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Abstract
We study the algorithmic problem of estimating the mean of a heavy-tailed random vector in Rd,
given n i.i.d. samples. The goal is to design an efficient estimator that attains the optimal sub-
gaussian error bound, only assuming that the random vector has bounded mean and covariance.
Polynomial-time solutions to this problem are known but have high runtime due to their use of semi-
definite programming (SDP). Moreover, conceptually, it remains open whether convex relaxation is
truly necessary for this problem.

In this work, we show that it is possible to go beyond SDP and achieve better computational
efficiency. In particular, we provide a spectral algorithm that achieves the optimal statistical per-
formance and runs in time Õ

(
n2d
)
, improving upon the previous fastest runtime Õ

(
n3.5 + n2d

)
by Cherapanamjeri et al. (COLT ’19). Our algorithm is spectral in that it only requires (approxi-
mate) eigenvector computations, which can be implemented very efficiently by, for example, power
iteration or the Lanczos method.

At the core of our algorithm is a novel connection between the furthest hyperplane problem
introduced by Karnin et al. (COLT ’12) and a structural lemma on heavy-tailed distributions by
Lugosi and Mendelson (Ann. Stat. ’19). This allows us to iteratively reduce the estimation error at
a geometric rate using only the information derived from the top singular vector of the data matrix,
leading to a significantly faster running time.
Keywords: High-dimensional statistics, mean estimation, robust statistics, spectral algorithm

1. Introduction

Estimating the mean of a multivariate distribution from samples is among the most fundamental
statistical problems. Surprisingly, it was only recently that a line of works in the statistics literature
culminated in an estimator achieving the optimal statistical error under minimal assumptions (Lugosi
and Mendelson (2019b)). However, from an algorithmic point of view, computation of this estimator
appears to be intractable. On the other hand, fast estimators, such as the empirical average, tend to
achieve sub-optimal statistical performance. The following question remains open:
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FAST MEAN ESTIMATION

Can we provide simple, fast algorithm that computes a statistically optimal mean estimator in high
dimensions, under minimal assumptions?

In this paper, we make progress towards this goal, under the classic setting where only finite mean
and covariance are assumed. Formally, our problem is defined as follows. Given n i.i.d. copies
X1, . . . ,Xn of a random vector X ∈ Rd with bounded mean µ = EX and covariance Σ =
E(X − µ)(X − µ)T , compute an estimate µ̂ = µ̂(X1, . . . ,Xn) of the mean µ. Our goal is to
show that for any failure probability δ ∈ (0, 1],

Pr (‖µ̂− µ‖ > rδ) ≤ δ,

for as small a radius rδ as possible. Moreover, we would like to compute µ̂ efficiently. The
naı̈ve estimator is simply the empirical mean µ = 1

n

∑n
i=1Xi. It is well known that among all

estimators, the empirical mean minimizes mean squared error. However, if we instead use the size
of the deviations to quantify the quality of the estimator, the empirical mean is only optimal for
sub-gaussian random variables (Catoni (2012)). When X ∼ N (µ,Σ) we have with probability at
least 1− δ,

‖µ− µ‖ ≤
√

Tr(Σ)

n
+

√
2‖Σ‖ log(1/δ)

n
(1.1)

An estimator that achieves above is said to have sub-gaussian performance or sub-gaussian rate.
In practical settings, assuming that the samples obey a Gaussian distribution may be unrealistic.

In an effort to design robust estimators, it is natural to study the mean estimation problem under very
weak assumptions on the data. A recent line of works (Catoni (2012); Minsker (2015); Devroye et al.
(2016); Joly et al. (2017); Lugosi and Mendelson (2019a,b); Lerasle et al. (2019)) study the mean
estimation problem when the samples obey a heavy-tailed distribution.

For heavy-tailed distributions the performance of the empirical mean is abysmal. If we only
assume thatX has finite mean µ and covariance Σ, then by Chebyshev’s inequality, the empirical
mean only achieves error of order

√
Tr(Σ)/δn, which is worse than the sub-gaussian rate in two

ways. First, its dependence on 1
δ is exponentially worse. Second, the Tr(Σ) term, which may

grow with the dimension d, is multiplied the dimension-independent term
√

1/δn, whereas in the
Gaussian case, the two are separate.

Median-of-means paradigm Surprisingly, recent work has shown that it is possible to improve
on the performance of the empirical mean using the median-of-means approach. For d = 1, the
following construction, originally due to Nemirovsky and Yudin (1983); Jerrum et al. (1986); Alon
et al. (1999), achieves sub-gaussian performance:

(i) First, bucket the data into k = d10 log(1/δ)e disjoint groups and compute their means
Z1, Z2, · · · , Zk.

(ii) Then, output the median µ̂ of Z1, Z2, · · · , Zk.

A long line of work has followed this paradigm and generalized it to higher dimensions (Catoni
(2012); Devroye et al. (2016); Joly et al. (2017); Lugosi and Mendelson (2019a,b)). The key
challenge is to correctly define a notion of median for a collection of points in Rd. Minsker (2015)
considered µ̂GM defined to be the geometric median of the bucket means Z1, . . . ,Zk. For some
constant cGM , with probability at least 1− δ, it satisfies

‖µ̂GM − µ‖ ≤ cGM

√
TrΣ · log(1/δ)

n
. (1.2)
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FAST MEAN ESTIMATION

This achieves the correct dependence on δ, but the dimension dependent and independent terms are
still not separated. Following this work, Lugosi and Mendelson (2019a) described a tournament-
based estimator, which finally achieved the optimal sub-gaussian radius. The idea is to consider all
1-dimensional projections of the bucket means and try to find an estimate that is close to the median
of the means of all projections. This construction has been further simplified by Hopkins (2018).
Formally, it was shown that the following estimator achieves the optimal, sub-gaussian error:

µ̂LM = arg min
x∈Rd

max
u∈Sd−1

∣∣∣median {〈Zi,u〉}ki=1 − 〈x,u〉
∣∣∣ . (1.3)

Clearly, searching over all directions in Sd−1 requires exponential time. The key question, therefore,
is whether one can achieve both computational and statistical efficiency simutaneously.

Computational considerations A priori, it is unclear that the Lugosi-Mendelson estimator can
be computed in polynomial time as a direct approach involves solving an intractable optimization
problem. Moreover, the Lugosi-Mendelson analysis seems to suggest that estimation in the heavy-
tailed model is conceptually harder than under (adversarial) corruptions. In the latter, each sample
can be classified as either an inlier or an outlier. In the heavy-tailed setting, Lugosi-Mendelson shows
that there is a majority of the bucket means that cluster around the true mean along any projection.
However, a given sample may be an inlier by being close to the mean when projected onto one
direction, but an outlier when projected onto another. In other words, the set of inliers may change
from one direction to another.

Surprisingly, a recent line of works have established the polynomial-time computability of
Lugosi-Mendelson estimator. Hopkins (2018) formulates µ̂LM as the solution of a low-degree
polynomial optimization problem and showed that using the Sum-of-Squares SDP hierarchy to relax
this problem yields a sub-gaussian estimator. While the run-time of this algorithm is polynomial,
it involves solving a large SDP. Soon after, Cherapanamjeri et al. (2019a) provided an iterative
method in which each iteration involves solving a smaller, explicit SDP, leading to a run-time of
Õ
(
n3.5 + n2d

)
1. Even more recently, a concurrent and independent work by Lecué and Depersin

(2019) gave an estimator with sub-gaussian performance that can be computed in time Õ(n2d). The
construction is inspired by a near-linear time algorithm for robust mean estimation under adversarial
corruptions due to Cheng et al. (2019). The algorithm requires solving (covering) SDPs.

We note, however, that a common technique in these algorithms is SDP, which tends to be
impractical for large sample sizes and in high dimensions. In contrast, our algorithm only requires
approximate eigenvector computations. For a problem as fundamental as mean estimation, it is
desirable to obtain simple and ideally practical solutions. A key conceptual message of our work is
that SDP is indeed unnecessary and can be replaced by simple spectral techniques.

