
Proceedings of Machine Learning Research vol 125:1–22, 2020 33rd Annual Conference on Learning Theory

Universal Approximation with Deep Narrow Networks

Patrick Kidger KIDGER@MATHS.OX.AC.UK

Terry Lyons TLYONS@MATHS.OX.AC.UK

Mathematical Institute, University of Oxford

Editors: Jacob Abernethy and Shivani Agarwal

Abstract
The classical Universal Approximation Theorem holds for neural networks of arbitrary width and
bounded depth. Here we consider the natural ‘dual’ scenario for networks of bounded width and
arbitrary depth. Precisely, let n be the number of inputs neurons, m be the number of output
neurons, and let ρ be any nonaffine continuous function, with a continuous nonzero derivative at
some point. Then we show that the class of neural networks of arbitrary depth, width n +m + 2,
and activation function ρ, is dense in C(K;Rm) for K ⊆ Rn with K compact. This covers every
activation function possible to use in practice, and also includes polynomial activation functions,
which is unlike the classical version of the theorem, and provides a qualitative difference between
deep narrow networks and shallow wide networks. We then consider several extensions of this
result. In particular we consider nowhere differentiable activation functions, density in noncompact
domains with respect to the Lp-norm, and how the width may be reduced to just n + m + 1 for
‘most’ activation functions.
Keywords: universal approximation, neural network, deep, narrow, bounded width
MSC (2020): 41A46, 41A63, 68T07

1. Introduction

Recall the classical Universal Approximation Theorem (Cybenko, 1989; Hornik, 1991; Pinkus,
1999).

Theorem 1.1 Let ρ : R→ R be any continuous function. LetN ρ
n represent the class of feedforward

neural networks with activation function ρ, with n neurons in the input layer, one neuron in the
output layer, and one hidden layer with an arbitrary number of neurons. Let K ⊆ Rn be compact.
Then N ρ

n is dense in C(K) if and only if ρ is nonpolynomial.

Extending this result to any bounded number of hidden layers is easy, by simply requiring that
the ‘extra’ hidden layers approximate the identity function. Thus the classical theorem addresses
the case of arbitrary width and bounded depth.

This motivates a natural ‘dual’ scenario, in which the class of neural networks is of bounded
width and arbitrary depth. We refer to networks of this type as deep, narrow networks. Natural
questions are then what activation functions may be admitted, in what topologies density may be
established, and how narrow the network may be made.

Notable existing work on this problem has been performed by Lu et al. (2017) and Hanin and
Sellke (2017), however both of these studies only consider the ReLU activation function. In partic-
ular they rely on its explicit form and friendly algebraic properties.

c© 2020 P. Kidger & T. Lyons.

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

The primary aim of this article is to addess this limitation, by considering essentially arbitrary
activation functions. In particular we will find that polynomial activation functions are valid choices,
meaning that deep and narrow networks behave distinctly differently to shallow and wide networks.
We also provide some results on the choice of topology and the width of the network.

The rest of the paper is laid out as follows. Section 2 discusses existing work. Section 3 provides
a summary of our results; these are then presented in detail in Section 4. Section 5 is the conclusion.
A few proofs are deferred to the appendices.

2. Existing work

Some positive results have been established showing density of particular deep narrow networks.
Hanin and Sellke (2017) have shown that deep narrow networks with the ReLU activation func-

tion are dense in C(K;Rm) for K ⊆ Rn compact, and require only width n+m. Lu et al. (2017)
have shown that deep narrow networks with the ReLU activation function are dense in L1(Rn), with
width n+ 4. Lin and Jegelka (2018) have shown that a particular description of residual networks,
with the ReLU activation function, are dense in L1(Rn).

We are not aware of any previously obtained positive results for activation functions other than
the ReLU, or for the general case of Lp(Rn;Rm) for p ∈ [1,∞) and m ∈ N.

Moving on, some negative results have been established, about insufficiently wide networks.
Consider the case of a network with n input neurons and a single output neuron. For certain

activation functions, Johnson (2019) shows that width n is insufficient to give density in C(K). For
the ReLU activation function, Lu et al. (2017) show that width n is insufficient to give density in
L1(Rn), and that width n − 1 is insufficient in L1([−1, 1]n), whilst Hanin and Sellke (2017) show
that width n is insufficient to give density in C(K).

Everything discussed so far is in the most general case of approximating functions on Euclidean
space. There has also been some related work for classification tasks (Beise et al., 2018; Szymanski
and McCane, 2012; Rojas, 2003; Nguyen et al., 2018). There has also been some related work in
the special case of certain finite domains; Sutskever and Hinton (2008); Le Roux and Bengio (2010)
consider distributions on {0, 1}n. Montúfar (2014) consider distributions on {0, 1, . . . , q − 1}n.

3. Summary of Results

Definition 3.1 Let ρ : R → R and n,m, k ∈ N. Then let NN ρ
n,m,k represent the class of functions

Rn → Rm described by feedforward neural networks with n neurons in the input layer, m neurons
in the output layer, and an arbitrary number of hidden layers, each with k neurons with activation
function ρ. Every neuron in the output layer has the identity activation function.

Our main result is the following theorem.

Theorem 3.2 Let ρ : R→ R be any nonaffine continuous function which is continuously differen-
tiable at at least one point, with nonzero derivative at that point. Let K ⊆ Rn be compact. Then
NN ρ

n,m,n+m+2 is dense in C(K;Rm) with respect to the uniform norm.

The key novelty here is the ability to handle essentially arbitrary activation functions, and in
particular polynomials, which is a qualitative difference compared to shallow networks. In particular
we have not relied on the explicit form of the ReLU, or on its favourable algebraic properties.

2

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

The technical condition is very weak; in particular it is satisfied by every piecewise-C1 function
not identically zero. Thus any activation function that one might practically imagine using on a
computer must satisfy this property.

Theorem 3.2 is proved by handling particular classes of activation functions as special cases.

Proposition 4.9 Let ρ : R → R be any continuous nonpolynomial function which is continuously
differentiable at at least one point, with nonzero derivative at that point. Let K ⊆ Rn be compact.
Then NN ρ

n,m,n+m+1 is dense in C(K;Rm) with respect to the uniform norm.

Proposition 4.11 Let ρ : R → R be any nonaffine polynomial. Let K ⊆ Rn be compact. Then
NN ρ

n,m,n+m+2 is dense in C(K;Rm) with respect to the uniform norm.

It is clear that Propositions 4.9 and 4.11 together imply Theorem 3.2. Note the slight difference
in their required widths. Furthermore we will see that their manner of proofs are rather different.

As a related result, some of the techniques used may also be shown to extend to certain unfriendly-
looking activation functions, that do not satisfy the technical condition of Theorem 3.2.

Proposition 4.15 Let w : R→ R be any bounded continuous nowhere differentiable function. Let
ρ(x) = sin(x) + w(x)e−x, which will also be nowhere differentiable. Let K ⊆ Rn be compact.
Then NN ρ

n,m,n+m+1 is dense in C(K;Rm) with respect to the uniform norm.

Moving on to a different related result, we consider the case of a noncompact domain.

Theorem 4.16 Let ρ be the ReLU. Let p ∈ [1,∞). Then NN ρ
n,m,n+m+1 is dense in Lp(Rn;Rm)

with respect to the usual Lp norm.

Whilst only about the ReLU, the novelty of this result is how it generalises (Lu et al., 2017,
Theorem 1) in multiple ways: to a narrower width, multiple outputs, and Lp instead of just L1.

As a final related result, we observe that the smaller width of n+m+1 also suffices for a large
class of polynomials. Together with Proposition 4.9, this means that the smaller width of n+m+1
suffices for ‘most’ activation functions.

