
Proceedings of Machine Learning Research vol 125:1–70, 2020 33rd Annual Conference on Learning Theory

Learning Over-Parametrized Two-Layer ReLU Neural Networks
beyond NTK

Yuanzhi Li YUANZHIL@ANDREW.CMU.EDU
Carnegie Mellon University

Tengyu Ma TENGYUMA@STANFORD.EDU
Stanford University

Hongyang R. Zhang HONGYANG90@GMAIL.COM

University of Pennsylvania

Editors: Jacob Abernethy and Shivani Agarwal

Abstract
We consider the dynamic of gradient descent for learning a two-layer neural network. We assume
the input x ∈ Rd is drawn from a Gaussian distribution and the label of x satisfies f?(x) =
a>|W ?x|, where a ∈ Rd is a nonnegative vector and W ? ∈ Rd×d is an orthonormal matrix. We
show that an over-parametrized two-layer neural network with ReLU activation, trained by gradient
descent from random initialization, can provably learn the ground truth network with population
loss at most o(1/d) in polynomial time with polynomial samples. On the other hand, we prove that
any kernel method, including Neural Tangent Kernel, with a polynomial number of samples in d,
has population loss at least Ω(1/d).

1. Introduction

Gradient-based optimization methods are the method of choice for learning neural networks. How-
ever, it has been challenging to understand their working on non-convex functions. Prior works
prove that stochastic gradient descent provably convergences to an approximate local optimum (Ge
et al. (2015); Sun et al. (2015); Lee et al. (2017); Kleinberg et al. (2018)). Remarkably, for many
highly complex neural net models, gradient-based methods can also find high-quality solutions (Sun
(2019)) and interpretable features (Zeiler and Fergus (2014)).

Recent studies made the connection between training wide neural networks and Neural Tangent
Kernels (NTK) (Jacot et al. (2018); Arora et al. (2019b); Cao and Gu (2019); Du et al. (2018c)).
The main idea is that training neural networks with gradient descent with a particular initialization
is equivalent to using kernel methods. However, the NTK approach has not yet provided a fully
satisfactory theory for explaining the success of neural networks. Empirically, there seems to be a
non-negligible gap between the test performance of neural nets trained by SGD and that of the NTK
(Arora et al. (2019a); Li et al. (2019b)). Recent works have suspected that the gap stems from that
the NTK approach has difficulty dealing with non-trivial explicit regularizers or does not sufficiently
leverage the implicit regularization of the algorithm (Wei et al. (2019); Chizat and Bach (2018b); Li
et al. (2019a); HaoChen et al. (2020)).

In this work, we provide a new convergence analysis of the gradient descent dynamic on an
over-parametrized two-layer ReLU neural network. We prove that for learning a certain two-layer

c© 2020 Y. Li, T. Ma & H.R. Zhang.

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

target network with orthogonal ground truth weights, gradient descent is provably more accurate
than any kernel method that uses polynomially large feature maps.

1.1. Setup and Main Result

We assume that the input x ∈ Rd is drawn from the Gaussian distribution N (0, Idd×d). We focus
on the realizable setting, i.e. the label of x is generated according to a target network f? with d
neurons. We study a two-layer target neural network with absolute value activation:

f?(x) =
d∑
i=1

ai

∣∣∣w?i >x∣∣∣ , (1)

where ai is in [1
κd ,

κ
d] for an absolute constant κ ≥ 1 and satisfies

∑
i∈[d] ai = 1, and {w?i }di=1 forms

an orthonormal basis. Note that equation (1) can be also written as the sum of 2d neurons with of
relu activation:

f?(x) =
d∑
i=1

ai

(
ReLU(w?i

>x) + ReLU(−w?i
>x)

)
.

We consider a training dataset of N i.i.d. samples Z = {(xj , yj)}Nj=1, where every xj is drawn
from the Gaussian distribution with identity covariance and yi = f?(xj).

We learn the target network using an over-parametrized two-layer ReLU network with m ≥ 2d
neurons W = {wi}mi=1, given by:

fW (x) =
1

m

m∑
i=1

‖wi‖ · ReLU(w>i x). (2)

Note that we have re-parametrized the output layer with the norm of the corresponding neuron, so
that we only have one set of parameters W . This is without loss of generality because when ai ≥ 0,
ai · ReLU(w>i x) is equal to ‖w′i‖ · ReLU(w′i

>x) where w′i =
√
ai/‖wi‖ · wi. Given a training

dataset Z = {(xi, yi)}Ni=1, we learn the target network by minimizing the following empirical loss:

L̂(W) =
1

N

N∑
i=1

(fW (xi)− yi)2 .

