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Abstract
With the explosion of massive, widely available unlabeled data in the past years, finding label and
time efficient, robust learning algorithms has become ever more important in theory and in practice.
We study the paradigm of active learning, in which algorithms with access to large pools of data
may adaptively choose what samples to label in the hope of exponentially increasing efficiency.
By introducing comparisons, an additional type of query comparing two points, we provide the
first time and query efficient algorithms for learning non-homogeneous linear separators robust to
bounded (Massart) noise. We further provide algorithms for a variant of the popular Tsybakov
low noise condition, and show how comparisons provide a strong reliability guarantee that is often
impractical or impossible with only labels - returning a classifier that makes no errors with high
probability.

1. Introduction

Due to the ubiquitous presence of massive unlabeled datasets, recent years have seen an explosion in
the search for computationally efficient, noise tolerant learning strategies that minimize the required
amount of labeled data to learn a classifier. Active learning is a formalization of the PAC-learning
paradigm for unlabeled data. In active learning, the learning algorithm has access both to either a
stream or pool of unlabeled data, and an oracle which can label the data on request. The complexity
of learning certain classes is then defined by their query complexity, the number of oracle calls re-
quired to almost learn the classifier with high probability. The goal in active learning is to adaptively
choose data to send to the oracle in a way that uses many fewer queries than in the labeled case.

While active learning saw initial success in the noise-free regime with simple concept classes
such as thresholds in one dimension, lower bounds (Dasgupta, 2005) soon showed that important
classes such as linear separators gave no improvement over PAC-learning, even in only two di-
mensions. However, subsequent work showed that slight tweaks to the model could overcome this
barrier. Balcan and Long (2013) showed that by assuming the data was drawn from a log-concave
distribution – a wide set of distributions including Gaussian distributions and uniform distributions
over convex sets, learning homogeneous (through the origin) linear separators could be done in ex-
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ponentially fewer queries than in the PAC model. Balcan and Zhang (2017) extended this to the
more general class of s-concave distributions, a generalization of log-concavity that includes fat-
tailed distributions as well. Rather than restricting the power of the adversary, Kane et al. (2017)
studied the effect on query complexity of empowering the learner. By allowing the learner to ask
more complicated questions, such as comparing two points, Kane et al. (2017) showed that non-
homogeneous linear separators in two-dimensions can be learned in exponentially fewer labeled
samples than the PAC case. Later, Kane et al. (2018) extended this to higher dimensions using a
complicated set of queries, and Hopkins et al. (2019) did the same by assuming weak concentration
and anti-concentration on the distribution – conditions satisfied by s-concave distributions.

While query efficient algorithms in high dimensions are an important step towards the use of ac-
tive learning on real world data, it is equally important that algorithms be computationally efficient
and noise tolerant. In an early work, Castro and Nowak (2006) provided query efficient algorithms
for thresholding in one dimension in the presence of bounded (Massart Massart et al. (2006)) and
unbounded (Tsybakov Mammen et al. (1999)) noise under the uniform distribution on [0, 1]. Soon
after, Balcan et al. (2007) extended these results to d-dimensional homogeneous hyperplanes over
a uniform distribution on a ball. Several years later, Hanneke et al. (2011) offered a more general
analysis for Tsybakov noise based off of the distributional complexity measure the disagreement
coefficient, and Hanneke and Yang (2015) provided a distribution-free analysis. In another vein
of work, Balcan and Long (2013) provided an algorithm for learning d-dimensional homogeneous
hyperplanes over nearly isotropic log-concave distributions with optimal query complexity for Tsy-
bakov noise (Wang and Singh, 2016), a result which was later extended by Awasthi et al. (2015)
to be computationally efficient for Massart noise when the distribution is restricted to uniform over
the unit ball. Similarly, Balcan and Zhang (2017) gave a computationally efficient algorithm for
learning the more difficult adversarial noise model over s-concave distributions. Concurrently, Xu
et al. (2017) proposed using comparison queries as a sub-routine in previous algorithms to deal with
noise in a computationally efficient manner, improving the overall query complexity along the way.

The comparison based methods of Xu et al. (2017), however, do not carry over to the algorithmic
technique proposed by Kane et al. (2017) for learning non-homogeneous linear separators. Kane et
al.’s technique is based upon logical inference. Viewing concept classes as the sign of an underlying
family of functions, they build a learner via a linear program with constraints given by query solu-
tions. As a result, the learners created by Kane et al.’s method actually fall into a stronger model
than PAC-learning called Reliably and Probably Useful (RPU)-learning (Rivest and Sloan, 1988),
variants of which have been studied more recently under a variety of names (e.g. KWIK learning
(Li et al., 2011), perfect selective classification (El-Yaniv and Wiener, 2012), or confident learning
(Kane et al., 2017)). In this model, the learner is not allowed to err, but may instead output “I don’t
know” a small fraction of the time. While Kane et al.’s RPU-learner is computationally efficient,
it is not tolerant to noise – the linear program is sensitive to errors in both labels and comparisons.
This raises a natural question: can the inference based algorithms of Kane et al. be extended to
noisy scenarios, and if so, does a strong reliability guarantee remain?

In this work we answer these questions in the positive for Massart and Tsybakov noise. In
both cases our algorithms satisfy a noisy version of RPU-learning: with high probability the learner
makes no errors at all. Due to their similarity to RPU-learners, we call learners that satisfy this
property Almost Reliable and Probably Useful (ARPU). Our work provides the first query and
computationally efficient algorithm for PAC or ARPU-learning non-homogeneous linear separators
in the presence of Massart noise over s-concave distributions, and more generally for hypothesis
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classes with finite inference dimension or small average inference dimension (complexity measures
introduced in Kane et al. (2017) and Hopkins et al. (2019) respectively). In addition, we provide
the first algorithm for ARPU-learning non-homogeneous linear separators under the Tsybakov Low
Noise Condition.

Similar to how Xu et al. (2017) use comparisons as a subroutine for correcting label errors, we
use an approximate sorting scheme (modified from a seminal work from Braverman and Mossel
(2009) on sorting with noisy comparisons) to create a small set of points whose labels and com-
parisons are correct with high probability. We then feed this cleaned set into an inference LP, and
repeat the process in a boosting style algorithm based off of the framework of Kane et al. (2017). By
carefully curating the cleaned set at each step, we are able to use a symmetry argument from Kane
et al. (2017) to prove that our learners have good coverage, while the guarantees of Braverman and
Mossel (2009) and the inference framework give reliability.

Our algorithms require the use of comparison queries, an addition we show is often neces-
sary for active PAC and ARPU-learning. Along with recalling lower bounds from Hopkins et al.
(2019) which show comparisons are necessary for efficiently active learning non-homogeneous hy-
perplanes, we show that in the noiseless case it is impossible to ARPU-learn the uniform distribution
over S1 in a finite number of label queries. Further, even with the addition of a margin assumption
we show the existence of simple distributions which require a number of label queries that is ex-
ponential in dimension. Because Massart and Tsybakov noise subsume the noiseless case, these
results prove the existence of a large gap between labels and comparisons for noisy ARPU-learning.

Our paper proceeds as follows. In Sections 1.1, 1.2, and 1.3 we cover preliminaries, our main
results, and our main techniques respectively. In Appendix A, we provide additional details on
inference dimension and noisy sorting. In Appendix B we present query and computationally ef-
ficient algorithms for ARPU-learning hypothesis classes with finite inference dimension or super
exponential average inference dimension under the Massart noise model, as well as a lower bound
for ARPU-learning S1 using only labels. In Appendix C we present algorithms for ARPU-learning
linear separators with margin and finite inference dimension or over distributions with weak distri-
butional conditions under the Tsybakov Low Noise Condition, as well as a lower bound for ARPU-
learning a corresponding distribution with margin using only labels

1.1. Preliminaries

1.1.1. BASIC DEFINITIONS

A hypothesis class is a pair (X,H), where X is a set, and H is a class of functions h : X → R.
Each function h ∈ H is called a hypothesis. We refer to CH = {sign(h) : h ∈ H} as the associated
concept class. For example, when H is the class of Rd → R affine functions, then the associated
concept class CH is the class of d-dimensional half-spaces.

We consider the binary classification problem, where we want to predict the binary label y for
each instance x. We assume access to an underlying unknown distribution DX over X and a label
oracle QL. Querying QL with unlabeled x ∈ X generates a label QL(x), drawn from unknown
distribution P(QL(x)|x). Note that querying QL on the same point again would generate the same
answer. We use notation DL to denote the joint distribution over examples x and labels from QL:

PDL(x, y) = PDX (x)P(QL(x) = y|x)
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1.1.2. PAC AND RPU-LEARNING

Probably Approximately Correct (PAC) learning is a probabilistic framework due to Valiant (1984)
and Vapnik and Chervonenkis (1974) for learning adversarially chosen classifiers and input distribu-
tions. In this model, given a set X and a setH of hypotheses h : X → R, an adversary first chooses
a distribution DL over X × Y with the marginal distribution DX over X . If Y = sign(h?(X)) for
some h? ∈ H, we call this realizable case learning. With no knowledge of the choice of distribu-
tion, the learner draws labeled samples from DL with the goal of outputting c = sign(h) for some
hypothesis h ∈ H which minimizes loss over DL:

LDL(c) , E(x,y)∼DL [1c(x) 6=y].

In the realizable case, a hypothesis class (X,H) is called PAC-learnable if ∀ε, δ, there exists a
learner A, where no matter the choice of the adversary, outputs a concept A(S) such that:

Pr
S∼DnX

[LDL(A(S)) ≥ ε] ≤ δ.

Here n = n(ε, δ) is the sample complexity, and must be poly(1
ε ,

1
δ ) for (X,H) to be PAC-learnable.

Reliable and Probably Useful (RPU) learning (Rivest and Sloan, 1988) is an alternative learning
framework in which the learner is not allowed to make errors, but may instead respond “I don’t
know”, notated by “⊥”. In this model, loss is instead measured by the number of unlabeled samples:

LDL(A(S)) , E(x,y)∼DL [A(S)(x) = ⊥].

We will commonly refer to 1 − LDL(A(S)) as the coverage of A(S). Sample complexity and
learnability are then defined analogously to PAC-learning. Note that any point which is not labeled
“⊥” by an RPU-learner is labeled correctly.

1.1.3. COMPARISON QUERIES AND INFERENCE DIMENSION

Following the framework of Kane et al. (2017), our learner will have access to more information
than just the label of a point. We focus on one particularly natural additional query, the ability to
compare points. A comparison query measures the relative distance of two points to the decision
boundary. In other words, say that our goal is to identify photographs of diseased vs healthy pa-
tients. A comparison query asks: “which patient looks healthier?”. Formally, given an underlying
function h ∈ H and two points x1, x2, a comparison query asks which one of h(x1), h(x2) is bigger.
Equivalently:

sign(h(x1)− h(x2)) ≥ 0?

Similar to our label oracle QL, we define a comparison oracle QC . Querying QC with two points
x1, x2 ∈ X generates a comparison result QC(x1, x2), which is drawn from an unknown distribu-
tion P(QC(x1, x2)|x1, x2). Along with their added theoretical power (Kane et al., 2017; Hopkins
et al., 2019), comparison queries are already used in practice in recommender systems (Satzger
et al., 2006) and ranking systems (Braverman and Mossel, 2009), and in some scenarios have better
accuracy than label queries (Xu et al., 2017).

To understand how comparison queries empower us to learn, we employ inference dimension
and average inference dimension, complexity measures introduced by Kane et al. (2017); Hopkins
et al. (2019) which help characterize how efficiently a hypothesis class (X,H) may be learned using
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labels and comparisons 1. Kane et al. (2017) prove that finite inference dimension implies that a
hypothesis class may be efficiently actively learned in the noiseless case, and Hopkins et al. (2019)
prove an analogous claim for average inference dimension when a distribution over X is specified.
In this work, we will extend these results to noisy learning. See Appendix A for details regarding
inference dimension.

1.1.4. NOISY LEARNING

First, drawing from Awasthi et al. (2015), we formalize the presence of noise in our distributions.
Given a hypothesis class (X,H), we assume the Bayes optimal classifier is some hypothesis h? ∈ H
with decision boundary h?(x) = 0, where h? may have non-zero error. To measure the noise in our
model we define the conditional probability distributions βL and βC :

βL(x) = Pr[QL(x) = sign(h?(x))|x]

βC(x1, x2) = Pr[QC(x1, x2) = sign(h?(x1)− h?(x2))|x1, x2].

Note that for all the noise models discussed below, querying QL on the same point again (and
similarly querying QC with the same pair of points again) would generate the same answer. This is
a realistic model for the case where the oracle is a human expert who may err with some probability
across different inputs, but will always return the same answer on the same input.

Massart Noise Massart, or bounded noise, is a well studied model of noise throughout statistics
and learning theory (Massart et al., 2006; Balcan and Long, 2013; Xu et al., 2017). Massart noise is a
tractable and realistic generalization of the standard random classification noise model (Angluin and
Laird, 1988), where the oracle flips its response with probability p < 1/2. Similar to Awasthi et al.
(2015); Xu et al. (2017), we say “noisy” oracles QL and QC satisfy Massart noise with parameter
λ > 0 if the conditional label and comparison distributions are such that

βL(x) ≥ 1

2
+ λ for all x ∈ X

βC(x1, x2) ≥ 1

2
+ λ for all x1, x2 ∈ X

Equivalently, we say that QL (resp. QC) satisfies Massart noise with parameter λ, if an adversary
constructs QL (resp. QC) by first taking the “clean” oracle Q̄L (resp. Q̄C) and then flipping the
result of the oracle with probability at most 1

2 − λ.

Generalized Tsybakov Low Noise Condition Massart error is restrictive in that the distributions
βL and βC are bounded away from 1

2 – in reality, this may not be the case as examples approach
the decision boundary. Common variants of the Tsybakov Low Noise Condition (TNC) (Mammen
et al., 1999; Castro and Nowak, 2006; Ramdas and Singh, 2013) offer an alternative: the closer an
example is to the decision boundary, the closer its error to 1/2. There is a natural extension of this
intuition to comparison queries as well: comparisons made between arbitrarily close points should
be arbitrarily noisy. A number of TNC variants have been studied in the literature. We employ
a generalization of the variant studied in Castro and Nowak (2006); Ramdas and Singh (2013)
which we call the Generalized Tsybakov Low Noise Condition (GTNC) for notational simplicity,
though it should be noted that this condition is slightly less general than the original model of

1. Or more generally any set of binary queries.
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Mammen et al. (1999). Let h? be the Bayes optimal classifier, and gL ≤ gU : [0, ε0] → [0, 1/2] be
arbitrary monotone increasing functions. We say QL satisfies the Generalized Tsybakov Low Noise
Condition with parameters (gL, gU , ε0) (GTNC(gL, gU , ε0)) if ∀x:

if |h?(x)| ≤ ε0 :
1

2
+ gL(|h?(x)|) ≤ βL(x) ≤ 1

2
+ gU (|h?(x)|) (1)

else: βL(x) ≥ 1

2
+ gL(ε0) (2)

Similarly, we say QC satisfies the Generalized Tsybakov Low Noise Condition with parameters
(gL, gU , ε0) if ∀x1, x2:

if |h?(x1)− h?(x2)| ≤ ε0 : gL(|h?(x1)− h?(x2)|) ≤ βC(x1, x2)− 1

2t
≤ gU (|h?(x1)− h?(x2)|)

(3)

else: βC(x1, x2) ≥ 1

2
+ gL(ε0) (4)

Note that for constants κ ≥ 1 and m ≤ M , setting gL(x) = m|x|κ−1 and gU = M |x|κ−1 returns
exactly the model from Castro and Nowak (2006); Ramdas and Singh (2013) for label queries. In
this case, we say for simplicity that QL and QC satisfy the Tsybakov Low Noise Condition with
parametersm,M, κ, ε0 (TNC(m,M, κ, ε0)).2 For notational convenience, we will sometimes write
gL(x) = gL(ε0) for x > ε0. In addition, since we will often need to compose gL and g−1

U , for a
constant c > 0 we will use the simplified notation:

Gc(x) = g−1
U

(
gL(x)

c

)
1.1.5. ARPU-LEARNING

RPU learning suffers from an inability to deal with noise. To combat this, we introduce Almost
Reliable and Probably Useful Learning (ARPU-Learning), a relaxation of RPU-learning that allows
for noise, but keeps stronger reliability guarantees than PAC-learning. We briefly introduce some
notation. A model is a pair (Q,DX) where Q is a set of oracle pairs (QL, QC) and DX is a set of
distributions over X . In ARPU-Learning, given a hypothesis class (X,H) and a model (Q,DX),
an adversary chooses a distribution DX from DX and “noisy” oracles (QL, QC) from Q, which
induce a distribution D̃L over X × Y given by: PD̃L(x, y) = PDX (x)P(QL(x) = y|x)

Definition 1 (ARPU-Learnable) We say that a hypothesis class (X,H) is ARPU-learnable under
model (Q,DX) if ∀δr, δu, ε > 0, there exists a learner A which is

1. Probably useful: with high probability, the learner will have large coverage:

Pr
S∼DnX

[LD̃L(A(S)) < ε] ≥ 1− δu, (5)

2. Reliable: with high probability, the learner will not make a mistake:

Pr
S∼DnX

[∀x ∈ X, A(S)(x) ∈ {h?(x),⊥}] ≥ 1− δr. (6)

where h? is the Bayes optimal classifier and n = n(ε, δr, δu) is poly
(

1
ε ,

1
δr
, 1
δu

)
.

