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Abstract
The taxing computational effort that is involved in solving some high-dimensional statistical

problems, in particular problems involving non-convex optimization, has popularized the develop-
ment and analysis of algorithms that run efficiently (polynomial-time) but with no general guaran-
tee on statistical consistency. In light of the ever-increasing compute power and decreasing costs,
a more useful characterization of algorithms is by their ability to calibrate the invested computa-
tional effort with various characteristics of the input at hand and with the available computational
resources. We propose a new greedy algorithm for the `0-sparse PCA problem which supports the
calibration principle. We provide both a rigorous analysis of our algorithm in the spiked covariance
model, as well as simulation results and comparison with other existing methods. Our findings
show that our algorithm recovers the spike in SNR regimes where all polynomial-time algorithms
fail while running in a reasonable parallel-time on a cluster.
Keywords: Sparse PCA, non-convex optimization, anytime algorithms, average case analysis

1. Introduction

Principal components analysis (PCA) is the mainstay of modern machine learning and statistical
inference, with a wide range of applications involving multivariate data, in both science and engi-
neering (Anderson, 1984; Jolliffe, 2002). The application of PCA to high-dimensional data, where
features are plentiful (large p) but samples are relatively scarce (small n) suffers from two major
limitations: interpretability and consistency (Bickel and Levina, 2008; Johnstone, 2001; Johnstone
and Lu, 2009; Nadler, 2008; Paul, 2007). These limitations encouraged the design of regularized
learning schemes, such as the `0-sparse PCA, or k-sparse PCA as we call it from now on. Given a
pair (X, k), where X is an n× p design matrix and k the desired sparsity level, the goal is to find a
unit vector v that has at most k non-zero entries, a k-sparse vector, such that the variance of X in
v’s direction is maximal.

While standard (non-restricted) PCA can be efficiently solved by computing the eigenvectors of
a symmetric matrix, its k-sparse variant is NP-hard (Natarajan, 1995). Nevertheless, computation-
ally efficient heuristics were proposed and analyzed under various assumptions on the distribution
of X and the parameters n, p and k, e.g. Amini and Wainwright (2009); d’Aspremont et al. (2004);
Deshpande and Montanari (2016); Johnstone and Lu (2009); Krauthgamer et al. (2015).
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The performance of all the aforecited algorithms features a rather undesirable phase-transition
behavior (at least on the benchmark distribution that was studied in each paper). Each algorithm
A performs well up to a certain SNR threshold τA, and its performance deteriorates as the SNR
drops below τA. Such a threshold behavior is expected in a worse-case setting, as the problem is
NP-hard. However, the results of Berthet and Rigollet (2013a,b); Brennan and Bresler (2019); Ding
et al. (2019); Krauthgamer et al. (2015) suggest that the threshold behavior might persist even in the
average-case setting, as long as the algorithms belong to the polynomial-time family.

Throughout, we let v∗ ∈ Rp denote the solution of the k-sparse PCA problem and I∗ ⊆
{1, . . . , p} the support of v∗. We denote by Σ̂ = 1

nX
TX the sample covariance matrix, assum-

ing X is centered. In what follows, we consider the equivalent problem of finding the support set
I∗ rather than v∗.

2. Our contribution

Anytime algorithms provide the ability to achieve results of better quality in return for running
time (Zilberstein, 1996). We implement this philosophy in the context of the sparse PCA problem.
We propose a new algorithm that consists of a tunable parameter that allows to increase the run-
ning time as the SNR weakens. Thus the algorithm maintains a steady success rate and avoids the
aforementioned threshold behavior. If necessary, the algorithm invests super polynomial-time.

It will be convenient to reformulate k-sparse PCA as follows. For a fixed symmetric matrix
A ∈ Rp×p, define the mapping f (A)

λ1
: 2{1,...,p} → R by f (A)

λ1
(S) = λ1(AS), the largest eigenvalue

of the principal submatrix AS of A corresponding to the variables in S. We abbreviate f (A)
λ1

by fλ1
when A is clear from the context. The k-sparse PCA problem is the solution of

I∗ = argmax
S⊆{1,...,p}
|S|=k

f
(Σ̂)
λ1

(S). (1)

Our algorithm is composed of two routines. The first, which we call GreedySprasePCA, re-
ceives a real valued function f : 2{1,...,p} → R (for example fλ1), a seed S∗ ⊆ {1, . . . , p} of size
k∗ ≤ k, and a solution size k. It greedily completes S∗ to a candidate solution of k-sparse PCA.

GreedySPCA(f,S∗, k) :

1: k∗ ← |S∗|
2: for all i ∈ {1, . . . , p} \ S∗ do
3: ai ← f(S∗ ∪ {i})
4: end for
5: sort the ai’s as ai1 ≥ ai2 ≥ ... ≥ aip−k∗

6: return S∗ ∪ {i1, . . . , ik−k∗}

The next routine, SeedSparsePCA (SSPCA for short), enumerates over all possible seeds of a
given size k∗, completes each one using GreedySPCA, and returns the “best” solution.
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SSPCA(f1, f2, k, k
∗) :

1: for all seeds S∗ ⊆ {1, . . . , p} of size k∗ do
2: S(S∗) ← GreedySPCA(f1,S∗, k)
3: end for
4: return argmax

S∗
f2(S(S∗))

Note that SSPCA is actually a family of algorithms, depending on the hyper-parameters f1, f2. We
shortly discuss the choice of these parameters.