Let L(W) denote the population loss given by the expectation of the above equation over Z .
Algorithm. We focus on truncated gradient descent with random initialization. Algorithm 1 de-
scribes the procedure.An interesting feature is that when a neuron becomes larger than a certain
threshold, we no longer update the neuron. This is a variant of gradient clipping often used in train-
ing recurrent neural networks (e.g. Merity et al. (2017); Gehring et al. (2017); Peters et al. (2018))
— here we drop the gradients of the large weights instead of re-scaling them. The truncation allows
us to upper bound the norm of every neuron. Our main result shows that Algorithm 1 learns the
target network accurately in polynomially many iterations.

Theorem 1 (Main result) Let Z be a training dataset with N = polyκ(d) samples generated by
the model described above.1 Let C(κ) be a sufficiently large constant that only depends on κ. Let

1. Let poly(d) denote a polynomial of d and polyκ(d) denote a polynomial whose degree may depend on κ.

2

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Algorithm 1 Truncated gradient descent for two-layer neural nets
Input: A training dataset Z .
Require: Network width m, learning rate η, truncation parameters λ0, λ1.
Output: The final learned network Ŵ =

{
wi ∈ Rd

}m
i=1

.

Initialization. Initialize w(0)
i ∼ N

(
0, 1

d · Idd×d
)
, for 1 ≤ i ≤ m.

Stage 1. Let λ = λ0 = Θ(1
poly(d)). For t ≤ Θ

(
d2

ηC(κ) log d

)
, update every neuron as follows:

w
(t+1)
i = w

(t)
i − η · 1‖w(t)

i ‖22≤
1
λ0

· ∇wiL̂(W), for every 1 ≤ i ≤ m.

Stage 2. Let λ = λ1 = Θ(1
polyκ(d)). For t ≤ Θ

(
d1+10Q

η

)
, update every neuron as follows:

w
(t+1)
i = w

(t)
i − η · 1‖w(t)

i ‖22≤
1
λ1

· ∇wiL̂(W), for every 1 ≤ i ≤ m.

0 < Q < 1/100 be a sufficiently small absolute constant that does not depend on κ. Let λ0 be a
sufficiently small value on the order of 1/ poly(d) and λ1 ≤ λ0/O(polyκ(d)) be a sufficiently small
value on the order of 1/ polyκ(d). For a learning rate η < min

(
λ2

0, O(1/polyκ(d))
)
, a network

width m ≥ Ω(poly(d)/poly(λ1)), and truncation parameters λ0, λ1, let Ŵ be the final network
learnt by Algorithm 1. With probability 1− 1/poly(d) over the choice of the random initialization,
we have that the population loss of Ŵ satisfies

L(Ŵ) ≤ O(1/d1+Q).

Our result builds on a connection between the popluation L(W) and tensor decomposition for
Gaussian inputs (Ge et al. (2017, 2018)). By expanding the population loss in the Hermite polyno-
mial basis, the optimization problem becomes an infinite sum of tensor decompositions problems
(cf. equation (4) in Section 2.) To analyze the gradient descent on the infinite sum tensor decom-
position objective, we first analyze the case when m goes to infinity. We establish a conditional-
symmetry condition on the population of neurons, which greatly simplifies the analysis. Informally,
we leverage the fact that our input distribution is symmetric and our labeling function uses the ab-
solute value activation, which is symmetric. Our analysis uncovers a stage-wise convergence of the
gradient descent dynamic as follows, which matches our observations in simulations.

• First, Algorithm 1 minimizes the 0th and 2nd order tensor decompositions. Informally, the
distribution of neurons is fitting to the 0th moment and the 2nd moment of {w?i }

d
i=1.

• Second, Algorithm 1 minimizes the 4th and higher order tensor decompositions. Initially,
there is a long plateau where the evolution is slow, but after a certain point gets faster. As
a remark, this behavior has been observed for randomly initialized tensor power method
(Anandkumar et al. (2017)). Because the solution to the 4th and higher order orthogonal
tensor decomposition problems is unique, we can learn the ground truth weights {w?i }

d
i=1.

Then we show that the approximation error between the population and infinite-width case and the
finite-sample and finite-width case is small. The finite-width case can be viewed of as a sample of
the infinite-width case. As the number of neurons increases, the approximation error reduces. In
Section 3 and 4, we present a proof overview. The full proof is given in Section A and B.

3

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

As a complement, we show that the generalization error bound of Theorem 1 cannot be achieved
by kernel functions with polynomially large feature map. Hence, by minimizing the higher order
tensor decomposition terms, the learned neural network is provably more accurate than kernel func-
tions which simply fit the lower order terms. Our result is stated as follows.

