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Abstract
We study the sample complexity of learning threshold functions under the constraint of differential
privacy. It is assumed that each labeled example in the training data is the information of one
individual and we would like to come up with a generalizing hypothesis h while guaranteeing
differential privacy for the individuals. Intuitively, this means that any single labeled example in
the training data should not have a significant effect on the choice of the hypothesis. This problem
has received much attention recently; unlike the non-private case, where the sample complexity
is independent of the domain size and just depends on the desired accuracy and confidence, for
private learning the sample complexity must depend on the domain size X (even for approximate
differential privacy). Alon et al. (STOC 2019) showed a lower bound of Ω(log∗ |X|) on the sample
complexity and Bun et al. (FOCS 2015) presented an approximate-private learner with sample
complexity Õ

(
2log

∗ |X|). In this work we reduce this gap significantly, almost settling the sample

complexity. We first present a new upper bound (algorithm) of Õ
(

(log∗ |X|)2
)

on the sample

complexity and then present an improved version with sample complexity Õ
(

(log∗ |X|)1.5
)

.
Our algorithm is constructed for the related interior point problem, where the goal is to find a

point between the largest and smallest input elements. It is based on selecting an input-dependent
hash function and using it to embed the database into a domain whose size is reduced logarithmi-
cally; this results in a new database, an interior point of which can be used to generate an interior
point of the original database in a differentially private manner.
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PRIVATELY LEARNING THRESHOLDS: CLOSING THE EXPONENTIAL GAP

1. Introduction

One of the most fundamental tasks in machine learning is that of learning 1-dimensional threshold
functions. In this task, we are given a collection of examples, called training data, where every
example is taken from a finite domain X ⊆ R and is labeled by a fixed (but unknown) threshold
function. (A threshold function is a binary function that evaluates to 1 on some prefix of the do-
main.1) The goal is to generalize the training data into a hypothesis h that predicts the labels of
unseen examples. In this paper we study this problem under the constraint of differential privacy. It
is assumed that each labeled example in the training data is the information of one individual (e.g.,
every example might represent blood sugar level, and the label might indicate whether the individ-
ual has diabetes). We would like to come up with a generalizing hypothesis h while guaranteeing
differential privacy for the individuals. Intuitively, this means that any single labeled example in
the training data should not have a significant effect on the choice of h and in particular given the
hypothesis it should be hard to distinguish whether an individual’s data was used or not.

An important and natural measure for the efficiency of learning algorithms is the amount of data
needed to produce a good hypothesis, a.k.a. the sample complexity. Without privacy constraints,
learning thresholds is easy, and has a ‘constant’ sample complexity that depends only on the desired
level of accuracy and confidence, but not on the domain size (i.e., one can simply set X = R).
With differential privacy, however, understanding the sample complexity of this supposedly simple
problem has turned out to be quite challenging. Already in the first work on differentially private
learning, Kasiviswanathan et al. (2011) presented a generic construction (obtained as a private vari-
ant of Occam’s Razor (Blumer et al., 1987)) stating that the sample complexity of privately learning
threshold functions over a domain X is at most O(log |X|). That is, unlike the non-private sample
complexity, the upper bound of Kasiviswanathan et al. (2011) grows logarithmically with the size
of the domain.

This gap between the sample complexity of learning thresholds with or without privacy has
received much attention since then. For the case of pure-differential privacy (a strong variant of
differential privacy), Feldman and Xiao (2015) showed that this gap is unavoidable, and that ev-
ery pure-private learner for thresholds over a domain X must have sample complexity Ω(log |X|).
Beimel et al. (2013) showed that the lower bound of Feldman and Xiao (2015) can be circumvented
by relaxing the privacy requirement from pure to approximate-differential privacy. Specifically,
they presented an approximate-private learner for threshold functions over a domain X with sample
complexity Õ

(
8log∗ |X|), a dramatic improvement in asymptotic terms over Θ(log |X|). Bun et al.

(2015) then presented a different approximate-private learner with improved sample complexity of
Õ
(
2log∗ |X|), and another different algorithm with similar sample complexity was presented by Bun

et al. (2018). Furthermore, Bun et al. (2015) showed a lower bound of Ω(log∗ |X|) on the sample
complexity of every approximate-private learner for thresholds that outputs a hypothesis that is it-
self a threshold function (such a learner is called proper). Recently, Alon et al. (2019) showed that a
lower bound of Ω(log∗ |X|) holds even for improper learners, i.e., for learners whose output hypoth-
esis is not restricted to being a threshold function. To summarize, our current understanding of the
task of privately learning thresholds places its sample complexity somewhere between Ω(log∗ |X|)
and Õ

(
2log∗ |X|), a gap which is exponential in log∗ |X|, where at least three different algorithms

are known with sample complexity 2O(log∗ |X|).

1. Let X ⊆ R. A threshold function f over X is specified by an element u ∈ X so that f(x) = 1 if x ≤ u and
f(x) = 0 for x > u.
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PRIVATELY LEARNING THRESHOLDS: CLOSING THE EXPONENTIAL GAP

In this work we reduce this gap significantly, almost settling the sample complexity, and present
a new upper bound of Õ

(
(log∗ |X|)2

)
. We then present an improvement of the algorithm with

sample complexity Õ
(

(log∗ |X|)1.5
)

. While the main goal of the work is to resolve the asymptotic
sample complexity of the problem, our algorithm is computationally efficient and may be useful
more generally as a technique for shrinking the data domain.

The interior point problem: In order to obtain their results, Bun et al. (2015) presented reduc-
tions in both directions between (properly) learning thresholds and the interior point problem. Given
a database S containing (unlabeled) elements fromX , the interior point problem asks for an element
of X between the smallest and largest elements in S.

Definition 1 An algorithm A solves the interior point problem over a domain X with sample com-
plexity n and failure probability β if for every database S ∈ Xn,

Pr[minS ≤ A(S) ≤ maxS] ≥ 1− β,

where the probability is taken over the coins of A. We call a solution x with minS ≤ x ≤ maxS
an interior point of S. Note that x need not be a member of the database S.

To see the equivalence between the interior point problem and (properly) learning thresholds, let
S ⊆ X be an input for the interior point problem, and construct a labeled database D containing
all elements of S where the smallest |S|/2 elements are labeled by 1 and the largest |S|/2 elements
are labeled by 0. Now consider applying a learner for thresholds on the database D, that returns
a hypothesis h that is itself a threshold function. The point at which h switches from 1 to 0 must
be an interior point of the database S. For the other direction, let D be a labeled database, and
suppose that D contains both “a lot” of elements with the label 0 and “a lot” of elements with the
label 1 (otherwise either h ≡ 0 or h ≡ 1 is a good output). Now construct an unlabeled database S
containing (say) the largest |D|/10 elements in D which are labeled as 1 and the smallest |D|/10
elements in D which are labeled as 0. Now consider applying an algorithm for the interior point
problem on S to obtain an outcome y, and define the hypothesis f(x) = 1{x ≤ y}. It can be shown
that this hypothesis has small error on D, completing the equivalence. In fact, Bun et al. (2015)
showed that the following four problems are equivalent (up to constant factors) under differential
privacy:

1. The interior point problem.

2. Learning of threshold functions (properly).

3. Distribution learning (with respect to Kolmogorov distance).2

4. Query release for threshold functions.3

2. Distribution learning is a fundamental problem in statistics. Given n i.i.d. samples from an unknown distribution D,
the goal is to produce a distribution D′ with small distance to D.

3. Given a set Q of queries q : Xn → R the query release problem for Q is to output accurate answers to all queries in
Q. In the case of threshold functions, each query is specified by a domain element x ∈ X , and asks for the number
of input element that are smaller than x.
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PRIVATELY LEARNING THRESHOLDS: CLOSING THE EXPONENTIAL GAP

Hence, showing new upper or lower bounds on the sample complexity of privately solving the inte-
rior point problem immediately results in new upper or lower bounds on the sample complexity of
privately learning thresholds (properly), private distribution learning (w.r.t. Kolmogorov distance),
and private query release for threshold functions.

1.1. Overview of Our (First) Construction

We design a new algorithm for privately solving the interior point problem with sample complexity
Õ
(

(log∗ |X|)2
)

. At a high level, the algorithm works by embedding the input elements from the
domainX in a smaller domain of size log |X|, in such a way that guarantees that every interior point
of the embedded elements can be (privately) translated into an interior point of the input elements.
The algorithm is then applied recursively to identify an interior point of the embedded elements.