The running time of SSPCA is
(
p
k∗

)
O(pk∗ + k log k). By varying k∗ one obtains a hierarchy

of algorithms, which for our choice of f1, f2 ranges from Diagonal Thresholding (Johnstone and
Lu, 2009) (for k∗ = 0) up to the naive exhaustive search (for k∗ = k). The hierarchy realizes the
anytime principle.

An attractive feature of SSPCA is the fact that it is completely white-box with only one simple
tunable parameter, k∗. Furthermore, SSPCA can easily be parallelized and run in a multi-core
cluster environment. The code we share is written in that way.

The following two conditions are sufficient for SSPCA(f1, f2, k, k
∗) to recover at least (δ− ξ)-

fraction of I∗, for two numbers δ, ξ ∈ [0, 1].

C1. There exists a golden seed S∗ of size k∗ such that GreedySPCA(f1,S∗, k) outputs a set I
satisfying |I ∩ I∗| ≥ δk.

C2. Σ̂ is ξ-separable with respect to f2. Namely, for every two sets I,J of size k, if |I ∩ I∗| −
|J ∩ I∗| ≥ ξk then f2(I) > f2(J ).

For C1 and C2 to be meaningful, one should think of golden seeds with δ close to 1, and f2-
separability with ξ close to 0. Proposition 1 formally asserts the sufficiency of these conditions.

The definition of k-sparse PCA in Eq. (1) suggests the choice f2 = fλ1 , which is indeed what
we chose. For the rigorous analysis, we chose f1 = favg(S) = 1

|S|
∑

i,j∈S Σ̂i,j , namely the average

row sum in Σ̂S . Note that for every S, fλ1(S) ≥ favg(S) by plugging the characteristic vector
of S in the Rayleigh-quotient definition of λ1. In the simulation part, we experimented with other
functions as well. Details in Section 9.

We analyze SSPCA rigorously in the well-known spiked covariance model, which is formally
defined in Section 3. Theorem 2 establishes the scaling of k∗ as a function of the parameters
(n, p, k), for which condition C1 holds with δ = 1. Theorem 3 and Corollary 4 explicate the gap
parameter ξ in condition C2 as a function of (n, p, k), from which the regime where ξ = o(1) is
obtained. Together they guarantee the recovery of (1 − o(1))-fraction of I∗, up to the information
limit. Our results are asymptotic, namely, they hold with probability (w.p.) tending to 1 as the
parameters of the problem (n, p, k) go to infinity. The probability is taken only over the choice of
the design matrix X .

Figure 1 summarizes simulations that show how our approach implements the anytime paradigm:
increasing k∗ (and subsequently the running time of SSPCA) translates to the desired increase in the
solution quality. We further compared the performance of SSPCA when allowed “polynomial-time”
(k∗ = 1, 2) to three popular polynomial-time algorithms. Figure 1 shows that SSPCA is better than
all three. Finally, we show that SSPCA with k∗ = 3 outperforms the naive exhaustive search when
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Figure 1: The plot portrays the accuracy averaged over 25 executions in the uniform unbiased spiked covari-
ance model (USPCA), parametrized to suit a weak SNR regime (n = p = 1000, k = 8, β = 0.5).
The compared algorithms are SSPCA with various seed sizes, Diagonal Thresholding (DT) (John-
stone and Lu, 2009), Covariance Thresholding (CT) Bickel and Levina (2008), LARS regression
(Zou et al., 2006) and a naive exhaustive search that was allowed the same running time as SSPCA
with k∗ = 3. Full details of the executions are given in Section 9. The average running time is
stated below each algorithm name. The reported running time of SSPCA and the preempted ex-
haustive search is a parallel-time using 90 Intel Xeon Processor E7-4850 v4 (40M
Cache, 2.10 GHz) cores.

both are running for the same amount of time. The Python code, alongside documentation and
examples, is available on Github 1.

Finally, let us mention that other greedy algorithms (approximate and exact) have been sug-
gested for the sparse PCA problem, e.g. Asteris et al. (2011); Asteris et al. (2015); Baback
et al. (2006); d’Aspremont et al. (2008). However, neither of these algorithms follows the any-
time paradigm, and only worst-case guarantees were provided.

Independently of this result, a different anytime algorithm for k-sparse PCA was obtained
in Ding et al. (2019). The algorithm also employs a controlled exhaustive search part, but the
overall algorithmic approach is different. The algorithm was rigorously analyzed in the spiked co-
variance model as well and both algorithms have the same asymptotic run-time. In fact, Ding et al.
(2019) provide evidence that this run-time is tight.

3. The Spiked Covariance Model

The spiked covariance model was suggested by Johnstone (2001) to model a combined effect of a
low-dimensional signal buried in high-dimensional noise. In this paper, we consider the Gaussian
case with a single spike, where the population covariance matrix is for the form Σ = βv∗v∗T + Ip.
The parameter β ≥ 0 is the signal strength, v∗ ∈ Rp is the planted spike assumed to be a k-sparse

1. https://github.com/sdannyvi/AnytimePCA
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unit-length vector. The algorithmic task is to recover I∗, the support of v∗, given n iid samples
x1, . . . ,xn from N (0,Σ). The SNR is governed both by β and k. The larger β and the smaller k
the stronger the SNR and the easier the task.