Our result In this work, we demonstrate for the first time that mean estimation with sub-gaussian
rates can be achieved efficiently without SDP. The runtime of the algorithm matches the independent
work of Lecué and Depersin (2019). In addition, our algorithm enjoys robustness against (additive)
corruptions, where the number of adversarial points is a small fraction of k.

It is known that there exists an information-theoretic requirement for achieving such rates—
that is, δ ≥ 2−O(n) (Devroye et al. (2016)). Under this assumption, we give an efficient spectral
algorithm.

1. Throughout we use Õ(·) to hide polylogarithmic factors (in n, d and log(1/δ)).
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Theorem 1 Let δ ≥ Ae−n for a constant A and k = d3600 log(1/δ)e. Given n points G ∪ B,
where G are i.i.d. samples from a distribution over Rd with mean µ and covariance Σ and B a set of
arbitrary points with |B| ≤ k/200, there is an efficient algorithm that outputs an estimate µ̂ ∈ Rd
such that with probability at least 1− δ,

‖µ− µ̂‖ ≤ C

(√
Tr(Σ)

n
+

√
‖Σ‖ log(1/δ)

n

)
,

for a constant C. Furthermore, the algorithm runs in time O
(
nd+ k2d polylog(k, d)

)
.

The algorithm is iterative. Each iteration only requires an (approximate) eigenvector computation,
which can be implemented in nearly linear time by power iteration or the Lanczos algorithm. We
believe that our algorithm can be fairly practical.

Other related work Recently, Prasad et al. (2019) established a formal connection between the
Huber contamination model and the heavy-tailed model we study in this paper. They leverage
this connection to use an existing Õ(nd2)-time mean estimation algorithm of Diakonikolas et al.
(2019) to design estimators for the heavy-tailed model. Under moment assumptions, their estimator
achieves performance better than geometric median (1.2), yet worse than sub-gaussian.

In addition, algorithmic robust statistics has gained much attention in the theoretical computer
science community in recent years. A large body of works have studied the mean estimation problem
with adversarially corrupted samples, with the focus on providing efficient algorithms (Diakonikolas
et al. (2019); Lai et al. (2016); Cheng et al. (2019); Dong et al. (2019)). For a more complete survey,
see Diakonikolas and Kane (2019)

Going beyond mean estimation, there has been a recent spate of works on other statistical
problems under heavy-tailed distributions. We refer the readers to Lugosi and Mendelson (2019c)
for a survey.

Technical overview Our main algorithm builds upon the iterative approach of Cherapanamjeri
et al. (2019a). For simplicity, assume there is no adversarial point. At a high level, for each iteration
t, the algorithm will maintain a current guess xt of the true mean. To update, Cherapanamjeri et
al. study the inner maximization of µ̂LM (1.3) with x = xt. They showed that under Lugosi-
Mendelson structral condition, the problem is essentially equivalent of following program, which
we callM(xt,Z):

max θ

subject to bi 〈Zi − xt,u〉 ≥ biθ for i = 1, . . . , k

k∑
i=1

bi ≥ 0.95k

b ∈ {0, 1}k,u ∈ Sd−1.

It can be shown that an optimal solution u ∈ Sd−1 will align with the unit vector in the direction of
µ− xt, and θ approximates ‖µ− xt‖. Hence, one can perform the update xt+1 ← xt + γθu, for
some appropriate constant γ, to geometrically decrease the distance of xt to µ.

In this work, we start by drawing a connection between the above program and the furthest
hyperplane problem (FHP) of Karnin et al. (2012). This allows us to avoid the SDP approach in
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Cherapanamjeri et al. (2019a). The problem can be formulated as the following:

max θ (FHP)

subject to | 〈Zi − xt,u〉 | ≥ θ for i = 1, . . . , k (1.4)

u ∈ Sd−1.

In the original formulation due to Karnin et al., the goal is to find a maximum margin linear classifier
for a collection of points, where the margin is two-sided. Notice that any feasible solution to
M(xt,Z) satisfies at least 0, 95k constraints of FHP as well. For an arbitrary dataset, the two-sided
margin requirement indeed provides a relaxation. One technical observation of this work is that it is
not a significant one, for the random data we care about—if a major fraction of the constraint (1.4)
are satisfied, then most constraints ofM(xt,Z) are satisfied as well.

Unfortunately, the algorithm of Karnin et al. cannot directly apply, as it only works under a
strong promise that there exists a feasible solution that satisfies all of the constraints (1.4). In our
setting, there may not be such a feasible solution; we can only guarantee that there exists a unit
vector (namely, the one in the direction of µ−xt) that satisfies most of constraints with large margin.

Our main contribution is to provide an algorithm that works even under this weak promise. We
now briefly review the algorithm of Karnin et al., show why it fails for our purpose, and explain how
we address the issues that arise. Suppose that there exists a unit vector u∗ and θ∗ which are feasible
for the FHP problem. Then, averaging the constraints tells us that

1

k

k∑
i=1

〈Zi,u∗〉2 ≥ θ∗2.

Hence, if we define u to be the top right singular vector of the matrixA whose rows are Zi, then

‖Au‖22 =
k∑
i=1

〈Zi,u〉2 ≥
k∑
i=1

〈Zi,u∗〉2 ≥ kθ∗2,

so u satisfies the constraints in (FHP) on average. However, the distribution of the quantities
〈Zi,u〉2 may be extremely skewed, so that u only satisfies a few of the constraints with large
margin. If this happens, however, we can downweight those constraints which are satisfied by u
with large slack to encourage it to satisfy more constraints. This reweighting procedure is repeated
several times, and at the end we use a simple rounding scheme to yield a single output vector with
the desired properties from all the repetitions. In particular, this weighting scheme is essentially the
same as the classic multiplicative weights update (MWU) method (Arora et al. (2012)) for regret
minimization, as we show in Appendix I.

If we are only guaranteed that u∗ satisfies most, but not all, of the constraints, then the inequality∑k
i=1 〈Zi,u∗〉

2 ≥ kθ∗2 may no longer hold when the points Zi get re-weighted and the algorithm
of Karnin et al. cannot be guaranteed to converge. To illustrate this point, consider the following
extreme case. Suppose that after the first iteration, the algorithm finds the vector u∗ as the top right
singular vector ofA. In the re-weighting procedure, the constraints i for which 〈Zi,u∗〉2 ≥ θ∗2 may
be down-weighted significantly, whereas the remaining constraints may be unaffected. This may
result in most of the weight being concentrated on the constraints i where 〈Zi,u∗〉2 � θ∗2. In the
second iteration, we have no guarantee of the behavior of the top singular vector of the re-weighted
matrix because all the weight is concentrated on a small set consisting of these “bad” constraints.
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To address this scenario, our key technical idea is to project the weights onto the set of smooth
distributions after each update. Informally, the notion of smooth distribution enforces that no point
can take too much probability mass—say, more than 4/k. This prevents the weights from ever
being concentrated on too small a subset and allows us to guarantee that

∑k
i=1 〈Zi,u∗〉

2 ≥ kθ∗2

still holds approximately. Moreover, the appropriate notion of projection here is that of a Bregman
projection. Leveraging our earlier MWU interpretation of the algorithm (Section I), we apply a
classic regret bound for MWU under Bregman projection (Arora et al. (2012)), and this yields the
same guarantee of the original algorithm. Finally, we remark that the projection can be computed
quickly. Combining all these ideas together, we manage to bypass the barrier of having bad points,
under the much weaker assumption on u∗.

Organization The remainder of this article is organized as follows. In Section 2, we set up the
notations and specify assumptions on the data. In Section 3, we explain the high level approach
based on an iterative descent procedure from Cherapanamjeri et al. (2019a). The procedure requires
us to approximately maximize a (non-convex) objective, and we discuss its properties in Section 4.
Section 5 contains the main technical innovations of this work, where we design and analyze a faster
algorithm for the aforementioned optimization problem.