2. Again, we remind the reader that this condition remains less general than its original form in Mammen et al. (1999)
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In Equations (5) and (6), the probability is over the randomness of the algorithm, sample S, and
noisy oraclesQL,QC chosen by the adversary. Sample complexity and learnability are then defined
equivalently to PAC-learning. Note that setting δr = 0 reduces exactly to RPU-learning, and that
unlike in the PAC setting, each point can only be mislabeled a δr fraction of the time.

We will refer to learners that satisfy condition (5) as δu-useful, and learners that satisfy condition
(6) as δr-reliable. While the logical inference technique previously used to build RPU learners
(Kane et al., 2017; Hopkins et al., 2019) are very sensitive to noise, we show in later sections how
to modify those techniques to build ARPU-learners.

1.1.6. PASSIVE VS ACTIVE LEARNING

PAC-learning traditionally is applied to supervised learning, where the learning algorithm receives
pre-labeled samples. We call this paradigm passive learning. In contrast, active learning refers
to the case where the learner receives unlabeled samples and may adaptively query a labeling or
comparison oracle. Similar to the passive case, for active learning we study the query complexity
as the minimum number of queries to learn some pair (X,H) in either the PAC, RPU or ARPU-
learning model. In general, passive learners learn concept classes up to error ε in Θ(1/ε) samples.
We add to a long line of work (Castro and Nowak, 2006; Balcan and Long, 2013; Awasthi et al.,
2015; Balcan and Zhang, 2017; Kane et al., 2017, 2018) showing that active learning can achieve
such learning in only polylog(1/ε) queries on important concept classes.

1.2. Our Results

In this work, we study ARPU-learning (Section 1.1.5) under two widely studied noise models:
Massart Noise and the Generalized Tsybakov Low Noise Condition.

1.2.1. NOTATION

We use notation where X is the instance space, H is the set of hypothesis from X → R, Hd is
the class of linear separators in Rd (corresponding to affine functions h : Rd → R), and Hd,γ is
the class of linear separators in Rd with margin γ from X . Since previous work (Balcan and Long,
2013; Awasthi et al., 2015) refers to the class of homogeneous linear separators as simply “linear
separators,” we will often refer to Hd as “non-homogeneous linear separators” to differentiate our
results. For noise models, M(λ) is the set of all oracles which satisfy Massart noise with parameter
λ, GTNC(gL, gU , ε0) is the set of all oracles which satisfy the Generalized Tsybakov Low Noise
Condition with parameters (gL, gU , ε0), and TNC(m,M, κ, ε0) is the set of all oracles satisfying
the Tsybakov Low Noise Condition with parameters (m,M, κ, ε0). A model is a pair (Q,DX)
whereQ is a set of oracles (QL, QC) andDX is a set of distributions over X . For distributions over
instance space X or Rd,

1. CX is the class of all continuous distributions over X , LCd is the class of all log-concave
distribution on Rd, SCd is the class of all s-concave distributions on Rd for s ≥ − 1

2d+3 and
ISCd is the class of all isotropic s-concave distributions on Rd for s ≥ − 1

2d+3 .

2. ACCd,c1,c2 is the class of all continuous distributions D which satisfy the following concen-
tration and anti-concentration inequalities:

(a) ∀α > 0, Prx∼D[||x|| > dα] ≤ c1
α
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(b) ∀α > 0, v ∈ Rd, ‖v‖ = 1, b ∈ R, Prx∼D[|〈x, v〉+ b| ≤ α] ≤ c2α

3. For hypothesis class (X,H),A(X,H),a,f(d) is the class of all continuous distributionsDX over

X such that (DX , X,H) has average inference dimension g(n) ≤ 2
−Ω
(
n1+a

f(d)

)
.

We will call an algorithm sample (respectively time) efficient if it uses poly(d, 1
ε ,

1
δr
, 1
δu

) samples
(respectively time), and query efficient if it uses poly(d, log 1

ε , log 1
δr
, log 1

δu
) queries. Finally, for

some parameter n (e.g. dimension, error) and function f : R → R, for the sake of readability we
will often use the notation Õ(f(n)) to ignore multiplicative factors that are logarithmic in f(n).

1.2.2. MASSART NOISE

To begin, we show that under the Massart noise model, finite inference dimension (Definition 12)
implies computationally efficient ARPU-learning with exponentially better query complexity than
any passive PAC-learner3.

Theorem 2 (Finite Inference Dimension =⇒ ARPU-Learning under Massart Noise) Let the
hypothesis class (X,H), X ⊆ Rd, have inference dimension k with respect to comparison queries.
Then for δr ≤ 1/2, (X,H) is ARPU-learnable under model (M(λ), CX) in time

poly
(
d, k, 1

δr
, 1
ε , log( 1

δu
)
)Õ( 1

λ5

)
, uses only poly

(
k, 1

λ ,
1
ε , log( 1

δr
), log( 1

δu
))
)

unlabeled samples,
and has a query complexity of

q(ε, δr, δu) = Õ
(
k

1

λ10
log

1

ε
log2 1

δr
log

1

δu

)
.

To put this result in context, we note two lower bounds which together with Theorem 2 show a sepa-
ration between passive and active learning, and label only and comparison based ARPU-learning. In
the case of passive, comparison based PAC-learning, we recall the Ω

(
1
ε

)
lower bound from Hopkins

et al. (2019). For label only APRU-learning, we present a lower bound novel to this work:

Lemma 3 The query complexity of 1/4-reliably, 1/8-usefully ARPU learning (S1, H2) with 1/2-
coverage under model (M(λ), CX) is infinite:

q(1/2, 1/4, 1/8) =∞

Together, these bounds show that comparison based active learning provides not only an exponential
improvement in query complexity over any passive PAC-learner, but also an infinite improvement
over any active ARPU-learner using only labels. Further, Theorem 2 provides the first algorithm
for learning noisy non-homogeneous linear separators in two dimensions which is time, sample,
and query efficient in the sense of Section 1.2.1, since the inference dimension of (R2, H2) is 5
(Kane et al., 2017). If the instance space has bounded bit-complexity or minimal-ratio, the result
also implies an efficient learner for higher dimensional non-homogeneous linear separators.

Bounded bit-complexity and minimal-ratio, however, are assumptions that may not hold on
real-world data. Instead, we will take a path inspired by the recent explosion of work in data
science (Chapelle et al., 2009) that focuses on weakly restricting the distribution over data to beat

3. Computational efficiency holds for λ−1 = Õ(log1/5(1/ε)), query efficiency for λ−1 = polylog(1/ε).
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lower bounds based off of improbable adversarial examples. While inference dimension itself is not
applicable in this scenario, we will employ its average case variant, average inference dimension
(Definition 13). In particular, we provide a computationally efficient algorithm for learning under
Massart noise under the assumption that the hypothesis class and distribution have super-exponential
average inference dimension.

Theorem 4 (Average Inference Dimension =⇒ ARPU-Learning under Massart Noise) Con-
sider any hypothesis class (X,H), X ⊆ Rd, and corresponding class of distributionsA(X,H),a,f(d).
Then for small enough δr, (X,H) is ARPU-learnable under model (M(λ),A(X,H),a,f(d)) in time

poly
(
f(d), 1

δr
, 1
ε , log( 1

δu
)
)Õ( 1

λ5

)
, uses only poly

(
f(d), 1

λ , log(1
ε ), log( 1

δr
), log( 1

δu
))
)

unlabeled
samples, and has a query complexity of

q(ε, δr, δu) = Õ

(
f(d)1/a

λ10
log2+1/a 1

ε
log2 1

δr
log

1

δu

)
.

To see the applicability of Theorem 4, we note that Hopkins et al. (2019) proved that a wide range
of distributions lie in A(Rd,Hd),1,d log(d). In particular, following Hopkins et al. (2019), we say two
distributions D, D′ over Rd are affinely equivalent if there is an invertible affine map f : Rd →
Rd such that D(x) = D′(f(x)). Hopkins et al. (2019) proved that distributions which may be
affinely transformed to a distribution with anti-concentration and concentration (i.e. to a distribution
in ACCd,c1,c2) lie in A(Rd,Hd),1,d log(d), a condition satisfied by s-concave distributions4. Then, as a
direct corollary to Theorem 4, we have

Corollary 5 For small enough δr, the hypothesis class (Rd, Hd) is ARPU-learnable under model

(M(λ),SCd) in time poly
(
d, 1

δr
, 1
ε , log( 1

δu
)
)Õ( 1

λ5

)
, uses poly

(
d, 1

λ , log(1
ε ), log( 1

δr
), log( 1

δu
))
)

unlabeled samples, and has a query complexity of:

q(ε, δr, δu) = Õ
(
d

1

λ10
log3 1

ε
log2 1

δr
log

1

δu

)
.

Previous work showed a similar result for homogeneous linear separators over nearly isotropic log-
concave distributions (Awasthi et al., 2016) and isotropic s-concave distributions (Balcan and Zhang,
2017) with label queries. However, their techniques cannot be extended to the non-homogeneous
case due to a poly(1

ε ) lower bound on the query complexity of active label-only learners (Hopkins
et al., 2019). Thus it is only by leveraging the additional power of comparison queries that we
extend efficient learning to non-homogeneous linear separators over s-concave distributions.

1.2.3. GENERALIZED TSYBAKOV LOW NOISE CONDITION

While Massart noise is a clean theoretical model, its assumption that the noise is bounded away
from 1/2 is not necessarily reminiscent of the real world. This motivates us to study a variant of the
Tsybakov Low Noise Condition, a model in which noise is unbounded as data approaches the Bayes
optimal classifier. However, learning in this unbounded regime is harder, as evidenced by the poly-
nomial query lower bounds of (Hanneke and Yang, 2015; Wang and Singh, 2016; Xu et al., 2017).

4. As noted in Hopkins et al. (2019), s-concavity needs α > 16 in condition 1, but this does not affect our proofs.
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In order to ARPU-learn in this regime, we need to introduce several restrictions not present for our
Massart algorithms. First, instead of allowing any hypothesis class with finite inference dimen-
sion, we will only consider (non-homogeneous) linear separators. Second, we will either assume
some margin γ, or that the distribution satisfies certain weak concentration and anti-concentration
bounds. To begin, we consider learning hypothesis classes over any continuous distribution with
finite inference dimension and margin.

Theorem 6 (Finite Inference Dimension and Margin =⇒ ARPU-Learning under GTNC) Let
X ⊆ Rd and (X,Hd,γ) have inference dimension k with respect to comparison queries. Then for
small enough δr, (X,Hd,γ) is ARPU-learnable under model (GTNC(gL, gU , ε0), CX) with query
complexity:

q(ε, δr, δu) = Õ

 k10(
gL ◦G8 ◦ G4(γ′)

2

)14d log2

(
1

δr

)
log

(
1

ε

)
log

(
1

δu

) .

where

γ′ = min
( γ

2d
,
ε0

2

)
, Gc(x) = g−1

U

(
gL(x)

c

)
We prove in addition that while ARPU-learning may no longer be impossible using only labels when
margin is introduced, it still suffers from query inefficiency due to the curse of dimensionality.

Lemma 7 Let X ∈ Rd be the d-dimensional hypercube {0, 1}d modified to have a ball of radius
1

4
√
d

centered about each point. The query complexity of ARPU-learning (X,Hd, 1

4
√
d

) under model

(GTNC(gL, gU ,
1

4
√
d
), CX) is at least:

q(1/4, 1/8, 1/16) ≥ 2d−1

In the above example, (X,Hd, 1

4
√
d

) has inference dimension Õ(d) by a minimal-ratio argument from

Kane et al. (2017). Theorem 2 thus gives an algorithm using only poly(d) queries, demonstrating
the exponential gap in query complexity between label only and comparison based ARPU-learning
with Tsybakov noise. Due to margin causing bounded error in label queries, another way to view
this result is the statement that comparison queries with unbounded error exponenentially improve
the query complexity of ARPU-learning using only labels with bounded error.

Similar to the case of Massart noise, we may drop the restrictive assumptions of finite inference
dimension and margin by assuming weak distributional requirements. Unlike in the case of Massart,
here we deal with the requirements directly rather than assuming average inference dimension.

Theorem 8 (Concentration and Anti-Concentration =⇒ ARPU-learning under GTNC) For
small enough δr, the hypothesis class (Rd, Hd) is ARPU-learnable under model
(GTNC(gL, gU , ε0),ACCd,c1,c2) with query complexity:

q(ε, δr, δu) = Õ

 d11(
gL ◦G8 ◦

G2◦G4(ε
′)

4d
2

)14 log2

(
1

δr

)
log

(
1

δu

)
log2

(
1

ε

) ,

where ε′ = min
(

ε
4c2
, ε02

)
.
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Since isotropic s-concave distributions satisfy these conditions (Balcan and Zhang, 2017; Hopkins
et al., 2019), we get the immediate corollary for TNC noise under isotropic s-concave distributions.

Corollary 9 The hypothesis class (Rd, Hd) is ARPU-learnable under model
(TNC(m,M, κ, ε0), ISCd) with query complexity:

q(ε, δr, δu) = Õ
(

214κM42d14κ−3

m56ε′14(κ−1)
log2

(
1

δr

)
log

(
1

δu

))
.

where ε′ = min
(
ε
16 ,

ε0
2

)
.

This result similarly extends previous work on homogeneous linear separators over isotropic log-
concave distributions (Balcan and Long, 2013; Wang and Singh, 2016) to the non-homogeneous
case. In comparison to Hanneke and Yang (2015)’s distribution free algorithm for label only PAC-
learning, Corollary 9 provides an improved query complexity for 1 < κ < 15

14 , and more importantly
provides the reliability guarantees of the ARPU-learning model.

Finally, note that unlike Theorems 2, 4, and 6, Corollary 9 has polynomial rather than polylog-
arithmic dependence on ε−1. This is unavoidable, as we prove a lower bound also polynomial in
ε−1. Thus the main advantage of comparisons in this regime is their added reliability.