Various efficient algorithms for sparse PCA were rigorously analyzed under different variants of
the model just described, e.g. Amini and Wainwright (2009); Cai et al. (2013); Deshpande and Mon-
tanari (2016); Johnstone and Lu (2009); Krauthgamer et al. (2015); Shen et al. (2013); Wang et al.
(2016). All these algorithms succeed in the regime where the sparsity level satisfies k = Õ(

√
β2n)

(we use the Õ(·) notation in the common way, namely logarithmic factors are ignored). The best
sparsity asymptotically is achieved for example by Covariance Thresholding (CT) (Deshpande and
Montanari, 2016), remaining consistent up to k0 �

√
β2n (the notation f � g stands for f/g → c

for some constant c > 0).
It was further shown that under the planted clique hardness assumption there is no polynomial-

time algorithm that asymptotically beats k0 (Berthet and Rigollet, 2013a,b; Brennan and Bresler,
2019). Even without the planted clique assumption, Krauthgamer et al. (2015) show that the SDP
relaxation suggested by d’Aspremont et al. (2004) and analyzed by Amini and Wainwright (2009),
fails to recover v∗ beyond k0. The threshold k0 is commonly referred to as the computational
threshold, which we denote from now on by kcomp. We informally call the regime k >> kcomp
the weak SNR regime, and k ≤ kcomp the strong SNR regime. Finally, an information-limit was
proven for k ≥ kinfo � β2n/ log p (Amini and Wainwright, 2009; Berthet and Rigollet, 2013a; Cai
et al., 2015; Wang et al., 2014), and a matching algorithmic result for the naive exhaustive search
(Berthet and Rigollet, 2013b; Brennan et al., 2018; Cai et al., 2013; Vu and Lei, 2012).

While the boundaries between the different SNR regimes are well understood, at least asymp-
totically, the following question remains open:

Question: what is the computational complexity required to find the support of v∗ in the weak SNR
regime, namely when kcomp ≤ k ≤ kinfo?

The analysis of SSPCA provides an answer to this question (an upper bound).

4. Results

Our results refer to the following choice of hyper-parameters for SSPCA:

f1 = favg(S) = 1
|S|

∑
i,j∈S

Σ̂i,j , f2 = fλ1(S) = λ1(Σ̂S).

Furthermore, we assume the uniform biased sparse PCA model (UBSPCA), namely non-zero entries
of v∗ are all equal to 1/

√
k. In the simulation part we lift the same-sign restriction and use the

uniform unbiased sparse PCA model (USPCA), where entries equal ±1/
√
k.

The next proposition asserts the sufficiency of conditions C1, C2.

Proposition 1 (δ, ξ−Sufficient Conditions) If Σ̂ is ξ-separable (Condition C2) and there exists a
golden seed S0 of size k∗ such that GreedySPCA(X, k,S0) outputs a set I0 satisfying |I0∩I∗| ≥ δk
(Condition C1) then SSPCA outputs a set I satisfying |I ∩ I∗| ≥ (δ − ξ)k.

The proof of Proposition 1 is given in Section 5. Our next theorem establishes the scaling of k∗ for
the existence of a seed from which I∗ is recovered exactly (condition C1 with δ = 1).
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Theorem 2 (Golden seed) Let Σ̂ be distributed according to the UBSPCA model. Assume that
p/n→ c ≥ 0, and k ≤ n·min{β2,β}

C logn for a sufficiently large universal constant C. If

k∗ ≥
⌊Ck2 log n

β2n

⌋
(2)

then w.p. tending to 1 as (n, p, k)→∞ there exists a seed S∗ ⊆ I∗ of size at most k∗ for which the
output of GreedySPCA(favg,S∗, k) is I∗.

Theorem 2 is proven in Section 6. The next theorem provides a general spectral separability property
of spiked covariance matrices. It implies condition C2 as an immediate corollary.

Theorem 3 (Spectral Separation) Let Σ̂ be distributed according to the UBSPCA model with

p/n → c > 0. Set Γ = C
(

(1+β)k logn
n

)0.5
for a suitably chosen constant C. With probability

tending to 1 as (n, p, k) → ∞, for every δ ∈ [0, 1] and for every set I ⊆ {1, . . . , p} of size k that
satisfies |I ∩ I∗| = δk,

λ1(Σ̂I) ∈
[
1 + δβ − Γ, 1 + δβ + Γ +

β

k

]
.

Corollary 4 (Condition C2) Under the conditions of Theorem 3, for every two sets I,J of size k,
if |I ∩ I∗| − |J ∩ I∗| > ξk then λ1(Σ̂I) > λ1(Σ̂J ), for ξ that satisfies

ξ = 1
k +O

(√
(1 + β)k

kinfo

)
, (3)

where kinfo � β2n/ log p was defined in Section. 3

Theorem 3 is proven in Section 7 and Corollary 4 is proven in Section 8. Corollary 4 with I = I∗
was already proven for example in Berthet and Rigollet (2013b); Brennan et al. (2018); Cai et al.
(2013); Vu and Lei (2012) and in a more general sparse PCA model. Corollary 4 adds that even
if the seed suffices to recover only part of I∗, which might as well be the case in practice (finite
problem size), SSPCA will nevertheless pick up this information. This point is demonstrated in
Figure 1, where all executions of SSPCA end up with partial recovery.