2. Preliminaries and Assumptions

In the following, we use rδ =
√

Tr(Σ)/n+
√
‖Σ‖ log(1/δ)/n to denote the optimal, sub-gaussian

error rate and k = d3200 log(8/δ)e. The input data {Xi}ni=1 consist of G, a set of i.i.d. points, and
B, a set of adversarial points, with |B| ≤ k/200. Our algorithm preprocesses the data Xi into the
bucket means Z1,Z2, · · · ,Z2k ∈ Rd.2 Let Bj be the set of Xi in bucket j. We say that a bucket
mean Zj is contaminated if Bj contains an adversarial Xi ∈ B and uncontaminated otherwise.
Note that the number of contaminated bucket means is at most k/200.

Our argument is built on the Lugosi-Mendelson condition. It states that under any one-dimensional
projection, most of the (uncontaminated) bucket means are close to the true mean, by an additive
factor of O(rδ). Throughout, we pessimistically assume all contaminated bucket means do not
satisfy this property (under any projection) and condition on the following event.

Assumption 1 (Lugosi-Mendelson condition) Under the setting above, for all unit v, we have

|{i : 〈v,Zi〉 − 〈v,µ〉 ≥ 600rδ}| ≤ 0.05k.

Lemma 2 (Lugosi and Mendelson (2019b)) Assumption 1 holds with probability at least 1− δ/8.

3. Descent Procedure

At a high level, our algorithm builds upon the iterative descent paradigm of Cherapanamjeri et al.
(2019a). It maintains a sequence of estimates and updates via distance and gradient estimate.

Definition 3 (distance estimate) We say that dt is a distance estimate (with respect to xt) if

(i) when ‖µ− xt‖ ≤ 14000rδ, we have dt ≤ 28000rδ; and

2. We assume δ is such that k ≤ n/2; as we mentioned in the introduction, this is information-theoretically necessary,
up to a constant (Devroye et al. (2016)).
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(ii) when ‖µ− xt‖ > 14000rδ, we have

1

21
‖µ− xt‖ ≤ dt ≤ 2‖µ− xt‖ (3.1)

Definition 4 (gradient estimate) We say that gt is a gradient estimate (with respect to xt) if〈
gt,

µ− xt
‖µ− xt‖

〉
≥ 1

200
(3.2)

whenever ‖µ− xt‖ > 14000rδ.

1. Input: Buckets means Z1, . . . ,Zk ∈ Rd, initial estimate x0, iteration count
Tdes, and step size η.

2. For t = 1, . . . , Tdes:

(a) Compute dt = DISTEST(Z ′,xt).

(b) Compute gt = GRADEST(Z ′,xt).

(c) Update xt+1 = xt + ηdtgt.

3. Output: xt∗ , where t∗ = arg mint dt.

Algorithm 3.1: Main algorithm—DESCENT

Suppose we initialize the estimate with coordinate-wise median-of-means which achieves an
error rate

√
‖Σ‖kd/n (Lemma 16). The following lemma states that if DISTEST and GRADEST

provide distance and gradient estimate, then the algorithm DESCENT succeeds in logarithmic iter-
ations. The lemma has essentially appeared in Cherapanamjeri et al. (2019a), albeit with a general
initialization and a different set of constants. We give a proof in Appendix C for completeness.

Lemma 5 (convergence rate; see Cherapanamjeri et al. (2019a)) Assume that for all t ≤ Tdes,
dt is a distance estimate and gt is a gradient estimate (with respect to xt). Suppose ‖µ − x0‖ ≤
O
(√
‖Σ‖kd/n

)
. Then the output of Algorithm 3.1 DESCENT instantiated with Tdes = Θ (log d)

and η = 1/8000 satisfies ‖xt∗ − µ‖ ≤ O (rδ).

4. Inner Maximization and its Two-Sided Relaxation

Cherapanamjeri et al. (2019a) obtains gradient and distance estimates by solving the inner maxi-
mization problem of the Lugosi-Mendelson estimator, denoted byM(x,Z):

max θ

subject to bi 〈Zi − x,w〉 ≥ biθ for i = 1, . . . , k

k∑
i=1

bi ≥ 0.95k

7
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b ∈ {0, 1}k,w ∈ Sd−1.

We also denote its feasibility version for a fixed θ by M(θ,x,Z). Note that the constraint of
M(x,Z) dictates that 0.95 fraction of the data must lie on one side of the hyperplane w with a
margin θ. As discussed in the introduction, we relax it by allowing a two-sided margin:M2(x,Z).

max θ

subject to bi| 〈Zi − x,w〉 | ≥ biθ for i = 1, . . . , k

k∑
i=1

bi ≥ 0.95k

b ∈ {0, 1}k,w ∈ SD−1.

One technical observation here is that under the Lugosi-Mendelson condition, this relaxation is
insignificant. Indeed, approximately solving the problem suffices for gradient and distance estimates.

Lemma 6 Let θ∗ be the optimal value ofM(x,Z) andw be a unit vector such that for at least k/8
of the Zi, we have | 〈w,Zi − x〉 | ≥ θ, where θ = 0.1θ∗. We have that (i) θ is a distance estimate
and (ii) either w or −w is a gradient estimate.

We give a proof in Appendix D. The intuition here is simple. If ‖x − µ‖ � rδ, then the Lugosi-
Mendelson condition ensures at most 0.05k points are far from x by O(rδ) (under any projection),
so θ = O(rδ). On the other hand, if ‖x − µ‖ � rδ, along the gradient direction, a majority of
data lie only on one side of the hyperplane, the side that contains the true mean, so the two-sided
constraint does not make a difference.

5. Approximating the Inner Maximization

We now give an algorithm that efficiently computes a approximate solution to the relaxation of the
inner maximization. This will provide gradient and distance estimates for each iteration of the main
DESCENT algorithm (Algorithm 3.1).

The run-time of the algorithm is proportional 1/θ2. For technical reasons, we need to ensure
that ‖Zi−x‖ ≤ 1 for all i. However, naı̈vely scaling all the data would decrease θ, thereby blowing
up the running time. Hence, as a preprocessing step, we prune out a small fraction of points Zi − x
with large norm before scaling.

5.1. Pruning and scaling

The preprocessing step (Algorithm 5.1) will be executed only once in the algorithm. After the
pruning step and an appropriate scaling, we may assume the following structures on the data.

Assumption 2 Given a current estimate x, the pruned dataset Z ∈ Rk′×d of size k′, let Z ′i =
1
B (Zi − x), where B = maxi ‖Z ′i − x‖. We assume (i) ‖Z ′i‖ ≤ 1; (ii) k′ ≥ 0.9k; and (iii) there
exists θ = Ω(1/

√
d) and a unit vector w such that for at least 0.8k points | 〈Z ′i,w〉 | ≥ θ.

We analyze the subroutine and prove the following lemma in Appendix E.
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1. Input: Dataset Z1,Z2, · · · ,Zk ∈ Rd, initial estimate x0

2. Compute the distances di = ‖Zi − x0‖.

3. Sort the points by di in decreasing order.

4. Remove the top 1/10 fraction of them. Let Z1, · · · ,Zk′ be the remaining
data.

5. Output: Z1, · · · ,Zk′

Algorithm 5.1: PRUNE

Lemma 7 With probability at least 1 − δ/8, Assumption 2 holds for any x such that ‖x − µ‖ ≤
O
(√
‖Σ‖kd/n

)
and ‖x− µ‖ ≥ Ω(rδ).

In the remainder of the section, given a current estimate x, we work with the pruned and scaled
data, centered at x, which we call Z ′ ∈ Rk′×d.

We will aim at proving the following lemma, under Assumption 2.

Lemma 8 (key lemma) Assume Assumption 2. Let δ ∈ (0, 1) and Tdes = Θ(log d). Suppose that
there exists w∗ ∈ Sd−1 which satisfies | 〈Z ′i,w∗〉 | ≥ θ∗ for 0.8k points in {Z ′i}. Then there is an
algorithm APPROXBREGMAN which, with probability at least 1− δ/4Tdes, outputsw ∈ Sd−1 such
that for at least 0.45 fraction of the points Z ′i, it holds that | 〈Z ′i,w〉 | ≥ 0.1θ∗.