Lemma 10 The query complexity of actively PAC-learning (R2, H2) under model
(TNC(m,M, κ, ε0),SC2) is at least

q(ε,
1

8
) = Ω

(
1

max{ε, εκ−1}

)

where ε ≤ 1
4

(
1

16m

) 1
κ−1 .

1.3. Techniques

1.3.1. INFERENCE DIMENSION AND NOISY SORTING

Our algorithms follow a learning technique for hypothesis classes with finite inference dimension
introduced in Kane et al. (2017). Drawing and querying a subsample S, Kane et al. (2017) build a
weak learner by defining a Linear Program (LP) with constraints given by the query responsesQ(S),
and objective function defined by the input point to be labeled. If the hypothesis class (X,H) has fi-
nite inference dimension, Kane et al. (2017) show that such linear programs infer a constant fraction
of X . Unfortunately, they also depend heavily on the correctness of Q(S), making noisy oracles a
challenging problem. To retain correctness and reliability, we use extra points outside of the sample
S to help identify the true answers Q(S). This idea is not all together new. Contemporaneously
with Kane et al. (2017), Xu et al. (2017) suggested using noisy comparisons as a sub-routine in older
active learning algorithms to correct for noise in labels. However, as they point out, this technique
does not work for Kane et al. (2017)’s algorithm which requires corrected comparisons as well.

Instead, we adapt a noisy sorting algorithm from Braverman and Mossel (2009). Braverman
and Mossel (2009) study the problem of recovering the best possible ranking from an ordered set
with access to a noisy comparison oracle QC and provide a randomized algorithm that uses only
Oλ(n log(n)) comparisons for oracles satisfying Massart noise with parameter λ. Further, they
provide an important structural insight into MLE orderings: with high probability, no point in an

11
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MLE order has moved further than Oλ(log(n)) from its position in the true order. This pointwise
movement allows us to determine with high probability comparisons between points that are well-
separated throughout an MLE order. By using only such separated points to build our inference
LP, our algorithms are almost reliable – a point can only be mislabeled if some well-separated
comparison is wrong, a low probability event. For further details, see Appendix A.

1.3.2. CLUSTER DETECTION AND INFERENCE

Braverman and Mossel’s noisy sorting algorithm works well in the case of bounded error, but noise
models with unbounded error require a different approach. The particular model we examine in
this case, the Generalized Tsybakov Low Noise Condition, is a distance based error metric. This
means that as points approach each other in function value, their comparisons “look random”. We
can use this fact to detect clusters of points close in function value by testing whether comparisons
between them look like they have been drawn at random. In particular, we define a natural measure
of randomness that we call equitability:

Definition 11 (Equitability) Let S be a set with comparisons denoted by <̃ on each pair of ele-
ments. For an element x ∈ S, let v(x) denote the number of elements y ∈ S such that y<̃x. We call
S ε-equitable if

∀x ∈ S,
(

1

2
− ε
)
|S| ≤ v(x) ≤

(
1

2
+ ε

)
|S|

We prove a bi-directional equivalence between clusters and equitable sets: any cluster is equitable
with high probability, and any equitable set contains a large cluster with high probability.

If a sample has no cluster, we will prove that a modified version of noisy sorting is sufficient to
learn. On the other hand, if we detect a cluster, another approach is required. To handle this case we
prove a novel structural lemma regarding the inference power of clusters, showing that any cluster
of size Ω(d log(d)) must contain a point that can be inferred from the rest.
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Appendix A. Background

In this section, we provide a deeper look into inference dimension and noisy sorting, along with the
basic arguments in each area we will employ in our proofs.

A.1. Inference Dimension

Inference dimension is a combinatorial complexity measure introduced by Kane et al. (2017) to
characterize the query complexity in active learning when the learner is allowed to ask a more
complicated set of questions. Given a set of binary queries Q, let Q(S) denote the answers to all
such queries on the sample S. Let S ⊆ X be an unlabeled sample. For x ∈ X and h ∈ H, let

Q(S) =⇒
h

x

denote the statement that answers to binary queries from Q on the sample S determine the label of
x, when the learned concept is sign(h(x)), corresponding to an hypothesis h. We will often say
for shorthand that S “infers” x, and sometimes drop the underlying classifier h. In this case the
underlying function is assumed to be the Bayes optimal classifier. Inference dimension with respect
to some query set Q is defined as follows.

Definition 12 (Inference dimension) The inference dimension of (X,H) is the minimal number k
such that for every S ⊆ X of size k, and every h ∈ H there exists x ∈ S such that

Q(S \ {x}) =⇒
h

x.

If no such k exists then the inference dimension of (X,H) is defined as∞.

Inference dimension is a worst case measure. Since we will be dealing with varying levels of distri-
bution dependence, we will also take advantage of an average case version of inference dimension
introduced in Hopkins et al. (2019).

Definition 13 (Average Inference Dimension) We say (DX , X,H) has average inference dimen-
sion g(n), if:

∀h ∈ H, P rS∼DnX [@x ∈ S s.t. Q(S \ {x}) =⇒
h

x] ≤ g(n)

Average inference dimension is used to prove that the inference dimension of a finite sample drawn
from DX cannot be too large with high probability. This allows us to build query efficient algo-
rithms for hypothesis class with infinite inference dimension by proving that large finite samples do
not take too many queries to learn with high probability.

Our algorithms will follow the form of the learning technique for hypothesis classes with finite
inference dimension (Definition 12) introduced in Kane et al. (2017). Drawing and querying a sub-
sample S, Kane et al. build a weak learner by defining a Linear Program (LP) with constraints
given by the query responses Q(S), and objective function defined by the input point to be labeled.
Through a symmetry argument, Kane et al. (2017) are able to show that if S is large enough with
respect to the inference dimension, the coverage of this weak learner will be at least 3/4. Since we
will rely on this argument throughout our paper, we offer a brief description here.
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The expected coverage of the learner may be viewed as the probability that a randomly drawn
point from the distribution is inferred by the LP. Since our weak learner is built from some finite
sample from the same distribution, symmetry gives that this is equivalent to the probability that any
of |S| + 1 points can be inferred from the other |S|. Kane et al. then provide the following obser-
vation for |S| = n and inference dimension k which proves that setting n = 4k gives coverage at
least 3/4.

Observation 14 (Observation 3.4 (Kane et al., 2017)) Let the hypothesis class (S,H), |S| = n,
have inference dimension k for the set of binary queries Q. Then ∀h ∈ H, there exists a subset
S′ ⊂ S of size n− k + 1 such that ∀x ∈ S′:

Q(S − {x}) =⇒
h

x

Inference dimension on its own, however, is restrictive. Using only comparisons and labels, the
inference dimension of linear separators in three or more dimensions is infinite, which implies the
existence of realizable distributions with Ω(1

ε ) query complexity (Kane et al., 2017). To get around
this barrier, we will introduce weak distributional assumptions and instead employ the framework
of average inference dimension introduced in Hopkins et al. (2019). Average inference dimension
(Definition 13) allows us to build algorithms for hypothesis classes with infinite inference dimen-
sion, as long as the distribution it is over is sufficiently nice. We will take advantage of a reduction
from average to worst case inference dimension to prove such results:

Observation 15 (Observation 3.6 (Hopkins et al., 2019)) Let (D,X,H) have average inference
dimension g(n), and S ∼ Dn. Then (S,H) has inference dimension k with probability:

Pr[inference dimension of (S,H) ≤ k] ≥ 1−
(
n

k

)
g(k).

A.2. Noisy Sorting

Braverman and Mossel (2009) study the problem of recovering the best possible ranking from an
ordered set with access to a noisy comparison oracle QC . In particular, given a ground set S of size
n, Braverman and Mossel aim to find an order π that minimizes the number of discrepancies with
the measured comparisons QC(S), denoted by the order relation <̃:

arg min
π

|{xi, xj ∈ S : (π(xi) < π(xj)) ∧ (xj<̃xi)}|.

If the oracle QC flips comparisons with probability exactly p < 1/2 and the true ordering has a
uniform prior, Braverman and Mossel Braverman and Mossel (2009) note that this scoring function
has a nice probabilistic interpretation: it is a Maximum Likelihood ordering

arg max
π∈Sn

P (π|QC(S)).

Braverman and Mossel (2009) call finding such an ordering the Noisy Signal Aggregation (NSA)
problem, and provide a randomized algorithm that uses only Oλ(n log(n)) comparisons for oracles
satisfying Massart noise with parameter λ. Further, they provide an important structural insight into
MLE orderings: with high probability, no point in an MLE order has moved further thanOλ(log(n))
from its position in the true order.

16



NOISY LEARNING WITH COMPARISONS

Theorem 16 (Optimal Ranking (Braverman and Mossel, 2009)) Let S be a set of size n with
underlying order 1, . . . , n and σ an MLE order for S under comparisons given by an oracle QC
satisfying Massart noise with parameter λ. Then with probability at least 1− δ:

max
i
|σ(i)− i| ≤ O

(
log2(1/λ) log(n/δ)

λ3

)
as long as n or 1

δ is at least exponential in λ−1.

This pointwise movement allows us to determine with high probability comparisons between points
that are well-separated throughout an MLE order. By using only such separated points to build
our inference LP, our algorithms are almost reliable – a point can only be mislabeled if some well-
separated comparison is wrong, a low probability event.

While Braverman and Mossel’s algorithm is query efficient and has a strong pointwise move-
ment guarantee, its exponential time complexity in the error parameter is the main limiting fac-
tor in the computational efficiency of our algorithm for Massart noise. The existence of an effi-
cient (polynomial in error) sorting scheme that retains some sub-linear (not necessarily logarith-
mic) point-wise movement bound under Massart noise would immediately imply computationally
and query efficient algorithms for Massart noise for λ−1 poly-logarithmic in 1

ε , rather than for
λ−1 = Õ(log1/5(1/ε)) as we require. Follow up works on Braverman and Massart’s algorithm
(Gavenčiak et al., 2019; Geissmann et al., 2018; Klein et al., 2011) made progress in this direction,
providing algorithms with significantly improved time complexity, but only work for λ bounded
from below by some constant. Providing an algorithm that remains efficient while λ goes to 0 is an
open problem.

Appendix B. Massart Noise

B.1. Lower Bounds

In this section we provide two lower bounds: the first to separate comparisons from label only
ARPU learning, and the second to explain our restriction to continuous distributions. Our label
only lower bound uses the same distribution that shows an exponential gap in active PAC learning
between labels and comparisons Dasgupta (2005); Kane et al. (2017), a circle, except in the case of
ARPU learning, the gap is infinite.

Lemma 17 (Restatement of Lemma 3) The query complexity of 1/4-reliably, 1/8-usefully ARPU
learning (S1, H2) with 1/2-coverage under model (M(λ), CX) is infinite:

q(1/2, 1/4, 1/8) =∞

Proof By Yao’s minimax principle it is enough to show that the adversary may pick a distribution
over hyperplanes such that no learner can 1/4-reliably and 1/8-usefully learn with coverage 1/2.
In particular, assume that the adversary picks a uniform distribution over all tangent hyperplanes to
the circle. This may be equivalently thought of as the adversary picking a single point on the circle
to be negative, and the rest to be positive. Note that the probability that a learner which queries a
finite number of points finds the negative point is 0.

17



NOISY LEARNING WITH COMPARISONS

Let the learner fix an optimal strategy, querying whatever points they desire. With probability 1, the
learner will always query the same set of points since they receive all positive labels. The learner
is then left to label 1/2 the measure of the circle blind, since all points except a measure 0 set (the
queried points) are equally likely to be the negative point. No matter which set the learner chooses,
the probability that it mislabels a point is at least 1/2, violating the ARPU-learning requirement that
the learner must must label at least 1/2 of the points with probability at least 5/8 while making no
errors.

Note that this lower bound holds even in the noiseless case, which is strictly weaker than Massart
as the adversary may simply choose no noise.
Second, we justify why our upper bounds are only for continuous distributions, as the inference
dimension framework was initially developed for the worst case rather than distributional model.
However, with the introduction of noise, we observe that learning up to arbitrary error is no longer
possible over some distributions.

Observation 18 Let (X,H) be a hypothesis class, and D a distribution on X whose support con-
sists of a single point x. Let the corresponding noisy label and comparison oracles (QL, QC) ∈
M(λ). If there exist h, h′ ∈ H s.t. h(x) 6= h′(x), then no learner can correctly label x with
probability more than 1/2 + λ.

This lower bound holds as well across a wide range of distributions containing points with non-
zero measure. Take, as an example, a distribution which samples uniformly from the unit ball with
probability 1/2, and some disjoint point x with probability 1/2. Setting the error parameter low
enough would force the learner to correctly label x, and since the adversary can pick a classifier
such that the point cannot be inferred from comparisons, a similar lower bound holds. In order to
avoid such examples, we will restrict our consideration to continuous distributions.

B.2. Finite Inference Dimension

With the lower bound out of the way, we prove that hypothesis classes with finite inference di-
mension are efficiently ARPU-learnable under Massart noise. Recall M(λ) is the set of all oracles
which satisfy Massart noise with parameter λ, CX is the class of all continuous distributions over X
and a model is a pair (Z,DX) where Z is a set of oracles (QL, QC) and DX is a set of distributions
over X . Note that in the ARPU-Learning model (Definition 1), given a hypothesis class (X,H)
and a model (Z,DX), an adversary chooses a distribution DX from DX and the “noisy” oracles
(QL, QC) from Z. The following is our learning algorithm.
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Result: Returns an δu-useful, δr-reliable learner with coverage 1− ε for model (M(λ), CX )
Input: Noisy oracles QL, QC ∈M(λ), unknown distribution DX ∈ CX
Parameters:

• Inference dimension k

• Iteration cap T = poly(log(1/δu), log(1/ε))

• Time cap Tsort = poly(n, 1/δr)
Õ(λ−5)

• Query cap Qsort = poly(k, λ−1, log(1/δr))

• Sample cap C = poly(1/ε, log(1/δu), log(k), log(λ−1), log(log(1/δr)))

• Sample sizes n = poly(k, log(1/δr), λ
−1) and m = poly(k)

• Set of linear program constraints LP = {}

Algorithm:

1. Sample S ∼ Dn
X restricted to points un-inferred by LP , and sort S∪0 via noisy oracles QL

and QC by the algorithm of Braverman and Mossel (2009). If noisy sorting exceeds time
threshold Tsort or query threshold Qsort, abort sorting.

2. Sample S′ ∼ Dm
X restricted to points un-inferred by LP and insert into the order on S. Up-

dateLP constraints using comparisons and labels of elements in S′ separated byOλ(log(n))
from each other and from 0

3. If at any point in steps 1 or 2, C inferred samples are drawn in a row, return the current LP .
Repeat from step one until iteration cap T is reached and return LP .

Algorithm 1: Efficient ARPU-learning under Massart Noise

Before proving the lemmas necessary to show the coverage of Step 2 from Algorithm 1, we will
restate our theorem of the efficient learnability of hypothesis classes with finite inference dimension
under Massart noise.

Theorem 19 (Restatement of Theorem 2) Let the hypothesis class (X,H), X ⊆ Rd, have in-
ference dimension k with respect to comparison queries. Then, (X,H) is ARPU-learnable under

model (M(λ), CX) in time poly(d, k, 1
δr
, 1
ε , log( 1

δu
))
Õ
(

1
λ5

)
, uses only poly(k, 1

λ ,
1
ε , log( 1

δr
), log( 1

δu
)))

unlabeled samples, and has a query complexity of

q(ε, δr, δu) = Õ(k
1

λ10
log

1

ε
log2 1

δr
log

1

δu
)

for small enough δr.