We now give an informal overview of the construction. Let X be a totally ordered domain, and
consider a binary tree T with |X| leaves, where every leaf is identified with an element of X . We
abuse notation and use u` (for 1 ≤ ` ≤ |X|) to denote both the `th smallest element in X and to
denote the `th left-most leaf of the tree T . Given an input database S ∈ Xn containing n elements
from X , we assign weights to the nodes of T in a bottom up manner. First, the weight w(u`) of
every leaf u` is its multiplicity in S. That is, w(u`) = |{x ∈ S : x = u`}|. Now define the weight
of every node v in T as the sum of the weights of its two children. For simplicity, we will assume
throughout the introduction that every leaf has weight either 0 or 1 (i.e., we assume that no element
appears twice in S; this is not true as we recurse).

We now explain how to generate the input database to the next recursive call. That is, how we
embed the input elements in a domain of size log |X|. To that end, suppose that we have generated
a path π from the root to a leaf uπ with positive weight (by our simplifying assumption this leaf
has weight 1). Had we been able to compute such a path in a private manner then our task would
be completed, since if w(uπ) > 0 then uπ ∈ S and hence uπ is an interior point of S, and there
was no need to apply the recursion. Therefore we do not argue that we can release the path while
maintaining differential privacy. Nevertheless, assume (for now) that such a path were given to us
“for free”, and instead of ending the computation by returning the leaf at the end of this path, we
use it in order to construct the input database to the next recursive call.

Let v be a node in the path π, let vnext be the next node in π, and let vother denote the other child
of v in the tree T . We say that m input points fall off the path π at the node v if w(vother) = m.
Input points that fall off the path π at the node v are input points that belong to the subtree rooted at
v, but not to the subtree rooted at the next node in π. As π starts at a node with weight n (the root
of the tree) and ends at a leaf with weight 1 (the leaf uπ), we get that overall n− 1 input points fall
off the path π.

One can think of the path as acting as a hash function of the domain into a range that is logarith-
mic in its size, where a point is mapped to the level where it falls off the path. The key property we
need is that adjacent databases will be embedded to adjacent databases. Initialize an empty database
D (which will be the input database to the next recursive call). We add elements to D by following
the path π from the root down. If m points fall off the path at level ` of the tree, then we add m
copies of ` to the database D. Observe that D contains elements from [log |X|], i.e., the domain
size is reduced logarithmically.

Now suppose that (by recursion) we obtained an interior point `∗ of the database D, and let v`
∗
π

denote the node at level `∗ in the path π. Furthermore, let us assume for simplicity that there are in
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PRIVATELY LEARNING THRESHOLDS: CLOSING THE EXPONENTIAL GAP

fact “many” points in D that are bigger than `∗ and “many” points which are smaller than `∗, and
so `∗ is a “deep” interior point of D.4 This means that “many” elements from S fall off the path π
before level `∗ and that “many” elements fall off after level `∗ of the tree. Note that since “many”
elements from S fall off π after level `∗, we get that the weight of v`

∗
π (the node at level `∗ of the

path π) is “large”.
Now let v∗ be a node at level `∗ of the tree that is chosen according to its weight in a differentially

private manner (such a “heavy” node exists since v`
∗
π is “heavy”, and can be privately identified using

standard stability based techniques). Now, since “many” elements from S fall of the path π before
level `∗, it cannot be the case that all of the points in S belong to the subtree rooted at v∗. Indeed,
if that were the case then the path π must go through v∗, i.e., v∗ = v`

∗
π , but then all the elements of

S that fall off before level `∗ cannot belong to the subtree rooted at v∗. (For simplicity we assumed
here that these elements fall strictly before level `∗; in the actual algorithm we handle such a case
differently.)

The final output is then chosen from one of two descendants of v∗: the left-most and right-most
leaves of the sub-tree rooted at v∗, denoted as vleft and vright, respectively.5 To see that at least one
of these leafs is a good output, observe that since v∗ has positive weight, then some of the elements
of S must belong to the subtree rooted at v∗. That is, the database S contains elements between vleft
and vright. In addition, since the subtree rooted at v∗ does not contain all elements of S, then either
S contains elements which are bigger than vright, in which case vright is an interior point of S, or S
contains elements which are smaller than vleft, in which case vleft is an interior point of S.

Selecting the path. In the above description we assumed that the path π is given to us “for free”.
While the path π contains sensitive information and cannot be released privately, we show that it
is possible to select a path π randomly in such a way that guarantees the following condition. Let
S and S′ be two neighboring databases, and let D denote the distribution on databases that results
from sampling a path π in the execution on S and embedding the points from S using π. Similarly
let D′ denote this distribution w.r.t. S′. Then we show that these two distributions are “close” in
the sense that for any database D in the support of D (with non-negligible probability mass) there
exists a neighboring database D′ with roughly the same probability mass under D′. So, intuitively,
while the paths π that appear in the executions on S and on S′ might be very different, we show
that the resulting distributions on the databases for the next recursive call are “similar”. This can be
formalized to show that the algorithm satisfies differential privacy.

We obtain the following theorem, which we present in Section 3.

Theorem 2 Let X be a totally ordered domain. There exists an (ε, δ)-differentially private algo-
rithm that solves the interior point problem on X with success probability 9/10 and sample com-
plexity n = Õ

(
1
ε · log(1

δ ) · (log∗ |X|)2
)
.

In Section A we present an improved analysis of (a variant of) this algorithm, which results
in a sample complexity of n = Õ

(
1
ε · log1.5(1

δ ) · (log∗ |X|)1.5
)
. Using the equivalence of Bun

et al. (2015), our new algorithm for the interior point problem results in new algorithms for pri-
vately learning threshold functions, for private distribution learning (w.r.t. Kolmogorov distance),
and for private query release of threshold functions, all with sample complexity proportional to

4. Here “many” should be thought of as ≈ 1
ε
log 1

δ
; in the actual algorithm we ensure that these conditions indeed hold

by ‘trimming’ these elements from the database before the recursive call.
5. In the actual algorithm we also consider two additional descendants of v∗.
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PRIVATELY LEARNING THRESHOLDS: CLOSING THE EXPONENTIAL GAP

Õ
(

(log∗ |X|)1.5
)

. Previous algorithms for these tasks had sample complexity proportional to

Õ
(
2log∗ |X|).
We stress that the fundamental difference between our work and the previous works of Beimel

et al. (2013); Bun et al. (2015, 2018) is that we construct the input to the recursive call using a path
which is not computed in a private manner. The main conceptual new idea is that this can be done
while still guaranteeing that the algorithm itself is differentially private.

2. Preliminaries

An algorithm operating on databases is said to preserve differential privacy if changing a single
record of its input database does not significantly change the output distribution of the algorithm.
Intuitively, this means that whatever is learned about an individual could also be learned with her
data arbitrarily modified (or without her data). Formally:

Definition 3 (Dwork et al. (2006b,a)) Two databases are called neighboring if they differ in a
single entry. A randomized algorithm A is (ε, δ)-differentially private if for every two neighboring
databases S, S′ and for any event T ,

Pr[A(S) ∈ T ] ≤ eε · Pr[A(S′) ∈ T ] + δ.

If δ == 0 the type of privacy guarantee is pure and if 0 < δ < 1 it is approximate.

One of the key reasons differential privacy is such a powerful notion is the composition proper-
ties it enjoys. In particular, in “advanced composition” the adaptive application of k mechanisms,
each of which is (ε, δ)-differentially private, satisfies ≈ (ε

√
k, δk)-differential privacy (Dwork

et al., 2010). For background on differential privacy see Dwork and Roth (2014) or Vadhan (2016).

2.1. The Exponential and Choosing Mechanisms

Let X∗ denote the set of all finite databases over a domain X . A quality function q : X∗ ×F → N
defines an optimization problem over the domain X and a finite solution set F : Given a database
S ∈ X∗, choose f ∈ F that (approximately) maximizes q(S, f). We say that the function q has
sensitivity ∆ if for all neighboring databases S and S′ and for all f ∈ F we have |q(S, f) −
q(S′, f)| ≤ ∆.

