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Abstract

! Modern Reinforcement Learning (RL) is commonly applied to practical problems with an enor-
mous number of states, where function approximation must be deployed to approximate either the
value function or the policy. The introduction of function approximation raises a fundamental set
of challenges involving computational and statistical efficiency, especially given the need to man-
age the exploration/exploitation tradeoff. As a result, a core RL question remains open: how can
we design provably efficient RL algorithms that incorporate function approximation? This ques-
tion persists even in a basic setting with linear dynamics and linear rewards, for which only linear
function approximation is needed.

This paper presents the first provable RL algorithm with both polynomial runtime and poly-
nomial sample complexity in this linear setting, without requiring a “simulator” or additional as-
sumptions. Concretely, we prove that an optimistic modification of Least-Squares Value Iteration
(LSVI)—a classical algorithm frequently studied in the linear setting—achieves O (v d3H3T) re-
gret, where d is the ambient dimension of feature space, H is the length of each episode, and T’
is the total number of steps. Importantly, such regret is independent of the number of states and
actions.
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1. Introduction

Reinforcement Learning (RL) is a control-theoretic problem in which an agent tries to maximize
its expected cumulative reward by interacting with an unknown environment over time (Sutton
and Barto, 2011). Modern RL commonly engages practical problems with an enormous number
of states, where function approximation must be deployed to approximate the (action-)value func-
tion—the expected cumulative reward starting from a state-action pair—or the policy—the mapping
from a state to its subsequent action. Function approximation, especially based on deep neural net-
works, lies at the heart of the recent practical successes of RL in domains such as Atari games
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(Mnih et al., 2013), Go (Silver et al., 2016), robotics (Kober and Peters, 2012), and dialogue sys-
tems (Li et al., 2016). Moreover, deep neural networks serve as essential components of generic
deep RL algorithms, including Deep Q-Network (DQN) (Mnih et al., 2013), Asynchronous Ad-
vantage Actor-Critic (A3C) (Mnih et al., 2016), and Trust Region Policy Optimization (TRPO)
(Schulman et al., 2015).

Despite the empirical successes of function approximation in RL, most existing theoretical guar-
antees apply only to rabular RL (see, e.g., Jaksch et al., 2010; Osband et al., 2014; Azar et al., 2017;
Jin et al., 2018), in which the states and actions are discrete, and the value function is represented by
a table. Due to the curse of dimensionality, only relatively small problems can be tackled by tabular
RL. Thus, researchers have turned to function approximation (see, e.g., Sutton, 1988; Bradtke and
Barto, 1996; Tsitsiklis and Van Roy, 1997), in theory and in practice. While function approximation
greatly expands the potential reach of RL, particularly via deep RL architectures, it raises a number
of fundamental theoretical challenges. For example, while the effective state and action spaces can
be much larger when function approximation is used, the neighborhoods of most states are not vis-
ited even once during a set of learning episodes, which makes it difficult to obtain reliable estimates
of value functions (see, e.g., Sutton and Barto, 2011; Szepesvéri, 2010; Lattimore and Szepesvri,
2018). To cope with this challenge, relatively simple function classes, including linear function
classes, are often used. This introduces, however, a bias, even in the limit of infinite training data,
given that the optimal value function and policy may not be linear (see, e.g., Baird, 1995; Boyan and
Moore, 1995; Tsitsiklis and Van Roy, 1997). Thus, both in theory and in practice, the design of RL
systems must cope with fundamental statistical problems of sparsity and misspecification, all in the
context of a dynamical system. Moreover, a core distinguishing feature of RL is that it requires ad-
dressing the tradeoff between exploration and exploitation. Addressing this tradeoff algorithmically
requires exactly the kinds of statistical estimates that are challenging to obtain in the RL setting
due to sparsity, misspecification, and dynamics. Thus the following fundamental question remains
open:

Is it possible to design provably efficient RL algorithms in the function approximation
setting?

By “efficient” we mean efficient in both runtime and sample complexity—the runtime and the sam-
ple complexity should not depend on the number of states, but should depend instead on an intrinsic
complexity measure of the function class.

Several recent attempts have been made to attack this fundamental problem. However, they
either require the access to a “simulator” (Yang and Wang, 2019a) which alleviates the difficulty of
exploration, or assume the transition dynamics to be deterministic (Wen and Van Roy, 2013, 2017),
to have a low variance (Du et al., 2019), or are parametrizable by a relatively small matrix (Yang
and Wang, 2019b), which alleviates the difficulty in estimating the transition dynamics (see Section
1.1 for more details).

Focusing on a linear setting in which the transition dynamics and reward function are assumed
to be linear, we present the first algorithm that is provably efficient in both runtime and sample
complexity, without requiring additional oracles or stronger assumptions. Concretely, in the general
setting of an episodic Markov Decision Process (MDP), we prove that an optimistic version of
Least-Squares Value Iteration (LSVI) (Bradtke and Barto, 199@; Osband et al., 2014)—a classical
algorithm frequently studied in the linear setting—achieves O(Vd3H3T) regret, where d is the
ambient dimension of feature space, H is the length of each episode, T is the total number of steps,
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and (5() hides only absolute constant and poly-logarithmic factors. Importantly, such regret is
independent of S and A—the number of states and actions. Our algorithm runs in O(d2AKT) time
and O(d?>H + dAT) space, which are again independent of S and thus efficient in practice.