See Algorithm 1. The proof of this theorem lies in the combination of Braverman and Mossel
(2009)’s approximate ordering with Kane et al. (2017)’s inference based algorithm. The idea is as
follows:
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Step 1: Draw a sample S ∼ Dn
X , and sort it into an MLE order by the algorithm of Braverman

and Mossel (2009). Draw another m points, and independently slot them into the ordering on S
near their true position (again by an algorithm from Braverman and Mossel (2009)).

Step 2: From the m points, create a clean subset of points with correct labels and comparisons
by selecting a chain of points separated by Ωλ(log(n)) in the MLE order of S to build an inference
LP. This LP correctly infers points with high probability by Braverman and Mossel (2009), and has
large coverage due to the space’s finite inference dimension (Kane et al., 2017).

Step 3: Restrict D (by rejection sampling) to points un-inferred by the LP in step 2, and repeat
steps 1 and 2 until coverage has reached 1− ε.

The main challenge of the proof then comes down to proving the correctness and coverage of Step
2. First, we need to show that points separated in S by Ωλ(log(n)) are correctly ordered. Since our
sample size n will not be exponential in 1

λ , we need to slightly modify Theorem 16 for this result.

Observation 20 (Point-wise Movement) Let S be a set with underlying order 1 . . . n. If σ is
an MLE order for S under noisy label and comparison oracles (QL, QC) ∈ M(λ), then with
probability at least 1− δ:

max
i
|σ(i)− i| ≤ O

(
log3(1/λ) log(n/δ)

λ5

)
(7)

as long as n or 1/δ is polynomial in λ−1.

Proof Braverman and Mossel define a parameter m2 during their proof as:

m2 = O
(

log(n/δ)

λ

)
.

The requirement on size of n or 1/δ of Theorem 16 then comes from the final equation of Lemma
28 (Braverman and Mossel, 2009):

m2 = Ω

(
log2(1/λ)

λ3

)
.

Increasing m2 by a factor of log(1/λ)
λ2

removes the need for exponential dependence on λ−1, but
increases the pointwise movement bound by the same factor.

Note that points in S separated by 2 max
i
|σ(i)− i| in an MLE order are thus correctly ordered with

high probability. As a result, picking a chain of points each separated by twice Equation (7) gives
an entire set of points with correct comparisons with high probability.

However, using an MLE order itself is challenging. Recall from Section 1.3 that we compute the
expected coverage of our learner by the probability that it infers an additionally drawn point. If we
use an MLE order, we cannot directly appeal to the symmetry argument of Kane et al. (2017), as
adding an additional point to S might change the MLE order we have picked. To get around this,
our learner is not built off of S itself, but S′, a set of additional points which we place into the order
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on S independently of each other. This independence allows us to directly appeal to the argument
of Kane et al. (2017).

Our method of finding a clean subset, however, is currently for S – we need to modify the method
to find a subset of S′ with correct labels and comparisons. We do this in two steps. First, we adopt
a method from Braverman and Mossel (2009) for inserting points into a previously sorted set such
that they cannot be too far away from their true position. This implies that if points in S′ are sepa-
rated by enough points in S in the underlying order on S ∪ S′, we will be able to correctly compare
them with high probability. Second, we show that because the underlying true order on S ∪ S′ is
uniform, there exists a chain of such points in S′ with constant probability from which we can build
our cleaned set.

Lemma 21 (Slotting (Braverman and Mossel, 2009)) Let S of size n and S′ of sizem be ordered
sets with noisy label and comparison oracles (QL, QC) ∈M(λ). Divide an MLE order σ of S into
b blocks Bi of size at least:

|Bi| ≥ Ω

(
log3(1/λ) log(nmδ )

λ5

)
.

There exists an algorithm placing points in S′ into σ such that, with probability at least 1− δ, any
pair of points separated by 4 blocks are in the correct order.

Proof This lemma is a slight modification of part of (Braverman and Mossel, 2009, Theorem 30).
Assume some x ∈ S′ lies in the i-th block Bi in the true order. By Observation 20, with probability
at least 1 − δ, x must be bigger than all elements before Bi−1 and smaller than all elements past
Bi+1. To find which side of a block B x lies in, we measure whether x is greater than, or less
than a majority of elements in the block. A standard Chernoff bound gives that the probability the
majority is incorrect is at most e−λ

2|B| ≤ δ
mn , and union bounding over blocks and S′ gives that all

elements will be slotted up to an error of two blocks on either side. Note further that this slotting
procedure may be performed by binary search, and thus uses at most O(log(b)m|B|) queries in
total. Finally, since elements must be slotted within two blocks of their true position, any pair of
elements separated by at least 4 full blocks must be in the correct order.

Since we can safely compare points separated by 4 blocks in the MLE order, and points slot within
2 blocks of their true position, points separated in the underlying order by 8 blocks can be correctly
compared with high probability. It is left to show that there is a large enough chain of points in S′

separated by 8 blocks in S.

Lemma 22 Let S of size n and S′ of size 32k+16 be ordered sets with noisy label and comparison
oracles (QL, QC) ∈M(λ). Let the size of S satisfy:

n ≥ Ω

(
k log3(1/λ) log(nkδ )

λ5

)
.

Then with constant probability we can find a subset of 4k points from S′ which can be labeled and
compared correctly with probability 1− δ.
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Proof Consider the true order π on the set S ∪ S′. Let 0 be the special point whose comparison to
another point x is given by x’s label QL(x). Lemma 21 provides an algorithm for determining the
labels and comparisons of points in S′ separated by more than

c = Ω

(
log3(1/λ) log(nkδ )

λ5

)

elements in S and not within c of 0. Consider dividing the order π restricted to S (denoted by πS) up
into b = 32k+ 16 equal blocks Bi of size at least c. Since any two points in S′ which are separated
by more than a block in πS will be correctly ordered by Lemma 21 with probability 1−δ and only 2
non-contiguous blocks can be adjacent to 0, it is sufficient to find a chain of non-contiguous blocks
of size 4k + 2 that all contain a point in S′. To simplify this, consider the set of every other block
(Bodd = {B1, B3, ...}), and let Y be the random variable denoting the number of blocks in Bodd
without a point in S′. To upper bound the value of Y , we bound its mean and variance and apply
Chebyshev’s inequality. Note that since S and S′ are drawn i.i.d., the ordering on S ∪S′ is uniform
at random. We can write Y as the sum of indicator variables Y1 + Y3 + ..., where Yi denotes the
event that Bi does not have a point in S′. Since the ordering is uniform, the probability that a point
in S′ lies in any given block is 1

b . Using this, we can bound the expectation of Y by:

E[Y ] =
∑

E[Yi]

=
b

2

(
1− 1

b

)b
≤ b

2e
,

and similarly the variance of Y by:

V ar(Y ) =
∑
i,j
i 6=j

E[YiYj ] +
∑

E[Y 2
i ]−

∑
E[Yi]

2

=
b

2

(
b

2
− 1

)(
1− 2

b

)b
+
b

2

(
1− 1

b

)b
−

(
b

2

(
1− 1

b

)b)2

≤ b2

4e2
− b2

32
≤ b2

64
.

Here the second to last inequality follows from the assumption that b ≥ 48 (or equivalently that
k ≥ 1). Noting that the number of blocks with a point from S′ is b

2 − Y , Chebyshev’s inequality
then gives that a constant fraction of the blocks must have a point from S′ with constant probability:

Pr

[
Y >

3b

8

]
< 4/9

=⇒ Pr

[
b

2
− Y > 4k + 2

]
> 5/9
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Lemma 22 allows us to build a clean set of points with correct comparisons and labels. By feeding
this set of points into an inference LP, we create a weak learner that infers a constant fraction of the
space with constant probability.

Lemma 23 (Weak Learner) Let (X,H) have inference dimension k, and let the label and com-
parison oracles QL, QC ∈ M(λ). Then there exists a constant c1 > 0 such that for any 1/2 >
δr > 0, there exists a weak learner that 3δr-reliably learns (X,H), has coverage c1 with probability
≥ c1, makes at most qwl(δr) queries, and runs in time poly(k, 1

δr
)Õ(λ−5), where

qwl(δr) = Õ
(
k

λ10
log2 1

δr

)
Proof Let S ∼ Dn

X be a sample from our distribution, where

n = Θ

(
k

λ5
log3 1

λ
log

k

λδr

)
Following Lemmas 21 and 22, we we will slot a second, i.i.d. drawn set S′ of points into our MLE
order where |S′| = 32k + 16. Then with constant probability we can find a subset of 4k points in
S′ which may be correctly ordered and labeled with probability at least 1− δr.

We are now in position to apply the symmetry argument from Kane et al. (2017) to show that
this subset gives constant coverage with constant probability. The expected coverage is given by the
probability that an additional, independently drawn point x ∼ DX is inferred:

E[Coverage] = Pr
(x1,...,x|S′|+1)∼D|S

′|+1
X

[{x1, . . . , x|S′|} =⇒ x|S′|+1].

Since S′ and x are drawn randomly, the right hand side is equivalent to the probability that any point
in the sample can be inferred from the rest:

E[Coverage] = E
T∼D|S

′|+1
X

[
1

|T |
#{xi ∈ T : T \ {xi} =⇒ xi}

]
.

Recall that with probability at least 5
9 we can find and, with probability 1 − δr, correctly order and

label a subset of 4k points from S′. By Observation 14, at least 3k of these can be inferred from the
rest, bounding the right hand side by:

E
T∼D|S

′|+1
X

[
1

|T |
#{xi ∈ T : T \ {xi} =⇒ xi}

]
≥ (1− δr)

5

9

3k

32k + 16
>

1

60
,

where we have assumed δr < 1/2. Then for any constant c1 > 0 we have:

1

60
< E[Coverage] ≤ Pr[Coverage ≥ c1] + Pr[Coverage < c1]c1,

which for small enough c1 gives:

Pr[Coverage ≥ c1] >
1
60 − c1

1− c1
> c1

Accounting for the fact that we have assumed our comparisons and labels are correct, our weak
learner has coverage > c1 with probability at least (1− δr)2c1 > c1 for δr < 1

2 .
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Query Complexity: Now, we compute the number of queries made by the weak learner. Let
c3 = m2/ log n where m2 is the point-wise movement as defined in Observation 20. Using the

same notation as Braverman and Mossel (2009), we let (setting α = O
(

log 1
δr

logn

)
, A = λ−2 in

constants of Braverman and Mossel (2009))

c3 = O

(
λ−5 log

1

λ

(
1 +

log 1
δr

log(n)

))
; c5 = O

(
c3 +

(
log

1

δr

) 1
3

)
; c6 = O

(
log 1

δr

log n

)
; c8 = 4(Ac6+6c3)

Using (Braverman and Mossel, 2009, Lemmas 31 and 32), the number of queries made in the sorting
n points (which includes dynamic programming step on n points and slotting n points) and slotting
additional |S′| = 32k + 16 points are

qwl(δr) = O(c5n log n)︸ ︷︷ ︸
dynamic programming step

+O(c8 log n+ 3Ac6 log n)︸ ︷︷ ︸
slotting a single point

·(n+ 32k + 16)

= Õ
(
k

λ10
log

1

δr
log

k

λδr

)
.

with probability 1 − δr. Since we do not want our number of queries to be probabilistic, if our
learner does not complete after qwl(δr) queries, we stop and output all 0’s. This increases our error
probability by δr.

Time Complexity: Using an algorithm from (Braverman and Mossel, 2009, Theorem 30), we can
sort n points with noisy comparisons in time nc4 where c4 = O(λ−5 log 1

λ(1+(log 1
δr

)( 1
logn))) with

probability 1− δr. Since slotting a point in worst case takes O(n) time, we can slot O(k) points in
time O(kn). This gives us the total time taken by the weak learner as

Twl(δr) = O(nc4) +O(kn); where c4 = O

(
λ−5 log

1

λ

(
1 +

log 1
δr

log(n)

))

Therefore, the time complexity of the algorithm is poly(k, 1
δr

)
Õ
(

1
λ5

)
. Once again taking the strategy

of outputting all 0’s if the algorithm does not complete in time Twl(δr), we lose another error factor
of δr, making the algorithm all together 3δr-reliable.

With our weak learner in hand, all that is left for the proof of Theorem 19 is Step 3: stringing
together copies of the weak learner through rejection sampling.
Proof [Proof of Theorem 19] Let δwr and δwu be reliability and usefullness parameters for our weak
learner. Recall that Lemma 23 gives a 3δwr -reliable weak learner with coverage c1 with probability
c1. Applying this weak learner O(log(1/δwu )) then amplifies this probability to at least 1− δwu .

Restricting to the distribution of un-inferred points via rejection sampling, we repeat the above
process until our coverage reaches 1 − ε. Assume each repetition is successful, then after t steps
our coverage is:

Coverage ≥ 1− ct1.
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Setting t toO(log(1/ε)) is then sufficient to set the right hand side to 1−ε. However, each repetition
in this process degrades the overall probability of usefulness. In order to get an overall guarantee of
δu, we must adjust our initial δwu to:

δwu = O

(
δu

log
(

1
ε

)) .
Similarly, since we apply the weak learner O(log(1/ε) log(1/δwu )) times, we adjust our δwr to

δwr = O

 δr

log
(

1
ε

)
log
(

1
δwu

)
 .

Query Complexity: In total, we run our weak learner at most O
(

log
(

1
ε

)
log
(

1
δwu

))
times, giv-

ing a query complexity of:

q(ε, δr, δu) = O
(

log

(
1

ε

)
log

(
1

δwu

))
· qwl(δwr )

= Õ
(

log
1

ε
log

1

δu

)
· Õ
(
k

λ10
log

1

δwr
log

k

λδwr

)
= Õ

(
k

λ10
log

1

ε
log

1

δu
log2 1

δr

)
.

Sample Complexity: At each step of our algorithm, we restrict to the distribution of un-inferred
points through rejection sampling. By itself, this poses a problem: what if we have inferred much
of the space early and our algorithm continually rejects points? To combat this, we note that we
can estimate the measure of remaining un-inferred points by how many samples we have to draw
before finding one. Formally, if at any step we draw 2 log(1/δu)/ε inferred points in a row, then
by a Chernoff bound the coverage of our learner is 1 − ε with probability at least 1 − δu. Let
n be the sample size as defined in Lemma 23. Since our algorithm only queries a total of N =

O
(
n log

(
1
ε

)
log

(
log( 1

ε)
δu

))
points, the same result holds by a union bound if our algorithm stops

after rejecting 2 log(N/δu)/ε points in a row. This means that we can bound the total number of
samples drawn by

n(ε, δr, δu) = O

(
N log(N/δu)

ε

)
.

Time Complexity: The time complexity of our algorithm has two main components: the com-
plexity of finding an MLE order in the weak learner, and the complexity of rejection sampling. We

already computed the time complexity of the weak learner in Lemma 23 as Twl(δr) = poly(k, log( 1
δr

))
Õ
(

1
λ5

)
.

Since, we run our weak learner at most O
(

log
(

1
ε

)
log
(

1
δwu

))
times, the time complexity for find-

ing MLE is poly(k, log 1
ε , log 1

δu
, log( 1

δr
))
Õ
(

1
λ5

)
.

It remains to compute the time complexity of rejection sampling. Recall that the we sample at
most n(ε, δr, δu) points total in our process. For each point, we run an LP in d + 1 variables with
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constraints detailed by our previous queries that round. Since the queries our weak learner uses in
each round only involve Õ(n) points, the time complexity of sampling is at most:

Tsamp(ε, δr, δu) = n(ε, δr, δu) · poly

(
d, k,

1

λ
, log

1

ε
, log

1

δr
, log

1

δu

)
= poly

(
d, k,

1

λ
,
1

ε
, log

1

δr
, log

1

δu

)
.

Since the total time complexity is order of the sum of sampling and sorting, we get an algorithm

that runs in time poly(d, k, 1
δr
, 1
ε , log( 1

δu
))
Õ
(

1
λ5

)
.