Further, APPROXBREGMAN runs in time Õ
(
k2d
)
.

5.2. Approximation via Bregman Projection

In this section, we give the main algorithm for approximatingM2. Suppose (by binary search) that
we know the optimal margin θ in Lemma 8. The goal is to find a unit vector w such that a constant
fraction of Z ′i has margin | 〈Z ′i,w〉 | ≥ θ. The intuition is that we can start by computing the top
singular vector of Z ′. Then the margin would be large on average: certain points may overly satisfy
the margin demand while other may under-satisfy it. Hence, we would downweight those data poitns
that achieve large margin and compute the top singular vector of the weighted matrix again.

However, it may stop making progress if it puts too much weight on the points that do not satisfy
the margin bound. In this section, we show how to prevent this scenario from occurring. The key
idea is that at every iteration, we “smooth” the weight vector τt so that we can guarantee progress
is being made. We will formulate our algorithm in the well-studied regret-minimization framework
and appeal to existing machinery Arora et al. (2012) to derive the desired approximation guarantees.

First, we define what type of distribution we would like τt to be.

Definition 9 (Smooth distributions) The set of smooth distributions on [k′] is defined to be

K =

{
p ∈ ∆k′ : p(i) ≤ 4

k′
for every i ∈ [k′]

}
,

9
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where ∆k′ is the set of probability distributions on [k′],

∆k′ =

p : [k′]→ [0, 1] :
∑
i∈[k′]

p(i) = 1

 .

In the course of the algorithm, after updating τt as in the previous section, it may no longer be
smooth. Hence, we will replace it by the closest smooth weight vector (under KL divergence). The
following fact confirms that finding this closest smooth weight vector can be done quickly.

Fact 10 (Barak et al. (2009)) For any p ∈ ∆k with support size at least k′/2, computing

ΠK(p) = arg min
q∈K

KL(p||q)

can be done in Õ(k′) time, where KL(·||·) denotes the Kullback-Leibler divergence.

Remark 11 In our algorithm, we will only compute Bregman projections of distributions of support
size at least k′/2. This is because neither our reweighting procedure nor the actual projection
algorithm of Barak et al. (2009) sets any coordinates to 0 and the initial weight is uniform.

1. Input: Buckets means Z ′ ∈ Rk′×d, margin θ, iteration count T ∈ N

2. Initialize weights: τ1 = 1
k′ (1, . . . , 1) ∈ Rk′ .

3. For t = 1, . . . , T , repeat:

(a) LetAt be the k′ × d matrix whose ith row is
√
τt(i)(Z

′
i) and wt be its

approximate top right singular vector .

(b) Set σt(i) = | 〈Z ′i,wt〉 |.

(c) Reweight: If ‖Atwt‖22 ≥ θ2

10 , then τt+1(i) = τt(i)
(
1− σt(i)2/2

)
for

i ∈ [k′]. Otherwise, do not change the weights.

(d) Normalize: Let Z =
∑

i∈[k′] τt+1(i) and redefine τt+1 ← 1
Z τt+1.

(e) Compute the Bregman projection: τt+1 ← ΠK(τt+1).

4. Output: w ←ROUND
(
Z ′, {wj}Tt=1, θ

)
(or report FAIL if ROUND fails).

Algorithm 5.2: Approximate inner maximization via Bregman projection—APPROXBREGMAN

Since Algorithm 5.2 is the MWU method with Bregman projections onto the set K, we will
apply the following regret guarantee.3

3. To be more precise, the iterations t in which ‖Atwt‖22 ≥ θ2

10
behave according to the MWU method. Whenever

‖Atwt‖22 < θ2

10
, the algorithm does not update the weights, which has no effect on the other iterations.

10
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Theorem 12 (Theorem 2.4 of Arora et al. (2012)) Suppose that for σ2t (i) ∈ [0, 1] for all i ∈ [k′]
and t ∈ [T ]. Then after T iterations of Algorithm 5.2, for any p ∈ K, it holds that:

T∑
t=1

〈
τt,σ

2
t

〉
≤ 3

2

T∑
t=1

〈
p,σ2

t

〉
+ 2KL(p||τ1).

Finally, we comment that we cannot naı̈vely apply the power method for the singular vector
computation. The power method has failure probability of 1/10, whereas our algorithm should fail
with probability at most δ = O(exp(−k)) that is exponentially low. However, we note that the
algorithm computes the top singular vectors of a sequence of matrices A1,A2, . . . ,AT . Observe
that as long as T = Ω(log(1/δ)) = Ω(k), with probability at least 1 − δ/8, the power method
will succeed for 0.9T of the matrices. We will show that this many successes suffice to guarantee
correctness of our algorithm.

We first prove the following lemma, a requirement for the rounding algorithm to succeed.

Lemma 13 (regret analysis) After T = O
(

max
(
log k′

θ2
, log(Tdes/δ)

))
iterations of Algorithm 5.2,

for all but a 1/4 fraction of i ∈ [k′]:

T∑
t=1

〈
Z ′i,wt

〉2 ≥ 100 log k′.

Proof Let S = {i ∈ [k′] : | 〈Z ′i,w∗〉 | ≥ θ} be the set of constraints satisfied by the unit vector
w∗ whose existence is guaranteed in the hypothesis of Lemma 8. By assumption, we have that
|S| ≥ 0.8k′. We simply calculate each of the terms in Theorem 12.

First, let I = {t ∈ [T ] : wt is a 1/2-approximate top singular vector ofAt}. Then we have for
any t ∈ I:

〈
τt,σ

2
t

〉
=

k′∑
i=1

τt(i)
〈
Z ′i,wt

〉2 (by definition)

≥ 1

2

k′∑
i=1

τt(i)
〈
Z ′i,w

∗〉2 (because wt is an approximate top eigenvector)

≥ 1

2

∑
i∈S

τt(i)
〈
Z ′i,w

∗〉2
≥ 1

2

∑
i∈S

τt(i)θ
2 (by definition of S)

≥ 1

2
· 1

5
θ2 =

θ2

10
(because |S| ≥ 0.8k′ and τt ∈ K).

Summing this inequality over t ∈ [T ], we have that

T∑
t=1

〈
τt,σ

2
t

〉
≥
∑
t∈I

〈
τt,σ

2
t

〉
≥ |I|

10
θ2.

11
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By Chernoff-Hoeffding bound combined with the guarantee of power iteration (Fact 17), as long as
T = Ω(log(Tdes/δ)), then with probability at least 1− δ

8Tdes
, for at least 4

5T iterations, it will be the
case that wt is an approximate top singular vector. In other words, |I| ≥ 4

5T , so that we have:

T∑
t=1

〈
τt,σ

2
t

〉
≥ 2T

25
θ2.

Next, note that if we choose p = ei, then

T∑
t=1

〈
p,σ2

t

〉
=

T∑
t=1

〈
Z ′i,wt

〉2
.

Because τ1 is uniform, the relative entropy term in Theorem 12 is at most log k′. Let’s pretend for
a moment that ei ∈ K (it is not). Then after plugging in the above calculations to Theorem 12 and
rearranging, we have that for every i ∈ [k′]

T∑
t=1

〈
Z ′i,wt

〉2 ≥ 2T

25
θ2 − 2 log k′ ≥ 100 log k′,

by setting T ≥ 105 log k′

θ2
. This gives the bound claimed in the statement of the lemma, but it remains

to fix the invalid assumption that ei ∈ K. To do so, we will construct, for most i ∈ [k′], another
distribution p′ ∈ K such that

T∑
t=1

〈
ei,σ

2
t

〉
≥

T∑
t=1

〈
p′,σ2

t

〉
.

