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Abstract
1 We propose a notion of worst-case treatment effect (WTE) across all subpopulations of a given
size, a conservative notion of topline treatment effect. Compared to the average treatment effect
(ATE) that solely relies on the covariate distribution of collected data, WTE is robust to unantic-
ipated covariate shifts, and ensures reliable inference uniformly over underrepresented minority
groups. We develop a semiparametrically efficient estimator for the WTE, leveraging machine
learning-based estimates of heterogenous treatment effects and propensity scores. By virtue of
satisfying a key (Neyman) orthogonality property, our estimator enjoys central limit behavior—
oracle rates with true nuisance parameters—even when estimates of nuisance parameters converge
at slower-than-parameteric rates. In particular, this allows using black-box machine learning meth-
ods to construct asymptotically exact confidence intervals for the WTE. For both observational and
randomized studies, we prove that our estimator achieves the optimal asymptotic variance, by estab-
lishing a semiparametric efficiency lower bound. On real datasets, we illustrate the non-robustness
of ATE under even small amounts distributional shift, and demonstrate that WTE allows us to guard
against brittle findings that are invalidated by unanticipated covariate shifts.
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Summary of paper

Evaluation of platform designs, clinical treatments, and policy programs are universally based on
statistical inference of average treatment effects (ATE), a de facto standard practice. However,
this practice is only effective when the data-generating distribution is representative of the overall
population of interest, a requirement that is frequently violated. Data is often collected from a
particular set of geospatial locations, and may not represent the population of interest (Hand, 2006;
Blitzer et al., 2006; Daume III and Marcu, 2006; Saenko et al., 2010; Torralba and Efros, 2011).

In addition to natural covariate shifts, datasets generated from both randomized and observa-
tional studies often lack diversity, leading the ATE to ignore adverse effects on underrepresented
minority groups. Although elderly patients over the age of 65 account for 61% of new cancer cases
and 70% of all cancer deaths, they comprised only 25% of oncology trial participants between 1993
and 1996 (Shenoy and Harugeri, 2015). Similarly, out of 10, 000+ cancer clinical trials funded
by the National Cancer Institute, less than 2% focused on racial minorities, and less than 5% of
participants were non-white (Chen Jr et al., 2014).

1. Extended abstract. Full version available on arXiv with the same title.
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When there is heterogeneity in the treatment effect across subpopulations, mismatch between
the data-generating distribution and actual covariate distributions of interest leads to pronounced
failures. This is common in high-stakes applications such as medicine, where effects of medical
treatments vary over patient-specific characteristics and socioeconomic demographic variables (Imai
and Ratkovic, 2013; Gijsberts et al., 2015; Basu et al., 2017; Baum et al., 2017; Duan et al., 2019;
Carvalho et al., 2019; Dorie et al., 2019). Symptoms and contributing factors of cardiovascular dis-
ease, cancer, and diabetes change across different age and ethnic groups in significant ways (Leigh
et al., 2016), and elderly patients have worse outcomes from surgeries and are prone to adverse
effects caused by comorbidities and concomitant drugs. Even large-scale randomized trials in
medicine suffer from such biases, so that ATE estimates do not reliably evaluate treatment effects
on the overall population due to bias in selection into the study (Shadish et al., 2002). A prominent
example is the ACCORD (ACCORD Study Group, 2010) and SPRINT (SPRINT Research Group,
2015) trials that studied effects of treatments to lower blood pressure on cardiovascular disease.
Despite the large sample sizes—n = 4733 for ACCORD, and n = 9361 for SPRINT—the topline
conclusions of the two studies had different signs, and the mechanism behind the difference could
not be explained by experts even ex-post (Basu et al., 2017).