B.3. Average Inference Dimension

While inference dimension allows us to work over arbitrary continuous distributions, as a com-
plexity parameter it is rather restricting, barring for instance the learning of linear separators in
dimensions above two. To generalize to a broader range of classifiers, we will use the framework
of average inference dimension introduced in Hopkins et al. (2019). In particular, we show that
any hypothesis class and distribution with super-exponential average inference dimension may be
efficiently learned under Massart noise. As a result, we provide the first computationally and query
efficient learner for non-homogeneous linear separators over s-concave distributions with Massart
noise.

Theorem 24 (Restatement of Theorem 4) Consider any hypothesis class (X,H) and correspond-
ing class of distributionsA(X,H),a,f(d). Then, (X,H) is ARPU-learnable under model (M(λ),A(X,H),a,f(d))

in time poly(f(d), 1
δu
, 1
ε , log( 1

δr
))
Õ
(

1
λ5

)
, uses only poly(f(d), 1

λ , log(1
ε ), log( 1

δr
), log( 1

δu
))) unla-

beled samples, and has a query complexity of

q(ε, δr, δu) = Õ

(
f(d)1/a

λ10
log2+1/a 1

ε
log2 1

δr
log

1

δu

)

for small enough δr.

Average inference dimension gives a high probability bound on the inference dimension of a finite
sample. However, shifting our strategy to directly work with a finite samples introduces a new
problem: since our algorithm corrects noise via extra helper points, we may not be able to learn the
entire sample. Our first step will be to show that for the type of inference-based learners we employ
(i.e. learners which operate in rounds, randomly selecting points to query from the remaining set of
uninferred points) learning most of a finite sample in few queries with high probability is sufficient
to learn the entire distribution.

Lemma 25 Let (X,H) be a hypothesis class, and DX a distribution over X . Let A be an active,
inference based learner taking in finite samples S ∼ Dn

X with the property that for sufficiently large
n, A learns a (1− ε1) fraction of S with probability 1− δ, while querying at most an ε2 fraction of
the points. The expected coverage of A over the entirety of X is at least:

E[Coverage of A] ≥ 1− δ − ε1 − ε2
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Proof To find the expected coverage of A over the entire distribution DX based on samples S of
size n, we look at the probability that an additional randomly drawn point is inferred:

E
S∼Dn

[Coverage of A] = Prx1,...,xn+1∼Dn+1
X

[A(x1, . . . xn) =⇒ xn+1]

We can bound the right hand term by looking at A applied to samples S′ of size n+ 1. In particular,
we argue that the RHS is at least as large as the probability that a point in S′ is learned but not queried
by A. To see this, we compare the application of A to S = (x1, . . . , xn) versus its application to
S′ = (x1, . . . , xn+1).

Recall thatA operates in rounds. Given the sample S′,A queries some set of subsets S′1, . . . , S
′
t ⊂

S′, where Si+1 is chosen at random from the points not inferred by S1, . . . , Si (this is equivalent
to the rejection sampling we do previously). Thus for any fixed run of A, xn+1 has three disjoint
possibilities: it can lie in some Si, be inferred by some Si, or be a remaining un-inferred point after
A aborts. We argue that the probability A(S) infers xn+1 must be at least as large as the probability
that some Si infers it in this process. This follows from the fact that in this case, xn+1 does not lie in
any of the subsets Si by definition. Since each Si is chosen uniformly at random from the remaining
un-inferred points, the probability that A(S) will choose Si is at least as large as the probability that
A(S′) will choose Si (since A(S′) could choose xn+1 as well). However, since xn+1 is just some
arbitrary random point, by our initial assumptions the probability that it is inferred by some Si must
be at least 1− δ − ε1 − ε2 by a union bound, which completes the proof.

Proof [Proof of Theorem 24] We will argue that the learner presented in Theorem 19 satisfies the
properties of Lemma 25 for a large enough sample size. To prove this, we first examine learning
a specific sample with small inference dimension. The coverage over all samples will then follow
from the fact that almost all samples have small inference dimension due by Observation 15 (Hop-
kins et al., 2019) and our assumption on average inference dimension.

Because we are considering a fixed sample S, the weak learner draws uniformly without replace-
ment from S (denoted x ∼ S) rather than from the distribution itself. All required symmetry
arguments still hold in this regime, as the order that points are pulled is still uniformly random. The
expected coverage of our learner over S is thus the same as for X in Lemma 23 adjusted for the fact
that we sample without replacement:

E[Coverage] ≥ n−Oλ(log(n))

|S|︸ ︷︷ ︸
Coverage on x1, . . . , xn

+

(
1− n

|S|

)
Pr

x1,...,xn+1∼S

[
{x1, . . . , xn} =⇒ xn+1

]
︸ ︷︷ ︸

Coverage on rest of sample

and hence

E[Coverage] ≥ Pr
x1,...,xn+1∼S

[
{x1, . . . , xn} =⇒ xn+1

]
− Oλ(log(n))

|S|

Assume for now that |S| is large enough that the subtracted term is negligible. To analyze the
remaining coverage probability, assume that n satisfies the constraints of Lemma 23 with k =
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Θ̃(f(d)1/a log1/a(|S|)), and further that S has inference dimension k. Then by the arguments in
Lemma 23, this probability over the sample itself and noisy oracles is constant. Further, as long
as S is sufficiently large, we can get coverage 1 − ε with probability 1 − ε by applying the same
argument restricted to the subset of un-inferred pointsO

(
log2

(
1
ε

))
times. This argument only fails

when there are no longer n remaining points for our weak learner to use, but as long as |S| = ω(nε ),
this will not affect our coverage. Since Lemma 25 also only allows the learner to query a ε fraction
of points, we set S to:

|S| = Θ

(
n log2

(
1
ε

)
ε

)

n = Θ̃

(
f(d)1/a

λ5
log1/a(|S|) log

(
1

δr

))
,

which also validates our assumption that Oλ(log(n))
|S| is negligible (we lose less than ε over all itera-

tions). To apply Lemma 25, it is sufficient to have a learner A such that:

Pr
S

[Coverage of A > 1− 2ε] > 1− 2ε.

Because |S| > Ω
(

1
ε

)
, S has inference dimension k with probability at least 1 − ε by Observation

15 (Hopkins et al., 2019). Combining this with the fact that our algorithm has a 1− ε probability of
achieving 1− 2ε coverage when the inference dimension is k proves this claim.

Finally, by Lemma 25, our learner has expected coverage is ≥ 1 − 5ε over the entire space. To
get the desired coverage probability, we run the algorithm over O(log(1/δu)) samples, setting δr to
δr/ log(1/δu) to amend the degradation of correctness over repetition. Then by the same argument
as Theorem 19, our query complexity is:

q(ε, δr, δu) = Õ
(
f(d)1/a log1/a |S| 1

λ10
log2 1

ε
log2 1

δr
log

1

δu

)
.

Sample and time complexity follow similarly to Theorem 19.

Appendix C. Generalized Tsybakov Noise Condition

The Massart noise model does well to capture situations with adversarial bounded noise, but even in
a realistic non-adversarial scenario, error may not be bounded away from 1/2. One might think, for
instance, that label noise should be bounded as a function of the distance to the Bayes optimal classi-
fier, reaching purely random labels on the decision boundary itself. Likewise, comparisons between
arbitrarily close points should be difficult, with error approaching 1/2 as well. This motivates us
to study the Tsybakov Low Noise condition, a popular instantiation of distance-based noise. How-
ever, learning in this unbounded regime is harder, as evidenced by polynomial query lower bounds
(Wang and Singh, 2016; Xu et al., 2017), and the lack of computationally efficient algorithms for
the model. In order to ARPU-learn in this regime, we need to introduce more stringent restrictions
than for Massart noise. First, instead of allowing any set system with finite inference dimension, we

28



NOISY LEARNING WITH COMPARISONS

will only consider non-homogeneous linear separators. Second, we will either assume some margin
γ, or that the distribution satisfies certain weak concentration and anti-concentration bounds, a prop-
erty which implies our earlier assumption for Massart noise of super-exponential average inference
dimension.

C.1. Finite Inference Dimension and Margin

In this section, we will consider ARPU-learning hyperplanes over any continuous distribution with
finite inference dimension and margin. Note that in the GTNC model, introducing margin bounds
the error on label queries away from 1/2. Thus our results should informally be viewed as saying the
following: comparison queries with unbounded error exponentially improve query complexity over
label queries with bounded error in the ARPU-learning model. Indeed, although we have picked a
specific model of bounded label error in this case, trading for another model such as Massart noise
on labels causes no significant change to our upper or lower bound.

As in the case of Massart noise, we will first show the gap in query complexity between label
only and comparison ARPU-learning. Our previous method showed an infinite gap between the
two regimes, but the assumption of a non-zero margin requires a different argument. In this case,
we will show a family of examples in which comparisons provide an exponential improvement.

Lemma 26 (Restatement of Lemma 7) LetX ∈ Rd be the d-dimensional hypercube {0, 1}d mod-
ified to have a ball of radius 1

4
√
d

centered about each point. The query complexity of ARPU-learning

(X,Hd, 1

4
√
d

) under model (GTNC(gL, gU ,
1

4
√
d
), CX) is at least:

q(1/4, 1/8, 1/16) ≥ 2d−1

Proof For simplicity, the adversary will pick the uniform distribution from CX , and the noiseless
case from (GTNC(gL, gU ,

1
4
√
d
), CX). Further, by Yao’s minimax principle it is sufficient to show

there is a distribution over hyperplanes in Hd, 1

4
√
d

for which no learner can achieve at least 3/4

coverage with perfect correctness with greater than 3/4 probability. Let the adversary pick the
uniform distribution over the 2d hyperplanes which truncate corners of the hypercube, e.g.

d∑
i=1

xi = 1/2.

Note that these hyperplanes have margin 1
4
√
d

, so they lie in Hd, 1

4
√
d

, and that each one may be seen

as selecting a single ball to be negative. Given any set strategy, the learner can only query points in
2d−1 out of 2d balls. The probability that one of the balls the learner queries is the negative ball is at
most 1/2. If the learner does not locate the negative ball, to have coverage 3/4 it must label half of
the remaining space with no additional queries. However, any set strategy from the learner in this
case will have an incorrect label with probability at least 1/2 since the negative ball is uniformly
distributed over the remaining balls. Thus any learner that has 3/4 coverage with probability more
than 3/4 must incorrectly label some point, violating the conditions of ARPU-learning.

By an argument based on minimal-ratio (margin normalized by the maximum function value) from
Kane et al. (2017), the inference dimension of the above hypothesis class is Õ(d). We will prove
that this implies a comparison based algorithm that only makes poly(d) queries.
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Result: Returns an δu-useful, δr-reliable learner with coverage 1 − ε for model
(GTNC(gL, gU , ε0), CX )

Input: Noisy oracles QL, QC ∈ GTNC(gL, gU , ε0), unknown distribution DX ∈ CX
Parameters:

• Inference dimension k, input dimension d, and margin γ

• Sample sizes n = poly(k, d, 1
ε0
, log( 1

δr
), 1
γ ), mc = d log(d+ 1)n, and ms = poly(k)

• Iteration cap T = poly(log 1
δr
, log 1

δu
, log 1

ε , k,
1
γ )

• Sample cap C = poly(k, d, 1
γ , log 1

δu
, log 1

δr
, 1
ε0
, 1
ε )

• Equitability constants εT and γ′ (Equation (12))

• Set of linear program constraints LP = {}

Algorithm:

1. Sample S ∼ Dn
X restricted to points un-inferred by LP .

2. Test S for noise by checking for εT -equitable subsets of size 2c+m.

3. If S measures as noisy i.e. at least one εT -equitable subset Seq is found:

(a) Sample S′ ∼ Dmc
X restricted to points un-inferred by LP .

(b) Update LP constraints using comparisons and labels of all x ∈ S′ for which Seq ∪ x
is gL(γ′)

2 -equitable.

Else S measures as having only a small amount of noise i.e. no εT -equitable subset was
found:

(a) Sort S ∪ 0 into the MLE order via noisy oracles QL and QC .

(b) Sample S′ ∼ Dms
X restricted to points un-inferred by LP and insert into the order of

S.

(c) Update LP constraints using comparisons and labels of points in S′ separated by
Ω̃(n3/4) from each other and from 0.

4. If at any point C inferred samples are drawn in a row, return the current LP . Repeat from
step one until iteration cap T is reached and return LP .

Algorithm 2: ARPU-learning with Finite Inference dimension and Margin under Generalized
Tsybakov Low Noise Condition

Theorem 27 (Restatement of Theorem 6) Let X ⊆ Rd and (X,Hd,γ) have inference dimen-
sion k with respect to comparison queries. Then, (X,Hd,γ) is ARPU-learnable under model
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(GTNC(gL, gU , ε0), CX) with query complexity:

q(ε, δr, δu) = Õ

 k10(
gL ◦G8 ◦ G4(γ′)

2

)14d log2

(
1

δr

)
log

(
1

ε

)
log

(
1

δu

) .

Where

γ′ = min
( γ

2d
,
ε0

2

)
, Gc(x) = g−1

U

(
gL(x)

c

)
See Algorithm 2. Unlike the Massart case, we can no longer directly rely on the sorting algorithm
of Braverman and Mossel (2009), as the point-wise movement guarantees rely on bounded noise.
Instead, we rely on the fact that we can, with high probability, check the level of noise of a drawn
sample. If the sample is not too noisy, we can modify the bounds of Braverman and Mossel (2009)
and apply the same technique. On the other hand, if the sample is very noisy, we use this to infer
structural information about the sample and thus learn some fraction of the instance space. Infor-
mally, our algorithm follows a similar three step process to the Massart case:

Step 1: Draw a sample S ∼ Dn
X , and test S for noise.

Step 2a (high noise): If S measures as noisy, we identity a subset S′ ⊂ S of points which are
close with respect to the underlying hypothesis. Using additional randomly drawn points, we create
an inference LP based on the structure of S′ to learn a fraction of the instance space.

Step 2b (low noise): If S measures as having only a small amount of noise, sort S into an MLE
order, and apply the same learning strategy as for Massart.

Step 3: Restrict D (by rejection sampling) to points un-inferred by the LP in step 2a/b, and repeat
steps 1 and 2a/b until coverage has reached 1− ε.

At the core of this technique is the ability to detect subsets with high levels of noise, and to cer-
tify that they are highly structured. With this in mind, we show that if comparisons on a subset of
S look sufficiently random, then almost all points in this subset are clustered together in function
value. Formally, we define a cluster as:

Definition 28 (Cluster) Let (X,H) be a set system. Given h ∈ H and a sample S ⊆ X , S is an
ε-cluster with respect to h if

∀x, x′ ∈ S : |h(x)− h(x′)| ≤ ε.
We will often omit “with respect to h” when h is the function underlying the Bayes optimal classifier.

We will detect clusters by a measure of randomness we term equitibility, the condition that every
element is bigger than about half of the other elements.

Definition 29 (Equitability) Let S be a set with comparisons denoted by <̃ on each pair of ele-
ments. For an element x ∈ S, let v(x) denote the number of elements y ∈ S such that y<̃x. We call
S ε-equitable if

∀x ∈ S,
(

1

2
− ε
)
|S| ≤ v(x) ≤

(
1

2
+ ε

)
|S|
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Because v(x) counts the number of elements less than x, it is useful to introduce a new probability
parameter:

ηC(x1, x2) = Pr[x1<̃x2]

i.e. the probability that x1 measures less than x2. Note that ηC(x1, x2) is either βC(x1, x2) or
1− βC(x1, x2).