1.1. Related Work

Tabular RL: Tabular RL is well studied in both model-based (Jaksch et al., 2010; Osband et al.,
2014; Azar et al., 2017; Dann et al., 2017) and model-free settings (Strehl et al., 2006; Jin et al.,
2018). See also (Koenig and Simmons, 1993; Azar et al., 2011, 2012; Lattimore and Hutter, 2012;
Sidford et al., 2018; Wainwright, 2019) for a simplified setting with access to a “simulator” (also
called a generative model), which is a strong oracle that allows the algorithm to query arbitrary
state-action pairs and return the reward and the next state. The “simulator” significantly alleviates
the difficulty of exploration, since a naive exploration strategy which queries all state-action pairs
uniformly at random already leads to the most efficient algorithm for finding an optimal policy
(Azar et al., 2012).

In the episodic setting with nonstationary dynamics and no “simulators,” the best regrets achieved
by existing model-based and model-free algorithms are O(v H 2SAT) (Azar et al., 2017) and
O(VH3SAT) (Jin et al., 2018), respectively, both of which (nearly) attain the minimax lower
bound Q(V H2SAT) (Jaksch et al., 2010; Osband and Van Roy, 2016; Jin et al., 2018). Here
S and A denote the numbers of states and actions, respectively. Although these algorithms are
(nearly) minimax-optimal, they can not cope with large state spaces, as their regret scales linearly
in /S, where S is often exponentially large in practice (see, e.g., Mnih et al., 2013; Silver et al.,
2016; Kober and Peters, 2012; Li et al., 2016). Moreover, the minimax lower bound suggests that,
information-theoretically, a large state space cannot be handled efficiently unless further problem-
specific structure is exploited. Compared with this line of work, in the current paper we exploit the
linear structure of the reward and transition functions and show that the regret of optimistic LSVI
scales polynomially in the ambient dimension d rather than the number of states S.

Linear Bandits: To enable function approximation, another line of related work studies stochastic
linear bandits or stochastic linear contextual bandits (see, e.g., Auer, 2002; Dani et al., 2008; Li
et al., 2010; Rusmevichientong and Tsitsiklis, 2010; Chu et al., 2011; Abbasi-Yadkori et al., 2011),
which is a special case of the linear MDP studied in this paper (Assumption ??) with the episode
length H set equal to one. See Bubeck and Cesa-Bianchi (2012); Lattimore and Szepesvari (2018)
and the references therein for a detailed survey. The best regrets achieved by existing algorithms are
O(d\/T) for linear bandits (Abbasi-Yadkori et al., 2011) and O(+/dT) for linear contextual bandits
(Auer, 2002; Chu et al., 2011), both of which scale polynomially in the ambient dimension d. We
note, however, that while an MDP has state transition, linear bandits do not. This temporal structure
captures the fundamental difference in their difficulties of exploration: a naive adaptation of existing
linear bandit algorithms to the linear MDP setting yields a regret exponential in H—the length of
each episode.

RL with Function Approximation: In the setting of linear function approximation, there is a
long line of classical work on the design of algorithms, but this work does not provide polynomial
sample efficiency guarantees (see, e.g., Bradtke and Barto, 1996; Melo and Ribeiro, 2007; Sutton
and Barto, 2011; Osband et al., 2014; Azizzadenesheli et al., 2018). Recently, Yang and Wang
(2019a) revisited the setting of linear transitions and rewards (Bradtke and Barto, 1996; Melo and



LINEAR MDP

Ribeiro, 2007) (Assumption ??), and presented a sample-efficient algorithm assuming the access to
a “simulator”. Similar to the case of tabular setting, the “simulator” greatly alleviates the difficulty
of exploration. We also note that their very recent work (Yang and Wang, 2019b), developed inde-
pendently of the current paper, provides sample efficiency guarantees for exploration in the linear
MDP setting. Compared with the current paper, Yang and Wang (2019b) differs in that requires one
additional key assumption—that the transition model can be parameterized by a relatively small
matrix. This additional assumption reduces the number of free parameters in the transition model
from potentially being infinite (for the case with an infinite number of states) to small and finite,
and thus mitigates the challenges in estimating the transition model. As a result, their algorithm and
main mechanism are based on estimating the unknown matrix, which differs from our approach.
Finally, in a broader context, without the assumption of a linear MDP, sample efficiency guarantees
have been established for RL under other assumptions, such as that the transition dynamics are fully
deterministic (Wen and Van Roy, 2013, 2017), or have low variances (Du et al., 2019). These as-
sumptions can be potentially restrictive in practice, and may not hold even in the tabular setting. In
contrast, our results directly cover the standard tabular case with no extra assumptions.

In the setting of general function approximation, Jiang et al. (2017) present a generic algorithm
Olive, which enjoys sample efficiency if a complexity measure that they refer to as “Bellman rank”
is small. It can be shown that Bellman rank is at most d under Assumption ??, and thus Olive is
sample efficient in our setting. In contrast to our results, Olive is not computationally efficient in
general and it does not provide a /7T regret bound. Meanwhile, a recent line of work (Zhu and
Dunson, 2019; Wang et al., 2019) studies a nonparametric setting with Holder smooth reward and
transition model. The sample complexities provided therein are exponential in dimensionality in
the worst case.
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