k
2t−2q

2t−1 < 3
4k

2t−2q

2t−1 nodes, and denote them as V ′q . Conditonal on the bad events not
holding, and on the query answers from the first round, the subgraph induced on the nodes from V ′1 ,
V ′2 , · · · , and V ′t , is distributed identically to a (k′, t − 1) construction. Clearly, for the algorithm
to determine the sink i∗ in the full tournament, it must also determine it in this subgraph. Ignoring
queries in rounds 2, . . . , t to edges not in the subgraph, the algorithm is allowed to ask at most

m = γ
100

(
k

1+ 1
2t−1

)
≤ γ

100 · 2.7 ·
(

(k′)
1+ 1

2t−1−1

)
queries, and, by the inductive assumption, any

(t−1)-round algorithm can find i∗ with probability at most 1
2 + 3t−1

100 ·2.7γ. Finally, by a union bound,
the probability of success of the t-round algorithm is at most 1

2 + 3t−1

100 · 2.7γ + 0.1γ ≤ 1
2 + 3t

100γ.
This finishes the inductive step.
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