Proposition 4.17 Let ρ : R→ R be any polynomial for which there exists a point α ∈ R such that
ρ′(α) = 0 and ρ′′(α) 6= 0. Let K ⊆ Rn be compact. Then NN ρ

n,m,n+m+1 is dense in C(K;Rm)
with respect to the uniform norm.

Remark 3.3 Every proof in this article is constructive, and can in principle be traced so as to
determine how depth changes with approximation error. We have elected not to present this, as
depth-efficient versions of our constructions quickly become unclear to present. Furthermore this
would require tracing the (constructive) proofs of the Stone–Weierstrass Theorem and the classical
Universal Approximation Theorem, to which we appeal.

4. Universal approximation

4.1. Preliminaries

A neuron is usually defined as an activation function composed with an affine function. For ease,
we shall extend the definition of a neuron to allow it to represent a function of the form ψ ◦ ρ ◦ φ,
where ψ and φ are affine functions, and ρ is the activation function. This does not increase the

3

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

representational power of the network, as the new affine functions may be absorbed into the affine
parts of the next layer, but it will make the neural representation of many functions easier to present.
We refer to these as enhanced neurons. It is similarly allowable to take affine combinations of
multiple enhanced neurons; we will use this fact as well.

One of the key ideas behind our constructions is that most reasonable activation functions can be
taken to approximate the identity function. Indeed, this is essentially the notion that differentiability
captures: that a function is locally affine. This makes it possible to treat neurons as ‘registers’, in
which information may be stored and preserved through the layers. Thus our constructions have
strong overtones of space-limited algorithm design in traditional computer science settings; in our
proofs we will often think of ‘storing’ a value in a particular register.

Lemma 4.1 Let ρ : R → R be any continuous function which is continuously differentiable at
at least one point, with nonzero derivative at that point. Let L ⊆ R be compact. Then a single
enhanced neuron with activation function ρmay uniformly approximate the identity function ι : R→
R on L, with arbitrarily small error.

Proof By assumption, as ρ is continuously differentiable, there exists [a, b] ⊆ R with a 6= b, on
some neighbourhood of which ρ is differentiable, and α ∈ (a, b) at which ρ′ is continuous, and for
which ρ′(α) is nonzero.

For h ∈ R \ {0}, let φh(x) = hx+ α, and let

ψh(x) =
x− ρ(α)
hρ′(α)

.

Then ιh = ψh ◦ ρ ◦ φh is of the form that an enhanced neuron can represent. Then for all u ∈ [a, b],
by the Mean Value Theorem there exists ξu between u and α such that

ρ(u) = ρ(α) + (u− α)ρ′(ξu),

and hence

ιh(x) = (ψh ◦ ρ ◦ φh)(x)
= ψh

(
ρ(α) + hxρ′(ξhx+α)

)
=
xρ′(ξhx+α)

ρ′(α)

for h sufficiently small that φh(L) ⊆ [a, b].
Now let ρ′ have modulus of continuity ω on [a, b]. Let ι : R→ R represent the identity function.

Then for all x ∈ L,

|ιh(x)− ι(x)| = |x|
∣∣∣∣ρ′(ξhx+α)− ρ′(α)ρ′(α)

∣∣∣∣
6
|x|
|ρ′(α)|

ω(hx),

and so ιh → ι uniformly over L.

4

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

Notation Throughout the rest of this paper ιh will be used to denote such an approximation to the
identity function, where ιh → ι uniformly as h→ 0.

An enhanced neuron may be described as performing (for example) the computation x 7→ ιh(4x+
3). This is possible as the affine transformation x 7→ 4x+ 3 and the affine transformation φh (from
the description of ιh) may be combined together into a single affine transformation.

Now that we can approximate the identity funciton, another important ingredient will be a model
that actually uses identity functions for us to approximate! As such we now consider the ‘Register
Model’, which represents a simplification of a neural network.

Proposition 4.2 (Register Model) Let ρ : R→ R be any continuous nonpolynomial function. Let
Iρn,m,n+m+1 represent the class of neural networks with n neurons in the input layer, m neurons
in the output layer, and an arbitrary number of hidden layers, each with n + m neurons with the
identity activation function, and one neuron with activation function ρ. Let K ⊆ Rn be compact.
Then Iρn,m,n+m+1 is dense in C(K;Rm).

The Register Model is somewhat similar to the constructions used in (Lu et al., 2017; Hanin and
Sellke, 2017), although their constructions are specific to the ReLU. As such we defer the proof to
Appendix A.

Next we consider another different simplification, which we refer to as the ‘Square Model’. Its
proof is a little involved, so for clarity we present it in a new subsection.

4.2. Square Model

Lemma 4.3 One layer of two enhanced neurons, with square activation function, may exactly
represent the multiplication function (x, y) 7→ xy on R2.

Proof Let the first neuron compute η = (x + y)2. Let the second neuron compute ζ = (x − y)2.
Then xy = (η − ζ)/4. (This final affine transformation is allowed between enhanced neurons.)

Lemma 4.4 Fix L ⊆ R2 compact. Three layers of two enhanced neurons each, with square activa-
tion function, may uniformly approximate (x, y) 7→ (x2, y(x+ 1)) arbitrarily well on L.

Proof Let h, s ∈ R\{0}. Let η1, η2, η3 represent the first neuron in each layer; let ζ1, ζ2, ζ3 represent
the second neuron in each layer. Let ιh represent an approximation to the identity in the manner of
Lemma 4.1. Using ‘≈’ as an informal notation to represent ‘equal to up to approximation of the
identity’, assign values to η1, η2, η3 and ζ1, ζ2, ζ3 as follows:

η1 = ιh(x) ζ1 = (x+ sy + 1)2

≈ x, = x2 + 2sxy + s2y2 + 2x+ 2sy + 1,

η2 = (η1)
2 ζ2 = ιh(ζ1 − 2η1 − 1)

≈ x2, ≈ x2 + 2sxy + s2y2 + 2sy,

η3 = ιh(η2) ζ3 = ιh((ζ2 − η2)/2s)
≈ x2, ≈ xy + y + sy2/2.

And so η3 may be taken arbitrarily close to x2 and ζ3 may be taken arbitrarily close to y(x+1),
with respect to ‖ · ‖∞ on L, by first taking s arbitrarily small, and then taking h arbitrarily small.

5

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

Lemma 4.5 Fix L ⊆ (0, 2) compact. Then multiple layers of two enhanced neurons each, with
square activation function, may uniformly approximate x 7→ 1/x arbitrarily well on L.

Proof First note that
n∏
i=0

(1 + x2
i
)→ 1

1− x

as n→∞, uniformly over compact subsets of (−1, 1). Thus,

(2− x)
n∏
i=1

(1 + (1− x)2i) =
n∏
i=0

(1 + (1− x)2i)→ 1

x

uniformly over L.
This has the following neural approximation: let η1 = (1 − x)2 and ζ1 = ιh(2 − x) be the

neurons in the first layer, where ιh is some approximation of the identity as in Lemma 4.1. Let
κh represent an approximation to (x, y) 7→ (x2, y(x + 1)) in the manner of Lemma 4.4, with
error made arbitrarily small as h → 0. Now for i ∈ {1, 4, 7, 10, . . . , 3n − 2}, recursively define
(ηi+3, ζi+3) = κh(ηi, ζi), where we increase the index by three to represent the fact that three layers
are used to perform this operation. So up to approximation, ηi+3 ≈ (ηi)

2, and ζi+3 ≈ ζi(ηi + 1).
So ζ3n+1 → (2−x)

∏n
i=1(1+(1−x)2i) uniformly over L as h→ 0. Thus the result is obtained

by taking first n large enough and then h small enough.

Proposition 4.6 (Square Model) Let ρ(x) = x2. Let K ⊆ Rn be compact. Then NN ρ
n,m,n+m+1

is dense in C(K;Rm).