The Exponential Mechanism of McSherry and Talwar (2007) solves such optimization problems
by choosing a random solution where the probability of outputting any solution f increases expo-
nentially with its quality q(S, f). Specifically, it outputs each f ∈ F with probability proportional
to exp (ε · q(S, f)/(2∆)). The privacy and utility of the mechanism are expressed as:

Lemma 4 (McSherry and Talwar (2007)) The Exponential Mechanism is (ε, 0)-differentially pri-
vate. Let q be a quality function with sensitivity at most 1. Fix a database S ∈ Xn and let
OPT = maxf∈F{q(S, f)}. With probability at least (1 − β), the Exponential Mechanism out-

puts a solution f with quality q(S, f) ≥ OPT−2
ε ln

(
|F|
β

)
.

Note that the quality of the solution guaranteed by the Exponential Mechanism decreases with
log |F|. For a sub family of low-sensitivity functions, called bounded-growth functions, this can
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be avoided by using an (ε, δ)-differentially private variant of the Exponential Mechanism called the
Choosing Mechanism, introduced by Beimel et al. (2013). A quality function with sensitivity at
most 1 is of k-bounded-growth if adding an element to a database can increase (by 1) the score of
at most k solutions, without changing the scores of other solutions. Specifically, it holds that

1. q(∅, f) = 0 for all f ∈ F ,

2. If S2 = S1 ∪ {x}, then q(S1, f) + 1 ≥ q(S2, f) ≥ q(S1, f) for all f ∈ F , and

3. There are at most k values of f for which q(S2, f) = q(S1, f) + 1.

Example 1 Consider a case where F = X and q(S, f) = |{x ∈ S : x = f}|. That is, the quality
of a solution (=domain element) f is its multiplicity in the database S. Note that with this quality
function we are aiming to identify an element f ∈ X with large multiplicity in S. Observe that this
function is 1-bounded growth.

The Choosing Mechanism is a differentially private algorithm for approximately solving bounded-
growth choice problems. The following lemma specifies its privacy and utility guarantees.

Lemma 5 (Beimel et al. (2013); Bun et al. (2015)) Let δ > 0, and 0 < ε ≤ 2. The Choos-
ing Mechanism is (ε, δ)-differentially private. Let the Choosing Mechanism be executed on a k-
bounded-growth quality function, and on a database S containing n elements. Denote OPT =
maxf∈F{q(S, f)}. With probability at least (1 − β), the Choosing Mechanism outputs a solution
f with quality q(S, f) ≥ OPT−16

ε ln(4kn
βεδ ).

3. Algorithm TreeLog and its Analysis

In this section we present algorithm TreeLog, which privately solves the interior point problem
with sample complexity Õ

(
(log∗ |X|)2

)
. Consider algorithm TreeLog, described in Algorithm 1.

We analyze its privacy properties in Section 3.1 and analyze its utility properties in Section 3.2. For
an illustration of the algorithm see Figure 1.

3.1. Privacy Analysis

First, observe that it suffices to analyze the algorithm without Step 2. The reason is that for any
two neighboring databases S, S′ we have that the multisets Ŝ, Ŝ′ containing the middle elements of
S, S′, respectively, are neighboring multisets (this technique was also used by Bun et al. (2015)).
So, for the privacy analysis, we will assume that Ŝ contains all elements of S.

Fix two neighboring databases S and S′ = S ∪ {x′}, and consider the (top-level call of the)
execution of TreeLog on S and on S′. We use wS(v) and wS′(v) to denote the weight of a node v
during the two executions, respectively. Also, let P (S) and P (S′) denote the set of possible paths
that can be obtained in Step 4 of the execution on S and on S′, respectively. That is, P (S) denotes
the support of the distribution on paths defined in Step 4 of the (top-level call of the) execution on
S. For a path π we write PrS [π] and PrS′ [π] to denote the probability of obtaining this path in the
executions on S and on S′, respectively. We make the following observations.

Observation 6 |P (S)| ≤ |S| and |P (S′)| ≤ |S′|.
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Algorithm 1 TreeLog
Input: Parameters ε, δ and a database S ∈ Xn where X is a totally ordered domain. We assume
that |X| is a power of 2 (otherwise extend X to the closest power of 2). Set trimming parameter
t = Θ

(
1
ε log 1

δ

)
.

1. If |X| = O(1) then use the Exponential Mechanism to return y ∈ X with large quality

q(S, y) = min { |{x ∈ S : x ≤ y}|, |{x ∈ S : x ≥ y}| } .

2. Sort S and let Ŝ ∈ Xn−2t be a database containing all elements of S except for the t largest
and t smallest elements.

3. Let T be a complete binary tree with |X| leaves that correspond to elements of X . A leaf u
has weight w(u) = |{x ∈ Ŝ : x = u}|. A node v has weight w(v) that equals the sum of the
weights of its children.

4. Sample a path π in T , starting from the root and constructed by the following process:

(a) Let v be the current node in the path.

(b) If v is a leaf, or if w(v) ≤ t, then v is the last node in π.

(c) Else, let v0, v1 be the two children of v in T . If one of them has weight 0 then proceed to
the other child. Otherwise, proceed to vb with probability proportional to exp(ε ·w(vb)).

5. Initialize D = ∅. Add elements to D by following the path π starting from the root:

(a) If |D| ≥ n− 3t then goto Step 6.

(b) Let v be the current node in the path, and let ` denote its level in T (the root is in level 0
and the leaves are in level log |X|).

(c) If v is the last node in π then add (n− 3t− |D|) copies of ` to D and goto Step 6.

(d) Else, let vnext be the next node in π, and let vother be the other child of v in T . Add
min {w(vother), n− 3t− |D|} copies of ` toD, and goto Step 5a with vnext as the current
node.

6. Execute TreeLog recursively on D and let `∗ denote the returned outcome.

7. Use the Choosing Mechanism with privacy parameters ε, δ to choose a node v∗ at level `∗ of
T with large weight w(v∗).

8. Let vleft and vright be the left-most and right-most leaves, respectively, of the sub-tree rooted at
v∗. Also let vinner-left be the right-most leaf of the sub-tree rooted at the left child of v∗, and let
vinner-right be the left-most leaf of the sub-tree rooted at the right child of v∗.

9. Use the Exponential Mechanism with privacy parameter ε to return y ∈
{vleft, vright, vinner-left, vinner-right} with large quality

q(S, y) = min { |{x ∈ S : x ≤ y}|, |{x ∈ S : x ≥ y}| } .

8
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This is because paths only end in nodes with positive weight, and because if π1 6= π2 are both in
P (S) then π1 is not a prefix of π2 and vice verse.

Observation 7 Let π ∈ P (S), and let vπ denote the last node in π. There exists either one or two
paths in P (S′) such that π is their prefix.

This is because if vπ is reachable from the root during the execution on S then it is also reach-
able during the execution on S′. When reaching vπ in the execution on S′, the path ends in vπ if
wS′(vπ) ≤ t, and otherwise the path continues and can split at most once into two different paths.

Definition 8 A path π ∈ P (S) is weak for S if PrS [π] ≤ δ. Otherwise, the path is strong for S. We
use similar definitions w.r.t. S′.

Observation 9 Let π′ ∈ P (S′). Either there is a path π ∈ P (S) such that π is a prefix of π′, or
else π′ is weak for S′.

Proof Assume that no path in P (S) is a prefix of π′. Let vlast denote the last node in the path π′

that appears in a path of P (S), and let vbreak denote the next node in π′. Note that vbreak must exist
because otherwise π′ ∈ P (S). Since no path in P (S) is a prefix of π′, we get that any path in
P (S) that reaches vlast does not stop in vlast, and hence, wS(vlast) > t and therefore wS′(vlast) > t.
Moreover, since wS(vlast) > t and since vbreak is not on a path of P (S), we have that wS(vbreak) = 0
and hence wS′(vbreak) = 1. So wS′(vbreak) = 1 and wS′(vlast) > t and therefore the probability of
proceeding from vlast to vbreak is at most δ.

Claim 10 Let π ∈ P (S) be a strong path, and let Π′ ⊆ P (S′) be a subset containing all paths in
P (S′) such that π is their prefix. Then PrS [π] ≤ e3ε·logn · PrS′ [Π

′].

Proof Let v0 denote the first node in π (the root of the tree T ) and let vπ denote the last node in
π. Also let v1, v2, . . . , vk denote all the nodes in the path π (different from vπ) such that both of

Level `∗ Node v∗

vleft vinner-left

Path π

vrightvinner-right

Figure 1: An illustration of the objects used by Algorithm TreeLog.
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their children in T have positive weight in the execution on S (these are the nodes from which the
construction of the path in Step 4 is done randomly). For every such node vi let vi,next denote its
following node in π, and let vi,other denote vi’s other child in T . Note that vk,next = vπ. So π can be
written as

π := v0  v1 → v1,next  v2 → v2,next  · · · vk → vπ.