In order to distinguish between steps 2a and 2b, we show that if a cluster exists, then with high
probability there is a large equitable subset, and that vice versa, a large equitable subset implies the
existence of a large cluster with high probability. Consider testing a sample S′ of size 2c + m for
equitability. Call the order on S′ induced by the underlying classifier the “true order.” To start, we
examine a single such sample S′ and show that with high probability:

1. If S′ is a cluster, then it is equitable

2. If the middle m elements of S′ with respect to the true order is not a cluster, then S′ is not
equitable.

Lemma 30 Consider a set S′ of size 2c + m, where C denotes the middle m elements of S′ with
respect to the true order. Then for ε ≤ gL(ε0), S′ satisfies the following properties:

1. If S′ is a g−1
U (ε/2)-cluster, then S′ is ε-equitable with probability 1− eO(−ε2|S′|).

2. If C is not a 2g−1
L (ε)-cluster, then S′ is not (ε/4)-equitable with probability at least 1 −

eO(−ε2c|S′|).

Proof Proof of (1). For simplicity, let n = 2c+m− 1 and assume that x0, . . . , xn is the true order
of S′. Recall that v(xj) = v(j) is the number of elements that measure as less than xj and that

ηC(xi, xj) = Pr[xi<̃xj ]

is the probability that xi measures less than xj . We can view v(j) as a random variable given by

v(j) =

n∑
i 6=j

1xi<̃xj
=

n∑
i 6=j

Bern(ηC(xi, xj)).

Thus v(j) is a Poisson binomial distribution with parameters ηC(xi, xj). Let h? be the bayes optimal
classifier. By assumption, we have for all pairs that |h?(xi) − h?(xj)| ≤ g−1

U (ε/2), and that ε ≤
gL(ε0). Combining these gives

g−1
U (ε/2) ≤ g−1

U (gL(ε0)/2) ≤ ε0

=⇒ ∀i, j : |h?(xi)− h?(xj)| ≤ ε0

Thus we are in position to apply the upper bound from the GTNC condition (Equation (3)), which
gives for all pairs:

1

2
≤ βC(xi, xj) ≤

1

2
+ ε/2,

1

2
− ε/2 ≤ 1− βC(xi, xj) ≤

1

2
.
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Since, ηC(xi, xj) is either βC(xi, xj) and 1− βC(xi, xj), we have

1

2
− ε/2 ≤ ηC(xi, xj) ≤

1

2
+ ε/2

This allows us to upper and lower bound the distribution by the binomial distributions Xu =
Bin(n, 1

2 + ε/2), and Xl = Bin(n, 1
2 − ε/2). In particular, for all valid ηC and values j, we

have
Xl ≤ v(j) ≤ Xu

Where random variables X,X ′ satisfy X ≤ X ′ if ∀i,

Pr[X ≥ i] ≤ Pr[X ′ ≥ i]

This means that concentration lower bounds on Xl and upper bounds on Xu transfer to v(j). Now
we apply Chernoff bounds to Xl and Xu:

Pr

[
v(j) > n

(
1

2
+ ε

)]
≤ Pr

[
Xu > n

(
1

2
+ ε

)]
≤ e−n

(ε/2)2

1+3ε/2

Pr

[
v(j) < n

(
1

2
− ε
)]
≤ Pr

[
Xl < n

(
1

2
− ε
)]
≤ e−n

(ε/2)2

1−ε

Union bounding over all values of j, the probability that there exists a coordinate outside these
ranges is bounded by:

Pr
[
∃j :

∣∣∣v(j)− n

2

∣∣∣ ≥ nε] ≤ 2(n+ 1)e
−n (ε/2)2

1+3ε/2

Thus our test satisfies the first condition.

Proof of (2). Assume the middle m = [i, j] points of S are not a 2g−1
L (ε)-cluster. Since our

set is ordered, this implies h?(j) − h?(i) > 2g−1
L (ε), and further that the middle point must be

at least g−1
L (ε) far from either i, or j. Since our argument will be symmetric, assume this to be i

without loss of generality. Our strategy will be to bound the random variable

V (c) =
c∑

k=1

v(k)

=
c∑

k=1

∑
l 6=k

1xl<̃xk
,

and use an averaging argument to show that there exists a value 1 ≤ x ≤ c s.t. v(x) < |S′|(1/2 −
ε/4)

We can decompose V (c) into

V (c) =
c∑

k=1

∑
l<c
l 6=k

1xl<̃xk
+

c∑
k=1

∑
l>c

1xl<̃xk
,
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where the first term is always
(
c
2

)
. Because each point left of i is at least g−1

L (ε) ≤ ε0 far away from
the right half of |S′|, we can bound the second term as for any v,

Pr

[(
c∑

k=1

∑
l>c

1xl<̃xk

)
> v

]
≥ Pr

 c∑
k=1

Bin(1/2,m/2)︸ ︷︷ ︸
Points up to |S|/2

+

c∑
k=1

Bin(1/2− ε, c+m/2)︸ ︷︷ ︸
Points after |S|/2

> v


= Pr

[
Bin

(
1/2,

cm

2

)
+ Bin

(
1

2
− ε, c2 +

cm

2

)
> v

]

A Chernoff bound gives

Pr
[
V (c) > c|S′|(1/2− ε/4)

]
≤ e−

ε2c(c+m)
24 .

Then an averaging argument shows that

Pr
[
∃x s.t v(x) < |S′|(1/2− ε/4)

]
≥ Pr

[
V (c) < c|S′|(1/2− ε/4)

]
> 1− e−

ε2c(c+m)
24

We are not quite done with our cluster detection algorithm, as our goal will be to test for clusters
sublinear in the size of our main sample S. Lemma 30 is enough to show that if such a cluster exists
some subset will measure as equitable, but we need to prove that any equitable subset of S contains
a cluster. For large enough c, this is true with high probability.

Corollary 31 Let S be a sample of size n, and ε ≤ gL(ε0)
4 . For all subsets S′ ⊆ S of size

|S′| = (2c+m) satisfying:

c ≥ 48 log(n) + log(1/δ)

ε2

the following guarantees hold:

1. If S contains a g−1
U (ε/2)-cluster of size 2c + m, then at least one S′ is ε-equitable with

probability at least 1− δ.

2. For all ε-equitable S′, C, the middle m elements of S′ with respect to the true order, is a
2g−1
L (4ε)-cluster with probability at least 1− δ.

Proof Both statements follow from applying Lemma 30 to subsets S′ ⊂ S of size 2c+m.

Proof of (1). By assumption, S contains at least one subset S′ of size 2c + m which is a clus-
ter. Applying statement (1) of Lemma 30 to S′ gives that S′ is equitable with probability at least
1− δ.

Proof of (2). We prove statement (2) by the contrapositive: with probability 1 − δ, all subsets
S′ such that C is not a 2g−1

L (4ε)-cluster are not equitable. This follows from statement (2) of
Lemma 30 and union bounding over all

(
n
|S′|
)

possible subsets.

We can now explain step 1 of our algorithm, cluster detection, in a bit more detail.
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Step 1: Draw a sample S ∼ Dn
X , and set c and m corresponding to the desired cluster sizes

for testing. For every subset S′ ⊂ S of size 2c + m, check whether S′ is ε-equitable. By the
contrapositive of Corollary 31 (1), if no such S′ is ε-equitable, then no g−1

U (ε/2)-cluster exists in
S. Similarly, by Corollary 31 (2) if S′ is ε-equitable, then it contains a 2g−1

L (4ε)-clusterC of sizem.

With step 1 out of the way, we will prove that steps 2a and 2b provide reliable learners with good
coverage as long as the cluster assumption from step 1 holds. Since our focus has been on clusters,
we will begin by showing how to build the learner for step 2a. Recall that to apply the symmetry
argument of Kane et al. (2017) for Massart noise, we had to slot a set of extra points. We will adhere
to a similar strategy for step 2a in which we slot an extra set of points and find a cluster there rather
than in S itself. To find this cluster, our first goal will be to prove that additionally drawn points
measure as equitable with S′ if and only if they are in the same cluster as C.

Lemma 32 Let S be a ε-equitable set of size m+ 2c satisfying the conditions of Corollary 31. Let
C be the subset of S which is the 2g−1

L (4ε)-cluster specified in Corollary 31, and let S′ be a set of
independently drawn points. Further, choose ε,m to satisfy:

ε ≤



gL

g−1
U

(
gL( ε02 )

4

)
2


4


m ≥ 9 log(2|S′|/δ)

λ2
1

.

The following guarantees hold ∀x ∈ S′ with probability at least 1− δ.

1. If C ∪ {x} is a 2g−1
L (4ε)-cluster, then S ∪ {x} is λ1 = 2gU (2g−1

L (4ε))-equitable.

2. If S ∪ {x} is λ1-equitable, then C ∪ {x} is a g−1
L (2λ1) + 2g−1

L (4ε)-cluster.

Proof Proof of (1). Assume that C ∪ {x} is a 2g−1
L (4ε)-cluster. Note that since our assumption on

ε implies ε ≤ gL(ε0/2)
4 , we have:

2g−1
L (4ε) ≤ ε0.

Then GTNC allows us to bound ηC(x, y) for all y ∈ C:

|ηC(x, y)− 1/2| ≤ gU (2g−1
L (4ε)) = λ1/2.

To show that v(x) ≤ |S|(1/2 + λ1), we assume the worst case – that all elements of S are smaller
than x. Since C ∪ {x} is a cluster, we can bound v(x) by the following Binomial:

v(x) ≤ Bin(1/2 + λ1/2,m+ c) + c.

The probability that v(x) > |S|(1/2 + λ1) is then given by a Chernoff bound as

Pr[v(x) > |S|(1/2 + λ1)] ≤ e−
λ21m

9 .

35



NOISY LEARNING WITH COMPARISONS

We can bound the probability that v(x) < |S|(1/2 − λ1) by rehashing the same argument for
|S| − v(x), the number of elements x is less than. Thus the probability that C ∪ {x} is not λ1-
equitable is

Pr[C ∪ {x} is not λ1-equitable] ≤ 2e−
λ21m

9 .

Union bounding over S′ completes the proof.

Proof of (2). Similar to the proof of statement (2) of Corollary 31, we prove the contrapositive:
that all C ∪ {x} which are not g−1

L (2λ1) + 2g−1
L (4ε)-clusters are not λ1-equitable with high prob-

ability. Assume C ∪ {x} is not a g−1
L (2λ1) + 2g−1

L (4ε)-cluster. Since C is a 2g−1
L (4ε)-cluster,

∀y ∈ C we have
|h?(x)− h?(y)| > g−1

L (2λ1)

Since we have assumed g−1
L (2λ1) < ε0, GTNC gives ∀y ∈ C:

|ηC(x, y)− 1/2| > 2λ1.

Since C ∪ {x} is not a cluster, it must either be the case that ∀y ∈ C, x > y, or ∀y ∈ C, x < y.
Assume the latter without loss of generality. We can bound v(x) by a Binomial:

v(x) ≤ Bin(1/2− 2λ1,m+ c) + c.

A Chernoff bound then gives:

Pr[v(x) > |S|(1/2− λ1)] ≤ e−3λ21m.

Union bounding over S′ proves the contrapositive, completing the proof.

Knowing that additionally drawn points which measure as equitable with S come from a cluster, we
can feed them into an inference LP based on this assumption. However, to infer remaining points in
the instance space, the LP must also know the label of the cluster we feed in. Since we are assuming
our points have some margin γ, we can solve for the label of the cluster with high probability by
majority vote.

Lemma 33 (Cluster Labeling) Assume that a set S, |S| ≥ 2 log(1/δ)
gL(γ)2

, consists entirely of one label
and has margin γ with respect to the decision boundary. The probability that this true label differs
from the majority label measured by the oracle QL is at most δ.

Proof This follows from applying a Chernoff bound to the fact that each point has at least a 1/2 +
gL(γ) probability of being correct.

Finally, we need to show that the LP based upon the structure and label of clustered points has good
coverage. We do this by an argument inspired by inference dimension: that given a γ/d-cluster C
of large enough size, there exists a point in x ∈ C such that the knowledge that C −{x} is a cluster
is sufficient to infer the label of x. This will allow us to use the symmetry argument of Kane et al.
(2017) to show that step 2a has good coverage.
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Lemma 34 Let X be a set, and Hd,γ the set of hyperplanes with margin γ with respect to X.
Consider a query set Q containing a cluster query along with the standard label queries. Given a
subset S, a cluster-query returns 1 if S is a γ/d-cluster, and 0 otherwise. Then for any γ/d-cluster
C ⊆ X of size at least 24d log(d+ 1):

∀h ∈ Hd,γ , ∃x ∈ C s.t. Q(C \ {x}) =⇒
h

x

Proof A γ/d-clusterC = {x1, . . . , xn} infers a point y if there is a solution to the following system
of linear equations: ∑

ai = 1∑
aixi = y (8)∑
|ai| ≤ d+ 1 (9)

Informally, because C is a γ/d-cluster and all points have margin γ, it infers the labels not just of
points in its convex hull, but in a d times expansion of the hull. We will show that a large enough
cluster C must contain some point y s.t. C \ {y} infers y. Our strategy relies on the fact that if
C does not infer y, adding y to C expands the volume of its convex hull by a multiplicative factor.
Since we can upper bound the volume of the convex hull of C by the volume of the largest simplex
times the size of a decomposition of C into simplices (a triangulation), this multiplicative volume
expansion contradicts the upper bound for large enough C.

In order to prove that adding a point multiplicatively expands the volume of the convex hull, we
will need to prove the existence of a certain affine linear function. In particular, if C and y are such
that this system of equations has no solution, then there exists an affine function L such that:

L(y)− L(xmax) >
d

2
(L(xmax)− L(xmin)) ≥ 0, (10)

where xmax is the argmax
i

L(xi), and xmin is the corresponding argmin.

Proof of (10): Since we have assumed the system has no solution, there must be a positive real
linear combination of the inequalities and real linear combination of the equalities that sum to the
contradiction 1 ≤ 0 by LP-duality. Since ai, xi, and y do not appear in this contradiction, the linear
combinations of Equation (8) and (9) must cancel. To see this explicitly, let the linear combination
of 8 be denoted T , then the equality becomes:∑

aiT (xi) = T (y).

Note that Equation (9) in a truly linear form is a set of 2d equations
∑
aiei for e ∈ {−1, 1}d. The

positive real linear combination of these terms is then of the form∑
aibi,

for some b ∈ Rd. Since these two sums must cancel, we get that the bi are in fact−T (xi). Summing
the two equations then gives:∑

aiT (xi) +
∑

aibi = 0 ≤ T (y) + (d+ 1) max
i
|T (xi)|.
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Figure 1: The above image illustrates the construction of sets Cmin and Cmax which sandwich the
cluster C.

Now define L = −T , which remains an affine linear function. This sign only affects the left-hand
term, and thus we get:

L(y) ≥ (d+ 1) max
i
|L(xi)|

=⇒ L(y)− L(xmax) ≥ (d+ 1) max
i
|L(xi)| − L(xmax)

=⇒ L(y)− L(xmax) ≥ dmax
i
|L(xi)|.

Noting that L(xmax)− L(xmin) is at most 2 max
i
|L(xi)| proves the claim.

Using the function L we can show how C expands in volume when adding an un-inferred point:

Vol ConvHull(C, y)

Vol ConvHull(C)
≥ e2

e2 − 1
. (11)

Proof of (11): Our strategy will be to sandwich the convex hull of C in the difference of two cones
defined by L with apex y. For arbitrary points x ∈ C, let h(x, y) be the line passing through
x and y, N(xmin) be the plane given by L(x) = L(xmin) and N(xmax) be the plane given by
L(x) = L(xmax). The cone which does not contain C is then defined by its apex y and base Cmax:

Cmax = {x′ : x′ ∈ h(x, y) ∩N(xmax) for x ∈ ConvHull(C)}

Likewise, we define the cone that contains both Cone(Cmax, y) and ConvHull(C) as the cone with
apex y and base Cmin:

Cmin = {x′ : x′ ∈ h(x, y) ∩N(xmin) for x ∈ ConvHull(C)}.

