Proceedings of Machine Learning Research vol 125:1-17, 2020 33rd Annual Conference on Learning Theory

Faster Projection-free Online Learning

Elad Hazan EHAZAN @ CS.PRINCETON.EDU
Princeton University, Google Al Princeton

Edgar Minasyan MINASYAN @ PRINCETON.EDU

Princeton University

Editors: Jacob Abernethy and Shivani Agarwal

Abstract

In many online learning problems the computational bottleneck for gradient-based methods is the
projection operation. For this reason, in many problems the most efficient algorithms are based on
the Frank-Wolfe method, which replaces projections by linear optimization. In the general case,
however, online projection-free methods require more iterations than projection-based methods:
the best known regret bound scales as 7°/*. Despite significant work on various variants of the
Frank-Wolfe method, this bound has remained unchanged for a decade.

In this paper we give an efficient projection-free algorithm that guarantees 7%/3 regret for
general online convex optimization with smooth cost functions and one linear optimization compu-
tation per iteration. As opposed to previous Frank-Wolfe approaches, our algorithm is derived using
the Follow-the-Perturbed-Leader method and is analyzed using an online primal-dual framework.
Keywords: Online optimization, Frank-Wolfe method, Follow-the-Perturbed-Leader

1. Introduction

In many machine learning problems the decision set is high dimensional or otherwise complex such
that even convex optimization over the set is not practical. Such is the case, for example, in matrix
learning problems: performing matrix decomposition for very large problems is computationally
intensive and super-linear in the sparsity of the input. This renders common algorithms such as
projected gradient descent infeasible.

An alternative methodology which has proven successful in several applications is projection-
free online learning. In this model, the access of the learner to the decision set is via a linear
optimization oracle, as opposed to general convex optimization. As an example, linear optimization
over matrices amounts to eigenvector computations, which can be carried out in time proportional
to the sparsity of the matrices.

We henceforth consider online algorithms that perform one (or more generally a constant num-
ber) linear optimization and/or gradient evaluation per iteration. The reason is that if we do not
restrict the number of linear optimizations, we can compute projections up to arbitrary precision
and run standard projected online gradient descent which attains optimal regret. We restrict the
number of gradient oracle calls since otherwise, in the stochastic setting, one can evaluate the real
gradient up to arbitrary precision and run standard offline Frank-Wolfe which attains optimal con-
vergence rate. This defeats the purpose of creating efficient algorithms.
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Definition 1 The oracle complexity of a projection-free algorithm is the number of linear opti-
mizations and gradient evaluations per iteration on average. We say that a projection-free algorithm
is oracle-efficient if its oracle complexity is constant.

Oracle-efficient projection-free methods can have a considerable running time advantage for
certain structured problems in which linear optimization is more efficient than projections. This has
spurred significant research in recent years on projection-free methods in general and the Frank-
Wolfe algorithm in particular. However, despite a decade-long search, the best known oracle-
efficient projection-free online algorithm attains a regret bound that scales as 7°/4, where T is the
number of iterations !. This method, the Online Frank-Wolfe (OFW) algorithm (Hazan and Kale,
2012), attains the lowest oracle complexity over all iterations, even if we include projection-free
methods that are not oracle-efficient.

The T°/* bound is particularly striking when compared to stochastic projection-free optimiza-
tion. In this setting, it is possible to obtain 7'%/3 regret for smooth stochastic projection-free opti-
mization by the so-called blocking technique: grouping several game iterations into one and thereby
changing the decision less often, and its variants (Merhav et al., 2002; Chen et al., 2018). The opti-
mal rate of /T is more challenging to obtain as given in Lan and Zhou (2016). We are unaware of
an improvement to the 73/4 rate in the stochastic non-smooth case.

1.1. Our Results

Our main result is an efficient randomized algorithm that improves the state-of-the-art in general
projection-free online optimization with smooth loss functions. The expected regret of this algo-
rithm scales as 7%/3, with only one linear optimization computation per iteration. We then extend
the analysis of this algorithm to show that it attains the same regret bound with high probability.
Our main results are summarized by the informal statement below, with the exact dependence on
smoothness and other relevant problem parameters detailed in later sections.

Theorem 2 There exists an efficient algorithm for online convex optimization (see Algorithm 2) with
smooth loss functions that is projection-free, performs only one linear optimization computation per
iteration, and guarantees an expected regret of O (T2/ 3). Furthermore, the algorithm guarantees a
regret of O(T?/3 log %) with probability at least 1 — o.

Techniques. Our algorithm is not based on the Frank-Wolfe method, but rather a version of the
Follow-the-Perturbed-Leader (FPL) method (Kalai and Vempala, 2005). It was already established
in Hazan et al. (2016) that a deterministic version of FPL works for online convex optimization.
This version computes the expected point FPL plays at every iteration. In order to convert this
algorithm to an efficient projection-free method, two main challenges arise:

1. Estimating the expectation by sampling FPL points via linear optimization creates time depen-
dence between iterations, since the gradient is taken at a point which depends on all previous
iterations. This means that a small error in one iteration potentially propagates to all future
iterations.