The next theorem concludes our result and is an immediate corollary of all the statements in this
section.

Theorem 5 Under the conditions of Theorem 2, if k∗ satisfies the lower bound in Eq. (2), then
w.p. tending to 1 as (n, p, k)→∞, SSPCA(favg, fλ1 , k, k

∗) recovers at least (1−O(
√
α)− 1/k)-

fraction of I∗, where α = (1 + β)k/kinfo.

For example, in the regime where DT and SDP fully recover I∗, i.e. k = O(kcomp/
√

log p),
SSPCA requires a seed of size 0 to recover I∗ and runs in timeO(p log p). When k � kcomp the seed
size is k∗ = O(log n) and the running time is quasi-polynomial, pO(logn). Simulations suggest that
up to the computational threshold, even for a fairly large problem size (n = p = 20, 000), it suffices
to choose k∗ = 1 to recover I∗ exactly (see Figure 2). In the weak SNR regime, i.e. k = n0.5+ε,
the seed size scales as n2ε log n. This means that the computational effort is exp{n2ε log n}, which
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is exponential in (k/
√
n)2 (square the excess above the computational threshold) rather than in k

itself (the naive exhaustive search approach). The results in Ding et al. (2019)[Thm 2.14] provide
rigorous evidence that the exact scaling that we obtained for k∗ in Eq. (2) is asymptotically optimal.

Simulation (Section 9) suggests that SSPCA succeeds also when the UBSPCA assumption is
relaxed, namely the same-sign assumption is lifted. In this case, the best performance is achieved
when the hyper-parameter favg is replaced with f`1 , which is the average row `1-norm rather than
the average row sum. The parameter f2 = fλ1 remains the same.

5. Proof of Proposition 1

Suppose by contradiction that conditions C1 and C2 hold but SSPCA outputs a set J for which
|J ∩ I∗| < (δ − ξ)k. Consider a point in the execution of SSPCA where a golden seed S0 is
explored. By Condition C1, GreedySPCA completes S0 to a set I satisfying |I ∩ I∗| ≥ δk. The
latter together with the contradiction assumption give |I ∩ I∗| − |J ∩ I∗| > δk − (δ − ξ)k = ξk.
In this case C2 guarantees that λ1(Σ̂I) > λ1(Σ̂J ). Therefore the last line of SSPCA ensures that
J cannot be the output of the algorithm.

6. Proof of Theorem 2

For convenience, let us assumes w.l.o.g. that the support of v∗ is the first k variables, namely
I∗ = {1, . . . , k}. Our candidate for a golden seed is any subset S∗ of I∗. For concreteness we
fix S∗ = {1, . . . , k∗}. We show that when GreedySPCA is called with this subset, then the k − k∗
variables that it adds to S∗ in line 6, all belong to {1, . . . , k}, thus outputting I∗.

We begin by writing the distribution of the ith sample from N (0, βv∗v∗T + Ip) explicitly as

xi =
√
βui v

∗ + ξi, (4)

where ξi ∈ Rp is a noise vector whose entries are all i.i.d.N (0, 1), and ui ∼ N (0, 1). Furthermore,
all the ui’s and ξi’s are independent of each other.

By the greedy rule in line 3 of GreedySPCA, the k − k∗ variables in {1, . . . , p} \ S∗ that will
be chosen are those with largest value of favg(S∗ ∪ {i}). We rewrite favg(S∗ ∪ {i}) as

favg(S∗ ∪ {i}) = 1
k∗+1

∑
s,t∈S∗∪{i}

Σ̂s,t = k∗

k∗+1favg(S
∗) + 2

k∗+1

(∑
s∈S∗

Σ̂is

)
︸ ︷︷ ︸

ci(S∗)

+ 1
k∗+1 Σ̂ii := (5)

:= k∗

k∗+1favg(S
∗) + 1

k∗+1

(
2ci(S∗) + Σ̂ii

)
.

The only part in Eq. (5) that depends on i is its total covariance with S∗ (which we denote by
ci), and its variance Σ̂ii. In high level, the algorithm succeeds since ci is much bigger than cj for all
pairs i ∈ I∗, j /∈ I∗. We now turn to make this argument formal.

Lemma 6 Under the conditions of Theorem 2, for a fixed S∗ ⊆ I∗ of size k∗, w.p. at least 1−1/n,
every i ∈ I∗ satisfies ci ≥ 0.4βk∗/k.
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Lemma 7 Under the conditions of Theorem 2, for a fixed S∗ ⊆ I∗ of size k∗, w.p. at least 1−1/n,
every j /∈ I∗ satisfies cj ≤ 0.3βk∗/k.

Lemma 8 Under the conditions of Theorem 2, with probability at least 1 − 1/n, for every i ∈
I∗, j /∈ I∗, Σ̂jj − Σ̂ii ≤ 0.1βk∗/k.