One approach is to directly estimate the conditional average treatment effect (CATE), and adap-
tively find potential subgroups that exhibit heterogeneity. Recently, various statistical procedures us-
ing machine learning (ML) models have been developed to estimate the CATE (Feller and Holmes,
2009; Su et al., 2009; Imai and Ratkovic, 2013; Athey and Imbens, 2016; Powers et al., 2017;
Shalit et al., 2017; Nie and Wager, 2017; Wager and Athey, 2018; Künzel et al., 2019). While
recent progress shows promise in fine-grained evaluation of varying treatment effects, ML mod-
els are no panacea. They are optimized for average-case performance on the collected data, and
perform poorly on minority subpopulations with different deomgraphic groupings of race, gender,
and age (Amodei et al., 2016; Grother et al., 2010; Hovy and Søgaard, 2015; Blodgett et al., 2016;
Sapiezynski et al., 2017; Tatman, 2017; Rajpurkar et al., 2018). For example, Buolamwini and
Gebru (2018) report that commercial gender classifiers’ misclassification error on darker-skinned
females can be as large as 34%, compared to around 1% error rate on lighter-skinned males. In
automatic video captioning, language identification, and academic recommender systems, similar
variations in performance have been observed over different demographic groupings of race, gender,
and age. Statistical models have been observed to lose predictive ability on particular regions of co-
variates (Meinshausen and Bühlmann, 2015), and resulting estimates of CATE are often unreliable,
detecting heterogeneity when there is none (Rigdon et al., 2018). Subgroups with heterogeneous
treatment effects identified by CATE estimates are often underpowered, and estimates of CATE
are sensitive to modeling choices, even when ATE estimates align around the true value (Carvalho
et al., 2019). Benefits of modern ML models should not come at the expense of underrepresented
subpopulations, and in particular, there is growing concern on fairness and ethics in the medical
community (Char et al., 2018; Rajkomar et al., 2018; Goodman et al., 2018; American Medical
Association, 2018).

Moreover, deploying CATE estimators can be nontrivial when personalized treatments are infea-
sible due to operational constraints. Societal norms (e.g. fairness concerns) bar economic policies
from discriminating over demographic groups, and personalization can require prohibitive amounts
of infrastructure and resources. Subgroups may exhibit strategic behavior under personalized poli-
cies, rendering previous analysis obsolete.
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Motivated by these challenges, we propose the worst-case treatment effect (WTE) across all
subpopulations of a given size, a conservative notion of topline treatment effect. Compared to the
ATE that solely relies on the covariate distribution of collected data, WTE is robust to unanticipated
covariate shifts. By ensuring treatment effects remain valid uniformly across all subgroups, WTE
guarantees reliablity over underrepresented groups; if patients with age > 70, a specific genetic
marker, and cardiovascular event history represent at least α% of the collected data, then our worst-
case treatment effect—defined over subpopulations larger than α% of collected data—guarantees
reliable inference over them.

Estimation of WTE requires estimating infinite dimensional nuisance parameters: individual’s
treatment effect (outcome model), and probability of receiving treatment (propensity score). We
propose and analyze a procedure that can leverage machine learning (ML) estimators for estimat-
ing these high-dimensional nuisance parameters. Our approach allows flexible use of black-box
prediction models, and uses them conservatively so that when it finds a nonzero treatment effect,
the treatment remains effective across all subpopulations of a specified size. Building on recent ad-
vances in semiparametric inference, we show our estimator enjoys central limit behavior even when
ML-based estimates of nuisance parameters converge at slower-than-parameteric rates. We prove
a fundamental hardness result (semiparametric efficiency lower bound) for estimating the WTE,
establishing that our estimator achieves the optimal asymptotic variance in both observational and
randomized studies.

On a number of real datasets, we demonstrate that while decisions based on the ATE can be
unreliable under natural covariate shifts, our worst-case subpopulation treatment effect provides
a robust evaluation of the causal effect of treatment. Our worst-case approach is able to identify
disadvantaged subpopulations based on a priori nontrivial demographic groupings, and guarantees
uniformly good performance against underrepresented subpopulations that are larger than α. Even
when estimates of CATE vary significantly across different number of observations, our estimators
of the WTE yield similar conclusions, a (empirical) stability property shared with estimators of
ATE. Estimates of the WTE complements usual topline estimates of ATE, and guards against brittle
findings that are invalidated by unanticipated covariate shifts.
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