Combining this with
∑T

t=1

〈
p′,σ2

t

〉
≥ 100 log k′ gives the desired lower bound, for most i. Write

α =
∑T

t=1 σ
2
t , and without loss of generality assume that

α1 ≥ α2 ≥ . . . ≥ αk′ .

For i = 1, . . . , 4k′/5, take p′ to be uniform on those j ∈ [k′] such that αi ≥ αj (there are at least
k′/5 such i). By construction, we have that 〈α, ei〉 ≥ 〈α,p′〉. Finally, observe that p′ ∈ K because
p′ is uniform on a set of size at least k′/5.

Observe that the APPROXBREGMAN produces a sequence of vectors by the end. Karnin et al.
(2012) provides a rounding algorithm that combines them into one with the desired margin bound.
We describe the algorithm and prove the following lemma in Appendix F.

Lemma 14 The algorithm ROUND (Algorithm F.1) outputs w that satisfies | 〈Z ′i,w〉 | ≥ 0.1θ for
0.45k of the points, with probability at least 1− δ/4Tdes.

Finally, we can prove the key lemma using APPROXBREGMAN (Appendix G) and put everything
together in Appendix H.

12
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Appendix A. Main algorithm description

1. Input: Dataset Z ′ and current estimate xt

2. Z ′i ← (Z ′i − xt) /B by scaling each point by B = maxi ‖Z ′i − xt‖.

3. θ ← the largest margin θ such that APPROXBREGMAN(Z ′, θ, T ) does not
FAIL, where T = O(log k/θ2).

4. Output: d̂ = B
10θ.

Algorithm A.1: Distance estimation—DISTEST

1. Input: Dataset Z ′ and current estimate xt

2. Z ′i ← (Z ′i − xt) /B by scaling each point by B = maxi ‖Z ′i − xt‖.

3. θ ← the largest margin θ such that APPROXBREGMAN(Z ′, θ, T ) does not
FAIL, where T = O

(
log k/θ2

)
.

4. ĝ ← APPROXBREGMAN (Z ′, θ, T )

5. If 〈ĝ,Z ′i〉 ≥ 0.1θ for at least 0.5k of the Z ′i, output ĝ; otherwise, output −ĝ.

Algorithm A.2: Gradient estimation—GRADEST

Appendix B. Technical facts

We formally state the statistical guarantee of empirical average and coordinate-wise median-of-
means. The former is an application of the Chebyshev’s inequality. The latter is folklore but can
follow easily from the Lugosi-Mendelson condition by considering the projections onto standard
basis vectors.

Lemma 15 (empirical mean) Let δ ∈ (0, 1). Given n i.i.d. copiesX1, . . . ,Xn of a random vector
X ∈ Rd with mean µ and covariance Σ, let µ = 1

n

∑n
i=1Xi. Then with probability at least 1− δ,

‖µ− µ‖ ≤
√

Tr(Σ)

δn
.

Lemma 16 (coordinate-wise median-of-means) Assume the Lugosi-Mendelson condition (As-
sumption 1). Let {Zi}ki=1 be the bucket means from n points (with at most k/200 contaminated) and
µ̂ be their coordinate-wise median-of-means. Then with probability at least 1− δ/8,

‖µ̂− µ‖ ≤ 600
√
drδ .

√
d‖Σ‖ log(1/δ)

n
.
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1. Input: DatasetX1,X2, · · · ,Xn ∈ Rd

2. Let k = 3600 log(1/δ). Divide the data into 2k groups.

3. Compute the bucket mean of each group: Z1,Z2, · · · ,Z2k ∈ Rd.

4. Compute the coordinate-wise median-of-means of the second half of bucket
means:

x0 ← MEDIANOFMEANS({Zk+1, · · · ,Z2k}).

5. Prune the first half of bucket means, where Z is the data matrix of {Zi}ki=17:

Z ′ ← PRUNE(Z,x0).

6. Tdes ← Θ(log d), η ← 1/8000

7. Run the main descent procedure: µ̂ ← DESCENT(Z ′,x0, Tdes, η), using
DISTEST and GRADEST as above.

8. Output: µ̂

Algorithm A.3: Final algorithm

Our algorithm requires computing an approximation of the top (right) singular vector of a matrix
A ∈ Rm×n. The classic power method is efficient for this task.

Fact 17 (power iteration; see Theorem 3.1 of Blum et al. (2019)) Let λ(A) = maxx∈Sn−1 ‖Ax‖22.
With probability at least 9/10, the power method (with random initialization) outputs a unit vector
w such that ‖Aw‖22 ≥

λ(A)
2 in O(log n) iterations. Moreover, each iteration can be performed in

O(mn) time.

The following is a standard bound on binomial tail.

Lemma 18 (Okamoto (1959)) Let H(n, p) be a binomial random variable. Then

Pr (H(n, p) ≥ 2np) ≤ exp (−np/3) .

Appendix C. Omitted proofs from Section 3

Proof [Proof of Lemma 5] First, suppose that in some iteration t it holds that ‖µ− xt‖ ≤ 14000rδ.
Then

1

21
‖µ− xt∗‖ ≤ dt∗ ≤ dt ≤ 2‖µ− xt‖ ≤ 28000rδ,

so that we may conclude ‖µ − xt∗‖ ≤ 588000rδ. Second, suppose that in all iterations t it holds
that ‖µ− xt‖ > 14000rδ. Then by the update rule with η = 1/8000,

‖xt+1 − µ‖2 = ‖xt − µ‖2 + 2ηdt 〈xt − µ, gt〉+ η2d2t ‖gt‖2

17
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≤ ‖xt − µ‖2 −
1

800000
dt‖µ− xt‖+

1

16000000
‖xt − µ‖2

≤ ‖xt − µ‖2 −
1

1680000
‖µ− xt‖2 +

1

16000000
‖xt − µ‖2

=

(
1− 179

336000000

)
‖xt − µ‖2

Hence, the error bound drops at a geometric rate. The conclusion follows since ‖µ − x0‖ ≤
O(
√
kd‖Σ‖/n) ≤ O(

√
drδ).

Appendix D. Omitted proof from Section 4

First recall that Cherapanamjeri et al. (2019a) showed that the optimal solution toM(xt,Z) satisfies
the property that θ is a valid distance estimate (Definition 3) andw a gradient estimate (Definition 4).

Lemma 19 (Lemma 1 of Cherapanamjeri et al. (2019a)) For all t = 1, 2, · · · , T , let dt = θ∗ be
the optimal value ofM(xt,Z). Then |dt − ‖µ− xt‖| ≤ 600rδ, so dt is a distance estimate with
respect to xt.

Lemma 20 (Lemma 2 of Cherapanamjeri et al. (2019a)) For all t = 1, 2, · · · , T , let (θ∗, b∗,w∗)
be the optimal solution ofM(xt,Z). Then gt is a distance estimate with respect to xt.

We now start by proving a generic claim that any reasonably good bicriteria approximation of
M(xt,Z) suffices to provide gradient and distance estimates.

Definition 21 (bicriteria solution) Let θ∗ be the optimal value ofM(x,Z). We say that (θ, b,w)
is a (α, β)-bicriteria solution toM(x,Z) if

∑
i bi ≥ αk and bi 〈Zi − x,w〉 ≥ biθ for all i, where

θ = βθ∗.

Lemma 22 (distance estimate) Let (θ, b,w) be a (1/10, 1/20)-bicriteria solution toM(xt,Z).
Then dt = θ is a distance estimate with respect to xt.

Proof [Proof of Lemma 22] By Lemma 19, the optimal value θ∗ lies in the range

[‖µ− xt‖ − 600rδ, ‖µ− xt‖+ 600rδ] .

Moreover, since θ∗/20 ≤ θ ≤ θ∗, we have that

‖µ− x‖
20

− 30rδ ≤ θ ≤
‖µ− x‖

20
+ 30rδ. (D.1)

• When ‖µ− x‖ ≥ 14000rδ, we get from the inequality (D.1) that

‖µ− x‖
21

≤ θ ≤ ‖µ− x‖
19

.