1. We omit the O-notation in the introduction to make the exposition cleaner. In this case, T3/% hides constants includ-
ing the norm of the gradients, diameter of the decision set, and more. See Hazan et al. (2016) for more details.
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2. The number of linear optimization evaluations to estimate the mean of the FPL algorithm up
to € accuracy is (’)(E%) This dependence is not sufficient to improve the previously best T3/4
regret bound with only constantly many linear optimization computations per iteration.

To overcome the above issues we require two tools, that are new to the analysis of randomized
online methods. First, we use the online primal-dual methodology of Shalev-Shwartz and Singer
(2007a). This allows us to avoid the error-propagation caused by random estimation of the mean,
and could be a technique of independent interest.

The second tool is using the smoothness of the loss functions to leverage not only the estimation
proximity but also the fact that the estimation is unbiased. This is executed by switching gradients
at nearby points which are not too far off due to the Lipschitz property of the gradients of smooth
functions.

Paper structure. In the next subsection we discuss related work, and then move to describe pre-
liminaries, including tools necessary for the online primal-dual analysis framework. In section 3, we
state the main algorithm and formally state our main theorems including precise constants. In sec-
tion 4 we state the deterministic FPL algorithm and analyze it using the primal-dual framework to
illustrate its versatility in handling error propagation. We then use unbiased estimation and smooth-
ness in section 5 to derive the first main theorem. In section 5.1, we provide a reduction of the
algorithm to the setting of one linear optimization step per iteration. High probability bounds are
given in detail in section 5.2 and derived in the appendix along with other miscellaneous proofs.

1.2. Related Work

In recent years the projection-free learning and optimization literature has seen a resurgence of
results. We separate the related work into the broad categories below.

Projection-free offline optimization. The starting point for our line of work is the seminal paper
of Frank and Wolfe (1956), who apply the conditional gradient method for smooth optimization
over polyhedral sets. This was extended to semi-definite programming in Hazan (2008), and to
general convex optimization in Jaggi (2013). This algorithm requires g linear optimization steps to
find an e-approximate solution for a S-smooth function, optimal with no other assumptions.

A significant advancement in projection-free methods was obtained by Garber and Hazan (2013),
who give an algorithm that requires only log% linear optimization steps for strongly convex and
smooth functions over polyhedral sets. Data-dependent bounds for the spectahedron were obtained
by Garber (2016); Allen-Zhu et al. (2017).

Projection-free optimization on non-smooth objective functions is typically performed via var-
ious smoothing techniques. The optimal complexity of linear optimization calls in this case is 6%
(Lan, 2013). Several algorithms attain nearly optimal rates as in Lan (2013); Argyriou et al. (2014);
Pierucci et al. (2014).

Projection-free online learning. The online variant of the Frank-Wolfe algorithm that applies to

general online convex optimization was given in Hazan and Kale (2012). This method attains 7°%/*

regret for the general OCO setting, with only one linear optimization step per iteration 2.

2. If arbitrarily many linear optimization steps are allowed, the projections can be computed and this regret can be
improved to optimal /7.
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For OCO over polyhedral sets, an implication of the result of Garber and Hazan (2013) is an
efficient \/T regret algorithm with only one linear optimization step per iteration, as well as log T’
regret for strongly convex online optimization. Recently Levy and Krause (2019) give an efficient
projection-free online learning algorithm for smooth sets that devises a new fast projection operation
for such sets and attains the optimal /T regret for convex and log T regret for strongly convex
online optimization.

Without further assumptions, the OFW method in Hazan and Kale (2012) attains the best known
bounds for general online convex optimization. To the best of our knowledge, our 7%/3 regret is the
first to improve in this general OCO setting for smooth functions.

Projection-free stochastic optimization. An important application of projection-free optimiza-
tion is in the context of supervised learning and the optimization problem of empirical risk mini-
mization. In this setting, there are more techniques that can be applied to further accelerate opti-
mization, as compared to the online setting, most notably variance reduction.

This requires more careful accounting of the actual operations that the algorithms perform,
including counting the number of full-gradient computations, stochastic gradient evaluations, linear
optimizations, and projections. There have been a multitude of algorithms suggested that attain
various tradeoffs of the various computations, and have different merits/caveats. The reader is
referred to the vast literature on stochastic projection-free methods, including the recent papers of
Lan and Zhou (2016); Hazan and Luo (2016); Chen et al. (2018); Hassani et al. (2019); Xie et al.
(2019); Yurtsever et al. (2019); Zhang et al. (2019).

2. Problem Setting

We consider the online convex optimization framework as an iterative game between a player and an
adversary. At each iteration ¢ € N, the player chooses an action x; from the constraint set L C R?
of permissible actions while the adversary simultaneously chooses a loss function f; : K — R that
determines the loss the player will occur for the action x;. The performance metric for such settings
is the notion of regret — the difference between the cumulative loss suffered throughout 7' iterations
of the online game and the overall loss for the best fixed action in hindsight:

T T
RTzzft(Xt)_Eg,%E;ft(X) . (D
= —

For a given online algorithm A, we denote R (.A) to be its regret after 7" iterations. In this work, the
adversary has no computational or information restrictions as long as it chooses f; simultaneously
to the player choosing x;, i.e. we operate in the adaptive adversarial setting.