We use Lemmas 6, 7 and 8 to complete the proof of the theorem. Let ∆ij = favg(S∗ ∪ {i})−
favg(S∗ ∪ {j}). To prove that GreedySPCA outputs I∗ we need to show that ∆ij > 0 for every
i ∈ I∗, j /∈ I∗. Using Lemmas 6–8, we have k ·∆ij ≥ 2(0.4βk∗/k − 0.3βk∗/k) − 0.1βk∗/k ≥
0.1βk∗/k > 0. In the last inequality we assumed k∗ ≥ 1.

The case k∗ = 0 corresponds to the regime k = O(kcomp/
√

log p). In this regime the k largest
diagonal entries belong to I∗ (Johnstone and Lu, 2009). Indeed, when k∗ = 0 then favg({i}) is
simply Σ̂ii, and GreedySPCA is no other than Diagonal Thresholding.

We turn to prove Lemmas 6–8. In the proof we use the following two auxiliary facts. The first
is a large deviation result for a Chi-square random variable.

Lemma 9 (Laurent and Massart (2000)) Let X ∼ χ2
n. For all x ≥ 0,

Pr[X ≥ n+ 2
√
nx+ x] ≤ e−x, P r[X ≤ n− 2

√
nx] ≤ e−x.

The second fact records a well-known argument about the inner-product of two multivariate
Gaussians. Its short proof can be found in Appendix C.

Lemma 10 Let {xi, yi}ni=1 be standard i.i.d. Gaussian random variables. Then
∑n

i=1 xiyi is dis-
tributed like the product of two independent random variables ‖x‖ · ỹ, where x = (x1, . . . , xn),
‖x‖2 ∼ χ2

n and ỹ ∼ N (0, 1).

6.1. Proof of Lemma 6

We start by explicitly writing ci(S∗) from Eq. (5) for a fixed set S∗ of size k∗. Let r(i) denote the
ith row of the p× n design matrix X . For every candidate i /∈ S∗,

ci(S∗) =
∑
j∈S∗

Σ̂ij = 1
n

∑
j∈S∗

r(i) · (r(j))T = 1
nr

(i)

∑
j∈S∗

r(j)

T

.

Following the distribution rule of X given in Eq. (4), all entries of the vector s =
∑

j∈S∗ r
(j) are

i.i.d. with
s` ∼

√
βu`

∑
j∈S∗

v∗j +
√
k∗w`,

where u` ∼ N (0, 1) is defined in Eq. (4) and w` ∼ N (0, 1) independently of u` (
√
k∗w` is derived

from
∑

j∈S∗(ξ`)j). The product r(i)sT is distributed as

r(i)sT ∼ 1

n

n∑
`=1

(√
βu`v

∗
i + y`

)√βu`
∑
j∈S∗

v∗j

+
√
k∗w`

 (6)

8



A GREEDY ANYTIME ALGORITHM FOR SPARSE PCA

The variable y` = (ξ`)i ∼ N (0, 1). We rearrange the sum as four components, corresponding to
the pure signal part, cross noise-signal and pure noise:

n∑
`=1

√
βu`v

∗
i ·
√
βu`

∑
j∈S∗

v∗j =
βk∗v∗i√

k

n∑
`=1

u2
` , (7)

n∑
`=1

√
βu`v

∗
i ·
√
k∗w` =

√
βk∗v∗i

n∑
`=1

u`w`, (8)

n∑
`=1

y`
√
βu`

∑
j∈S∗

v∗j =

√
βk∗√
k

n∑
`=1

y`u`, (9)

n∑
`=1

y`
√
k∗w` =

√
k∗

n∑
`=1

y`w`. (10)

We now bound each term separately. To lower bound Eq. (7), we use the fact that
∑n

`=1 u
2
`

in Eq. (7) is distributed χ2
n. The second inequality in Lemma 9 with x = 0.05n gives Pr[χ2

n ≤
0.8n] ≤ e−n/100. Therefore, w.p. at least 1− e−n/100,

1
n (7) ≥ 0.8βk∗/k (11)

Moving to Eq. (8), according to Lemma 10, the product term in Eq. (8) is distributed as
√
χ2
nN (0, 1).

For 1
n (8) > 0.1βk∗/k to hold, the following has to happen,

√
χ2
n|N (0, 1)| > βn

√
k∗

10k
=

βn
√
k∗

30k
√

log n
·
√

9 log n.

Using standard tail-bounds for Gaussians, Pr[|N (0, 1)| >
√

9 log n] ≤ n−4. Next we bound
Pr[χ2

n ≥ β2n2k∗/(900k2 log n)]. Substituting the value of k∗ from Eq. (2) we have that

β2n2k∗

900k2 log n
≥ β2n2

900k2 log n
· Ck

2 log n

β2n
= Cn/900.