Proof Fix f = (f1, . . . , fm) ∈ C(K;Rm). Fix ε > 0. By precomposing with an affine function,
which may be absorbed into the first layer of the network, assume without loss of generality that

K ⊆ (1, 2)n. (1)

By the Stone–Weierstrass Theorem there exist polynomials g1, . . . , gm in the variables x1, . . . xn
approximating f1, . . . , fm to within ε/3 with respect to ‖ · ‖∞.

We will construct a network in NN ρ
n,m,n+m+1 approximating g1, . . . , gn. There will be a total

of n + m + 1 neurons in each hidden layer. In each hidden layer, for each i ∈ {1, . . . , n}, we
associate an input xi with a neuron, which we shall refer to as the xi-in-register neuron. Similarly
for each i ∈ {1, . . . ,m}, we will associate an output gi and a neuron, which we shall refer to as the
gi-out-register neuron. The final neuron in each layer will be referred to as the computation neuron.

Our proof will progress by successively adding layers to the network.
We begin by constructing approximations to g2, . . . , gm. (Constructing the approximation to the

final g1 will be more challenging.) These next few paragraphs may be skipped if m = 1.
In each hidden layer, for i ∈ {1, . . . , n}, have the xi-in-register neuron apply the approximate

identity function in the manner of Lemma 4.1 to the xi-in-register neuron of the previous layer, or to
the input xi if it is the first hidden layer. In this way the in-register neurons will preserve the inputs
to the network, so that the values of xi are accessible by the other neurons in every layer.

(At least, up to an arbitrarily good approximation of the identity. For the sake of sanity of
notation, we shall suppress this detail in our notation, and refer to our neurons in later layers as
having e.g. ‘x1’ as an input to them.)

6

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

Now write g2 =
∑N

j=1 δj , where each δj is a monomial. Using just the computation neuron and
the g1-out-register neuron in multiple consecutive layers, perform successive multiplications in the
manner of Lemma 4.3 to compute the value of δ1. For example, if δ1 = x21x2x3, then a suitable
chain of multiplications is x1(x1(x2x3)). In each layer, each xi is available as an input because it is
stored in the in-register neurons, and the intermediate partial products are available as they have just
been computed in the preceding layer. The value for δ1 is then stored in the g2-out-register neuron
and kept through the subsequent layers via approximate identity functions.

The previous paragraph is somewhat wordy, so it is worth pausing to make clear what the appro-
priate mental model is for validating that this construction is correct. It is simply that at each layer,
we have at most n+m+ 1 values available from the preceding layer, and we must now allocate a
budget of at most n +m + 1 enhanced neurons, describing how to obtain the at most n +m + 1
outputs from the layer. Values may be copied, moved and added between neurons using the affine
part of a layer, and preserved between layers using ιh. We have not yet needed our full budget of
neurons, so far.

This process is then repeated for δ2, again using just the computation neuron and the g1-out-
register neuron. The result is then added on to the g2-out-register neuron, via the affine part of the
operation of this neuron. Repeat for all j until all of the δj have been computed and added on, so
that the g2-out-register neuron stores an approximation to g2.

This is only an approximation in that we have used approximations to the identity function; other
than that it is exact. As such, by taking sufficiently good approximations of the identity function,
this will be a uniform approximation to g2 over K. For the remaining layers of the network, have
the g2-out-register neurons just preserve this value with approximate identity functions.

Now repeat this whole process for gi and the gi-out-register neurons, for i ∈ {3, . . . ,m}. Let
the computed values be denoted ĝ2, . . . , ĝm. (With the ‘hat’ notation because of the fact that these
are not the values g2, . . . , gm, due to the approximate identity functions in between.)

The difficult bit is computing an approximation to g1, as it must be done without the ‘extra’
g1-in-register neuron. Going forward we now only have n+2 neurons available in each layer: the n
in-register neurons (which have so far been storing the inputs x1, . . . xn), the computation neuron,
and the g1-out-register neuron.

Written in terms of monomials, let g1 =
∑M

j=1 γj . Then g1 may be written as

g1 = γ1

(
1 +

γ2
γ1

(
1 +

γ3
γ2

(
· · ·
(
1 +

γM−1
γM−2

(
1 +

γM
γM−1

))
· · ·
)))

.

Note that this description is defined over K, as K is bounded away from the origin by equation (1).
Now write γj =

∏n
k=1 x

θj,k
k , for θj,k ∈ N0. Substituting this in,

g1 =

[
n∏
k=1

x
θ1,k
k

](
1 +

∏n
k=1 x

θ2,k
k∏n

k=1 x
θ1,k
k

(
1 +

∏n
k=1 x

θ3,k
k∏n

k=1 x
θ2,k
k

(
· · ·(

1 +

∏n
k=1 x

θM−1,k

k∏n
k=1 x

θM−2,k

k

(
1 +

∏n
k=1 x

θM,k

k∏n
k=1 x

θM−1,k

k

))
· · ·

)))
.

Now let supK be defined by

supK = sup{xi | (x1, . . . , xn) ∈ K},

7

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

so that 1 < supK < 2. Let r be an approximation to x 7→ 1/x in the manner of Lemma 4.5, with
the L of that proposition given by

L = [(supK)−1 − α, supK + α] ⊆ (0, 2), (2)

where α > 0 is taken small enough that the inclusion holds.
Let ra denote r composed a times. By taking r to be a suitably good approximation, we may

ensure that g̃1 defined by

g̃1 =

[
n∏
k=1

r2M−2(xk)
θ1,k

](
1 +

[
n∏
k=1

r2M−3(xk)
θ1,k

][
n∏
k=1

r2M−4(xk)
θ2,k

]
(
1 +

[
n∏
k=1

r2M−5(xk)
θ2,k

][
n∏
k=1

r2M−6(xk)
θ3,k

]
(3)(

· · ·(
1 +

[
n∏
k=1

r3(xk)
θM−2,k

][
n∏
k=1

r2(xk)
θM−1,k

]
(
1 +

[
n∏
k=1

r(xk)
θM−1,k

][
n∏
k=1

x
θM,k

k

]))

· · ·

)))
(4)

is an approximation to g1 in K, to within ε/3, with respect to ‖ · ‖∞. This is possible by equations
(1) and (2); in particular the approximation should be sufficiently precise that

r2M−2([(supK)−1, supK]) ⊆ L,

which is possible due to the margin α > 0. Note how r2, and thus r4, r6, . . . , r2M−2, are approxi-
mately the identity function on L.

This description of g̃1 is now amenable to representation with a neural network. The key fact
about this description of g̃1 is that, working from the most nested set of brackets outwards, the
value of g̃1 may be computed by performing a single chain of multiplications and additions, along
with occasionally taking the reciprocal of all of the input values. Thus unlike our earlier computa-
tions involving the monomial δj , we do not need to preserve an extra partially-computed piece of
information between layers.

So let the computation neuron and the g1-out-register neuron perform the multiplications, layer-
by-layer, to compute

∏n
k=1 x

θM,k

k , in the manner of Lemma 4.3. Store this value in the g1-out-
register neuron.

Now use the computation neuron and the x1-in-register neuron, across multiple layers, to com-
pute r(x1), in the manner of Lemma 4.5. Eventually the x1-in-register neuron will be storing
r(x1) ≈ 1/x1. Repeat for the other in-register neurons, so that they are collectively storing
r(x1), . . . , r(xn).

8

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

Now the computation neuron and the g1-out-register neuron may start multipying r(x1), . . . , r(xn)
on to

∏n
k=1 x

θM,k

k (which is the value presently stored in the g1-out-register neuron) the appropriate

number to times to compute
[∏n

k=1 r(xk)
θM−1,k

] [∏n
k=1 x

θM,k

k

]
, by Lemma 4.3. Store this value in

the out-register neuron. Then add one (using the affine part of a layer). The out-register neuron has
now computed the expression in the innermost bracket in equation (4).