Before proceeding to the main results, we formalize several notations and assumptions preserved
throughout the paper. We discuss our additional/modified assumptions, made for simplicity in the
analysis, without touching upon the conventional standards established in the community (e.g. see
Hazan et al. (2016)). Throughout this work || - || refers to the Euclidean norm, a;., refers to the
sum ag.; = Z?:z a;,and B = {v € R?, |jv|| < 1} denotes the unit ball. The notation O(-) hides
absolute constants, and O(+) hides all irrelevant constants, e.g. everything other than 7.

Assumption 3 The constrained action set K C R% is a convex and compact set. Moreover, all the
points in the set have bounded norms, i.e. ||x|| < D, Vx € K.
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Assumption 4 For each iteration t € N, the loss functions f; : KK — R are convex, differentiable
and have bounded gradient norms Vx € K, ||Vfi(x)|] < G.

The convention in OCO is to simply assume a bounded diameter for the set K instead of the norm
bound. It is, however, straightforward to derive the above formulation: given an arbitrary point in
the set x’ € K’ consider the shifted set £ = {x — x’|x € K} whose diameter bound implies
the bounded norms of the points in /C; properties such as convexity and compactness are preserved
through shifts. The convexity and bounded gradient norm assumptions for the loss functions are part
of the standard throughout literature, while differentiability of the losses is assumed for simplicity
and can be avoided by using subgradients instead (see Shalev-Shwartz and Singer (2007b)).

Definition 5 The Fenchel dual of a function f : K — R with domain K C R® is defined as
vy eRY, f(y) = Sulré{<y,X> —f(x)}- )
xXE

The concept of a Fenchel dual will be crucial in the online primal-dual analysis of the presented
algorithms. If the function f is convex, then its Fenchel dual f* is also convex, and the Fenchel-
Moreau theorem gives biconjugacy, i.e. the dual of a dual is equal to the function itself (f*)* = f.
In this case, it is essential to note that f(x) = supycpe{(x,y) — f*(y)} directly implies that
Vf(x) = arg maxycga{(x,y) — f*(y)}, which is well-defined, when f is differentiable.

Linear Optimization Oracle. A linear optimization oracle, along with a value oracle, over the
constraint set C is provided to the player, defined as

Vy € RY,  Ok(y) = argmax(y,x), Mx(y) = max
xek xek

(y, @) . 3)

The reliance on linear optimization is the key motivation of the paper. This work concerns itself
with the special case of online convex constrained optimization where the operation of projection
to the set IC, as a problem of quadratic optimization, has a significantly higher computational cost
than the linear optimization. In such cases, the use of the projected Online Gradient Descent (OGD)
(Zinkevich, 2003) that achieves an optimal regret bound O(\/T ) with respect to 7" is not always
preferred to methods that bypass projection and use linear optimization instead. It is worth to notice
that the existence of only Ok (+) is enough since M (y) = (y, Ox(y)) and VMg (y) = Ok (y).
Moreover, the function M (+) is convex and Lipschitz as suggested below.

Lemma 6 The linear value oracle My : R* — R is convex and D-Lipschitz, i.e.

Vy1,y2 € RY [Mi(y1) — Mi(y2)| < Dly1—y2 - “)

3. Algorithm and Main Theorem

The algorithm we propose is fairly straightforward, and the main hurdle lies in the analysis. The
seminal work of Kalai and Vempala (2005) introduces the Follow-the-Perturbed-Leader (FPL) on-
line algorithm that obtains optimal O (+/T') regret for linear loss functions. A more general version
of FPL that applies expectations over the perturbations at each iteration extends the result to gen-
eral convex functions (Hazan et al., 2016). Our algorithm mimics the expected FPL replacing the
computationally expensive expectations with empirical averages of i.i.d. samples. It is presented
in detail in Algorithm 1. The following theorem states the convergence guarantees for both general
convex and smooth convex loss functions.



FAST PROJECTION-FREE LEARNING

Algorithm 1 Sampled Follow-the-Perturbed-Leader Algorithm, A
Input: constraint set X, number of rounds 7T, perturbation parameter §, number of samples m,
linear optimization oracle O (-)
fort =1to T do
sample V{ ~ B uniformly for j = 1,...,m
denote xi = OK(—?l;tfl + % . v{) forj=1,...,m
play x; = % Z;rL:1 x{
observe f;, denote V, = V(%)
end for

Theorem 7 Given that the Assumptions 3 and 4 hold, Algorithm 1, for general convex loss func-
tions, obtains an expected regret of

d d 2GDT
E fi(&)| < min{)  fi(x)} +2D/§ +5DG?-dT/2 + : 5)
tZ:; xek tZ:; \/771
If the convex loss functions are also B-smooth then the expected regret bound becomes
T T 4BD2T
E th(fct)] < min{}_ fu(x)}+2D/0+0DG - dT/2 + ———, (6)
t=1 t=1

where 6 and m > 1 are parameters of the algorithm.