Theorem 2 (Lower bound) Under either of the following two situations,

1. We use a feature map φ(x) : Rd → RN with N = poly(d)

2. We use kernel method with any kernel K : RN × RN → R with N = poly(d) samples.

There exists a set of orthonormal weights {w∗i }i∈[d] and {ai}i∈[d] where ai ∈ [1
2d ,

2
d] for all 1 ≤ i ≤

d satisfying
∑

i∈[d] ai = 1, such that the following holds: With probability at least 0.999 over the
training set Z , for any wR, wK ∈ RN with R(x) := w>Rφ(x) and K(x) := w>K [K(x, xi)]

N
i=1, the

population loss of the feature map φ(x) and kernelK(x), denoted byL(R) = Ex∼N (0,Idd×d)(f
?(x)−

R(x))2 and L(K) = Ex∼N (0,Idd×d)(f
?(x)−R(x))2, satisfies

L(R) = Ω

(
1

d

)
and L(K) = Ω

(
1

d

)
. (3)

Comparing the above result with Theorem 1, we conclude that provided with polynomially
many samples, Algorithm 1 can recover the target two-layer neural network more accurately than
the feature map and kernel method described above. Section C shows how to prove Theorem 2.

1.2. Related Work

Neural tangent kernel (NTK). A sequence of work shows that the learning process of gradient
descent on over-parametrized neural networks, under certain initializations, reduces to the learning
process of the associated neural tangent kernel. See Jacot et al. (2018); Arora et al. (2019b); Cao
and Gu (2019); Du et al. (2018c); Arora et al. (2019a); Allen-Zhu and Li (2019b); Allen-Zhu et al.
(2019c,b); Li and Liang (2018); Zou et al. (2018); Du et al. (2018a); Daniely et al. (2016); Ghorbani
et al. (2019); Li et al. (2019a); Hanin and Nica (2019); Yang (2019) and the references therein. For
NTK based results, the learning process of gradient descent can be viewed as solving (convex)
kernel regression. Our work differs by analyzing a non-convex objective that involves an infinite
sum of tensor decomposition problems. By analyzing the higher order tensor decompositions in our
setting, we can achieve a smaller generalization error than kernel methods.

Allen-Zhu and Li (2019a, 2020a) show that over-parametrized neural networks can learn certain
concept class more efficient than any kernel method. Their work assumes the target network satisfies
a certain “information gap” assumption between the first and second layer, while our target network
does not require such gaps. Allen-Zhu et al. (2019a); Bai and Lee (2019) go beyond NTK by
studying quadratic approximations of neural networks. By contrast, our work analyzes higher-order
tensor decompositions that cannot be achieved by quadratic approximations.

Two-layer neural networks given Gaussian inputs. There are a large body of works focusing
on how to learn two-layer neural networks, such as Kawaguchi (2016); Soudry and Carmon (2016);
Xie et al. (2016); Ge et al. (2017); Soltanolkotabi et al. (2017); Tian (2017); Brutzkus and Globerson
(2017); Zhong et al. (2017); Boob and Lan (2017); Li et al. (2018); Vempala and Wilmes (2018); Ge
et al. (2018); Bakshi et al. (2018); Oymak and Soltanolkotabi (2019); Yehudai and Shamir (2019);

4

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Li and Yuan (2017); Zhang et al. (2018); Li and Liang (2017); Li et al. (2016); Li and Dou (2020);
Allen-Zhu and Li (2020b) . Li and Yuan (2017); Zhong et al. (2017) consider learning two-layer
networks with ReLU activations with a warm start (tensor initialization), as opposed to from a
random initialization. Du et al. (2017) consider learning a target function consisting of a single
ReLU activation. Brutzkus and Globerson (2017); Tian (2017) study the case where the weight
vector for each neuron has disjoint support. Apart from the gradient descent algorithm, the method
of moments has also been shown to be an effective strategy with provable guarantees (e.g. Bakshi
et al. (2018); Ge et al. (2018)).

The closest work to ours is Ge et al. (2017) that considers a similar concept class. However, their
work requires designing a complicated loss function, which is different from the mean squared loss.
The learner network also uses a low-degree activation function as opposed to the ReLU activation.
Ge et al. (2017) have stated the question of analyzing the gradient descent dynamic for minimizing
the sum of second and fourth order tensor decompositions as a challenging open question. Our
analysis not only applies to this setting, but also allows for more even order tensor decompositions.
Apart from ReLU activations, quadratic activations have been studied in Li et al. (2018); Oymak
and Soltanolkotabi (2019); Soltanolkotabi et al. (2017).