With these notations we have that

PrS [π] =
eε·wS(v1,next)

eε·wS(v1,next) + eε·wS(v1,other)
· eε·wS(v2,next)

eε·wS(v2,next) + eε·wS(v2,other)
. . .

eε·wS(vk,next)

eε·wS(vk,next) + eε·wS(vk,other)
.

During the execution on S′, some of these weights could be larger by (at most) 1. In addition, there
might be another (at most one) node along the path π such that the weight of both its children is
positive, but in that case the weight of one of its children is exactly 1 (since during the execution on
S the weight of this node is 0). Hence, the probability of proceeding from this node along π (during
the execution on S′) is at least (1− δ). Therefore,

PrS′ [Π] ≥ (1− δ) · eε·wS(v1,next)

eε·[wS(v1,next)+1] + eε·[wS(v1,other)+1]
. . .

eε·wS(vk,next)

eε·[wS(vk,next)+1] + eε·[wS(vk,other)+1]
.

(1)
Because the path π is strong, for every i it holds that wS(vi,next) > wS(vi,other) − 1

ε log(1
δ ), as

otherwise the probability of proceeding from vi to vi,next would be at most δ and the path would
not be strong. In addition, for every i such that wS(vi,next) > wS(vi,other) + 1

ε log(1
δ ) we have

that the term corresponding to i in Inequality (1) is at least (1 − δ). Finally, note that there could
be at most 2 log n indices i such that |wS(vi,next)− wS(vi,other)| ≤ 1

ε log(1
δ ). This is because the

path π ends when reaching a node of weight at most t = Θ(1
ε log 1

δ ), and every step in which
|wS(vi,next)− wS(vi,other)| ≤ 1

ε log(1
δ ) decreases the weight of the next node by at least 1/3 if

t ≥ 2
ε log(1

δ ). Putting these observations together, and using the fact that that k ≤ n (which follows
from Observation 6), we get that

PrS′ [Π] ≥ (1− δ) · (1− δ)n · e−2ε logn · eε·wS(v1,next)

eε·wS(v1,next) + eε·wS(v1,other)
. . .

eε·wS(vk,next)

eε·wS(vk,next) + eε·wS(vk,other)

= (1− δ) · (1− δ)n · e−2ε logn · PrS [π]

≥ e−4δn · e−2ε logn · PrS [π]

≥ e−3ε logn · PrS [π],

where the last inequality holds when δ ≤ ε
4n .

Lemma 11 Algorithm TreeLog with N recursive calls is (5εN log n, 3δnNe3εN logn) differen-
tially private.

Proof Assume towards induction that the lemma holds whenever the algorithm performs at most
N −1 recursive calls, and let X be a domain that causes the algorithm to perform N recursive calls.
Let S ∈ Xn and let S′ = S ∪ {x′}. Fix a set F ⊆ X of possible outcomes. We will show that
Pr[TreeLog(S) ∈ F ] ≤ e5εN logn ·Pr[TreeLog(S′) ∈ F ]+3δnNe3εN logn. The other direction
follows from similar arguments.

10



PRIVATELY LEARNING THRESHOLDS: CLOSING THE EXPONENTIAL GAP

Let π ∈ P (S), and let Π′ ⊆ P (S′) be a subset containing all paths in P (S′) such that π is their
prefix. We first show that the following inequality holds:

Pr[TreeLog(S) ∈ F |π] ≤ e5ε(N−1) log(n)+2ε ·Pr[TreeLog(S′) ∈ F |Π′]+3δn(N−1)e3ε(N−1) logn+2δ.
(2)

To see this, letD andD′ denote the multisets constructed in Step 5 of the execution on S and on
S′ respectively. Now note that when fixing π in the execution on S, and any π′ ∈ Π′ in the execution
on S′, the resulting multisets D,D′ are neighboring. Specifically, if π = π′ then this is clear (since
the number of elements that fall off π in S and S′ differ by at most one in a single position). Now
suppose that π 6= π′ (but π is still a prefix of π′). Let vπ denote the last node in π. Since π ends in
vπ but π′ does not, we have that wS(vπ) = t and wS′(vπ) = t + 1. This means that the part of D
generated before we reach vπ when running on S is identical to the part of D′ generated before we
reach vπ when running on S′, because the weight of all the nodes that fall off π and π′ before vπ is
the same in S and in S′. Since wS′(vπ) = t + 1 and since we stop adding elements to D once the
remaining weight is t, we get that exactly one more element will be added to D′.

Therefore, once we fix π and π′, Step 6 satisfies (5ε(N − 1) log n, 3δn(N − 1)e3ε(N−1) logn)-
differential privacy by the induction assumption. In Steps 7 and 9 we apply the Choosing Mecha-
nism and the Exponential Mechanism, each of which satisfies (ε, δ)-differential privacy. Inequal-
ity 2 follows from (simple) composition. The proof now follows by the following inequality, where
we write TL as a shorthand for TreeLog.

Pr[TreeLog(S) ∈ F ] =
∑

π∈P (S)

PrS [π] · Pr[TreeLog(S) ∈ F |π]

≤
∑

weak π

PrS [π] · Pr[TreeLog(S) ∈ F |π] +
∑

strong π

PrS [π] · Pr[TreeLog(S) ∈ F |π]

≤ nδ +
∑

strong π

PrS [π] · Pr[TreeLog(S) ∈ F |π]

≤ nδ +
∑

strong π

e3ε logn PrS′ [Π
′]
(
e5ε(N−1) log(n)+2ε Pr[TL(S′) ∈ F |Π′] + 3δn(N−1)e3ε(N−1) logn + 2δ

)
≤ nδ + 3δn(N − 1)e3εN logn + 2δe3εN logn +

∑
strong π

e5εN log(n) · PrS′ [Π
′] · Pr[TreeLog(S′) ∈ F |Π′]

≤ 3δnNe3εN logn + e5εN log(n) · Pr[TreeLog(S′) ∈ F ],

where the third inequality follows from Claim 10 and from Inequality 2.

Recall that each recursive call shrinks the domain size logarithmically, and hence, on a database
S ∈ X∗ algorithm TreeLog preforms at most log∗ |X| recursive calls. The following lemma,
therefore, follows directly from Lemma 11.

Lemma 12 Let algorithm TreeLog be executed on databases containing n elements from a do-
main X . The algorithm is (5ε log∗ |X| log n, 3δn log∗ |X|e3ε log∗ |X| logn)-differentially private.

3.2. Utility Analysis

Given a database S ⊆ X over a totally ordered domain X and a point y ∈ X , we say that y is an
interior point of S with score ∆ if there are at least ∆ elements in S that are greater or equal to y

11
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and there are at least ∆ elements in S that are smaller or equal to y. We say that y is an interior
point, without mentioning the score, to mean that it is an interior point with score at least 1.

Lemma 13 Let TreeLog be executed on a database S ∈ Xn of size n ≥ O
(

log∗ |X|
ε log 1

δ

)
. With

probability at least 1 − O (δ log∗ |X|), the algorithm returns an interior point of S with score at
least Ω

(
1
ε log 1

δ

)
.

Proof The utility analysis is by induction on the number of recursive calls. Specifically, let N
denote the number of recursive calls, and let Si denote the input to the ith recursive call (we identify
the top-level call with the index 0, so S0 = S, and the deepest call with the index N ). We denote
ni = |Si|. We will show that if the (i + 1)th call returns an interior point of Si+1 then, w.h.p., so
does the ith call.

For the base case, observe that every iteration of TreeLog shrinks the size of the domain log-
arithmically, and hence, N = O(log∗ |X|). In contrast, the database size only decreases additively
in each recursive call, by a factor of 3t. Therefore, when n ≥ O(t · log∗ |X|) = O( log∗ |X|

ε log 1
δ )

the last recursive call (which halts in Step 1) is performed with a database of size Ω(1
ε log 1

δ ). In this
case, by Lemma 4 (Exponential mechanism with β = δ), the last recursive call returns an interior
point of SN with score at least Ω

(
1
ε log 1

δ

)
with probability at least (1− δ).