Algorithm 2 Online Smooth Projection Free (OSPF) Algorithm, Aospr
Input: constraint set /C, number of rounds 7', perturbation parameter &, block size k, linear
optimization oracle Ok (+)
pick arbitrary xg € I, denote Vy = 0
fort =1to T do
ift mod k # O then
play x¢ = X1
observe f;, denote V; = Vf;(xy)

else
sample v;_4; ~ B uniformly for j = 1,...,k
denote x] = O;C(—Vp:t,l + % Vi_pyj) forj=1,...k

play x; = % Z?:l Xy
observe f;, denote V; = Vf;(x¢)
end if
end for

Remark 8 Take the perturbation parameter to be § = 2/(G\/dT). Then Algorithm 1 attains ex-
pected regret of E[R7(A1)] = O(VT) with m = T over general convex losses and E[Rr(A1)] =
O(\/T ) withm = [ \/T over smooth convex losses. In particular, this restores the original result
of the FPL method attaining O(\/T) regret with m = 1 sample per iteration for linear, 3 = 0, loss
functions shown in Kalai and Vempala (2005).
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Algorithm 1 does not adhere to our Definition 1 of oracle-efficient methods. Hence, we addi-
tionally provide a reduction based on a blocking technique (see section 5.1) that is oracle-efficient
with the following regret guarantees.

Theorem 9 Algorithm 2 as an oracle-efficient method suffers O(GD\/&T?’/ 4) expected regret over
general convex loss functions with blocking size k = T 12 and § = 2 / (G\/ﬁ ). In the case of
smooth convex loss functions, Algorithm 2, named Aospr, attains O(D(G\/d+ BD)T?/3) expected
regret with blocking size k = T'/3 and § = 2/(G+/dT).

4. The Case of Unlimited Computation

In an ideal scenario the player would be given unrestrained computational power along with access
to the linear optimization oracle. Then the expected FPL method, as a projection-free online algo-
rithm, attains O(/T) regret bound optimal with respect to 7" for general convex loss functions. The
exact algorithm is spelled out in Algorithm 3. The original analysis follows the standard recipe of
online learning literature coined by Kalai and Vempala (2005): no regret for Be-The-Leader — the
player suffers no regret if it is hypothetically one step ahead of the adversary, i.e. uses x;y1 for the
loss function fy; stability — the predictions of consecutive rounds x;, X411 are not too far apart from
each other (Hazan et al., 2016). We provide an alternative approach developed by Shalev-Shwartz
and Singer (2007b) based on duality and crucial for the further analysis of Algorithm 1.

Algorithm 3 Expected Follow-the-Perturbed-Leader Algorithm, Ag
Input: constraint set IC, number of rounds 7', perturbation parameter J, linear optimization oracle
Ok ()
fort =1to 7T do
compute x; = Ey. g [Ox (— Vi1 + 3 - V)]
play x;, observe f;, denote V; = Vf(x;)
end for

Theorem 10 Given that Assumptions 3 and 4 hold, Algorithm 3 with the perturbation parameter
value § = 2/(G~/dT) suffers regret Rp(A3) < 2GDVdIT = O(VT).

Proof The proof is based on duality when one considers the following optimization problem

T
;nei]lcl{ha(X) + ; fe(x)}, W

which resembles the loss suffered by the best-in-hindsight fixed action. The dual objective, that is
to be maximized, can be obtained using Lagrange multipliers and is given by (see Shalev-Shwartz
and Singer (2007b) for details)

D(A1,... A7) = —h3(=A1r) = > fr(Ae). (8)
t=1
The term hs(-) serves as regularization and is defined implicitly through its Fenchel conjugate
hi(y) = Evop[Mi(y + % - v)], a stochastic smoothing of the value oracle, that is §dD-smooth
according to the following lemma and the fact that M (-) is D-Lipschitz.
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Lemma 11 The function §(y) = Evnlg(y + 3 - V)] is 6dL-smooth given g : R? — R is an
L-Lipschitz function.

Weak duality implies that the objective (8) is upper bounded by (7) for any values of A\;,t =
1,...,T hence the goal is to upper bound the online cumulative loss by (8). To achieve this, take
At =V, = Vfi(x) for all t € [T] where the action x; is chosen according to Algorithm 3. De-
note the incremental difference as Ay = D(Vy, ..., V4,0,...,0) —D(Vy,...,V;-1,0,...,0) and
notice that the dual can be written as D(V1, ..., Vr) = St Ay +D(0, ..., 0). Foreach t € [T,

Ay = = [h5(=Vie) — hy(=Vii—1)] — f7 (V) + f7(0) > smoothness of h}(:)
> (Y, VAL (= V1)) — M—DHW —FH (V) + fr(0) = definition of x;

0 )
= (Vi) — [H(V) ﬂuw FRO) = fitx) = I+ 0, ©)

where we use the fact that the action x; from Algorithm 3 can alternatively be expressed as x; =
Vh5(—Vi:i—1) and the Fenchel dual identity (Vi,x¢) — f7 (Vi) = fi(x;) for convex f;(-). The
obtained inequality (9) quantifies how much regret an action contributes at a given iteration ¢ € [T]
detached from the rest of the rounds of the game. Such a property of the analysis ends up being
crucial in showing the regret bounds further in this work. Note that by definition D(0,...,0) =
—h%(0) =S| £7(0) which gives the identity >_7_ | Ay =T, f#(0) = D(V4,. .., V) +h%(0).
Thus, sum up (9) forall ¢ = 1,...,7T to bound the online cumulative loss is by