The general pattern is now clear: apply r to all of the in-register neurons again to compute
r2(xi), multiply them on to the value in the out-register neuron, and so on. Eventually the g1-out-
register neuron will have computed an approximation to g̃1. It will have computed some approxi-
mation ĝ1 to this value, because of the identity approximations involved.

Thus the out-register neurons have computed ĝ1, . . . , ĝm. Now simply have the output layer
copy the values from the out-register neurons.

Uniform continuity preserves uniform convergence, compactness is preserved by continuous
functions, and a composition of two uniformly convergent sequences of functions with uniformly
continuous limits is again uniformly convergent. So by taking all of the (many) identity approxima-
tions throughout the network to be suitably precise, then g̃1 and ĝ1 may be taken within ε/3 of each
other, and the values of ĝ2, . . . , ĝm and g2, . . . , gm may be taken within 2ε/3 of each other, in each
case with respect to ‖ · ‖∞ on K.

Thus (ĝ1, . . . , ĝm) approximates f with total error no more than ε, and the proof is complete.

Remark 4.7 Lemma 4.5 is key to the proof of Proposition 4.6. It was fortunate that the reciprocal
function may be approximated by a network of width two - note that even if Proposition 4.6 were
already known, it would have required a network of width three. It remains unclear whether an
arbitrary-depth network of width two, with square activation function, is dense in C(K).

Remark 4.8 Note that allowing a single extra neuron in each layer would remove the need for the
trick with the reciprocal, as it would allow g1 to be computed in the same way as g2, . . . , gm. Doing
so would dramatically reduce the depth of the network. We are thus paying a heavy price in depth
in order to reduce the width by a single neuron.

4.3. Key results

Proposition 4.9 Let ρ : R → R be any continuous nonpolynomial function which is continuously
differentiable at at least one point, with nonzero derivative at that point. Let K ⊆ Rn be compact.
Then NN ρ

n,m,n+m+1 is dense in C(K;Rm) with respect to the uniform norm.

Proof Let f ∈ C(K;Rm) and ε > 0. Set up a neural network as in the Register Model (Proposition
4.2), approximating f to within ε/2. Every neuron requiring an identity activation function in the
Register Model will instead approximate the identity with ιh, in the manner of Lemma 4.1.

Uniform continuity preserves uniform convergence, compactness is preserved by continuous
functions, and a composition of two uniformly convergent sequences of functions with uniformly
continuous limits is again uniformly convergent. Thus the new model can be taken within ε/2 of
the Register Model, with respect to ‖ · ‖∞ in K, by taking h sufficiently small.

9

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

Remark 4.10 This of course implies approximation in Lp(K,Rm) for p ∈ [1,∞). However, when
ρ is the ReLU activation function, then Theorem 4.16, later, shows that in fact the result may be
generalised to noncompact domains.

Moving on, we consider polynomial activation functions. We now show that it is a consequence
of Proposition 4.6 that any (polynomial) activation function which can approximate the square acti-
vation function, in a suitable manner, is also capable of universal approximation.

Proposition 4.11 Let ρ : R → R be any nonaffine polynomial. Let K ⊆ Rn be compact. Then
NN ρ

n,m,n+m+2 is dense in C(K;Rm) with respect to the uniform norm.

Proof Fix α ∈ R such that ρ′′(α) 6= 0, which exists as ρ is nonaffine. Now let h ∈ (0,∞). Define
σh : R→ R by

σh(x) =
ρ(α+ hx)− 2ρ(α) + ρ(α− hx)

h2ρ′′(α)
.

Then Taylor expanding ρ(α+ hx) and ρ(α− hx) around α,

σh(x) =
ρ(α) + hxρ′(α) + h2x2ρ′′(α)/2 +O(h3x3)

h2ρ′′(α)
− 2ρ(α)

h2ρ′′(α)
+

ρ(α)− hxρ′(α) + h2x2ρ′′(α)/2 +O(h3x3)
h2ρ′′(α)

= x2 +O(hx3).

Observe that σh needs precisely two operations of ρ on (affine transformations of) x, and so may
be computed by two enhanced neurons with activation function ρ. Thus the operation of a single
enhanced neuron with square activation function may be approximated by two enhanced neurons
with activation function ρ.

Let N be any network as in the Square Model (Proposition 4.6). Let ` be any hidden layer of
N ; it contains n +m + 1 neurons. Let η be a vector of the values of the neurons of the previous
layer. Let φi be the affine part of the ith neuron of `, so that ` computes φ1(η)2, . . . , φn+m+1(η)

2.
Then this may equivalently be calculated with n +m + 1 layers of n +m + 1 neurons each, with
n+m of the neurons in each of these new layers using the identity function, and one neuron using
the square activation function. This is done by having the first of these new layers apply the φi, and
having the ith layer square the value of the ith neuron. See Figure 1.

Apply this procedure to every layer of N ; call the resulting network Ñ . It will compute exactly
the same function as N , and will have n +m + 1 times as many layers, but will use only a single
squaring operation in each layer.

Create a copy of Ñ , call it Ñh. Replace its identity activation functions with approximations
in the manner of Lemma 4.1, using activation function ρ. Replace its square activation functions
(one in each layer) by approximations in the manner described above with σh; this requires an extra
neuron in each hidden layer, so that the network is now of width n + m + 2. Thus Ñh uses the
activation function ρ throughout.

Uniform continuity preserves uniform convergence, compactness is preserved by continuous
functions, and a composition of two uniformly convergent sequences of functions with uniformly
continuous limits is again uniformly convergent. Thus the difference between Ñh and Ñ , with
respect to ‖ · ‖∞ on K, may be taken arbitrarily small by taking h arbitrarily small.

10

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

φ1(η)
2 φ2(η)

2 · · · φn+m+1(η)
2

=
⇒

Expand

α1,n+m+1 = ι(α1,n+m) α2,n+m+1 = ι(α2,n+m) · · · αn+m+1,n+m+1 = (αn+m+1,n+m)
2

··
·

α1,2 = ι(α1,1) α2,2 = (α2,1)
2 · · · αn+m+1,2 = ι(αn+m+1,1)

α1,1 = φ1(η)
2 α2,1 = φ2(η) · · · αn+m+1,1 = φn+m+1(η)

Figure 1: A layer with square activation functions is equivalent to multiple layers with only a single
square activation function in each layer. The other neurons use the identity activation function,
denoted ι.

Remark 4.12 It is possible to construct shallower networks analogous to Ñ . This is because the
proof of Proposition 4.6 actually uses many of the network’s neurons to approximate the identity, so
the identity activation functions of Ñ may be used directly.

Remark 4.13 That ρ is polynomial is never really used in the proof of Proposition 4.11. It is
simply that a certain amount of differentiability is required, and all such nonpolynomial functions
are already covered by Proposition 4.9, as a nonzero second derivative at α implies a nonzero first
derivative somewhere close to α. Thus in principle this provides another possible construction by
which certain networks may be shown to exhibit universal approximation.

Given both Proposition 4.9 and Proposition 4.11, then Theorem 3.2 follows immediately.

4.4. Extensions of these results to other special cases

We begin by showing how the Register Model may also be used to handle the case of certain
nowhere-differentiable activation functions. Our manner of proof may be extended to other non-
differentiable activation functions as well.

Lemma 4.14 Let w : R → R be any bounded continuous nowhere differentiable function. Let
ρ(x) = sin(x) + w(x)e−x. Let L ⊆ R be compact. Then a single enhanced neuron with activation
function ρ may uniformly approximate the identity function ι : R → R on L, with arbitrarily small
error.