Now consider the ith call. Let Ŝi be the database of size ni − 2t constructed in Step 2, let
π be the path selected in Step 4, and let D be the database constructed in Step 5. Assume that by
induction, with probability at least (1−2δ(N−(i+1))), the recursive call in Step 6 returned a point
`∗ that is an interior point of D with score at least Ω

(
1
ε log 1

δ

)
. This means that at least Ω

(
1
ε log 1

δ

)
points from Ŝi fall off the path π on or before level `∗ of the tree T , and at least Ω

(
1
ε log 1

δ

)
points

from Ŝi fall off on or after level `∗.
Let v`

∗
π denote the node in π at level `∗ of the tree. Since at least Ω

(
1
ε log 1

δ

)
points from Ŝi

fall off from π on or after level `∗, we get that the weight of v`
∗
π is at least Ω

(
1
ε log 1

δ

)
. Hence, by

Lemma 5 (Choosing mechanism with β = δ), the node v∗ identified in Step 7 also has weight at
least Ω

(
1
ε log 1

δ

)
with probability at least (1− δ). Suppose that the weight of v∗ is strictly less than

|Ŝi|. Then either vleft or vright is an interior point of Ŝi, and hence, it is an interior point of Si with
score at least Ω

(
1
ε log 1

δ

)
. In this case, with probability at least (1− δ), the Exponential Mechanism

in Step 9 identifies an interior point of Si with score at least Ω
(

1
ε log 1

δ

)
.

Now suppose that v∗ has weight exactly |Ŝi|, which means that v∗ = v`
∗
π (since in this case the

path π must go through v∗). Recall that at least Ω
(

1
ε log 1

δ

)
points from Ŝi fall off from π on or

before level `∗. Since v∗ = v`
∗
π has weight |Ŝi|, this means that all these points fall of π exactly on

level `∗. So both children of v∗ have positive weight. This means that either vinner-left of vinner-right

is an interior point of Ŝi, and hence, it is an interior point of Si with score at least Ω
(

1
ε log 1

δ

)
.

As we argued in the base case of the induction, with probability at least (1 − δ), the Exponential
Mechanism in Step 9 identifies an interior point of Si with score at least Ω

(
1
ε log 1

δ

)
.

Overall, with probability at least (1−2δ(N − i)), the ith call returns an interior point of Si with
score at least Ω

(
1
ε log 1

δ

)
.

Theorem 2 now follows by combining Lemma 12 and Lemma 13. In Appendix A we reduce
the sample complexity of algorithm TreeLog from Õ

(
(log∗ |X|)2

)
to Õ

(
(log∗ |X|)1.5

)
.
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Appendix A. Decomposing Algorithm TreeLog

In this section we reduce the sample complexity of algorithm TreeLog from Õ
(

(log∗ |X|)2
)

to

Õ
(

(log∗ |X|)1.5
)

. Specifically, we show the following theorem.

Theorem 14 Let X be a totally ordered domain. There is an (ε, δ)-differentially private algorithm
for solving the interior point problem on databases of size n = Õ

(
1
ε · (log∗ |X|)1.5 · log1.5(1

δ )
)

.

Recall that in the construction in Section 3, the database size is reduced (additively) by≈ 1
ε log 1

δ

in each iteration, and hence we needed to start with at least ≈ log∗ |X|
ε log 1

δ input points in order
to make it to the end of the recursion without losing all the data points. In addition, with these
parameters, algorithm TreeLog only guaranteed ≈ (ε · log∗ |X|, δ · log∗ |X|)-differential privacy.
To get (ε, δ)-privacy overall, we divided our privacy parameters by ≈ 1

log∗ |X| , which gives sample

complexity of Õ
(

(log∗ |X|)2
)

. Informally, in this section we apply composition theorems for dif-
ferential privacy to argue that it suffices to work with a privacy parameter of ≈ ε√

log∗ |X|
, which

would result in a sample complexity of Õ
(

(log∗ |X|)1.5
)

. However, as we explain next, this re-
quires some additional technical work, and does not follow from a direct application of existing
composition theorems to the construction of Section 3.

Recall that composition theorems for differential privacy state that the application of k, (ε, δ)-
differentially private mechanisms, satisfies≈ (ε

√
k, δk)-differential privacy. For example, consider

an algorithm B that interacts with its input database S only through differentially private mecha-
nisms, as follows. In every step i ∈ [k], algorithm B selects an (ε, δ)-differentially private mech-
anism Ai, and runs Ai on S to obtain an outcome ai, where the choice of Ai might depend on
the previous outcomes a1, . . . , ai−1. Assuming that this is the only interaction B has with its input
database, then these theorems state that B is ≈ (ε

√
k, δk)-differentially private.

Unraveling the recursion in Algorithm TreeLog from Section 3, we observe that it consists
of 2 log∗ |X| steps. Each of the first log∗ |X| steps computes the input to the following recursive
call, and each of the last log∗ |X| steps uses the output of the recursive call to compute an interior
point of large score. The difficulty in applying the standard composition arguments to TreeLog
arises since the first log∗ |X| steps are obviously not differentially private: They just spit out the
private input compressed into a smaller domain. (Furthermore, the path which we use to do the
compression is also highly sensitive.)
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Alternatively, one can think of Algorithm TreeLog as consisting of log∗ |X| steps, where
the first step computes all of the paths and databases throughout the execution down to the last
recursive call, and then privately identifies an interior point of the database in that last recursive call.
Afterwards, each of the next steps takes a privately computed interior point for the database at depth
d of the recursion, and privately translates it into an interior point for the database at depth d − 1.
Now, when viewing algorithm TreeLog this way, the difficulty in applying composition theorems
is that all of these log∗ |X| steps share a state which was not computed privately. Specifically,
all of these steps know (and use) the paths (or the databases) that were computed throughout the
execution. This picture is not supported by existing composition theorems, which allow only a
privately computed state to be shared among the composed mechanisms.

Loosely speaking, we overcome this difficulty by modifying TreeLog such that it becomes a
composition of O(log∗ |X|) differentially private mechanisms that do not share a non-private state.
The crucial observation that enables this modification is that once we reach a level d∗ ∈ [log∗ |X|]
of the recursion in which many points fall off the heavy path at the same node, then we can in fact
stop the recursion and privately report the level d∗. Recall that in algorithm TreeLog we sample
a random path π by proceeding randomly from a node v to one of its children with probability that
grows exponentially with the weight of the child. Now, since d∗ is the first level in the recursion in
which many points fall off the heavy path at the same node, in all levels d < d∗, when constructing
the path π we always have that the weight of one child is significantly bigger then the weight of its
sibling. This means that we will in fact proceed to the heavier child with overwhelming probability,
to the extent that we can ignore the randomness in that step and just select it deterministically.

This allows us to modify the way in which the paths are selected throughout the execution
to be deterministic. As a result, we are able to decompose TreeLog into O(log∗ |X|) different
algorithms (one for every level of the recursion), where each of these algorithms recomputes from
scratch all of the input databases up to its current level. More specifically, we decompose algorithm
TreeLog into the following 5 algorithms:

1. Algorithm ConstructPaths: This algorithm (deterministically) generates all the paths
and the databases for the entire execution. The other algorithms use ConstructPaths as
a subroutine in order to recompute the paths and the databases.

2. Algorithm StoppingPoint: This algorithm instantiates the sparse vector technique in
order to privately identify the first level in which, when following the heavy path determin-
istically, we reach a node such that both its children have large weight. In other words, this
algorithm privately computes a stopping point for the construction.

3. Algorithm OneRandomPath: This algorithm is similar to (one call of) algorithm TreeLog
that samples a path randomly. It is applied only once at the last level in the execution, where
we might not be able to select the path deterministically.

4. Algorithm LevelUp: This algorithm gets a parameter d and a point y which is an interior
point of the (d+1)th database that algorithm ConstructPaths generates, and translates y
into an interior point of the dth database that ConstructPaths generates. This algorithm
is executed up to log∗ |X| times (with different parameters).