T 5dD
> filxe) < D(Vi,..., V) +h3(0 ZHW (10)

The bound in (10) along with weak duality are enough to conclude the (’)(ﬁ) regret bound. All that
is left are technical details to reach the conclusion using the assumptions of the given setup. First,
since Mc(0) = 0 it implies, by Lipschitzness of M (-), that [Mx (3 - v)| < D|v|/§ < D/§
for any v € B so h5(0) < D/§. Second, the primal expression in (7) can be related to the best
loss in hindsight the following way

mln{h(g )+ th )b < hs(x*) + th ) < mmet(X) + r}](flea’%c hs(x), 11

where x* is the optimal action in hindsight, i.e. the minimizer of ZtT:1 fi(-) over K. Moreover,

notice that for any x € K,y € R? the expression (x,y) — hi(y) = Evap[(X,y) —maxyex (X', y +

% - v)] can be bounded as follows: for each v € B the expression inside the expectation is bounded

(x,y) —maxwec (X, y+5-v) < (xy) - (xy+;v)=(x.—5v) < |x|[lvl|/§ < D/,
hence for any x € K the bound hs(x) < D/é holds. Finally, according to our assumptions the
loss gradients are bounded in norm, i.e. ||V;|| < G. Combining these properties with (10) along

with the fact that D(V1, ..., Vr) is upper bounded by (7) due to weak duality, we conclude

dD

T T
: . 6dD
;ft(xt)—gg%;ft(x) < maxhs(x) + h5(0) + ZHVHQ < 2D/5+ ——G°T .

t=1
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This yields the regret bound Ry (A3) < 2GDVdIT = O(v/T) with the perturbation parameter
value 6 = 2/(GvdT). [ |

Remark 12 [z is essential to note how each property given in Assumptions 3 and 4 was used in the
proof above. The convexity of the constraint set K allows the action X, as an expectation of points
in the set IC, to be a permissible action as well. Given compactness of K, we interchange the use
of supremum and maximum of bounded expressions at various points throughout. The norm bound
D of the set K is used in showing that My (-) is D-Lipschitz and bounding several regularization
terms. In terms of the loss functions, the convexity of fi(-), as well as My (-), allows us to use the
Fenchel-Moreau theorem (continuity is implied by differentiability) while the gradient norm bound
is simply used in the last stage of obtaining the regret bound.

5. Oracle Efficiency via Estimation

The results in section 4 suggest that Algorithm 3 possesses the features desired in this work — it
is both online and projection-free — and obtains an optimal regret bound of O(+/T). However, it
is computationally intractable due to the expectation term given in the definition of the action x;.
In this section, we remedy this issue and explore the scenario where the actions played during the
game are random estimators of the mean. In particular, we propose to simply take the empirical
average of m i.i.d. samples instead of the expectation itself as described in Algorithm 1.

It is essential to note that Algorithm 1 has a computational efficiency of m - T" calls to the linear
optimization oracle Ok (-) as the rest of the computation is negligible in comparison. Given the
duality approach to analyzing online algorithms demonstrated in the previous section, the sampled
FPL algorithm can now be analyzed to prove the bounds stated in Theorem 7. In particular, the
following lemma demonstrates that each estimation from Algorithm 1 contributes to the regret in a
disjoint fashion, i.e. there is no error propagation through time.

Lemma 13 Suppose the Assumptions 3 and 4 hold and denote X; = Eyp {OK(—@MA + % . V)]
forallt € [T] with x; and V, as defined in Algorithm 1. Then, the regret is bounded as follows

T

T T
D fix) < min{)y  fi(x)}+2GDVAT + ) (Vi % — %) - (12)
=1 t=1

t=1 t =

Proof Follow the same proof structure as in the proof of Theorem 10 by considering (7), (8) as the
primal and dual objectives. Consider A\; = @t = Vfi(%X;) and denote the incremental difference as
Ay =D(Vi,...,V},0,...,0) = D(V4,...,Vi_1,0,...,0). The main component of the proof is
showing that A; can be roughly seen as an upper bound on the loss f;(x;) suffered at iteration ¢.
First note that the played actions x; are not, in fact, unbiased estimators of the original x;;
instead denote the expectations by X; = E¢, [X;] = Ev{ [x]] where & = {v},...,vi"} comprises the
randomness used at iteration ¢ € [T']. For all ¢ > 1, the quantity X; is different from x; in that it uses
the gradients at the points X1, ..., X;—1 instead of x1,...,X;—; and such difference can potentially
increase with ¢t. In other words, one is defined as x; = th(—@lzt_l) while the other is equal to
x¢ = Vh3(—Vii—1). Hence, the action sequences of X1, ..., X7 and X1, ..., X7 can behave quite
differently and one cannot analyze the former based on results about the latter. However, the duality
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approach enables us to directly analyze the actions of Algorithm 1. In particular, lower bound the
quantity A; using the smoothness of /5 (-), as done in the proof of Theorem 10:

odD odD
2 2
The obtained inequality (13) resembles the analogous bound (9) in the unlimited computation case
with the extra term <@t, X; — X;) that can be seen as accounting for the estimation error. This shows
that at a given iteration ¢ € [T'] the additional regret is suffered only at the expense of the current
action choice, x; instead of X;, while ignoring the optimality of the previous choices X1, ..., X;_1.
We proceed with the proof by summing up (13) for all ¢ = 1,...,T and using the following facts:
by definition 3.7, Ay = D(V4, ..., V¢)=D(0,...,0)and D(0,...,0) = —h;(O)—ZtT:1 1 (0);
as shown before h5(0) < D/6 and Vx € K, hj(x) < D/6; according to Assumption 4, for all
t € [T],vx € K,||Vfi(x)|| < G. Combining all these properties and choosing the same optimal
value of the regularization parameter § = 2/(G/dT) concludes the stated bound (12). The use of
all the assumptions is identical to that of Theorem 10 and detailed in Remark 12. |

Ay > (Vi %) — IVe[12 = £ (V) + £7(0) = fil%e) Vel 4 £7(0)+(Vi, ke —%e) . (13)

All that remains to reach the conclusions by Theorem 7 is to use Lemma 13 and handle the
additional regret terms (V;, X — X;) for each ¢ € [T']. The following claims about smooth functions
and empirical averages of random vectors are necessary for the latter part.

Lemma 14 If f : I — R is a S-smooth function, then the following bound holds for any x,y € K,
(Vi(y),x—y) < (Vf(x),x—y) +Blx—y]*

Lemma 15 Let Zy,..., Z,, ~ Z bei.i.d. samples of a bounded random vector Z € R,
with mean Z = E[Z]. Denote Z,,, = 1 > i1 Zj, thenEz 1Zm — Z|?] < %.

Z| < D,

Proof [Proof of Theorem 7] First, note that according to Lemma 15, the following bound E¢, [||%; —
%] < VEg[l|xe —x|?] < \2/—% holds for all ¢ € [T]. In the case of general convex loss
functions, use the Cauchy-Schwartz inequality along with the norm bound on the gradients and
take expectation over the whole randomness in the algorithm ;.7 in the reverse order 7, ..., & to
obtain for each ¢ € [T
= . N - .. 2DG
Be, . [(Ve, %0 = %0)] < GEe,, [I[%e — %ol = GBeyy s [Be, [lI%e — %[ [ €1:61]) < m
m
Ordering the randomness of the iterations in reverse and taking the expectation conditional on
&1.4—1 1s necessary in order to use Lemma 15 since X; is a deterministic quantity over & only
when conditioned on the previous randomness &1.;—1. Finally, taking expectation over £1.7 on
the bound in (12) and using (14) for all ¢ = 1,...,T concludes the expected regret bound of
E[Rr(A1)] < 2GDVAT + % given in detail in (5) for general convex loss functions. It is
worth to mention that this result did not require any assumptions on how the loss function f;(-) at
each iteration ¢ € [T is chosen by the adversary: in particular, the result holds for the strongest
adaptive adversarial setting where the adversary can pick f;(-) having knowledge of the previous
actions by the player, i.e. the randomness £;1.;—1. This is true due to the fact that all the terms
containing the function f;(-) explicitly, e.g. V;, are separated and bound on their own.
In the case of smooth convex loss functions, a more nuanced approach is taken to achieve an
improvement on the general result. The key is to replace the gradient V; at the point x; with a

10
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quantity independent of &; and leverage the fact that X; is an unbiased estimator of X;. Formally,
given f;(-) is S-smooth note that (V;, %, —%;) < (Vy,X; —X;) + B||%; — %X¢||? according to Lemma
14 where V, = Vfi(%x¢) is denoted accordingly. The quantities f;(-) and x; both (potentially)
depend on previous randomness £1.;—1 but are deterministic with respect to & when conditioned on
&1.4-1, hence so is V,. Thus, it holds that E&Kvt, X; — X¢) | €1:4—1]] = 0. This fact results in the
additional regret having a quadratic dependence on the estimation error instead of linear as before:

< .- S o 43D?
Ee r (Vs Xt — %0)] < Eepy g |Ee, [(Ve, Xt — X¢) + B|%e — X4 |§1:t71]} < — = 1y

Use the inequality in (15) for all ¢ € [T] in order to bound the additional regret term in (12) and

conclude the expected regret bound of E[Rr(A1)] < 2GDVdT + % given in detail in (6) for
smooth convex loss functions. Analogous to the general convex case, this regret bound holds in the
strongest adaptive adversarial setting. |

5.1. Reduction to OSPF

The results given in Theorem 7 indicate O(+/T') optimal regret bounds for both convex and smooth
convex loss functions when taking m = T, and m = B+/T respectively, as suggested by Remark 8.
However, m is not simply a parameter of the algorithm: it indicates the number of linear optimiza-
tions per iteration so in 7" iterations the regret O(\/T ) is achieved with an overall linear optimization
complexity of m - T'. To avoid such convoluted claims, we instead provide a reduction of Algorithm
1, named OSPF in the smooth case, to the setting of one linear optimization per iteration that gives
O(T?/?) and O(T?/*) expected regret for smooth and general convex losses, respectively.