Proof For h ∈ R \ {0} and A ∈ 2πN, let φh,A(x) = hx+A, and let ψ(x) = x/h. Let

ιh,A = ψh ◦ ρ ◦ φh,A,

which is of the form that an enhanced neuron can represent. Then jointly taking h small enough and
A large enough it is clear that ιh,A may be taken uniformly close to ι on L.

Proposition 4.15 Let w : R→ R be any bounded continuous nowhere differentiable function. Let
ρ(x) = sin(x) + w(x)e−x, which will also be nowhere differentiable. Let K ⊆ Rn be compact.
Then NN ρ

n,m,n+m+1 is dense in C(K;Rm) with respect to the uniform norm.

11

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

Proof As the proof of Proposition 4.9, except substituting Lemma 4.14 for Lemma 4.1.

Next, we discuss how we may establish a result over a noncompact domain, by exploiting the
nice properties of the ReLU.

Theorem 4.16 Let ρ be the ReLU. Let p ∈ [1,∞). Then NN ρ
n,m,n+m+1 is dense in Lp(Rn;Rm)

with respect to the usual Lp norm.

The full proof is deferred to Appendix B due to space, but may be sketched as follows. Given
some f ∈ Lp(Rn;Rm), choose a compact set K ⊆ Rn on which f places most of its mass, and
find a neural approximation to f on K in the manner of Proposition 4.9. Once this is done, a cut-off
function is applied outside the set, so that the network takes the value zero in Rn\K. The interesting
bit is finding a neural representation of such cut-off behaviour.

In particular the usual thing to do – multiply by a cut-off function – does not appear to have a
suitable neural representation, as merely approximating the multiplication operation is not neces-
sarily enough on an unbounded domain. Instead, the strategy is to take a maximum and a minimum
with multiples of the cut-off function, which may be performed exactly.

Moving on, our final result is that Proposition 4.11 may be improved upon, provided the activa-
tion function satisfies a certain condition.

Proposition 4.17 Let ρ : R→ R be any polynomial for which there exists a point α ∈ R such that
ρ′(α) = 0 and ρ′′(α) 6= 0. Let K ⊆ Rn be compact. Then NN ρ

n,m,n+m+1 is dense in C(K;Rm)
with respect to the uniform norm.

The proof is similar to that of Proposition 4.11, so it is deferred to Appendix C. Together with
Proposition 4.9, this means that ‘most’ activation functions require a width of only n+m+ 1.

5. Conclusion

There is a large literature on theoretical properties of neural networks, but much of it deals only
with the ReLU.1 However how to select an activation function remains a poorly understood topic,
and many other options have been proposed: leaky ReLU, PReLU, RRelu, ELU, SELU and other
more exotic activation functions as well.2

Our central contribution is to provide results for universal approximation using general activa-
tion functions (Theorem 3.2 and Propositions 4.9 and 4.11). In contrast to previous work, these
results do not rely on the nice properties of the ReLU, and in particular do not rely on its explicit
description. The techniques we use are straightforward, and robust enough to handle even the patho-
logical case of nowhere-differentiable activation functions (Proposition 4.15).

We also consider approximation in Lp norm (Remark 4.10), and generalise previous work to
smaller widths, multiple output neurons, and p > 1 in place of p = 1 (Theorem 4.16).

In contrast to much previous work, every result we show also handles the general case of multi-
ple output neurons.

1. See for example Hanin and Sellke (2017); Petersen and Voigtlaender (2018); Gühring et al.; Daubechies et al. (2019);
Arora et al. (2018); Yun et al. (2019); Chen et al. (2019a); Williams et al. (2019); Elbrächter et al. (2019).

2. See Maas et al. (2013); He et al. (2015); Xu et al. (2015); Clevert et al. (2016); Klambauer et al. (2017); Krizhevsky
(2012); Ramachandran et al. (2017); Chen et al. (2019b); Boullé et al. (2020); Molina et al. (2020) respectively.

12

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

Acknowledgments

This work was supported by the Engineering and Physical Sciences Research Council [EP/L015811/1].

References

R. Arora, A. Basu, P. Mianjy, and A. Mukherjee. Understanding Deep Neural Networks with
Rectified Linear Units. In International Conference on Learning Representations, 2018.

H.-P. Beise, S. D. Da Cruz, and U. Schröder. On decision regions of narrow deep neural networks.
CoRR, arXiv:1807.01194, 2018.

N. Boullé, Y. Nakatsukasa, and A. Townsend. Rational neural networks. arXiv:2004.01902, 2020.

M. Chen, H. Jiang, W. Liao, and T. Zhao. Efficient Approximation of Deep ReLU Networks for
Functions on Low Dimensional Manifolds. In Advances in Neural Information Processing Sys-
tems 32, pages 8174–8184. Curran Associates, Inc., 2019a.

R. T. Q. Chen, J. Behrmann, D. K. Duvenaud, and J.-H. Jacobsen. Residual Flows for Invertible
Generative Modeling. In Advances in Neural Information Processing Systems 32, pages 9916–
9926. Curran Associates, Inc., 2019b.

D.-A. Clevert, T. Unterthiner, and S. Hochreiter. Fast and Accurate Deep Network Learning by
Exponential Linear Units (ELUs). In International Conference on Learning Representations,
2016.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Math. Control Signals Syst.,
2(4):303–314, 1989.

I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova. Nonlinear Approximation and
(Deep) ReLU Networks. arXiv:1905.02199, 2019.

D. M. Elbrächter, J. Berner, and P. Grohs. How degenerate is the parametrization of neural networks
with the ReLU activation function? In Advances in Neural Information Processing Systems 32,
pages 7790–7801. Curran Associates, Inc., 2019.

I. Gühring, G. Kutyniok, and P. Petersen. Error bounds for approximations with deep ReLU neural
networks in W s,p norms. Proceedings of the AMS. In press.

B. Hanin and M. Sellke. Approximating Continuous Functions by ReLU Nets of Minimal Width.
arXiv:1710.11278, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing Human-Level Per-
formance on ImageNet Classification. In Proceedings of the 2015 IEEE International Conference
on Computer Vision (ICCV), ICCV ’15, pages 1026–1034, Washington, DC, USA, 2015. IEEE
Computer Society.

K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural Netw., 4(2):
251–257, 1991.

13

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

J. Johnson. Deep, Skinny Neural Networks are not Universal Approximators. In International
Conference on Learning Representations, 2019.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. Self-normalizing neural networks. In
Advances in Neural Information Processing Systems 30, pages 971–980. Curran Associates, Inc.,
2017.

A. Krizhevsky. Convolutional Deep Belief Networks on CIFAR-10. 2012.

N. Le Roux and Y. Bengio. Deep Belief Networks are Compact Universal Approximators. Neural
Comput., 22(8):2192–2207, 2010.

H. Lin and S. Jegelka. ResNet with one-neuron hidden layers is a Universal Approximator. In
Advances in Neural Information Processing Systems 31, pages 6169–6178. Curran Associates,
Inc., 2018.

Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The Expressive Power of Neural Networks: A View
from the Width. In Advances in Neural Information Processing Systems 30, pages 6231–6239.
Curran Associates, Inc., 2017.

A. Maas, A. Hannun, and A. Ng. Rectifier Nonlinearities Improve Neural Network Acoustic Mod-
els. In International Conference on Learning Representations, 2013.

A. Molina, P. Schramowski, and K. Kersting. Padé Activation Units: End-to-end Learning of Flexi-
ble Activation Functions in Deep Networks. In International Conference on Learning Represen-
tations, 2020.

G. F. Montúfar. Universal Approximation Depth and Errors of Narrow Belief Networks with Dis-
crete Units. Neural Comput., 26(7):1386–1407, 2014. ISSN 0899-7667.