5. Algorithm HeavyPaths: This is a wrapper algorithm that runs the previous 4 algorithms.
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Before presenting these five algorithms, we recall the sparse vector technique of Dwork et al.
(2009), which we use in order to compute a stopping point for the construction. Consider a sequence
of low sensitivity functions f1, f2, . . . , fm, which are given (one by one) to a data curator (holding
a database S). Algorithm AboveThreshold by Dwork et al. (2009) privately identifies the first
query fi whose value fi(S) is greater than some threshold. Formally,

Theorem 15 (Algorithm AboveThreshold Dwork et al. (2009)) There exists an (ε, 0) differ-
entially private algorithmA such that for m rounds, after receiving a sensitivity-1 query fi : U∗ →
R, algorithm A either outputs > and halts, or outputs ⊥ and waits for the next round. If A was
executed with a database S ∈ U∗ and a threshold parameter c, then the following holds with prob-
ability (1− β): (i) If a query fi was answered by > then fi(S) ≥ c− 8

ε log(2m/β); (ii) If a query
fi was answered by ⊥ then fi(S) ≤ c+ 8

ε log(2m/β).

We are now ready to present our improved construction for privately identifying an interior
point. We begin by presenting algorithms ConstructPaths and StoppingPoint. For their
analysis, we need the following notation. Let λ be a global constant, and let k = λ

ε ·log
(

1
δ · log∗ |X|

)
.

Consider the functions fd defined in algorithm StoppingPoint. For a database S ∈ Xn we de-
fine d∗(S) to be the smallest index such that fd∗(S)(S) ≥ k.

In the next lemma we analyze how ConstructPaths behaves on neighboring databases.

Lemma 16 Let S ∈ Xn and S′ ∈ Xn be two neighboring databases, and let t ≥ 2k = 2λ
ε ·

log
(

1
δ · log∗ |X|

)
. Let {(Xd, Sd, Td, πd)}

log∗ |X|
d=1 and {(Xd, S

′
d, Td, π

′
d)}

log∗ |X|
d=1 denote the outcomes

of the executions of ConstructPaths with parameter t on S and on S′, respectively. Then for
every d < d∗(S) we have that Sd and S′d are neighboring databases.

Proof The proof is by induction on d. For the base case, observe that S1 = S and S′1 = S′

are neighboring databases. Now fix d < d∗(S), and suppose that Sd−1 and S′d−1 are neighboring
databases. Since d is strictly smaller than d∗(S), we have that all the elements of Sd have multiplic-
ities less than k , λ

ε · log
(

1
δ · log∗ |X|

)
. By the way Sd is constructed, this means that less than k

elements from Sd−1 fall off the path πd−1 in every single node of Td−1. Recall that when construct-
ing the path πd−1, every node in the path has weight at least t (except maybe for the last node in the
path whose weight might be t/2). This means that throughout the construction of πd−1 in Step 4
of ConstructPaths, the weight of the child we proceed to (in Step 4c) is always larger than the
weight of its sibling by at least t − k � 1. Since Sd−1 and S′d−1 are neighboring databases by the
induction assumption, this gap is also bigger than 1 when constructing π′d−1 during the execution
of S′. As a result, the construction of π′d−1 proceeds identically to the construction of πd−1, except
possibly that one path might be longer than the other. So πd−1 and π′d−1 are either exactly the same
path, or one of them is a prefix of the other. As in the analysis of algorithm TreeLog in Section 3,
in such a case we have that the resulting Sd and S′d are neighboring databases.

The next lemma specifies the utility of algorithm StoppingPoint.

Lemma 17 Let S ∈ Xn be a database of size n = Ω
(

log∗ |X|
ε · log

(
1
δ · log∗ |X|

))
, and let d̂

denote the outcome of StoppingPoint on S. Then, with probability at least 1− δ we have that
d̂ ≤ d∗(S), and that fd̂(S) ≥ Ω(k) = Ω

(
1
ε · log

(
1
δ · log∗ |X|

))
.
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Algorithm 2 ConstructPaths
Input: A database S ∈ Xn where X is a totally ordered domain. We assume that |X| is a power of
2 (otherwise extend X to the closest power of 2).
Global parameter: t.

1. If |S| ≤ 10t or if |X| = O(1) then halt. Otherwise continue to the next step.

2. Sort S and let Ŝ ∈ Xn−2t be a database containing all elements of S except for the t largest
and t smallest elements.

3. Let T be a complete binary tree with |X| leaves that correspond to elements of X . A leaf u
has weight w(u) = |{x ∈ Ŝ : x = u}|. A node v has weight w(v) that equals the sum of the
weights of its children.

4. Let π be the path in T constructed as follows (starting from the root):

(a) Let v be the current node in the path.

(b) If v is a leaf, or if w(v) ≤ t, then v is the last node in π.

(c) Else, let v0, v1 be the two children of v in T . Proceed to the child vb with larger weight
w(vb), where b ∈ {0, 1} and where ties are broken arbitrarily.

5. Initialize D = ∅. Add elements to D by following the path π starting from the root:

(a) If |D| ≥ n− 3t then goto Step 6.

(b) Let v be the current node in the path, and let ` denote its level in T (the root is in level 0
and the leaves are in level log |X|).

(c) If v is the last node in π then add (n− 3t− |D|) copies of ` to D and goto Step 6.

(d) Else, let vnext be the next node in π, and let vother be the other child of v in T . Add
min {w(vother), n− 3t− |D|} copies of ` toD, and goto Step 5a with vnext as the current
node.

6. Output the domain X , the database S, the tree T , and the path π.

7. Execute ConstructPaths recursively on D.

Algorithm 3 StoppingPoint
Input: Parameters ε, δ and a database S ∈ Xn where X is a totally ordered domain.
Additional input: Parameter t = 2k = 2λ

ε · log
(

1
δ · log∗ |X|

)
, where λ is a global constant.

1. Instantiate algorithm AboveThreshold (see Theorem 15) with the database S, privacy
parameter ε, and threshold c = k/2.

2. For d = 1, 2, . . . , log∗ |X| do

(a) Define the following query fd : X∗ → N. To compute fd on a database S, apply
algorithm ConstructPaths on S with parameter t = 4c, and let Sd ∈ (Xd)

∗ be the
dth database that it outputs. Then fd(S) = maxy∈Xd |{x ∈ Sd : x = y}|.

(b) Query algorithm AboveThreshold on fd. If the answer is > then halt and output d.
Otherwise continue.

17
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Lemma 17 follows directly from the utility properties of algorithm AboveThreshold (see
Theorem 15; use β = δ, notice that the additive error of AboveThreshold is at most k/2 for an
appropriate choice of λ), after observing that when n = Ω

(
log∗ |X|

ε · log
(

1
δ · log∗ |X|

))
there must

exist an index d such that fd(S) ≥ k and therefore d∗(S) is well defined. This follows since after
log∗ |X| iterations of algorithm ConstructPaths we get that the size of the domain is constant,
while the size of the database is still at least n − O(t log∗ |X|). We now proceed with the privacy
analysis of Algorithm StoppingPoint.

Lemma 18 Algorithm StoppingPoint is (ε, δ)-differentially private.

Proof Observe that the outcome of algorithm StoppingPoint is a post-processing of the out-
comes of algorithm AboveThreshold. Hence, it suffices to argue that the sequence of outcomes
obtained from algorithm AboveThreshold satisfies (ε, δ)-differential privacy. Intuitively, but
somewhat inaccurately, this will be done by showing that with probability (1 − δ) all the queries
issued to algorithm AboveThreshold are of sensitivity 1, in which case AboveThreshold
guarantees (ε, 0)-differential privacy.

Let S ∈ Xn and S′ ∈ Xn be two neighboring databases, and let {(Xd, Sd, Td, πd)}
log∗ |X|
d=1 and

{(Xd, S
′
d, Td, π

′
d)}

log∗ |X|
d=1 denote the outcomes of the executions of ConstructPaths on S and

on S′, respectively. By Lemma 16, for every d < d∗(S) it holds that Sd and S′d are neighboring
databases. Therefore, for every d < d∗(S), we have that |fd(S) − fd(S′)| ≤ 1 by the definition of
the query fd.