Proof [Proof of Theorem 9] The reduction follows a simple blocking technique, i.e. grouping
several rounds of the game into one as detailed in Algorithm 2. Let 7' = nk where n, k are assumed
to be integers for simplicity and denote f/ = Zii(ifl). ps1 fe- foralli € [n]. Since each f],i € [n]
contains k losses from the original problem, then the player is allowed & linear optimizations to
handle a single loss f/. Hence, use Algorithm 1 for T = n iterations with m = k samples at each
iteration to get actions X}, ...,x), and play x; = x| forall (i —1)-k+1 < t < i-Fkinthe
original setting — call this algorithm .A’. The corresponding constants of the constructed game are
D’ = D and G' = G - k since a new loss function constitutes k original losses together. Thus, the
expected regret bound of .A) for general convex functions, according to Theorem 7, is given by

2(G - k)Dn
VEk

with the parameter choice of § = 2/(G \/&\/ﬁk) Letting n = k = T'/2 yields the expected regret
bound for the oracle-efficient algorithm A} as E[Ry(A})] = O(/nk + nvk) = O(T3/4) for
general convex functions. The case of smooth convex functions is handled analogously. Note that
the A} algorithm is equivalent to Apspr given in Algorithm 2. The smoothness parameter of a sum
of k functions that are 3-smooth equals 3’ = /3 - k. Hence, the expected regret bound of Agspr for
smooth convex functions is given by

E[Rr(A))] < 2D/6+6D(G - k)? - dn/2 + = 2DGVd/nk + 2DGnVE, (16)

= 2DGVd\/nk + 48D%n, (17)

E[Rr(Aospr)] < 2D/§ +0D(G - k)? - dn/2 + 4(5/;)172”

11
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with the same choice of § = 2/(G\/d\/nk). In this case let n = T2/3 and k = T'/? to attain the
expected regret bound (’)(TQ/ 3) for Aospr With one linear optimization per iteration. |

5.2. High Probability Bounds

The theoretical guarantees for the main algorithm of this paper, Algorithm 1, have all been in terms
of expected regret as the performance metric. Even though expected regret is a widely accepted
metric for online randomized algorithms, one might wonder whether the expectation bound holds
only due to a balance of large and small chunks of regret or the given result actually holds most
of the time. To answer this question, we provide high probability bounds on Rz (A1) asymptot-
ically equivalent (up to logarithmic factors) to the statements from Theorem 7: these results also
transfer analogously to the reduction from section 5.1. In particular, the following theorem shows
that Algorithm 1 obtains regret Ry (A1) = O(VT) + O(T/+/m) for general convex losses and
Rr(Ay) = OKT) + O(BT/m) for smooth convex losses both holding with high probability.

Theorem 16 Given that the Assumptions 3 and 4 hold and the parameter value is 6 = 2/(GvdT),
the regret of Algorithm I for general convex loss functions is w.p. 1 — o for any o > 0 bounded by

T T
S i) < mind A} + 26DV + 22 g 2TTo (18)
t=1 t=1

If the convex loss functions are also 3-smooth, then it is w.p. 1 — o for any o > 0 bounded by

d a 88DT
E fi(x) < mlIICI{ g fi(x)} +2GDVdT + 2GD+\/2T log4 /o +
PSS
t=1 t=1

logdT /o . (19)

6. Discussion

We have presented an efficient projection-free method for online convex optimization with smooth
functions that makes only a single linear optimization computation per iteration and achieves regret
T2/3 improving upon the previous bound of 73/4.

Certain algorithms in the literature make more than one linear optimization computation per
iteration. To make the comparison to other methods more precise, we need a more refined computa-
tional metric. Define the following complexity metric for an online projection-free algorithm: let .A
be an online optimization algorithm, and define 7. (.A) to be the overall number of gradient oracle
calls as well as linear optimization calls made until the average regret becomes at most €.

In these terms, we have shown an algorithm with T, = (9(5%) for smooth functions, as compared
to O(a%) which is the previous best. The dimension dependence is undesirable and prevents direct
improvements in applications such as Garber and Hazan (2016). However, this dependence is a
byproduct of FPL and the randomized smoothing technique used in section 4 that works for general
convex sets. Various smoothing techniques can be appropriate for different sets and their role in FPL
methods is discussed in Abernethy et al. (2014). We note that our contribution is not the cause of
the dimension dependence and improving the complexity from ¢~* to £ =3 has remained unknown
for a long time.

It thus remains open to obtain a ¢~ °-complexity algorithm for general convex sets that does not
depend on the dimension, or show that this is impossible. It is also unknown at this time if these
dependencies on €, in both the smooth and non-smooth cases, are tight.

3
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Appendix A. Proof of the high probability bounds

This section focuses on regret bound results for Algorithm 1 that hold with high probability. We
use the following Azuma-type concentration inequality for vector-valued martingales derived as an
application of the work by Pinelis (1994) to the Euclidean space R .