Choosing C ≥ 1800 for example and using Lemma 10 gives Pr[χ2
n ≥ 2n] ≤ e−n/4. To conclude,

w.p. at least 1− n−4 − e−n/4 we get

1
n |(8)| ≤ 0.1βk∗

k
(12)

Moving to Eq. (9), according to Lemma 10, the sum-product term in Eq. (9) is distributed as√
χ2
nN (0, 1). Using standard tail-bounds for Gaussians, Pr[|N (0, 1)| ≥

√
6 log n] ≤ 2n−3, and

according to Lemma 9, Pr[χ2
n ≥ 2n] ≤ e−n/4. Therefore w.p. at least 1− 2n−3 − e−n/4 we get

1
n (9) ≤ 1

n

√
βk∗√
k

√
6 log n

√
2n ≤ 0.1βk∗

k
(13)

The last inequality is true when k ≤ βn/(1200 log n), which holds by our choice of k.
Moving to Eq. (10), we similarly have that w.p. at least 1− 2n−3 − e−n/4

1
n (10) ≤ 1

n

√
k∗
√

6 log n
√

2n ≤ 0.2k∗β

k
. (14)

9
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The last inequality in Eq. (14) holds whenever k∗ ≥ 200k2 log n/(β2n), which is what Eq. (2) says.
Finally, the lower bound on k∗ in Eq. (2) makes sense as long as k∗ ≤ k, which translates to

requiring k ≤ β2n/(C log n).
To conclude, w.p. at least 1− 3n−3, for a fixed i ∈ I∗,

ci ≥ (11)− (12)− (13)− (14) ≥ 0.4k∗β

k
.

The lemma now follows from taking the union bound over the k − k∗ ≤ p indices in I∗ \ S∗,
together with the fact that p = O(n).

7. Proof outline of Theorem 3

We provide the general outline of the proof. The complete proof is given in Appendix D. Fix a set
I ⊆ {1, . . . , p} s.t. |I ∩ I∗| = δk. The matrix Σ̂I can be written as Σ̂I = N + S where N is
composed of the noise part, Eq. (10), and S is composed of the signal and noise-signal cross terms,
Eq. (7)–(9). N is easily seen to be symmetric, and in fact it follows a Wishart distribution. The
matrix S = Σ̂I − N is the difference of two symmetric matrices, hence symmetric as well. The
proof follows Weyl’s inequality for Hermitian matrices,

λk(N) + λ1(S) ≤ λ1(Σ̂I) ≤ λ1(N) + λ1(S).

The bound on the Wishart part, λ1(N) and λk(N), is taken from (Davidson and Szarek, 2001,
Theorem II.13). To upper bound λ1(S) we use Gershgorin’s circle theorem, which says that every
eigenvalue λ of an n× n matrix A satisfies at least one of the n inequalities for i = 1, . . . , n,

|λ−Aii| ≤
∑
j 6=i
|Aij |.

To ower bound λ1(S) we use its Rayleigh quotient definition: λ1(S) is the argmax of xTSx over
all unit vectors x ∈ Rk. In particular, for x0 = (δk)−0.51I∩I∗ (1Q is the characteristic vector of a
set Q), the value of xT0 Sx0 is a lower bound on λ1(S). The latter is simply the average row sum in
the δk × δk submatrix SI∩I∗ .

The computations that lead to the lower and upper bounds on λ1(S) are similar to those in the
proof of Theorem 2.

8. Proof outline of Corollary 4

Take I,J ⊆ {1, . . . , p} that satisfy |I ∩ I∗| = δ1 > δ2 = |J ∩ I∗|. According to Theorem 3, for
λ1(Σ̂I) > λ1(Σ̂J ) to hold, it suffices to require

1 + δ2β +
β

k
+ Γ < 1 + δ1β − Γ.

Rearranging we get,
2Γ

β
+

1

k
< δ1 − δ2 := ξ.

The corollary follows immediately from the definition of Γ and kinfo.

10
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9. Simulations

We turn to evaluate the performance of SSPCA both in the strong and weak SNR regimes. The
following points summarize the way we ran simulations:

• The spike follows the UNBSPCA distribution: v∗ =
(
± 1√

k
, . . . ,± 1√

k
, 0, . . . , 0

)
, where the

signs of non-zero entries are randomly chosen. Accordingly, we change the choice of f1 in
GreedySPCA from favg to f`1 , which measures the `1 norm of Σ̂S∗∪{i}, rather than the sum.
Furthermore, in the weak SNR regime, it makes sense to ignore the diagonal of Σ̂. Therefore
we only use ci from Eq. (5) to choose i.

• We keep p = n and fix β = 0.5. The choice of 0.5 is somewhat arbitrary and any value below√
p/n = 1 is suitable. When β exceeds

√
p/n the problem is computationally easy for all k

up to the information limit (Krauthgamer et al., 2015)[Thm 1.1].

• The success rate of an algorithm on a given input is defined to be 1
k |I ∩ I

∗|, where I ⊆
{1, . . . , p} is the algorithm’s guess of v∗’s support.

• The algorithm DT has no tunable parameters – it simply returns the indices of the k largest
diagonal entries. The performance of CT, on the other hand, depends crucially on the chosen
threshold. When running CT we loop over 50 thresholds, the empirical percentiles of the
off-diagonal entries of the input covariance matrix. We choose the best result as CT’s output.
Also, the output of CT is a vector (a guess for v∗). We convert the vector to a set I by taking
the indices of the k largest entries in absolute value.

• We compared SSPCA against the well-known sparse PCA algorithm described in Zou et al.
(2006). This algorithm casts PCA as a regression problem and uses both ridge and lasso
penalties. LARS (Efron et al., 2004) is then used to obtain the optimal solution. We ran
Python’s implementation of this algorithm using a grid search for the ridge and lasso penalties
in the rectangle [0, 2]×[0, 2], discretized to 100 equidistant points. The algorithm is in module
sklearn.decomposition.SparsePCA (Pedregosa et al., 2011).