• When ‖µ− x‖ ≤ 14000rδ, θ ≤ 730rδ < 28000rδ, again by (D.1).

18
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Lemma 23 (gradient estimate) Let (θ, b,w) be a (1/10, 1/20)-bicriteria solution toM(xt,Z).
Then gt = w is a gradient estimate with respect to xt.

Proof [Proof of Lemma 23] Let g∗ = (µ − xt)/‖µ − xt‖ be the true gradient. We need to show
that 〈g∗, gt〉 ≥ 1/20. On the one hand, by Lemma 19, we have

dt = θ ≥ 1

20
(‖u− xt‖ − 600rδ). (D.2)

On the other hand, for at least k/10 points, we have 〈Zi − xt, gt〉 ≥ dt and for at least 0.95k points,
we have 〈Zi − µ, gt〉 ≤ 600rδ by Assumption 1. Hence, there must be a point Zj that satisfies both
inequalities, so it follows that

dt ≤ 〈Zj − xt, gt〉 = 〈Zj − µ, gt〉+ 〈µ− xt, gt〉 ≤ 600rδ + ‖µ− xt‖ 〈g∗, gt〉 . (D.3)

Using (D.2) and (D.3) and rearranging,

〈g∗, gt〉 ≥
1

20
− 630rδ
‖µ− xt‖

≥ 1

200
,

where we use ‖µ− xt‖ ≥ 14000rδ.

Now we show that the optimal solution to the two-sided relaxation give distance and gradient
estimate.

Lemma 24 Let (θ′, b′,w′) be an optimal solution ofM2(x,Z). We have that

(i) the value θ′ lies in [‖µ− x‖ − 600rδ, ‖µ− x‖+ 600rδ]; and

(ii) one of the following two statements must hold, if ‖µ− x‖ ≥ 14000rδ:

• there is a set C of at least 0.9k points such that 〈Zi − x,w′〉 ≥ θ′ for all i ∈ C; or

• there is a set C of at least 0.9k points such that 〈Zi − x,−w′〉 ≥ θ′ for all i ∈ C.

Proof [Proof of Lemma 24] Let θ be the optimal value of M(x,Z). To prove (i), first recall
that Lemma 19 states that θ ≥ ‖µ − x‖ − 600rδ. Therefore, we get that θ′ ≥ ‖µ − x‖ − 600rδ,
as θ′ ≥ θ. For the upper bound, assume for the sake of a contradiction that θ′ > ‖µ− x‖+ 600rδ.
Then one side of the hyperplane defined byw′ must contain at least 19/40 fraction of points, so let’s
suppose without loss of generality that〈

Zi − x,w′
〉
≥ θ′ > ‖µ− x‖+ 600rδ (D.4)

for at least 19k/40 Zi’s. Also, note that〈
Zi − x,w′

〉
=
〈
Zi − µ,w′

〉
+
〈
µ− x,w′

〉
≤ ‖µ− x‖+

〈
Zi − µ,w′

〉
. (D.5)
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Combining (D.4) and (D.5), it follows that for at least 19k/40 Zi’s we have〈
Zi − µ,w′

〉
> 600rδ. (D.6)

On the other hand, consider projections of all bucket means Zi ontow′. Assumption 1 implies that∣∣{i :
〈
w′,Zi

〉
−
〈
w′,µ

〉
≥ 600rδ)

}∣∣ ≤ 0.05k.

This means that at most k/20 points satisfy 〈Zi − µ,w′〉 ≥ 600rδ, contradicting (D.6).
To prove (ii), let S+ = {i : 〈Zi − x,w′〉 ≥ θ′} and S− = {i : 〈Zi − x,−w′〉 ≥ θ′}. Notice

that since ‖µ− x‖ ≥ 14000rδ, S+ and S− are disjoint. Now let

B =
{
i : |

〈
w′,Zi − µ

〉
| ≤ 600rδ

}
=
{
i : |

〈
w′,Zi − x

〉
−
〈
w′,µ− x

〉
| ≤ 600rδ

}
.

By Assumption 1, |B| ≥ 19k/20. Consider the two cases.

• If 〈w′,µ− x〉 ≥ 0, observe that B must intersect S+ but not S−. This implies that |S−| ≤
k/20, so |S+| ≥ 9k/10, since |S+|+ |S−| = 19k/20 and they are disjoint.

• If 〈w′,µ− x〉 < 0, by the same argument, we have |S−| ≥ 9k/10.

Next, we show that approximatingM2 in a bicriteria manner achieves a similar guarantee.

Lemma 25 Let θ∗ be the optimal value ofM(x,Z) andw′ be a unit vector such that for at least
k/8 of the Zi, we have | 〈w′,Zi − x〉 | ≥ θ′, where θ′ = 0.1θ∗. One of the following two statements
must hold if ‖µ− x‖ ≥ 14000rδ.

• there is a set C of at least 0.95k points such that 〈Zi − x,w′〉 ≥ θ′ − 600rδ for all i ∈ C;

• there is a set C of at least 0.95k points such that 〈Zi − x,−w′〉 ≥ θ′ − 600rδ for all i ∈ C.

Proof [Proof of Lemma 25] Let C = {i : | 〈w′,Zi − µ〉 | ≤ 600rδ} be the set of “good” points with
respect to direction w′. By Assumption 1, |C| ≥ 19k/20. Further, let S = {| 〈w′,Zi − x〉 | ≥ θ′},
which we assume has size at least k/8. Thus, by pigeonhole principle, there must be a point, say Zj ,
that is in both sets. There are two cases.

• Suppose 〈w′,µ− x〉 ≥ 0. Since j ∈ S and θ∗ ≥ 13400rδ by Lemma 24, we have
| 〈w′,Zi − x〉 | ≥ 1340rδ. On the other hand, since j ∈ C,∣∣〈w′,Zj − µ〉∣∣ =

∣∣〈w′,Zj − x〉− 〈w′,µ− x〉∣∣ ≤ 600rδ. (D.7)

Hence, we observe that 〈w′,Zj − x〉 ≥ θ′ ≥ 1340rδ. By definition of C, all its points cluster
around Zj by an additive factor of 600rδ.

• Suppose 〈w′,µ− x〉 ≤ 0. We get the second case in the claim by the same argument.

Finally, we are ready to prove Lemma 6.
Proof [Proof of Lemma 6] Let’s first check the distance estimate (Definition 3) guarantee.
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• If ‖µ− x‖ ≥ 14000rδ, we have

θ′ ≥ 1

10
‖µ− x‖ − 60rδ ≥

2

35
‖µ− x‖,

since θ′ = 0.1θ∗ and θ∗ ≥ ‖µ− x‖ − 600rδ. The upper bound of (3.1) obviously holds.

• If ‖µ− x‖ ≤ 14000rδ, we have θ′ ≤ 1460rδ by Lemma 24.

For gradient estimate, we appeal to Lemma 25 and get that if ‖µ − x‖ ≥ 14000rδ, then either
(θ′, b′,w′) or (θ′, b′,−w′) is a (19/20, 1/20)-bicriteria approximation ofM(x,Z), where b′ is the
indicator vector of C. Thus, we can apply Lemma 23, and this completes the proof.

Appendix E. Omitted proof from subsection 5.1

We remark that under Lugosi-Mendelson condition, the assumption ‖µ− x0‖ .
√
kd‖Σ‖/n can

be easily achieved by initializing x0 to be the coordinate-wise median-of-means (Lemma 16) (with
a failure probability at most δ/8).

Lemma 26 (pruning) Let β = 600
√
kd‖Σ‖/n, and suppose ‖µ − x0‖ ≤ β. Given the bucket

means Z ∈ Rk×d such that at most k/200 points are contaminated, the algorithm PRUNE removes
k/10 of the points and guarantees that with probability at least 1− δ/8, among the remaining data,

max
i
‖Zi − µ‖ ≤ O(β).

Further, PRUNE(Z,x0) can be implemented in Õ(kd) time.