Infinite-width neural networks. Previous work such as Mei et al. (2018); Chizat and Bach (2018a)
show that as the hidden layer size goes to infinity, gradient descent approaches the Wasserstein
gradient flow. Mei et al. (2018) use tools from partial differential equations to prove the global
convergence of the gradient descent. Both of these results do not provide explicit convergence rates.
Wei et al. (2018) show that under a certain regularity assumption on the activation function, the
Wasserstein gradient flow converges in polynomial iterations for infinite-width neural networks..

Organizations. The rest of the paper is organized as follows. In Section 2, we reduce our setting
to learning a sum of tensor decomposition problems. In Section 3, we describe an overview of
the analysis for the infinite-width case. In Section 4, we show how to connect the above case to
the gradient descent dynamic on the empirical loss for polynomially-wide networks. Finally we
validate our theoretical insight on simulations in Section 5. In Section A, we provide the proof of
the infinite-width case. In Section B, we describe the error analysis of the above case and complete
the proof of Theorem 1. In Section C, we present the proof of Theorem 2.

2. Preliminaries

Recall that the ground-truth weights {w∗i }
d
i=1 forms an orthonormal basis. Since the input distri-

bution x ∼ N (0, Id×d) and the initialization {wi}mi=1 ∼ N
(
0, 1

d · Idd×d
)

are all rotation invariant,
without loss of generality we can assume that w∗i = ei, for all 1 ≤ i ≤ d.

We can average out the randomness in x by applying Theorem 2.1 of Ge et al. (2017) on the
loss function L(W) (which expands the activations function in the Hermite basis).

L(W) = c0

∥∥∥∥∥ 1

m

m∑
i=1

‖wi‖2 −
∑
i

ai

∥∥∥∥∥
2

F

+ c1

∥∥∥∥∥ 1

m

m∑
i=1

‖wi‖wi

∥∥∥∥∥
2

F

+ c2

∥∥∥∥∥ 1

m

m∑
i=1

w⊗2
i −

∑
i

aieie
>
i

∥∥∥∥∥
2

F

+
∑
j≥2

c2j

∥∥∥∥∥ 1

m

m∑
i=1

wi
⊗2 ⊗ w̄i⊗(2j−2) −

m∑
i=1

aie
⊗2j
i

∥∥∥∥∥
2

F

, (4)

5

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

where ck = 2[(k−3)!!]2

π·k! = Θ(1
k3

) is the Hermite coefficients of the absolute value function. We
observe that the population risk can be written as a infinite sum of tensor decomposition problems.
Intuitively, the 0-th order tensor decomposition term adjusts the l2-norm of the weights. The k-order
term concerns about the k-th moment of the weights.

The distribution of neuron weights. We start by considering an infinite-width neural network
and then we extend the proof to polynomial-size neural networks. Following Wei et al. (2018), an
infinite-width neural network specifies a distribution of its neuron weights. Let P be a distribution
over Rd. We can write equation (2) in terms of P as follows:

fP(x) = E
w∼P

[
‖w‖2 · ReLU

(
w>x

)]
. (5)

Correspondingly, the population loss of the neural network defined by P is given as

L∞(P) = c0

∥∥∥∥∥ E
w∼P
‖w‖2 −

d∑
i

ai

∥∥∥∥∥
2

F

+ c1

∥∥∥∥ E
w∼P

w‖w‖2
∥∥∥∥2

F

+ c2

∥∥∥∥∥ E
w∼P

w⊗2 −
d∑
i=1

aieie
>
i

∥∥∥∥∥
2

F

+
∑
j≥2

c2j

∥∥∥∥∥ E
w∼P

w⊗2 ⊗ w̄⊗(2j−2) −
d∑
i=1

aie
⊗2j
i

∥∥∥∥∥
2

F

. (6)

As a remark, for the case of finite neurons with weights W , the distribution P corresponds to a
uniform distribution over {wi}i∈[m].

Gradient descent update. It has been shown in prior works that gradient descent in the (natural)
parameter space corresponds to Wasserstein gradient descent in the distributional space. However,
we found that the Wasserstein gradient perspective is not particularly helpful for us to analyze our
algorithms and therefore we work with the update in the parameter space W . The distribution P
can be view as a collection of infinitesimal particles and the update of P can be viewed as the effect
of updating each particle in the system. The update for each particle v, denoted by ∇vL∞(P), is
given by computing the gradient of the objective L(W) w.r.t a particle v assuming the rest of the
particles follow the distribution P .