Figure 1 compares the performance of all aforementioned algorithms in a certain weak SNR
configuration, n = p = 1000, k = 8, β = 0.5. Among the polynomial-time algorithms (we include
in this category SSPCA with k∗ = 1, 2), SSPCA with k∗ = 2 performs best. When running for
super polynomial-time, SSPCA with k∗ = 3 is superior to the naive exhaustive search, when both
are given the same time budget T (3 parallel-hours on 90 cores).

Our next experiment demonstrates the existence of golden seeds in the weak SNR regime. The
empirical boundary of the strong/weak SNR regime is charted by the success rate curve of CT.
Figure 2 shows the performance (y-axis) of CT as k increases. Three configurations are plotted
n = p = 10, 000, 15, 000, 20, 000. The x-axis is scaled by

√
n to defuse the dependence on n.

Indeed all three CT lines overlap as expected (due to scaling), and the phase transition to the hard
regime occurs when k is in the window [0.2

√
n, 0.3

√
n]. The plot also includes the performance of

DT, lagging behind, and GreedySPCA initialized once with a seed of size k∗ = 1 and second with
k∗ = k/3. In both cases the seed is a random subset of I∗.

As evident from Figure 2, the performance of GreedySPCA with seeds of size k∗ = 1 is similar
to CT. This is somewhat surprising when comparing to the asymptotic lower bound given by Eq. (2),

11
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Figure 2: The success rate of DT, CT and GreedySPCA as a function of k. Every point is an
average of 25 executions, with n = p samples. GreedySPCA was initialized with k∗ = 1
or k∗ = k/3 random entries from I∗.

which would be of order log n at the computational threshold kcomp. The right-most (green) line in
Figure 2 extends with an accuracy of roughly 100% into the weak SNR regime, thus showing the
existence of golden seeds in that regime.

10. Discussion

In this paper, we presented a family of anytime algorithms for the k-sparse PCA problem, which
follow the same simple white-box greedy template that we called GreedySPCA and SSPCA.

GreedySPCA performs a bulk greedy choice, and instead we could have grown the solution iter-
atively, adding in iteration r = 1, . . . , k−k∗ the variable ir which maximizes f1(S∗∪{i1, . . . , ir−1}).
The iterative variant is exactly the well-known greedy algorithm of Nemhauser, Wolsey and Fisher,
which was proposed for sub-modular function optimization (Nemhauser et al., 1978). The only
difference is that Nemhauser et al. start with an empty seed.

Nemhauser et al. proved that if f1 is sub-modular and monotone, then the iterative greedy
algorithm finds a solution which is a (1− 1

e )-approximation of the optimum. However, the (1− 1
e )-

approximation ratio is useless in many cases, as the guaranteed value is lower than a random solution
(see Theorem 3). Our proof shows that GreedySPCA recovers I∗ exactly when called with the right
seed without the sub-modularity assumption on f1. Simulations that we ran in the spiked covariance
model with the iterative version (with seed) resulted in very similar performance compared to the
bulk version.
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Appendix A. Proof of Lemma 7

For i /∈ I∗ the terms in Eq. (7) and (8) are 0 (because v∗i = 0). The proof of Lemma 7 is identical
to the proof leading to the bound on Eq. (9) given in Eq. (13) and to the bound on Eq. (10) given in
Eq. (14). A union bound is then taken over the at most p variables in {1, . . . , p} \ I∗.

Appendix B. Proof of Lemma 8

For j /∈ I∗, the distribution of Σ̂jj ∼ χ2
n
n (From Eq. (6)). Lemma 9 entails that for a fixed j, w.p. at

least 1− n−3, Σ̂jj ≤ 1 +
√

9 logn
n .

For i ∈ I∗,

Σ̂ii ∼
β

k

χ2
n

n
+ 2

√
β√
k

N (0, 1)
√
χ2
n

n
+
χ2
n

n

Using Lemma 9 and standard tails on the Gaussian, we obtain that w.p. at least 1 − O(n−3),

Σ̂ii ≥ 1 + β
k −

√
36 logn

n . Using the union bound we get that w.p. at least 1 − O(n−1), for every
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pair i ∈ I∗, j /∈ I∗,

Σ̂jj − Σ̂ii ≤
√

100 log n

n
− β

k
≤
√

100 log n

n
≤ 0.1βk∗

k
.

The last inequality holds if k∗ ≥
√
L, where L is the lower bound on k∗ in Eq. (2). However,

k∗ ≥ L implies k∗ ≥
√
L since k∗ is an integer.

Appendix C. Proof of Lemma 10

For every fixed realization of x, we have xiyi ∼ N (0, x2
i ) and by the independence of the yi’s,

n∑
i=1

xiyi ∼ N (0, ‖x‖2) = ‖x‖ · N (0, 1) := ‖x‖ · ỹ.

The lemma follows by observing that ‖x‖2 ∼ χ2
n.

Appendix D. Proof of Theorem 3

We prove that w.p. tending to 1 as (n, p, k) → ∞, for every set I ⊆ {1, . . . , p} of size k that
satisfies |I ∩ I∗| = δk, for every δ ∈ [0, 1]:

λ1(Σ̂S) ∈ [1 + δβ − (1 + 2
√
β)Φ, 1 + δβ + (1 + 2

√
β)Φ +

β

k
], (15)

Where Φ =
√

8k logn
n .