Proof [Proof of Lemma 26] For correctness, consider ‖Zi − µ‖, and by triangle inequality,

‖Zi − x0‖ − ‖µ− x0‖ ≤ ‖Zi − µ‖ ≤ ‖Zi − x0‖+ ‖µ− x0‖.

Since ‖µ− x0‖ ≤ β by our assumption,

‖Zi − x0‖ − β ≤ ‖Zi − µ‖ ≤ ‖Zi − x0‖+ β. (E.1)

Let Sgood = {i : ‖Zi − µ‖ ≤ β} and Sbad = {i : ‖Zi − µ‖ ≥ 20β}. It suffices to show
that with probability at least 1 − δ/8 all the points in Sbad are removed. We first lower bound
the number of good points. Each uncontaminated Zi is an average of bn/kc i.i.d. random vectors.
Applying Lemma 15 on estimation error of empirical mean, we obtain that for each uncontaminated
i, with probability at least 1− 1/1000,

‖Zi − µ‖ ≤
√

1000 · Tr(Σ)k/n ≤ β.

Therefore, each uncontaminated Zi is in Sgood with probability at least 1 − 1/1000. Let H be
the number of uncontaminated points not in Sgood and p = 1/1000. Since there are at most
k/200 contaminated points and each uncontaminated point is independent, by a binomial tail bound
(Lemma 18)

Pr (H ≤ 2p · (199/200)k) ≥ 1− exp (−p · (199/200)k/3)
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≥ 1− exp (− log (8/δ))

= 1− δ/8,

where we used k = d3600 log(8/δ)e. Hence, with probability at least 1 − δ/8, Sgood contains at
least (399/400)k (uncontaminated) points. We condition on this event for the rest of the proof.

Now observe that

‖Zi − x0‖ < ‖Zj − x0‖ for each j ∈ Sbad and i ∈ Sgood (E.2)

by (E.1). Suppose for a contradiction that j ∈ Sbad is not removed by line 4. Then it means that
dj ≤ di for k/10 of the Z ′i’s. By pigeonhole principle, this implies dj ≤ di for some i ∈ Sgood,
since |Sgood| ≥ (399/400)k. This contradicts condition (E.2).

Computing the distances takes O(kd) time and sorting takes O(k log k) time. Thus, the algo-
rithm PRUNE runs in time O(kd+ k log k) and succeeds with probability at least 1− δ/8.

Pruning allows us to bound the norms of the points Zi − xt for each iteration t.

Corollary 27 (scaling and margin) Suppose ‖µ−x‖ ≤ O
(√
‖Σ‖kd/n

)
and ‖µ−x‖ ≥ Ω (rδ).

Let S be the pruned dataset of size k′ ≥ 9k/10 such that ‖Zi − µ‖ ≤ O
(√
‖Σ‖kd/n

)
for each

i ∈ S . There exists a scaling factor B, θ > 0 and unit vector w such that for at least 4k/5 points in
S, ∣∣〈 1

B (Zi − x),w
〉∣∣ ≥ θ.

Further, we have that 1/θ2 = O(d).

Proof [Proof of Corollary 27] Let B = maxi∈S ‖Zi − x‖. Then B is bounded by

‖Zi − x‖ ≤ ‖Zi − µ‖+ ‖µ− x‖ ≤ O
(√
‖Σ‖kd/n

)
. (E.3)

By Lemma 24, there exists a unit vector w such that for at least 0.8k points in S , 〈Zi − x,w〉 ≥ θ′
and θ′ = Ω(rδ). Hence, we get that

θ = Ω
(rδ
B

)
= Ω

(√
k‖Σ‖/n+

√
TrΣ/n√

‖Σ‖ · kd/n

)
= Ω

(
1/
√
d
)
.

Proof [Proof of Lemma 7] The lemma follows directly from Lemma 26 and Corollary 27.

Appendix F. Omitted proofs from subsection 5.2

Karnin et al. (2012) provides a rounding scheme that combines the sequence of vectors produced
by APPROXBREGMAN into one vector that satisfies the desired margin bound. The original routine
succeeds with constant probability. We simply perform independent trials to boost the rate. We now
analyze the algorithm. We cite the following lemma for the guarantee of the rounding algorithm
(Algorithm F.1).
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1. Input: Buckets means Z ′, unit vectors w1, . . . ,wT ∈ Rd, margin θ,

2. Round to a single vector: w = w′

‖w′‖ , where w′ =
∑T

t=1 gtwt and gt ∼
N (0, 1), for t = 1, . . . , T .

3. Repeat until | 〈Z ′i,w〉 | ≥ 1
10θ for at least 0.6k′ of Z ′i:

(a) Sample gt ∼ N (0, 1), for t = 1, . . . , T .

(b) Recompute w = w′/‖w′‖, where w′ =
∑T

t=1 gtwt.

(c) Report FAIL if more than Ω (log (Tdes/δ)) trials have been performed.

4. Output: w

Algorithm F.1: Rounding algorithm—ROUND

Lemma 28 (Lemma 6 of Karnin et al. (2012)) Suppose that for at least 3
4 fraction of i ∈ [k′], it

holds that
T∑
t=1

〈
Z ′i,wt

〉2 ≥ log k′. (F.1)

Let w1, . . . ,wT be the unit vectors satisfying the above condition. Then with constant probability,
the vector w in each repetition of the step 3 of the ROUND algorithm (Algorithm F.1) satisfies
| 〈Zi,w〉 | ≥ θ/10 for at least a 0.45 fraction of i ∈ [k′].

Now we prove the guarantee of ROUND.
Proof [Proof of Lemma 14] By Lemma 28, it suffices to prove inequality (F.1) holds for at least a
3/4 fraction of the points. By the regret analysis (Lemma 13), the vectors w1, . . . ,wT produced
during the iterations of Algorithm 5.2 satisfy the hypothesis of Lemma 28. Hence, the guarantee
of Lemma 28 holds with constant probability. Moreover, we can test that this guarantee holds in time
O(Tk′d). To boost the success probability to 1−δ′ (with δ′ = δ/4Tdes), ROUND algorithm performs
O(log(1/δ′)) independent trials. Hence, it reports FAIL with probably at most δ′. Otherwise, by its
definition, the output w satisfies desired bound | 〈Z ′i,w〉 | ≥ 0.1θ for 0.45k of the points.

Appendix G. Full proof of key lemma

Proof [Proof of Lemma 8] The correctness follows from Lemma 14. We focus on run-time. By As-
sumption 2, we have that 1/θ2 = O(d). By projecting onto the subspace spanned by the bucket
means, we can assume d ≤ k. Hence, Lemma 13 implies that the iteration count is Õ(k′). The
runtime of each iteration is bounded by the cost of computing an approximate top singular vector of
a k′ by d matrix via the power method, which is Õ(k′d) by Fact 17. Finally, each repetition of the
rounding algorithm ROUND takes time Õ(k′d), and the number of trials is at most O(log(1/δ′)) by
definition. Thus, the runtime of the rounding algorithm is Õ(k2d) .
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Appendix H. Full proof of main theorem

Proof [Proof of Theorem 1] Our argument assumes the following global events.

(i) The Lugosi-Mendelson condition (Assumption 1) holds.

(ii) The initial estimate x0 satisfies ‖µ− x0‖ ≤ 600
√
‖Σ‖kd/n.

(iii) The pruning step succeeds: ‖Z ′i − µ‖ ≤ O
(√
‖Σ‖kd/n

)
We consider our main algorithm (Algorithm A.3) and first prove the correctness of DISTEST and
GRADEST. Let Z ′ be defined as in line 2 of DISTEST and GRADEST. Lemma 24 states that there
exists a margin θ∗ in [‖µ− x‖ − 600rδ, ‖µ− x‖+ 600rδ]. When ‖µ− xt‖ ≥ 14000rδ, we have
that for at least 0.8k points Z ′i it holds B · | 〈Z ′i,w∗〉 | ≥ θ∗ for some unit vector w∗, since the data
are scaled by B. Furthermore, when the pruning step succeeds, Assumption 1 holds. This allows us
to apply the key lemma (Lemma 8).