Q. Nguyen, M. C. Mukkamala, and M. Hein. Neural Networks Should Be Wide Enough to Learn
Disconnected Decision Regions. In Proceedings of the 35th International Conference on Machine
Learning. PMLR 80, Stockholm, Sweden, 2018.

P. Petersen and F. Voigtlaender. Optimal approximation of piecewise smooth functions using deep
ReLU neural networks. Neural Netw., 108:296–330, 2018.

A. Pinkus. Approximation theory of the MLP model in neural networks. Acta Numer., 8:143–195,
1999.

P. Ramachandran, B. Zoph, and Q. V. Le. Searching for Activation Functions. arXiv:1710.05941,
2017.

R. Rojas. Networks of width one are universal classifiers. In Proceedings of the International Joint
Conference on Neural Networks, volume 4, pages 3124–3127, 2003.

I. Sutskever and G. E. Hinton. Deep, Narrow Sigmoid Belief Networks Are Universal Approxi-
mators. Neural Comput., 20(11):2629–2636, 2008. ISSN 0899-7667. doi: 10.1162/neco.2008.
12-07-661.

14

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

L. Szymanski and B. McCane. Deep, super-narrow neural network is a universal classifier. In The
2012 International Joint Conference on Neural Networks (IJCNN), pages 1–8, 2012.

F. Williams, M. Trager, D. Panozzo, C. Silva, D. Zorin, and J. Bruna. Gradient Dynamics of Shallow
Univariate ReLU Networks. In Advances in Neural Information Processing Systems 32, pages
8378–8387. Curran Associates, Inc., 2019.

B. Xu, N. Wang, T. Chen, and M. Li. Empirical Evaluation of Rectified Activations in Convolutional
Network. arXiv:1505.00853, 2015.

C. Yun, S. Sra, and A Jadbabaie. Small ReLU networks are powerful memorizers: a tight analysis
of memorization capacity. In Advances in Neural Information Processing Systems 32, pages
15558–15569. Curran Associates, Inc., 2019.

Appendix A. Proof of the Register Model (Proposition 4.2)

First, we recall the classical Universal Approximation Theorem (Pinkus, 1999):

Theorem 1.1 Let ρ : R→ R be any continuous function. LetN ρ
n represent the class of feedforward

neural networks with activation function ρ, with n neurons in the input layer, one neuron in the
output layer, and one hidden layer with an arbitrary number of neurons. Let K ⊆ Rn be compact.
Then N ρ

n is dense in C(K) if and only if ρ is nonpolynomial.

The Register Model is created by suitably reorganising the neurons from a collection of such
shallow networks.

Proposition 4.2 (Register Model) Let ρ : R→ R be any continuous nonpolynomial function. Let
Iρn,m,n+m+1 represent the class of neural networks with n neurons in the input layer, m neurons
in the output layer, and an arbitrary number of hidden layers, each with n + m neurons with the
identity activation function, and one neuron with activation function ρ. Let K ⊆ Rn be compact.
Then Iρn,m,n+m+1 is dense in C(K;Rm).

Proof Fix f ∈ C(K;Rm). Let f = (f1, . . . , fm). Fix ε > 0. By Theorem 1.1, there exist
single-hidden-layer neural networks g1, . . . , gm ∈ N ρ

n with activation function ρ approximating
f1, . . . , fm respectively. Each approximation is to within error ε with respect to ‖ · ‖∞ on K. Let
each gi have βi hidden neurons. Let σi,j represent the operation of its jth hidden neuron, for
j ∈ {1, . . . , βi}. In keeping with the idea of enhanced neurons, let each σi,j include the affine
function that comes after it in the output layer of gi, so that gi =

∑βi
j=1 σi,j . Let M =

∑m
i=1 βi.

We seek to construct a neural network N ∈ Iρn,m,n+m+1. Given input (x1, . . . , xn) ∈ Rn, it
will output (G1, . . . , Gm) ∈ Rm, such that Gi = gi(x1, . . . , xn) for each i. That is, it will compute
all of the shallow networks g1, . . . , gm. Thus it will approximate f to within error ε with respect to
‖ · ‖∞ on K.

The construction of N is mostly easily expressed pictorially; see Figure 2. In each cell, repre-
senting a neuron, we define its value as a function of the values of the neurons in the previous layer.
In every layer, all but one of the neurons uses the identity activation function ι : R→ R, whilst one
neuron in each layer performs a computation of the form σi,j .

15

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

The construction can be summed up as follows.
Each layer has n + m + 1 neurons, arranged into a group of n neurons, a group of a single

neuron, and a group of m neurons.
The first n neurons in each layer simply record the input (x1, . . . , xn), by applying an identity

activation function. We refer to these as the ‘in-register neurons’.
Next we consider g1, . . . , gm, which are all shallow networks. The neurons in the hidden layers

of g1, . . . , gm are arranged ‘vertically’ in our deep network, one in each layer. This is the neuron in
each layer that uses the activation function ρ. We refer to these as the ‘computation neurons’. Each
computation neuron performs its computation based off of the inputs preserved in the in-register
neurons.

The final group ofm neurons also use the identity activation function; their affine parts gradually
sum up the results of the computation neurons. We refer to these as the ‘out-register neurons’. The
ith out-register neuron in each layer will sum up the results of the computation neurons computing
σi,j for all j ∈ {1, . . . , βi}.

Finally, the neurons in the output layer of the network are connected to the out-register neurons
of the final hidden layer. As each of the neurons in the output layer has, as usual, the identity
activation function, they will now have computed the desired results.

16

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

G
1
=
ζ
1
,M

G
2
=
ζ
2
,M

··
·

G
m

=
ζ
m
,M

+
τ
m
,M

γ
1
,M

=
0

γ
2
,M

=
0

··
·

γ
n
,M

=
0

τ
M

=
σ
m
,β
m

(γ
1
,M

−
1
,
.
.
.
,γ
n
,M

−
1
)

ζ
1
,M

=
ι(
ζ
1
,M

−
1
)

ζ
2
,M

=
ι(
ζ
2
,M

−
1
)

··
·

ζ
m
,M

=
ι(
ζ
m
,M

−
1
+
τ
M

−
1
)

γ
1
,M

−
1
=

ι(
γ
1
,M

−
2
)

γ
2
,M

−
1
=

ι(
γ
2
,M

−
2
)

··
·

γ
n
,M

−
1
=

ι(
γ
n
,M

−
2
)

τ
M

−
1
=

σ
m
,β
m

−
1
(γ

1
,M

−
2
,
.
.
.
,γ
n
,M

−
2
)

ζ
1
,M

−
1
=

ι(
ζ
1
,M

−
2
)

ζ
2
,M

−
1
=

ι(
ζ
2
,M

−
2
)

··
·

ζ
m
,M

−
1
=

ι(
ζ
m
,M

−
2
+
τ
M

−
2
)

··· ···

γ
1
,β

1
+
β
2
=

ι(
γ
1
,β

1
+
β
2
−

1
)

γ
2
,β

1
+
β
2
=

ι(
γ
2
,β

1
+
β
2
−

1
)

··
·

γ
n
,β

1
+
β
2
=

ι(
γ
n
,β

1
+
β
2
−

1
)

τ
β
1
+
β
2
=

σ
2
,β

2
(γ

1
,β

1
+
β
2
−

1
,
.
.
.
,γ
n
,β

1
+
β
2
−

1
)

ζ
1
,β

1
+
β
2
=

ι(
ζ
1
,β

1
+
β
2
−

1
)

ζ
2
,β

1
+
β
2
=

ι(
ζ
2
,β

1
+
β
2
−

1
+
τ
β
1
+
β
2
−

1
)

··
·

ζ
m
,β

1
+
β
1
=

0

···

γ
1
,β

1
+

3
=

ι(
γ
1
,β

1
+

2
)