We refer to these cones respectively as Cone(Cmax, y) and Cone(Cmin, y). Note thatCmax is similar
to Cmin and that Equation (10) bounds the ratio in volume of these cones:

Vol Cone(Cmin, y)

Vol Cone(Cmax, y)
=

(
L(y)− L(xmin)

L(y)− L(xmax)

)d
=

(
1 +

L(xmax)− L(xmin)

L(y)− L(xmax)

)d
≤
(

1 +
2

d

)d
≤ e2
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Further, since C is sandwiched between the two cones we have ConvHull(C) ⊂ Cone(Cmin, y)−
Cone(C2, y), and can bound the ratio in volume between the Convex Hull of C and the smaller
cone:

Vol ConvHull(C) ≤ Vol Cone(Cmin, y)−Vol Cone(Cmax, y)

Vol ConvHull(C)

Vol Cone(Cmax, y)
≤ Vol Cone(Cmin, y)

Vol Cone(Cmax, y)
− 1

≤ e2 − 1

Finally, because the Convex Hull of C ∪ {y} contains both Cone(Cmax, y) and ConvHull(C), this
allows us to lower bound the expansion factor of including y into C:

Vol ConvHull(C, y)

Vol ConvHull(C)
≥ Vol Cone(Cmax, y) + Vol ConvHull(C)

Vol ConvHull(C)

=
Vol Cone(Cmax, y)

Vol ConvHull(C)
+ 1

≥ 1

e2 − 1
+ 1

≥ e2

e2 − 1

Using Equation (11), we can build our contradiction on the volume of the convex hull for large
enough C. For analysis, we denote the size of C by n. To start, we note a simple upper bound on
the volume of the convex hull of any n point set C ∈ Rd:

Vol ConvHull(C) ≤ Vmax
(
n

d

)
,

where Vmax is the volume of the largest simplex with vertices in C. This bound follows from (a
simplification of) Rotschild and Straus (1985), who provide tight bounds on the maximum triangu-
lation size of an arbitrary set of n points in d dimensions. While certainly not optimal, it is sufficient
for our purposes.

Since there exists some h s.t. no point in C can be inferred from the rest, every point added to
C after the largest simplex multiplies the volume by e2

e2−1
. This gives a lower bound on the volume

of ConvHull(C) of:

Vol ConvHull(C) ≥ Vmax
(

e

e− 1

)n−d−1

Together, these bounds give the equation:(
e2

e2 − 1

)n−d−1

≤
(
n

d

)
Setting n > 24d log(d+ 1) gives a contradiction.

With Lemmas 32, 33, and 34 in hand, we can now give a more detailed explanation of step 2a:
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Step 2a (high noise): It is assumed by step 1 that we have detected an ε-equitable subset S′. Draw
an additional set of points {x1, . . . , xm}, and for each point test whether S′ ∪ {xi} is λ1-equitable.
By Lemma 32, the points which measure as equitable with S′ make up a cluster. Using Lemma 33
to label these points, build an LP based on the labels and cluster structure. Applying Lemma 34 and
the symmetry argument of Kane et al. (2017) shows that this LP has good coverage.

It is left to show that step 2b has good coverage. Step 2b will follow a similar strategy to the
Massart case, using points well-separated in an MLE ordering to build our LP. However, since we
are still in the regime of unbounded error, we will need to exploit the fact that our sample has no
large clusters to show that this LP infers correctly with high probability. Notice that a sample with
no clusters consists mostly of pairs of points whose comparisons are bounded in error. With this in
mind, we modify the pointwise movement bounds of Braverman and Mossel (2009) to differentiate
between pairs of points with bounded and unbounded comparison error.

Definition 35 Let S be a set with a noisy comparison oracle QC . We call a comparison between
points x, y ∈ S λ-far if the probability that QC returns the correct comparison is at least 1/2 + λ.
Otherwise we call the comparison λ-close.

To prove a point-wise movement bound, we will follow exactly the strategy of Braverman and
Mossel (2009). First, we prove that it is unlikely that an ordering which disagrees on many far
comparisons from the true order is an MLE ordering. Second, we use this to upper bound the total
number of wrong far comparisons in any MLE order with high probability. Finally, we prove that
as long as no large cluster exists, a single point cannot move too far without contradicting the upper
bound on total far errors.

Lemma 36 Let σ be a permutation which differs from the true order on σc λ-close comparisons,
and σf λ-far comparisons. The probability that σ is an MLE order is

Pr[σ is MLE] ≤ e
−

λ2σ2f
2σf+σc

Proof To be an MLE order, σ must beat the true order on half or more of the comparisons on which
they differ. We can bound this probability by the Poisson Binomial:

Pr

[
Bin(1/2, σc) +Bin(1/2 + λ, σf ) ≤

σc + σf
2

]
.

A Chernoff bound then gives the desired result.

Using this upper bound, we show that any order which disagrees with the true ordering on more
than Ω̃(n3/2) comparisons is not an MLE ordering with high probability.

Lemma 37 (Total Far Movement) The probability that an MLE order disagrees with the identity
on c1n

3/2 λ-far comparisons, where

c1 =

√
log(1/δ) + n log(n)

λ2n
,

is ≤ δ
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Proof For a given permutation σ, assume σf > c1n
3/2. By Lemma 36, the probability that σf is

an MLE order is at most:

Pr[σ is an MLE] ≤ e
− c21n

3λ2

2σf+σc ≤ e−c21nλ2

To get the probability that there exists such a σ that is an MLE order, we union bound over all
permutations, giving:

Pr[∃σ : σf > cn3/2 ∧ σ is an MLE order] ≤ 2n log(n)e−c
2
1nλ

2 ≤ δ

Finally, we show a bound on point-wise movement by proving that any point which moves more
than Ω̃(n3/4) from its true position creates Ω̃(n3/2) total far errors.

Lemma 38 (Point-wise Far Movement) Given a sample S of size n and λ ≤ gL(ε0), assume that
the sample does not have a g−1

L (λ)-cluster of size m. Let l = (2c1)1/2n3/4. Then with probability
at least 1− 2δ, no point moves by further than c2m2 in an MLE order, where

c2 = 5/λ,m2 = max

(
m, l,

20 log(n2/δ)

λ

)
Proof Assume without loss of generality that the true order on S is the identity 1, . . . , n. Denote by
Aij the event that i maps to σ(i) = j in an MLE order, |i− j| > c2m2, and at most l elements from
outside the range [i− l−m, j+ l+m] map into [i, j]. Note that if more than l of such elements map
into [i, j] then the order must differ on at least l

2

2 λ-far comparisons from the identity. This follows
from the fact that each such element must shift m + l places towards [i, j], but has at maximum m
λ-close comparisons in that direction, and that each comparison is counted at most twice.

For i to be in slot j in an MLE order, it must beat the identity on more than half of elements in
between. Since we have assumed all but l of the elements between i and j in the order are from
[i− l−m, j + l +m], then this range must contain at least c2m2/2− l− 1 incorrect comparisons
with i. This further implies that at least c2m2/2− 2l−m− 1 comparisons with i must be incorrect
in the range [i, j + l + m]. By our assumption on cluster size, all but m of these comparisons are
λ-far, so we can bound the probability of Aij by the Poisson Binomial:

Pr[Bin(1/2,m) +Bin(1/2− λ, c2m2 + l) > c2m2/2− 2l −m− 1

Combining our assumptions on m2 with a Chernoff bound then gives:

Pr[Aij ] ≤ e−
λm2
20 ≤ δ

n2
.

Union bounding over pairs i, j then gives that if any point moves by more than c2m2 in an MLE
ordering, the total number of wrong λ-far comparisons are more than c1n

3/2 with probability 1− δ.
By Lemma 37, the probability that this occurs is ≤ δ, giving the desired result.

With a point-wise movement bound in hand, step 2b essentially follows the same strategy as Lemma 23
with a different set of parameters.
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Step 2b (low noise): Draw an additional sample of m points, and use the labels and comparisons
of all pairs of points separated by Ω̃(n3/4) in S to build an inference LP. This LP correctly infers
points with high probability by Lemma 38, and has large coverage due to the space’s finite inference
dimension.

All that remains is step 3, which repeats steps 1 and 2 until reaching the desired coverage. Ty-
ing all of these together, we present the proof of Theorem 27: learning margin γ, finite inference
dimension non-homogeneous linear separators with GTNC noise.
Proof (Proof of Theorem 27)
Let S be the subsample described in step 1 of size n, and c and m the parameters defining the size
of subsets we check for εT -equitability. Further, in the case that some subset tests as equitable, let
S′ be the additionally drawn points. To begin, we set εT such that if we measure an equitable subset
Seq ⊂ S, points x ∈ S′ s.t. Seq ∪ {x} is 2gU (2g−1

L (4εT ))-equitable make up a γ/d-cluster (see
Lemma 32):

εT :=


gL

g−1
U

(
gL(γ′)

4

)
2


4

 , γ′ = min
( γ

2d
,
ε0

2

)
(12)

Note that this also satisfies the requirement on εT from Lemma 32. To satisfy Lemmas 31, 32, and
33, we set c, m, and |S′| to:

c =
48 log(n) + log(1/δr)

ε2
T

,m = c
1/2
1 n3/4, |S′| = d log(d+ 1)n, c1 =

√
log(n/δr)

gL(g−1
U (εT /2)

Note that c1 is a simplified (and somewhat larger) version of the parameter from Lemma 37 where
λ has been set to (gL(g−1

U (εT /2)). We must further set parameters c2 and m2 to satisfy Lemma 38:

c2 =
5

gL(g−1
U (εT /2))

,m2 = O(m)

Finally, we must select the sample size n itself. To employ the same slotting strategy as Theorem
19, we need Ω(k) blocks of size c2m2. This gives the requirement on n:

n = Ω (kc2m2) = Ω

(
kc

1/2
1 n3/4

gL(g−1
U (εT /2))

)

=⇒ n ≥ Ω

(
k4 log(n/δr)

gL(g−1
U (εT /2))6

)
To satisfy this condition, it is enough let n be:

n = θ

k4 log
(

k
gL(g−1

U (εT /2))δr

)
gL(g−1

U (εT /2))6
+ log4/3(d)

 ,
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where the additional factor in d ensures thatm andm2 satisfy the constraints of Lemmas 32 and 38.

We will now structure our analysis as in the 3 step informal explanation.

Step 1: Draw the sample S ∼ Dn
X , where in later iterations D is restricted to un-inferred points

by rejection sampling. Check S for εT -equitable subsets of size 2c+m.

Step 2a (high noise): Assume that at least one subset, Seq, is equitable with true cluster C. Draw
an additional set S′ and test for each x ∈ S′ whether Seq ∪ x is gL(γ′)

2 -equitable. With probability
1 − O(δr), we can identify by Lemma 32 and correctly label by Lemma 33 at least 96d log(d +

1) + 2 log(1/δr)
gL(γ)2

points of S′ which are in a γ/d cluster. We build our learner based off of this cluster.
Recall that the expected coverage of the learner is given by the probability that an additional point
is inferred. To compute this, we first note that the probability an additional point lands inside the
cluster is at least Ω(m/n). Assuming this occurs, Lemma 34 and the symmetry argument of Kane
et al. (2017) give the point a 3/4’s probability of being inferred. Together with our high probability
assumptions, this gives an expected coverage of Ω(m/n) for small enough δr. Thus, the probability
that the coverage of our weak learner is Ω(m/n) is at least Ω(m/n) by the Markov inequality.

Step 2b (low noise): Assume instead that no subset was εT -equitable. By statement 1 of Corollary
31, this implies that no g−1

U (εT /2)-cluster of size 2c+m exists in S. Sort S into an MLE order. By
Lemma 38, no point in S has moved by further than c2m2 from its true position with probability at
least 1 − δr. S is of the appropriate size to apply the argument from Lemma 22, so slotting O(k)
extra points gives constant coverage with constant probability.

Step 3: Steps 1 and 2 build a weak learner which we must string together to get coverage 1 − ε
mirroring Theorem 19. Our worst case per-step coverage is Ω(m/n) with probability Ω(m/n).
After repeating the learner t times, the coverage becomes:

Pr [Coverage > Ω(m/n)] ≥ (1− Ω(m/n))t.

Denoting the reliability and usefullness parameters again as δwr and δwu , setting t = Õ
(
n log(1/δwu )

m

)
is then sufficient to give this coverage with probability at least 1− δwu .

Restricting to the distribution of un-inferred points via rejection sampling, repeating the above
O
(
n log(1/ε)

m

)
times will have coverage 1−εwith probability 1−O

(
n log(1/ε)

m δwu

)
, and correctness

1−O
(
n2 log(1/ε) log(1/δwu )

m2 δwr

)
. Thus setting δwr and δwu of our weak learner to:

δwu → O
(

mδu
n log(1/ε)

)

δwr → O

 δr

α log
(

1
δ′u

)


α =
n2 log(1/ε)

m2
,

gives the desired coverage and error by union bounding over the number of applications.
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Query Complexity: Now we compute the Query complexity of our algorithm. Because we check
equitability for every subset, at each iteration our algorithm must make O(n2) comparisons. This
is dominated by the slotting complexity, which we upper bound as Õ(dn2) for simplicity. The
worst-case number of iterations for our algorithm is α log(α/δu), giving a total query complexity
of:

q(ε, δr, δu) = Õ

(
n5/2

c1
d log(1/ε) log(1/δu)

)
For sample complexity, we follow the same argument of Theorem 19, ending our algorithm if we
reject too many samples in a row. Letting N = O

(
d log(d)nα log

(
α
δu

))
, the sample complexity

is then:

O
(
N log(N/δu)

ε

)
Our time complexity, however, diverges from the Massart case due to our need to test all subsets for
equitability. In particular, we check all

(
n

2c+m

)
subsets, which is exponential in inference dimension

and noise parameters, and quasi-polynomial in the error parameter δr. Further, with unbounded
error we cannot employ the sorting algorithm from Braverman and Mossel (2009), making sorting
an exponentially expensive step as well.

As a direct corollary, we show that this gives us a query efficient5 algorithm for the special case
of TNC.

Corollary 39 Let the hypothesis class (X,Hd,γ) have inference dimension k. Then (X,Hd,γ) is
ARPU-learnable under model (TNC(m,M, κ, ε0),CX ) with query complexity:

q(ε, δr, δu) = Õ
(
k10M28214κ

m42γ′14(κ−1)
d log2

(
1

δr

)
log

(
1

ε

)
log

(
1

δu

))
.

As an example of an explicit concept class, consider the query complexity of half-spaces with fixed
minimal-ratio (the ratio between the closest and furthest points from the decision boundary), a case
studied in Kane et al. (2017).

Example 1 Let X ⊆ Rd be an instance space, and Hd,γ,η the class of hyperplanes with mar-
gin γ and minimal ratio η with respect to X . Then (X,Hd,γ,η) is ARPU-learnable under model
(TNC(m,M, κ, ε0), CX) with query complexity:

q(ε, δr, δu) = poly

(
d,

1

ε0
,

1

γ
, log

(
1

η

)
, log

(
1

δr

)
, log

(
1

δu

)
, log

(
1

ε

))
C.2. GTNC with Weak Distributional Conditions

Our algorithm for learning with GTNC noise introduced an additional restrictive condition on the
set system: margin γ. We will show that this assumption and the assumption of finite inference
dimension may be replaced with weak concentration and anti-concentration conditions on the dis-
tribution. In this case, however, it is difficult to show a gap between label only and comparison

5. query efficiency for γ−1 = polylog(1/ε)
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ARPU-learning for two reasons. The first is that learning in this regime in simply harder–it is the
first case we show where comparisons do not provide an exponential improvement in the active
PAC setting over its passive counterpart. The second is that in the membership query setting, label
queries in the TNC model can give comparison like information, making it difficult to apply our
lower bounding techniques. We will begin by proving this first statement by showing a lower bound
polynomial in ε−1 for active PAC learning with labels and comparisons.