(i) For GRADEST, we use binary search in line 3 to find θ = θ∗/B. By the guarantee of Lemma 8,
| 〈w,Z ′i〉 | ≥ θ

10 for at least k/8 of the Zi. It follows that | 〈w,Zi − xt〉 | ≥ Bθ
10 for at least k/8

of the Zi. Thus, Lemma 6 implies that the output gt is a gradient estimate.

(ii) By the same argument, we apply Lemma 6 and conclude that d̂t of DISTEST is a distance
estimate.

Finally, we apply Lemma 5 for the guarantee of DESCENT.
Next we bound several failure probabilities of the algorithm. The first three correspond to the

global conditions.

• By Lemma 2, the Lugosi-Mendelson condition Assumption 1 fails with probability at most
δ/8.

• By Lemma 16, the coordinate-wise median-of-means error bound fails with probability at
most δ/8

• By Lemma 7, the guarantee of our pruning and scaling procedure (Assumption 2) fails with
probability at most δ/8.

• Conditioned on above, the APPROXBREGMAN satisfies the guarantee of the key lemma
(Lemma 8). The failure probability is at most δ/4Tdes each iteration. We take union bound
over all these iterations.

Overall, the failure probability of the entire algorithm (Algorithm A.3) is bounded by δ via union
bound.

The runtime follows from Lemma 8 which claims each iteration takes time Õ(k2d) and the fact
that Tdes = Õ(1).
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Appendix I. Interpretation of FHP algorithm Karnin et al. (2012) as regret
minimization

Here, we review the bicriteria approximation algorithm of Karnin et al. Karnin et al. (2012) and
show how it can be interpreted in the multiplicative weights update (MWU) framework for regret
minimization. Given Z1, . . . ,Zk ∈ Rd such that ‖Zi‖ ≤ 1, we study the following furthest
hyperplane problem:

Find w ∈ Sd−1

subject to | 〈Zi,w〉 | ≥ r for i = 1, . . . , k,

where we are promised that there does indeed exist a feasible solution w∗. Since this problem is
(provably) hard (even to approximate) we will settle for bicriteria approximate solutions. By this,
we simply mean that we require the algorithm to output some w such that | 〈Zi,w〉 | ≥ r

10 for most
of the i ∈ [k]. For our applications, the particular constants will not matter much, as long as they are
actually constants.

See Algorithm I.1 for a formal description. First we give some intuition and then we sketch the
important steps in the analysis.

1. Input: Z1, . . . ,Zk ∈ Rd and iteration count T ∈ N.

2. Initialize weights: τ1 = 1
k (1, . . . , 1) ∈ Rk.

3. For t = 1, . . . , T , repeat:

(a) Let At be the k × d matrix whose ith row is
√
τt(i)Zi and wt be the

top right unit singular vector ofAt.

(b) Set σt(i) = | 〈Zi,wt〉 |.
(c) Reweight: τt+1(i) = τt(i)η

−σ2
t (i) for i ∈ [k] for an appropriately cho-

sen constant η. In MWU language, σ2
t is the loss vector at time t.

(d) Normalize: Let Z =
∑

i∈[k] τt+1(i) and redefine τt+1 ← 1
Z τt+1.

4. Output: w1, . . . ,wT ∈ Sd−1.

Algorithm I.1: Iterative MWU procedure

I.1. Intuition

Because we are promised that w∗ exists, averaging the constraints yields:

1

k

k∑
i=1

〈Zi,w∗〉2 ≥ r2.

Note that if we defineA1 as in Algorithm I.1, then the definition of singular vector tells us that:

max
w∈Sd−1

‖A1w‖2 =
1

k

k∑
i=1

〈Zi,w〉2 ≥
1

k

k∑
i=1

〈Zi,w∗〉2 ≥ r2.
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Thus,w1, the top singular vector as defined in Algorithm I.1, satisfies the constraints on average. It
could be the case that 〈Z4,w1〉2 � r2 but 〈Zi,w〉2 � r2 for all i 6= 4. To fix this issue, we would
simply down-weight Z4 in the next iteration, so that w2 aligns more with Zi for i 6= 4. We repeat
this several times, with each wt improving upon wt−1.

At the end, the algorithm produces a collection of vectors w1, . . . ,wT which each satisfy a
certain property. While it seems natural to just output wT as the final answer, it turns out that this
will not work. Instead, we need to apply a randomized rounding procedure to extract a single vector
w from w1, . . . ,wT .

I.2. Analysis

Lemma 29 When Algorithm I.1 terminates after T = O( log k
r2

) iterations, for every i ∈ [k] it holds
that:

T∑
t=1

〈Zi,wt〉2 ≥
log k

log η
.

Proof Algorithm I.1 is simply the MWU algorithm with the experts corresponding to the k con-
straints and the loss of expert i at time t being σ2

t (i). Using the regret guarantee from Theorem 2.1
in Arora et al. (2012) with respect to the fixed expert ei and step size η:

T∑
t=1

〈
τt,σ

2
t

〉
− (1 + η)

T∑
t=1

〈
ei,σ

2
t

〉
≤ log k

η
. (I.1)

Note that
T∑
t=1

〈
ei,σ

2
t

〉
=

T∑
t=1

〈Zi,wt〉2

and

T∑
t=1

〈
τt,σ

2
t

〉
=

T∑
t=1

k∑
i=1

τt(i)σ
2
t (i)

=

T∑
t=1

k∑
i=1

τt(i) 〈Zi,wt〉2 (by definition of the algorithm)

≥
T∑
t=1

k∑
i=1

τt(i) 〈Zi,w∗〉2 (since w∗ is the top eigenvector)

≥
T∑
t=1

k∑
i=1

τt(i)r
2

= Tr2.

Substituting into and simplifying the regret formula and taking η = 1/3 gives the claim.

Given the previous lemma, we can just apply the rounding algorithm as a black-box to the output of
Algorithm I.1.
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Lemma 30 (Karnin et al. (2012)) Let α ∈ (0, 1) and w1, . . . ,wT be unit vectors satisfying the
conclusion of the previous lemma. Then with probability at least 1/147, the outputw of the Rounding
Algorithm F.1 satisfies | 〈Zi,w〉 | ≥ αr for at least a 1− 3α fraction of i ∈ [k].

Appendix J. Conclusion and Discussion

In this paper, we provided a faster algorithm for estimating the mean of a heavy-tailed random
vector that achieves subgaussian performance. Unlike previous algorithms, our faster running time
is achieved by the use of a simple spectral method that iteratively updates the current estimate of the
mean until it is sufficiently close to the true mean.

Our work suggests two natural directions for future research. First, is it possible to achieve
subgaussian performance for heavy-tailed covariance estimation in polynomial time? Currently, the
best polynomial-time covariance estimators do not achieve the optimal statistical rate (see Lugosi
and Mendelson (2019c); Cherapanamjeri et al. (2019b)), while a natural generalization of the (com-
putationally intractable) Lugosi-Mendelson estimator is known to achieve subgaussian performance.
One approach would be to build on our framework; the key technical challenge is to design an
efficient subroutine for producing bi-criteria approximate solutions to the natural generalization of
the inner maximization problem to the covariance setting.

Another direction is to achieve a truly linear-time algorithm for the mean estimation problem.
Our iterative procedure for solving the inner maximization problem take Õ(k) iterations; is it
possible to reduce this to a constant?

27


	Introduction
	Preliminaries and Assumptions
	Descent Procedure
	Inner Maximization and its Two-Sided Relaxation
	Approximating the Inner Maximization
	Pruning and scaling
	Approximation via Bregman Projection

	Main algorithm description
	Technical facts
	Omitted proofs from Section 3
	Omitted proof from Section 4
	Omitted proof from subsection 5.1
	Omitted proofs from subsection 5.2
	Full proof of key lemma
	Full proof of main theorem
	Interpretation of FHP algorithm  as regret minimization
	Intuition
	Analysis

	Conclusion and Discussion