We now argue that also for d , d∗(S) we have that |fd(S) − fd(S
′)| ≤ 1, even though Sd

and S′d might not be neighboring databases. Recall that fd(S) equals to the maximal multiplicity
of an element of Sd. Equivalently, fd(S) is determined by the weight (w.r.t. Sd−1) of the heaviest
node that falls off the previous path πd−1. Suppose that πd−1 and π′d−1 are not the same path and
that none of them is a prefix of the other (as otherwise Sd and S′d would be neighboring databases
and then |fd(S) − fd(S′)| ≤ 1). Let u be the last node common to πd−1 and π′d−1, and let v0, v1

denote its children. Since Sd−1 and S′d−1 are neighboring, we have that |w(v0) − w′(v0)| ≤ 1 and
that |w(v1) − w′(v1)| ≤ 1, where here w and w′ denote the weight of the elements of Td−1 during
the executions on S and on S′, respectively. In addition, since one path proceeds to v0 and the
other proceeds to v1, we have that |w(v0)− w(v1)| ≤ 2 and that |w′(v0)− w′(v1)| ≤ 2. Note that
z , min{w(v0), w(v1)} elements fall off the path πd−1 at the node v, and that less than z elements
can fall off this path after node v, since we would be left with only max{w(v0), w(v1)} ≤ z + 2
potential elements that can fall off the path after v (which means that the maximal fall could be of
size at most (z + 2)/2). Hence, fd(S) and fd(S′) are determined by the weight (w.r.t. Sd−1 and
S′d−1) of the heaviest nodes that fall off the paths πd−1 and π′d−1, before or at the node v. Since
the paths are the same until v, and since Sd−1 and S′d−1 are neighboring databases, we get that
|fd(S)− fd(S′)| ≤ 1.

So, for the first d∗(S) queries that are issued to algorithm AboveThreshold we have that
|fd(S) − fd(S′)| ≤ 1. Moreover, by Lemma 17, with probability 1 − δ, other queries are never
issued to algorithm AboveThreshold. The lemma therefore follows from the privacy prop-
erties of AboveThreshold. Specifically, let τ and τ ′ denote the sequence of outcomes of
AboveThreshold during the executions of algorithm StoppingPoint on S and on S′, re-
spectively. Let T be some set of possible such sequences, let Tlong ⊂ T contain all sequences

18
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longer than d∗(S), and let Tshort = T \ Tlong. We have that,

Pr[τ ∈ T ] = Pr[τ ∈ Tshort] + Pr[τ ∈ Tlong]

≤ eε · Pr[τ ′ ∈ Tshort] + δ

≤ eε · Pr[τ ′ ∈ T ] + δ.

We now present the analysis of algorithm OneRandomPath.

Lemma 19 Fix two neighboring databases S, S′ ∈ Xn, and consider running OneRandomPath
on S and on S′ with parameter d < d∗(S). Then for every set of outcomes T we have

Pr[OneRandomPath(S) ∈ T ] ≤ e6ε·logn · Pr[OneRandomPath(S′) ∈ T ] + 4δn · e4ε·logn.

The proof of Lemma 19 is essentially identical to the privacy analysis of (a single iteration
of) algorithm TreeLog (after applying Lemma 16 to argue that in the executions on S and on S′

we have that the resulting Sd and S′d are neighboring databases). We omit the proof for brevity
(see Lemmas 11 and 12). (The constants are different than in Lemma 12 since OneRandomPath
applies the Choosing Mechanism twice where TreeLog applies it only once.)

Lemma 20 Let t = 2k = 2λ
ε · log

(
1
δ · log∗ |X|

)
, where λ is a global constant, and let S ∈ Xn

be a database. Let {(Xd, Sd, Td, πd)}
log∗ |X|
d=1 denote the outcomes of the execution of algorithm

ConstructPaths with parameter t on S. Let algorithm OneRandomPath be executed on S
with parameters t, d such that fd+1(S) ≥ Ω

(
1
ε log 1

δ

)
, where the function fd+1(·) is defined in

algorithm StoppingPoint. Then, with probability at least 1 − δ, the outcome y is an interior
point of Sd with depth at least Ω(t).

Proof The proof is almost identical to the utility analysis of algorithm TreeLog, with the follow-
ing exception. As we next explain, the assumption that fd+1(S) ≥ Ω

(
1
ε log 1

δ

)
means that in the

database D (constructed in Step 4) there is at least one element with large multiplicity. Hence, in-
stead of applying the recursion onD (as we did in algorithm TreeLog), we could use the Choosing
Mechanism (Lemma 5 with confidence β = δ) in order to identify such an element, which would
be an interior point of D with large score.

The assumption that fd+1(S) ≥ Ω
(

1
ε log 1

δ

)
means that if we were to generate the path π

deterministically (as is done in algorithm ConstructPaths) then the resulting databaseD would
be guaranteed to contain at least one element with large multiplicity. Let πdeter denote the path that
would be obtained by following the heaviest nodes deterministically. We have established that if
π = πdeter, then D contains an element with large multiplicity. Otherwise, if π 6= πdeter, then π
“breaks off” from the heaviest path at some node v. Since the path πdeter proceeds to a different
child of v than π, we have that “a lot” of elements fall off of the path π at the node v. Therefore,
in that case we again get that the resulting database D contains at least one element with large
multiplicity.

We now proceed with the analysis of algorithm LevelUp. Recall that this algorithm gets
a recursive level d and a level i in Td which is an interior point of the (d + 1)th database that
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Algorithm 4 OneRandomPath
Input: Parameters ε, δ and a database S ∈ Xn where X is a totally ordered domain. We assume
that |X| is a power of 2 (otherwise extend X to the closest power of 2).
Additional inputs: Parameter t = 2k = 2λ

ε ·log
(

1
δ · log∗ |X|

)
, where λ is a global constant, current

level d ∈ [log∗ |X|].
1. Apply algorithm ConstructPaths on S and let (Xd, Sd, Td, πd) denote its dth outputs.

2. Sort Sd and let Ŝd ∈ Xn−2t be a database containing all elements of Sd except for the t largest
and t smallest elements.

3. Let T be a complete binary tree with |X| leaves that correspond to elements of X . A leaf u
has weight w(u) = |{x ∈ Ŝd : x = u}|. A node v has weight w(v) that equals the sum of the
weights of its children.

4. Sample a path π in T , starting from the root and constructed by the following process:

(a) Let v be the current node in π.

(b) If v is a leaf, or if w(v) ≤ t, then v is the last node in π.

(c) Else, let v0, v1 be the two children of v in T . If one of them has weight 0 then proceed to
the other child. Otherwise, proceed to vb (for b ∈ {0, 1}) with probability proportional
to exp(ε · w(vb)).

5. Initialize D = ∅. Add elements to D by following the path π starting from the root:

(a) If |D| ≥ n− 3t then goto Step 6.

(b) Let v be the current node in the path, and let ` denote its level in T (the root is in level 0
and the leaves are in level log |X|).

(c) If v is the last node in π then add (n− 3t− |D|) copies of ` to D and goto Step 6.

(d) Else, let vnext be the next node in π, and let vother be the other child of v in T . Add
min {w(vother), n− 3t− |D|} copies of ` toD, and goto Step 5a with vnext as the current
node.

6. Use the Choosing Mechanism to choose an element i ∈ [log |X|] with large multiplicity in D.

7. Use the Choosing Mechanism to choose a node v∗ at level i of Td with large weight w(v∗).

8. Let vleft and vright be the left-most and right-most leaves, respectively, of the sub-tree rooted at
v∗. Also let vinner-left be the right-most leaf of the sub-tree rooted at the left child of v∗, and let
vinner-right be the left-most leaf of the sub-tree rooted at the right child of v∗.

9. Use the Exponential Mechanism to return y ∈ {vleft, vright, vinner-left, vinner-right}with large qual-
ity

q(Sd, y) = min { |{x ∈ Sd : x ≤ y}|, |{x ∈ Sd : x ≥ y}| } .
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Algorithm 5 LevelUp
Input: Parameters ε, δ and a database S ∈ Xn where X is a totally ordered domain. We assume
that |X| is a power of 2.
Additional inputs: Parameter t = 2k = 2λ

ε · log
(

1
δ · log∗ |X|

)
, where λ is a global constant, the

current recursive level d ∈ [log∗ |X|], and a level i in the tree Td (which is an interior point in Sd+1).

1. Apply algorithm ConstructPaths on S with the parameter t and let (Xd, Sd, Td, πd) de-
note its dth output.

2. Sort Sd and let Ŝd be a database containing all elements of Sd except for the t largest and t
smallest elements.

3. A leaf u of the tree Td has weight w(u) = |{x ∈ Ŝd : x = u}|. A node v has weight w(v)
that equals the sum of the weights of its children. Use the Choosing Mechanism to choose a
node v∗ at level i of Td with large weight w(v∗).

4. Let vleft and vright be the left-most and right-most leaves, respectively, of the sub-tree rooted at
v∗. Also let vinner-left be the right-most leaf of the sub-tree rooted at the left child of v∗, and let
vinner-right be the left-most leaf of the sub-tree rooted at the right child of v∗.