Fix a set I ⊆ {1, . . . , p} s.t. |I ∩ I∗| = δk. The matrix Σ̂I can be written as Σ̂I = N + S
where N is composed of the noise part, Eq. (10), and S is composed of the signal and noise-signal
cross terms, Eq. (7)–(9). N is easily seen to be symmetric (in fact it follows a Wishart distribution),
and therefore the matrix S = Σ̂I − N , the difference of two symmetric matrices, is symmetric as
well. Weyl’s inequality, applicable for Hermitian matrices, implies that

λk(N) + λ1(S) ≤ λ1(Σ̂I) ≤ λ1(N) + λ1(S) (16)

D.1. Bounding λ1(N) and λk(N)

The matrixN ∈ Rk×k follows a Wishart distribution, and by (Davidson and Szarek, 2001, Theorem
II.13),

Pr[λ1(N) ≥ (1 +
√
k/n+ t)2 ∨ λk(N) ≤ (1−

√
k/n− t)2] ≤ e−nt2/2.

Plugging in t =
√

6k log n/n we obtain that w.p. at least 1− n−3k,

λ1(N) ≤

(
1 +

√
k

n
+

√
6k log n

n

)2

≤ 1 +

√
8k log n

n
= 1 + Φ. (17)

and similarly,
λk(N) ≥ 1− Φ. (18)

Taking the union bound over all
(
p
k

)
≤ pk possible sub-matrices N , the bounds hold w.p. at least

1− n−3kpk ≥ 1− n−1.
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D.2. Upper Bounding λ1(S)

Recall the parameters u = (u1, . . . , un) and ξi from definition of the single-spike distribution given
in Eq. (4). We start with a certain property of Σ̂ that we require during the proof of the upper and
lower bound on λ1(S). We say that Σ̂ is typical if ‖u‖2 ≤ n + 6

√
n log n and if (ξ1)i ≤ 2

√
log n

for every i = 1, . . . , p. Lemmas 9 and 10 guarantee that Σ̂ is typical w.p. at least 1− n−1. In what
follows we condition on this fact.

To upper bound the largest eigenvalue of S we use Gershgorin’s circle theorem, which says that
every eigenvalue λ of an n× n matrix A satisfies at least one of the n inequalities for i = 1, . . . , n,

|λ−Aii| ≤
∑
j 6=i
|Aij |. (19)

Each inequality defines a Gershgorin’s disc, and every λ belongs to at least one disc. We next show
that all discs are almost identical, and evaluate their center and radius.

Decompose each entry Sij according to the three sums Eq. (7)-(9) (plugging k∗ = 1). To bound
the sums in Eq.(8) and (9) we note that both involve the term u`, which does not depend on i or j.
Therefore we may rotate the distribution to point in the direction of u. According to Lemma 10, the
sum-product (8) is then distributed ‖u‖ · (ξ1)i and Eq.(9) is distributed ‖u‖ · (ξ1)j . Using the fact
that Σ̂ is typical we obtain the following bounds:

1
n |(8)| ∼ 1

n

√
βv∗i ‖u‖|(ξ1)j | ≤

√
8β log n

nk
.

Similarly

1
n |(9)| ≤

√
8β log n

nk
, 1

n |(7)| =

(
1±

√
36 log n

n

)
β

k
.

Putting everything together, and letting δi = 1 if i ∈ I∗ and 0 otherwise, if Σ̂ is typical then for
every i, j ∈ I,

Sij = δiδj
β

k
+ ∆ij , |∆ij | ≤ ∆ :=

√
36β log n

nk
. (20)

To bound the radius of the ith disc,
∑

j |Sij |, we need to account for |I ∩ I∗| = δk indices j ∈ I∗
and (1− δ)k indices j /∈ I∗. Plugging (20) in (19), we obtain that

|λ− Sii| ≤ δk
(
β

k
+ ∆

)
+ (1− δ)k ·∆ = δβ + ∆k.

Rearranging we get

λ1(S) ≤ Sii + δβ + ∆k ≤ β

k
+ ∆ + δβ + ∆k ≤ δβ +

(
β

k
+ 2∆k

)
. (21)

D.3. Lower Bounding λ1(S)

To lower bound the largest eigenvalue of S we use the Rayleigh quotient definition, namely λ1(S)
is the argmax of xTSx over all unit vectors x ∈ Rk. In particular, for x0 = (δk)−0.51I∩I∗ (1Q
is the characteristic vector of a set Q), the value of xT0 Sx0 is a lower bound on λ1(S). The latter
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is simply the average row sum in the δk × δk submatrix SI∩I∗ . If Σ̂ is typical, then according to
Eq. (20),

λ1(S) ≥ δk ·
(
β

k
−∆

)
≥ δβ −∆k. (22)

To conclude the proof of the theorem, note that ∆k ≤ 3
√
βΦ. Putting Equations (17),(18),(21),(22)

together, we get that w.p. at least 1− 2n−1,

λ1(Σ̂S) ∈ [1 + δβ − (1 + 3
√
β)Φ, 1 + δβ + (1 + 3

√
β)Φ +

β

k
].
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