Lemma 40 Let s = min
(
1, g−1

L (1/8)
)
, and c1 = max

a∈[2ε,s]
(8gL(4ε), 2(gL(a) − gL(a − 2ε))). The

query complexity of actively PAC-learning (R2, H2) under model (GTNC(gL, gU , ε0),SC2) is at
least

q(ε, 1/8) = Ω

(
1

c1

)
for ε ≤ g−1

L (1/16)
4 .

Proof The adversary begins by choosing the distribution over R2 to be uniform over the square
S = [0, s]2. We will use (a, b) to denote points in R2. Consider two parallel hyperplanes h, hε
defined as:

h: a = 0 and hε: a = 2ε.

We denote the region between the two hyperplanes by ∆ := {(a, b) ∈ S : 0 ≤ a ≤ 2ε}, and twice
the region as 2∆ := {(a, b) : 0 ≤ a ≤ 4ε}

By Yao’s minimax principle it is enough to show that the adversary may pick a distribution over
hyperplanes such that no learner can learn the labels with < ε error with probability ≥ 7/8. In
particular, the adversary considers a uniform distribution over hyperplanes h and hε. Note that any
algorithm which correctly labels more than half of the points between h and hε (i.e. at least ε mass
of S) can be seen as identifying the hyperplane h or hε. We now show how to lower bound the
number of label or comparison queries needed to identify the target hyperplane h or hε.

Given a set of n query responses Q1, . . . , Qn from the learner, we argue that the learner cannot
succeed with probability greater than:

max(P (h|Q1, . . . , Qn), P (hε|Q1, . . . , Qn)),

since it can do no better than simply picking the more likely hyperplane given the set of queries.
Taking the maximum over all possible sets of query responses then gives a lower bound on the
number of samples. In other words, to show that the learner must make at least n queries, it suffices
to show that this maximum is less than 7/8:

max
Q1,...,Qn

(P (h|Q1, . . . , Qn), P (hε|Q1, . . . , Qn)) < 7/8 (13)

Using Bayes theorem, we can rewrite these probabilities as:

P (h|Q1, . . . , Qn) =
1

1 +
∏n
i=1

P (Qi|hε,Qi−1,...,Q1)
P (Qi|h,Qi−1,...,Q1)

P (hε|Q1, . . . , Qn) =
1

1 +
∏n
i=1

P (Qi|h,Qi−1,...,Q1)
P (Qi|hε,Qi−1,...,Q1)
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Note in this case that query response Qi, which rolls together both the point or pair of points being
queried and the value which the oracle returns, is dependent on Qi−1, . . . , Q1 due to being in an
active setting–the chosen point or pair is dependent on the previous responses Qi−1, . . . , Q1. We
can now rewrite Equation (13) as:

∀Q1, . . . , Qn : 7 >

n∏
i=1

P (Qi|h,Qi−1, . . . , Q1)

P (Qi|hε, Qi−1, . . . , Q1)
> 1/7.

To analyze this, note that each term in the product is simply the ratio of probabilities that a label
query on some point x or comparison on pair of points x, y ∈ S (where x, y are determined by
Qi−1, . . . , Q1) will return Qi. Then we can bound this product from above and below by looking at
the maximum and minimum such ratio across all points and pairs in S. Recall that these probabilities
are chosen by the adversary from a range defined by the GTNC parameters. For simplicity, when
the ranges on a query for h and hε overlap, we let the adversary choose the same probability, but
otherwise always choose the lower bound gL.

To begin, we consider maximizing the ratio. In this case we only need to consider Qi as the
correct label or comparison for h, as this will always have the larger ratio. For a point (a, b) ∈ S,
the ratio for the correct label (Qi = +) for h is given by:{

1/2+gL(a)
1/2−gL(2ε−a) ≤ 1 + 8gL(2ε) (a, b) ∈ ∆

1/2+gL(a)
1/2+gL(a−2ε) ≤ 1 + 2(gL(a)− gL(a− 2ε)) (a, b) ∈ S \∆

For comparisons, we only have to consider pairs (a1, b1), (a2, b2) ∈ 2∆, since the adversary will
otherwise pick a ratio of 1. In this case, the maximum is given by the correct comparison with ratio:

1/2 + gL(|a1 − a2|)
1/2− gL(|a1 − a2|)

≤ 1 + 8gL(4ε)

Thus we can bound the product of the ratios from above by:

∀Q1, . . . , Qn :
n∏
i=1

P (Qi|h,Qi−1, . . . , Q1)

P (Qi|hε, Qi−1, . . . , Q1)
≤ max

a∈[2ε,s]
((1+8gL(4ε))n, (1+2(gL(a)−gL(a−2ε)))n)

To bound the ratio from below, we look at the probability for the incorrect label or comparison. For
labels, this is: {

1/2−gL(a)
1/2+gL(2ε−a) ≥ 1− 4gL(2ε) (a, b) ∈ ∆

1/2−gL(a)
1/2−gL(a−2ε) ≥ 1− 4(gL(a)− gL(a− 2ε)) (a, b) ∈ S \∆

Likewise, the minimum ratio for comparisons is:

1/2− gL(|a1 − a2|)
1/2 + gL(|a1 − a2|)

≥ 1− 4gL(4ε)

Thus we can also bound the product of the ratios from below as:

∀Q1, . . . , Qn :
n∏
i=1

P (Qi|h,Qi−1, . . . , Q1)

P (Qi|hε, Qi−1, . . . , Q1)
≥ min

a∈[2ε,s]
((1−4gL(4ε))n, (1−4(gL(a)−gL(a−2ε)))n)
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Let c1 = max
a∈[2ε,s]

(8gL(4ε), 4(gL(a)− gL(a− 2ε))), then it is sufficient to pick n such that:

(1− c1)n > 1/7 and (1 + c1)n < 7

Recalling that c1 < 1/2 due to the initial values of s and ε, setting n to:

n =
log(7)

2c1

satisfies this and in turn Equation (13), completing the proof.

Note that for notational simplicity the adversary has chosen a non-isotropic distribution, but the
bound is easily modified to hold for a distribution in ISC2. Specifying to the Tsybakov Low Noise
condition gives the following lower bound.

Corollary 41 (Restatement of Lemma 10) The query complexity of actively PAC-learning (R2, H2)
under model (TNC(m,M, κ, ε0),SC2) is at least

q(ε, 1/8) = Ω

(
1

max{ε, εκ−1}

)

where ε ≤ ( 1
16m)

1
κ−1

4 .

Proof Observe that for f(x) = mxκ−1, |∇f(x)| ≤ m(κ− 1) for all x ∈ [0, s]. By the mean value
theorem,

|f(x)− f(y)| ≤ m(κ− 1)|x− y| ∀ x, y ∈ [0, s].

Specifying to the TNC model from GTNC, we have gL(x) = f(x), and thus that gL(x) − gL(x −
2ε) = f(x)− f(x− 2ε) ≤ 2m(κ− 1)ε for x ∈ [2ε, s], and 8gL(4ε) = Θ(εκ−1). Plugging this into
Lemma 40 then gives the desired bound.

Note that this bound is tight with respect to ε for κ > 2, and not far off for 1 < κ < 2, as
Hanneke and Yang (2015) provide a label only active PAC-learning algorithm with Õd(1

ε ) queries

and Õd(
(

1
ε

)2−2/κ
) queries respectively. However, while comparison queries alone may not enough

to exponentially improve the query complexity over passive PAC-learning (which is also polynomial
in ε−1 (Massart et al., 2006)), we will show that they are sufficient for ARPU-learning.

Theorem 42 (Restatement of Theorem 8) The hypothesis class (Rd, Hd) is ARPU-learnable un-
der model (GTNC(gL, gU , ε0),ACCd,c1,c2) with query complexity:

q(ε, δr, δu) = Õ

 d11(
gL ◦G8 ◦

G2◦G4(ε
′)

4d
2

)14 log2

(
1

δr

)
log

(
1

δu

)
log2

(
1

ε

)
for small enough δr, where

ε′ = min

(
ε

4c2
,
ε0

2

)
, Gc(x) = g−1

U

(
gL(x)

c

)
.
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The margin condition is necessary for Lemmas 33 and 34–we cannot reliably label points or in-
fer from clusters lying close to the decision boundary. If we were only interested in keeping our
guarantee on coverage, it would be enough to set a fake margin γ such that anti-concentration gives
that the set of points with such a margin has O(ε) probability mass. However, we also require that
our algorithm is reliable, and thus with high probability cannot err on points close to the decision
boundary. This suggests the following strategy: if a cluster is found in step 1, before using it for
inference, test whether it is too close to the decision boundary. Because the error on our labels is
proportional to their distance from the decision boundary, we can build a test similar to Lemma 30
to detect this by measuring the relative sizes of the subsets with different labels.

Lemma 43 (Margin Detection) Let C be a γ/d-cluster with respect to the hyperplane f of size at
least 16 log(4/δ)

gU (2γ)2
, and

γ <
g−1
U

(
gL(ε0)

4

)
2

.

Further, let LDif(C) denote the difference in size between the sets {x ∈ C : QL(x) = 1} and
{x ∈ C : QL(x) = 0}. With probability at least 1− δ:

1. If ∃x ∈ C with f(x) < γ, then |LDif(C)| < (1/2 + 2gU (2γ))|C|

2. If ∀x ∈ C, f(x) > g−1
L (4gU (2γ)), then |LDif(C)| ≥ (1/2 + 2gU (2γ))|C|

Proof Assume without loss of generality that the true label of the majority of points in C is 1.

Proof of (1): If there exists a point x ∈ C with f(x) < γ, then the entire entire cluster lies within
margin γ + γ/d < 2γ. By assumption 2γ < ε0, so the probability that a point measures as 1 is at
most 1/2 + gU (2γ) using Equation (1). The probability that more than (1/2 + 2gU (2γ))|C| points
label as 1 is then given by a Chernoff bound:

Pr[LDif(C) ≥ (1/2 + 2gU (2γ))|C| − 1] ≤ e−
gU (2γ)2|C|

16 ≤ δ/4

Since we have assumed the majority label is 1, the probability that more than (1/2 + 2gU (2γ))|C|
label as 0 is upper bounded by this as well.

Proof of (2): Assume ∀x ∈ C we have f(x) < g−1
L (4gU (2γ)). Since g−1

L (4gU (2γ)) < ε0 by
assumption, the probability that any point measures as 1 is at least 1/2 + 4gU (2γ) using Equation
(1). The probability that less than (1/2 + 2gU (2γ))|C| points label as 1 is then given by a Chernoff
bound:

Pr[LDif(C) ≤ (1/2 + 2gU (2γ))|C|] ≤ e−
gU (2γ)2|C|

2 ≤ δ/2

The idea is now to follow the structure of Theorems 27 and 24 with the one exception that we will
check the closeness of every cluster to the decision boundary by checking whether |LDif (C)| ≥
(1/2 + 2gU (2γ)). If a cluster measures as too close, we will avoid labeling the points, preserving
the reliability of the algorithm.
Proof (Proof of Theorem 42)
To ensure that our coverage is wide enough, we will need to set the margin parameter such that for
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any hyperplane, the probability mass of points within margin 2g−1
L (4gU (2γ)) is at most ε/2. By

our anti-concentration bound, it is enough to let γ be:

γ =
g−1
U

(
gL(ε′)

4

)
2

, ε′ = min

(
ε

4c2
,
ε0

2

)
.

Our goal is to learn the rest of the space up to ε/2 error via Theorem 27, assuming for the moment
that the modification from Lemma 43 will cause at most an overall loss of ε/2 coverage. Noting
that our space has good average inference dimension, i.e. ACCd,c1,c2 ⊂ A(X,H),1 (Hopkins et al.,
2019), we will achieve this by applying Lemma 25. Thus we need to prove that Thereom 27 can be
used to learn a (1 − ε/6) fraction of random samples S with probability at least (1 − ε/6) while
querying only (1− ε/6) points.

To begin, we must set εT to detect γ/d-clusters:

4εT = gL



g−1
U


gL

 g−1
U

(
gL(ε′)

4

)
4d


2


2


,

and set the size of S such that the algorithm in Theorem 27 only queries an ε/6 fraction of points.
Letting N be the total number of points queried as given in Theorem 27, it is then sufficient for |S|
to satisfy:

|S| = Θ

(
N

ε

)
N = Õ

(
k6

gL(g−1
U (εT /2))8

log2

(
1

δr

)
log2

(
1

ε

))
.

Note that due to the distributional conditions, the inference dimension k of our sample isO(d log(d) log(|S|))
with probability at least 1 − ε/12 (Hopkins et al., 2019). Applying the same argument from The-
orem 24 then gives that the learner of Theorem 27 satisfies the conditions of Lemma 25. Thus to
have coverage 1− ε/2 with probability 1− δu and reliability 1− δr, it is sufficient to set our δr to
O
(

δr
log(1/δu)

)
and run the algorithm from Theorem 27 O(log(1/δu)) times.

We have ignored, up until now, the modification to Theorem 27 in the cluster step. If a subset
measures as equitable, after slotting our extra points to obtain the γ/d-cluster C, we use Lemma 43

49



NOISY LEARNING WITH COMPARISONS

to test the margin of C. If the cluster has margin at least g−1
L (4gU (2γ)), the test passes with high

probability. Likewise, if the cluster has margin less than γ, the test fails with high probability. If the
test fails, we skip the iteration of the weak learner.

How does this modification affect our reliability and coverage? A point can only be mislabeled
if the test passes on a cluster with margin less than γ. Over all iterations of the learner, the probabil-
ity of this occurring is less than 1 − δr, so our reliability guarantee is maintained up to a constant.
To analyze coverage, note that Lemma 34 only infers points within the d-convex hull of the cluster
C. Thus, if C is γ/d-cluster which does not have margin g−1

L (4gU (2γ)), it infers points within at
most a 2g−1

L (4gU (2γ)) margin. Since we set γ such that this region has at most ε/2 probability
mass, we lose at most ε/2 coverage for skipping clusters with margin less than g−1

L (4gU (2γ)). We
are left then with the loss in coverage caused by our test failing on a cluster with margin at least
g−1
L (4gU (2γ)). Since this only occurs with probability 1 − δr by Lemma 43, for small enough δr

this only changes the constant on the coverage probability of our weak learner, and thus has no
asymptotic affect.

The total query complexity is then given by the complexity for running Theorem 27 O(log(1/δu))
times with the appropriate parameters:

q(ε, δr, δu) = Õ

(
d11

gL(g−1
U (εT /2))14

log2

(
1

δr

)
log

(
1

δu

)
log2

(
1

ε

))

Since s-concave distributions satisfy the requisite distributional properties (Balcan and Zhang,
2017),

Corollary 44 The hypothesis class (Rd, Hd) is ARPU-learnable under model (TNC(m,M, κ, ε0), ISCd)
with query complexity:

q(ε, δr, δu) = Õ
(

214κM42d14κ−3

m56ε′14(κ−1)
log2

(
1

δr

)
log

(
1

δu

))
ε′ = min

( ε
16
,
ε0

2

)
.

When compared with the query complexity of the label only PAC-learning algorithm of Hanneke
and Yang (2015), Corollary 44 only shows improvement for a small range of parameters 1 < κ <
15
14 . However, it is not clear to the authors that Hanneke and Yang’s algorithm can be extended to an
ARPU learner without substantially increasing the query complexity with respect to dimension.
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