γ
2
,β

1
+

3
=

ι(
γ
2
,β

1
+

2
)

··
·

γ
n
,β

1
+

3
=

ι(
γ
n
,β

1
+

2
)

τ
β
1
+

3
=
σ
2
,3
(γ

1
,β

1
+

2
,
.
.
.
,γ
n
,β

1
+

2
)

ζ
1
,β

1
+

3
=

ι(
ζ
1
,β

1
+

2
)

ζ
2
,β

1
+

3
=

ι(
ζ
2
,β

1
+

2
+
τ
β
1
+

2
)

··
·

ζ
m
,β

1
+

3
=

0

γ
1
,β

1
+

2
=

ι(
γ
1
,β

1
+

1
)

γ
2
,β

1
+

2
=

ι(
γ
2
,β

1
+

1
)

··
·

γ
n
,β

1
+

2
=

ι(
γ
n
,β

1
+

1
)

τ
β
1
+

2
=
σ
2
,2
(γ

1
,β

1
+

1
,
.
.
.
,γ
n
,β

1
+

1
)

ζ
1
,β

1
+

2
=

ι(
ζ
1
,β

1
+

1
)

ζ
2
,β

1
+

2
=
ι(
τ
β
1
+

1
)

··
·

ζ
m
,β

1
+

2
=

0

γ
1
,β

1
+

1
=

ι(
γ
1
,β

1
)

γ
2
,β

1
+

1
=

ι(
γ
2
,β

1
)

··
·

γ
n
,β

1
+

1
=

ι(
γ
n
,β

1
)

τ
β
1
+

1
=
σ
2
,1
(γ

1
,β

1
,
.
.
.
,γ
n
,β

1
)

ζ
1
,β

1
+

1
=

ι(
ζ
1
,β

1
+
τ
β
1
)

ζ
2
,β

1
+

1
=

0
··

·
ζ
m
,β

1
+

1
=

0

γ
1
,β

1
=

ι(
γ
1
,β

1
−

1
)

γ
2
,β

1
=

ι(
γ
2
,β

1
−

1
)

··
·

γ
n
,β

1
=

ι(
γ
n
,β

1
−

1
)

τ
β
1
=
σ
1
,β

1
(γ

1
,β

1
−

1
,
.
.
.
,γ
n
,β

1
−

1
)

ζ
1
,β

1
=

ι(
ζ
1
,β

1
−

1
+
τ
β
1
−

1
)

ζ
2
,β

1
=

0
··

·
ζ
m
,β

1
=

0

···

γ
1
,4

=
ι(
γ
1
,3
)

γ
2
,4

=
ι(
γ
2
,3
)

··
·

γ
n
,4

=
ι(
γ
n
,3
)

τ
4
=
σ
1
,4
(γ

1
,3
,
.
.
.
,γ
n
,3
)

ζ
1
,4

=
ι(
ζ
1
,3

+
τ
3
)

ζ
2
,4

=
0

··
·

ζ
m
,4

=
0

γ
1
,3

=
ι(
γ
1
,2
)

γ
2
,3

=
ι(
γ
2
,2
)

··
·

γ
n
,3

=
ι(
γ
n
,2
)

τ
3
=
σ
1
,3
(γ

1
,2
,
.
.
.
,γ
n
,2
)

ζ
1
,3

=
ι(
ζ
1
,2

+
τ
2
)

ζ
2
,3

=
0

··
·

ζ
m
,3

=
0

γ
1
,2

=
ι(
γ
1
,1
)

γ
2
,2

=
ι(
γ
2
,1
)

··
·

γ
n
,2

=
ι(
γ
n
,1
)

τ
2
=
σ
1
,2
(γ

1
,1
,
.
.
.
,γ
n
,1
)

ζ
1
,2

=
ι(
τ
1
)

ζ
2
,2

=
0

··
·

ζ
m
,2

=
0

γ
1
,1

=
ι(
x
1
)

γ
2
,1

=
ι(
x
2
)

··
·

γ
n
,1

=
ι(
x
n
)

τ
1
=
σ
1
,1
(x

1
,
.
.
.
,x
n
)

ζ
1
,1

=
0

ζ
2
,1

=
0

··
·

ζ
m
,1

=
0

x
1

x
2

··
·

x
n

.

Fi
gu

re
2:

T
he

th
ic

k
lin

es
de

lim
it

gr
ou

ps
of

la
ye

rs
;

th
e
it

h
gr

ou
p

co
m

pu
te

s
σ
i,
1
,.
..
,σ

i,
β
i
.

T
he

in
pu

ts
to

th
e

ne
tw

or
k

ar
e
x
1
,.
..
,x

n
,

de
pi

ct
ed

at
th

e
bo

tto
m

.
T

he
ou

tp
ut

s
fr

om
th

e
ne

tw
or

k
ar

e
G

1
,.
..
,G

m
,d

ep
ic

te
d

at
th

e
to

p.
T

he
id

en
tit

y
ac

tiv
at

io
n

fu
nc

tio
n
R
→

R
is

de
no

te
d
ι.

17

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

Appendix B. Proof of Theorem 4.16

Lemma B.1 Let a, b, c, d ∈ R be such that a < b < c < d. Let Ua,b,c,d : R → R be the unique
continuous piecewise affine function which is one on [b, c] and zero on (−∞, a] ∪ [d,∞). Then
two layers of two enhanced neurons each, with ReLU activation function, may exactly represent the
function Ua,b,c,d.

Proof Let x ∈ R be the input. Let m1 = 1/(b − a). Let m2 = 1/(d − c). Let η1, η2 represent
the first neuron in each layer, and ζ1, ζ2 represent the second neuron in each layer. We assign them
values as follows.

η1 = max{0,m1(x− a)}, ζ1 = max{0,m2(x− c)},
η2 = max{0, 1− η1}, ζ2 = max{0, 1− ζ1}.

Then Ua,b,c,d(x) = ζ2 − η2.

Lemma B.2 One layer of two enhanced neurons, with ReLU activation function, may exactly rep-
resent the function (x, y) 7→ min{x, y} on [0,∞)2.

Proof Let the first neuron compute η = max{0, x − y}. Let the second neuron compute ζ =
max{0, x}. Then min{x, y} = ζ − η.

Theorem 4.16 Let ρ be the ReLU. Let p ∈ [1,∞). Then NN ρ
n,m,n+m+1 is dense in Lp(Rn;Rm)

with respect to the usual Lp norm.

Proof Let f ∈ Lp(Rn;Rm) and ε > 0. For simplicity assume that Rm is endowed with the ‖ · ‖∞
norm; other norms are of course equivalent. Let f̂ = (f̂1, . . . , f̂m) ∈ Cc(Rn;Rm) be such that∥∥∥f − f̂∥∥∥

p
< ε/3. (5)

Let
C = sup

x∈Rn
max
i
f̂i(x) + 1 (6)

and
c = inf

x∈Rn
min
i
f̂i(x)− 1 (7)

Pick a1, b1, . . . , an, bn ∈ R such that J defined by

J = [a1, b1]× · · · × [an, bn]

is such that supp f̂ ⊆ J . Furthermore, for δ > 0 that we shall fix in a moment, let

Ai = ai − δ,
Bi = bi + δ,

and let K be defined by
K = [A1, B1]× · · · × [An, Bn].