5. Use the Exponential Mechanism to return y ∈ {vleft, vright, vinner-left, vinner-right}with large qual-
ity

q(Sd, y) = min { |{x ∈ Sd : x ≤ y}|, |{x ∈ Sd : x ≥ y}| } .

algorithm ConstructPaths generates, and translates i into an interior point of the dth database
that ConstructPaths generates. The following lemma specifies the utility properties of the
algorithm.

Lemma 21 Let t = 2k = 2λ
ε · log

(
1
δ · log∗ |X|

)
, and let S ∈ Xn be a database. Let

{(Xd, Sd, Td, πd)}
log∗ |X|
d=1 denote the outcomes of the execution of ConstructPaths with pa-

rameter t on S. Let algorithm LevelUp be executed on S with a parameters t, d, i such that i is an
interior point of the database Sd+1 with depth at least Ω

(
1
ε log 1

δ

)
. Then, with probability at least

1− δ, the algorithm returns an interior point of Sd with depth at least Ω(t).

Proof The lemma follows from similar arguments to those given in Section 3. In more details,
suppose that i is an interior point of the database Sd+1, with depth at least Ω

(
1
ε log 1

δ

)
. This means

that at least Ω
(

1
ε log 1

δ

)
points from Ŝd fall off the path πd on or before level i of the tree Td, and at

least Ω
(

1
ε log 1

δ

)
points from Ŝd fall off the path πd on or after level i.

Let viπd denote the node of πd at level i of the tree. Since at least Ω
(

1
ε log 1

δ

)
points from Ŝd

fall off from πd on or after level i, we get that the weight of viπd is at least Ω
(

1
ε log 1

δ

)
. Hence,

by the properties of the Choosing Mechanism (Lemma 5 with β = δ/2), the node v∗ identified in
Step 3 has weight at least Ω

(
1
ε log 1

δ

)
with probability at least (1 − δ/2). In that case, similarly

to the analysis in Section 3, at least one of {vleft, vright, vinner-left, vinner-right} is an interior point of
Ŝd, and hence, an interior point of Sd with depth at least Ω(t). It follows that the Exponential
Mechanism (Lemma 4 with β = δ/2) identifies such an interior point of Sd with depth at least Ω(t)
with probability at least (1− δ/2).

21



PRIVATELY LEARNING THRESHOLDS: CLOSING THE EXPONENTIAL GAP

The following lemma specifies the privacy properties of algorithm LevelUp.

Lemma 22 Fix two neighboring databases S, S′ ∈ Xn, and consider running algorithm LevelUp
on S and on S′ with parameter d < d∗(S). Then for every set of outcomes T we have

Pr[LevelUp(S) ∈ T ] ≤ e2ε · Pr[LevelUp(S′) ∈ T ] + 2δ.

Proof Let Sd and S′d denote the databases defined in Step 1 of the executions of LevelUp on S
and on S′, respectively. Since d < d∗(S), by Lemma 16 we have that Sd and S′d are neighboring
databases. Therefore, the databases Ŝd and Ŝ′d defined in Step 2 of the executions are also neighbor-
ing. We then access one of these neighboring databases using the Choosing Mechanism (in Step 3)
and using the Exponential Mechanism (in Step 5), and hence, Lemma 22 follows from the privacy
properties of these two private mechanisms (and from composition).

Algorithm 6 HeavyPaths
Input: Parameters ε, δ and a database S ∈ Xn where X is a totally ordered domain. We assume
that |X| is a power of 2.

1. Let t = 2k = 2λ
ε · log

(
1
δ · log∗ |X|

)
, where λ is a global constant. Apply algorithm

StoppingPoint on S with parameter t and let d∗ denote its output.

2. Run algorithm OneRandomPath on S with parameters t and d = d∗ − 1. Let yd∗−1 denote
its outcome.

3. For d = d∗ − 2 down to 1 do:

(a) Run algorithm LevelUp on S with parameters d and t, and with the point yd+1. Denote
the outcome as yd.

4. Return y1.

We are now ready to present and analyze algorithm HeavyPaths that runs algorithms
StoppingPoint, OneRandomPath, and LevelUp in order to (privately) identify an interior
point of its input database. The following lemma specifies the utility guarantees of the algorithm.

Lemma 23 Let algorithm HeavyPaths be executed on a database S ∈ Xn of size

n = Ω

(
log∗ |X|

ε
· log

(
1

δ
· log∗ |X|

))
.

Then the algorithm returns an interior point of S with probability at least 1−O (δ · log∗ |X|).

Proof Let {(Xd, Sd, Td, πd)}
log∗ |X|
d=1 denote the outcomes of the execution of ConstructPaths

with parameter t on S. First, by Lemma 17, with probability at least (1− δ) we have that the value
d∗ computed using algorithm StoppingPoint is such that fd∗(S) ≥ Ω (k). Then, by Lemma 20,
with probability at least (1 − δ), the point yd∗−1 computed by algorithm OneRandomPath is an
interior point of Sd∗−1 with depth at least Ω(t). Therefore, by induction using Lemma 21, with
probability at least (1 − δ · log∗ |X|), for every 1 ≤ d ≤ d∗ − 2 we have that yd (computed by
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algorithm LevelUp) is an interior point of the database Sd with depth at least Ω(t). This concludes
the proof as S1 = S and therefore y1 is an interior point of S.

We now proceed with the privacy analysis of algorithm HeavyPaths. For two random vari-
ables Z0, Z1 we write Z0 ≈(ε,δ) Z1 to mean that for any event T and for any b ∈ {0, 1} it holds that
Pr[Zb ∈ T ] ≤ eε · Pr[Z1−b ∈ T ] + δ.

Lemma 24 Algorithm HeavyPaths is
(
ε̄, δ̄
)
-differentially private for

ε̄ = O

(
ε ·

√
log∗ |X| · log

1

δ · log∗ |X|
+ ε2 · log∗ |X|+ ε · log n

)
,

δ̄ = O
(
δ · (n+ log∗ |X|) · eε̄

)
.

Proof Let Bd denote an algorithm consisting of steps 2 and 3 of algorithm HeavyPaths, with d
as the parameter from Step 1.

Fix two neighboring databases S, S′ ∈ Xn. For every d ≤ d∗(S), by Lemmas 22 and 19 we
have

LevelUp(S) ≈(2ε,2δ) LevelUp(S′), and OneRandomPath(S) ≈(ε′,δ′) OneRandomPath(S′)

for ε′ = 6ε · log n and δ′ = 4δn ·e4ε·logn. Therefore, applying composition theorems for differential
privacy (see (Dwork et al., 2010); we assume that ε ≤ 1) to the execution of OneRandomPath
and the (at most) log∗ |X| executions of LevelUp, we get that Bd(S) ≈(ε̂,δ̂) Bd(S

′), for

δ̂ = O
(
δ · log∗ |X|+ δn · e4ε logn

)
, and

ε̂ = O

(
ε ·

√
log∗ |X| · log

1

δ · log∗ |X|
+ ε2 · log∗ |X|+ ε · log n

)
.

Consider the executions of HeavyPaths on S and on S′, and let d∗ and d∗′ denote the values
obtained in Step 1 of the execution on S and on S′, respectively. By Lemmas 17 and 18, for every
set of outcomes T we have that

Pr[HeavyPaths(S) ∈ T ] ≤

≤ Pr[d∗ > d∗(S)] +
∑

d≤d∗(S)

Pr[d∗ = d] · Pr[HeavyPaths(S) ∈ T |d∗ = d]

= Pr[d∗ > d∗(S)] +
∑

d≤d∗(S)

Pr[d∗ = d] · Pr[Bd(S) ∈ T ]

≤ δ +
∑

d≤d∗(S)

(
eε · Pr[d∗′ = d] + δ

)
·
(
eε̂ · Pr[Bd(S′) ∈ T ] + δ̂

)
≤ 4δ̂ · eε̂ · log∗ |X|+ eε̂+ε ·

∑
d≤d∗(S)

Pr[d∗′ = d] · Pr[Bd(S′) ∈ T ]

≤ 4δ̂ · eε̂ · log∗ |X|+ eε̂+ε · Pr[HeavyPaths(S′) ∈ T ].

Theorem 14 now follows by combining Lemma 23 and Lemma 24.
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