Proposition 17 (Theorem 3.5 in Pinelis (1994)) Letv,,...,vi € R? be a vector-valued martin-
gale difference with respect to {Fy, }<_| such that for all k € [K] it holds that E[vy|Fi_1] = 0 and
vkl < ¢k for some ci, > 0. Then for any A > 0

K )\2
P Vi < 2exp () (20)
[ ; 2 Zf:l Ci

Proof [Proof of Theorem 16] We first obtain proximity of the estimates X; to their mean X for all
t € [T] that hold with high probability using Proposition 17. Fix an arbitrary ¢ € [T] and denote

> A

vj = %(f{t — xg) for j = 1,...,m. Note that Z;”Zl vj = X; — X; and for eaphj € [m] we

have E_;[v; | v{771] = 0 given the definition of X, and i.i.d. uniform samples v/ ~ B, j € [m)].
t .

Furthermore, ||vj|| < 2D/m using triangle inequality since x],%X; € K given convexity of the

constraint set . Fix any o > 0 and let A = \2/—% -y/2log 2T /o, then by Proposition 17

a

P [lIke —%el 2 Al < 7 = Pep M [T], X =%l 2 Al < 0 2

where the implication stems from union bound. To conclude the regret bound for general convex
functions with high probability, use Lemma 13 and apply (V;, %X; — %) < G||%; — X¢|| to get that

Rr(A1) < 2GDVAT + AGT = 2GDVdT + Q\G/Z%T /2log 2T /o (22)
holds with probability at least 1 — . In the smooth convex case, proceed analogously and apply the
inequality (Vy,%; — %) < (V4,%X; — %X¢) + S||%; — %||? given by Lemma 14. Fix any ¢ > 0 and
denote (; = (V;, %; — %) for all t € [T). Notice that {¢;}7_, is a martingale difference with respect
to &1.7. Indeed, E¢, [X; | £1:4—1] = %; and the quantities f;(-),%;, and hence V,, are deterministic
given &;;,—1 which means that E¢, [ | {1.4—1] = 0. Moreover, they are bounded [(;| < M
Ix: — x¢|| < 2GD = ¢ using Cauchy-Schwartz inequality, triangle inequality and convexity of
KC. Letting v = ZGD\/W Azuma’s inequality yields

2

y
Pe. . > < 2exp| ——— | =0/2 (23)
&t [ '7] p( 223:1 C%) /

Combine (23) and the already obtained (21) with ¢/ = ¢ /2, and corresponding X', to conclude the
regret bound for smooth convex functions using union bound and the Lemma 13 to obtain that

DT

T

> G

t=1

Ro(Ar) < 2GDVAT ++ + BON)ET = 2GDVAT + 2GD\/2TTog 4o + P2 L ogaT /o

holds with probability at least 1 — o. This finishes the proof of Theorem 16. The bound in
(~19) implies, following the same logic as in section 5.1, that the regret bound R (Aopspr) =
O(T?/31og1/c) holds with high probability 1 — o. [ |
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Appendix B. Miscellaneous proofs

Proof [Proof of Lemma 6] To show convexity, consider arbitrary y1,ys € R? and A > 0, denote
yvi2 = Ay1 + (1 — A)y2. Then

Mi(yi2) = (y12,X") = My1,x") + (1 = M) (y2,x") < IMi(y1) + (1 = )Mk (y2)
Next, fix arbitrary y1,y2 € R? and suppose w.l.o.g. that My (y1) > My (y2). Then

Mi(y1) — Mi(y2) = (y1, Ok (y1)) — (y2, Ok (y2))
< (y1,O0k(y1)) — (¥2, Ok (¥1))
= (Ok(y1),y1 —y2) < [|0Oc(y)lllyr —y2ll < Dlly1 —y2ll

where the first inequality follows from the definition of O (yy2) while the rest is achieved using the
Cauchy-Schwarz inequality and the norm bound of the constraint set . |

Proof [Proof of Lemma 11] According to Stokes’ theorem, the gradient of the smoothed function
G(+) can be written as

Vi(y) = B |y + 5v)v]

where S = {v € R% ||v| = 1} denotes the unit sphere, the boundary of B. Then for arbitrary
Yi,¥2 € Rd

I¥3(y1) — Va(ys)ll = 6d\ < §dLly1 -yl

o o

using linearity of expectation, Jensen’s inequality and the Lipschitz property of g(-). It follows that
g(+) is a dd L-smooth function. [

1 1
Ey~s [g()ﬁ + =v)v—g(y2 + V)V]

Proof [Proof of Lemma 14] The function f : JC — R being S-smooth is equivalent to its gradient
being B-Lipschitz, hence

(Vi(y) = Vf(z),z —y) < [Vf(y) = V@) 2z =yl < Blla -yl

The desired inequality follows from the result above. |

Proof [Proof of Lemma 15] Given that | Z|| < D and Z = E[Z] we have that ||Z]| < D and
1Z - Z| < ||Z]| + ||Z]] < 2D. Hence, by linearity of expectation and linearity of variance for
independent random variables we obtain

d
Y (Zwli) - Z(i))?

i=1

Ez[|Zm — Z)* = Ez

d
= E((Zuli) - Z)*] =
i=1

1< - 1 -
= =Y Ezl(26) - Z0)) = SEsl1Z-7P) < S
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