18

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

Fix δ small enough that
|K \ J |1/p ·max {|C|, |c|} < ε

6
. (8)

Let g = (g1, . . . , gm) ∈ NN ρ
n,m,n+m+1 be such that

sup
x∈K

∣∣∣f̂(x)− g(x)∣∣∣ < min

{
ε

3|J |1/p
, 1

}
, (9)

which exists by Proposition 4.9. Note that g is defined on all of Rn; it simply happens to be close
to f̂ on K. In particular it will takes values close to zero on K \ J , and may take arbitrary values in
Rn \K. By equations (6), (7), (9), it is the case that

C > sup
x∈K

max
i
gi(x),

c 6 inf
x∈K

min
i
gi(x). (10)

Now consider the network describing g; we will modify it slightly. The goal is to create a
network which takes value g on J , zero in Rn \K, and moves between these values in the interface
region K \ J . Such a network will provide a suitable approximation to f̂ .

This will be done by first constructing a function which is approximately the indicator function
for J , with support inK; call such a function U . The idea then is to construct a neural representation
of Gi defined by

Gi = min{max{gi, cU}, CU}.

Provided |K \ J | is small enough then G = (G1, . . . , Gm) will be the desired approximation; this
is proved this below.

We move on to presenting the neural representation of this construction.
First we observe that because the activation function is the ReLU, then the identity approxima-

tions used in the proof of Proposition 4.9 may in fact exactly represent the identity function on some
compact set: x 7→ max{0, x + N} − N is exactly the identity function, for suitably large N , and
is of the form that an enhanced neuron may represent. This observation isn’t strictly necessary for
the proof, but it does simplify the presentation somewhat, as the values preserved in the in-register
neurons of g are now exactly the inputs x = (x1, . . . , xn) for x ∈ K. For sufficiently negative xi,
outside of K, they will take the value −N instead, but by insisting that is N sufficiently large that

−N < min
i∈{1,...,n}

Ai, (11)

then this will not be an issue for the proof.
So take the network representing g, and remove the output layer. (If the output layer is perform-

ing any affine transformations then treat them as being part of the final hidden layer, in the manner
of enhanced neurons. Thus the output layer that is being removed is just applying the identity func-
tion to the out-register neurons.) Some more hidden layers will be placed on top, and then a new
output layer will be placed on top. In the following description, all neurons not otherwise specified
will be performing the identity function, so as to preserve the values of the corresponding neurons
in the preceding layer. As all functions involved are continuous andK is compact, and compactness
is preserved by continuous functions, and continuous functions are bounded on compact sets, then
this is possible for all x ∈ K by taking N large enough.

19

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

The first task is to modify the value stored in the x1-in-register neuron. At present it stores the
value x1; by using the x1-in-register neuron and the computation neuron in two extra layers, its
value may be replaced with UA1,a1,b1,B1(x1), via Lemma B.1. Place another two layers on top, and
use them to replace the value of x2 in the x2-in-register neuron with UA2,a2,b2,B2(x2), and so on.
The in-register neurons now store the values

UA1,a1,b1,B1(x1), . . . , UAn,an,bn,Bn(xn).

Once this is complete, place another layer on top and use the first x1-in-register neuron and the
x2-in-register neuron to compute the minimum of their values, in the manner of Lemma B.2, thus
computing

min{UA1,a1,b1,B1(x1), UA2,a2,b2,B2(x2)}.

Place another layer on top and use another two in-register neurons to compute the minimum of this
value and the value presently stored in the x3-in-register neuron, that is UA3,a3,b3,B3(x3), so that

min{UA1,a1,b1,B1(x1), UA2,a2,b2,B2(x2), UA3,a3,b3,B3(x3)}

has now been computed. Continue to repeat this process until the in-register neurons have com-
puted3

U = min
i∈{1,...,n}

UAi,ai,bi,Bi
(xi).

Observe how U represents an approximation to the indicator function for J , with support in K,
evaluated at (x1, . . . , xn).

(Note how the small foible regarding how an in-register neuron would only record −N in-
stead of xi, for xi < −N , is not an issue. This is because of equation (11), which implies that
UAi,ai,bi,Bi

(xi) = 0 = UAi,ai,bi,Bi
(−N), thus leaving the value of U unaffected.)

This is a highly destructive set of operations: the network no longer remembers the values of its
inputs. Thankfully, it no longer needs them.

The out-register neurons presently store the values g1, . . . , gm, where gi = gi(x1, . . . , xn). Now
add another layer. Let the value of its out-register neurons be θ1, . . . , θm, where

θi = max{0, gi − cU}.

Add one more hidden layer. Let the value of its out-register neurons be λ1, . . . , λm, where

λi = max{0,−θi + (C − c)U}.

Finally place the output layer on top. Let the value of its neurons be G1, . . . , Gm, where

Gi = −λi + CU.

Then in fact
Gi = min{max{gi, cU}, CU} (12)

as desired.

3. It doesn’t matter which of the in-register neurons records the value of U .

20

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

All that remains to show is that G = (G1, . . . , Gm) of this form is indeed a suitable approxima-
tion. First, as G and g coincide in J , and by equation (9),(∫

J

∣∣∣f̂(x)−G(x)∣∣∣p dx)1/p

6 |J |1/p sup
x∈J

∣∣∣f̂(x)−G(x)∣∣∣
= |J |1/p sup

x∈J

∣∣∣f̂(x)− g(x)∣∣∣
<
ε

3
. (13)

Secondly, by equations (6), (7), (10), (12) and then equation (8),(∫
K\J

∣∣∣f̂(x)−G(x)∣∣∣p dx)1/p

6 |K \ J |1/p sup
x∈K\J

∣∣∣f̂(x)−G(x)∣∣∣
6 |K \ J |1/p · 2max {|C|, |c|}

<
ε

3
. (14)

Thirdly, (∫
Rn\K

∣∣∣f̂(x)−G(x)∣∣∣p dx)1/p

= 0, (15)

as both f̂ and G have support in K.
So by equations (5), (13), (14) and (15),

‖f −G‖p 6
∥∥∥f − f̂∥∥∥

p
+
∥∥∥f̂ −G∥∥∥

p
< ε

Appendix C. Proof of Proposition 4.17

Proposition 4.17 Let ρ : R→ R be any polynomial for which there exists a point α ∈ R such that
ρ′(α) = 0 and ρ′′(α) 6= 0. Let K ⊆ Rn be compact. Then NN ρ

n,m,n+m+1 is dense in C(K;Rm)
with respect to the uniform norm.

Proof Let h ∈ R \ {0}. Define ρh : R→ R by

ρh(x) =
ρ(α+ hx)− ρ(α)

h2ρ′′(α)/2
.

Then, taking a Taylor explansion around α,

ρh(x) =
ρ(α) + hxρ′(α) + h2x2ρ′′(α)/2 +O(h3x3)− ρ(α)

h2ρ′′(α)/2

= x2 +O(hx3).

21

UNIVERSAL APPROXIMATION WITH DEEP NARROW NETWORKS

Let s(x) = x2. Then ρh → s uniformly over any compact set as h→ 0.
Now set up a network as in the Square Model (Proposition 4.6), with every neuron using the

square activation function. Call this network N . Create a network Nh by copying N and giving
every neuron in the network the activation function ρh instead.

Uniform continuity preserves uniform convergence, compactness is preserved by continuous
functions, and a composition of two uniformly convergent sequences of functions with uniformly
continuous limits is again uniformly convergent. Thus the difference between N and Nh, with
respect to ‖ · ‖∞ on K, may be taken arbitrarily small by taking h arbitrarily small.

Furthermore note that ρh is just ρ pre- and post-composed with affine functions. (Note that
there is only one term in the definition of ρh(x) which depends on x.) This means that any network
which may be represented with activation function ρh may be precisely represented with activation
function ρ, by combining the affine transformations involved.

22

	Introduction
	Existing work
	Summary of Results
	Universal approximation
	Preliminaries
	Square Model
	Key results
	Extensions of these results to other special cases

	Conclusion
	Proof of the Register Model (Proposition 4.2)
	Proof of Theorem 4.16
	Proof of Proposition 4.17