∇vL∞(P) := b0

(
E

w∼P
‖w‖22 − 1

)
v + b1

(
E

w∼P
‖w‖2w‖v‖2 + ‖w‖2〈w, v〉v̄

)
(7)

+ b2

(
E

w∼P
〈w, v〉w −

d∑
i=1

ai〈ei, v〉ei

)
+
∑
j≥2

b2j

(
E

w∼P
〈w, v〉〈w̄, v̄〉2j−2w −

d∑
i=1

ai〈ei, v〉〈ei, v̄〉2j−2ei

)

+
∑
j≥2

b′2j Πv⊥

(
E

w∼P
〈w, v〉〈w̄, v̄〉2j−2w −

d∑
i=1

ai〈ei, v〉〈ei, v̄〉2j−2ei

)
, (8)

where b0 = 4c0, b1 = 2c1, b2j = (4j)× c2j = Θ
(

1
j2

)
, b2j′ = (4j − 4)× c2j . We use ∇vL∞ and

∇v as a shorthand for∇vL∞(P). Based on equation (8), we can further decompose∇vL∞(P) into
the sum of ∇2j,vL∞(P) for j ≥ 0, where the 2j-th term refers to the gradient of the 2j-th tensor
decomposition. As a direct consequence, if we are at a neural network described by P(t), then after
a truncated gradient descent update, the next neural network will be P(t+1) such that

v(t+1) ∼ P(t+1) ⇔ v(t+1) := v(t) − η1‖v(t)‖22≤ 1
2λ
∇v(t)L∞(P(t)), for v(t) ∼ P(t). (9)

6

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Finite-width case. We briefly describe the connection between the above distributional view and the
finite-width case. Intuitively, we can think of the finite-width case as samplingm neurons randomly
from the neuron population P in the infinite-width case. There are two sources of sampling error
that arise from the above process: (i) the error of the gradients between the finite neuron distribution
and the infinite neuron distribution; (ii) the error between the empirical loss and the population loss.
Based of gradient truncation, the norm of every neuron is bounded by 1/λ. Therefore, the sampling
errors reduces as m and N increases, as shown in the following claim.

Claim 2.1 For every λ, δ > 0, for every distribution P over Rd supported on the ball {w ∈ Rd |
‖w‖22 ≤ 1

λ}, let W = {wi}mi=1 be i.i.d. random samples from P . For every δ > 0, with probability
at least 1− δ over the randomness of W , we have that:

|L (W)− L∞(P)| ≤
poly

(
1
λ

)
log 1

δ√
m

.

With probability at least 1−δ over the randomness of {wi}mi=1 and the training dataset Z , for every
w ∈W , we have that:∥∥∥∇wL̂(W)−∇wL∞(P)

∥∥∥
2
≤ poly

(
1

λ

)
log

m

δ

(
1√
m

+
1√
N

)
.

Claim 2.1 can be shown via standard concentration inequalities such as the Chernoff bound.

Notations. Let a = b± c denote a number within [b− |c|, b+ |c|]. Let [d] denote the set including
1, 2, . . . , d. Let Idd×d ∈ Rd×d denote the identity matrix in dimension d. For two matrices A,B
with the same dimensions, we use 〈A,B〉 = Tr[A>B] to denote their inner product. For a vector
w ∈ Rd, let ‖w‖2 denote its `2 norm and ‖w‖∞ denote its `∞ norm. For i ∈ [d], let wi denote
the i-th coordinate of w and w−i denote the vector which zeroes out the i-th coordinate of w. We
define w̄ = w

‖w‖2 to be the normalized vector, and Πw⊥ = (Id−w̄w̄>) to be the projection onto the
orthogonal complement of w. For a matrix M , let ‖M‖2 denote the spectral norm of a matrix M .

3. Overview of the Infinite-Width Case

We begin by studying Algorithm 1 for minimizing the population loss using an infinite-width neural
network. The infinite-width case plays a central role in our analysis. First, the infinite-width case
allows us to simplify the gradient update rule through a conditional-symmetry condition that we
describe below. Second, the finite-width case can be reduced to the infinite-width case by bounding
the approximation error of the two cases — we describe the reduction in Section 4.

A natural starting point for the infinite-width case is to simply set the network widthm to infinity
in Theorem 1. However, this will include negligible outliers such as those with large norms in the
Gaussian distribution. Therefore, we focus on a truncated probability measure P(0) ofN (0, Idd×d)
by enforcing a certain bounded condition. The precise definition of P(0) is presented in Definition
5. For the purpose of providing an overview of the analysis in this section, it suffices to think of
P(0) as satisfying the following conditional-symmetry condition.

Definition 3 (Conditional-symmetry) We call a distribution P over Rd conditionally-symmetric
if for every i ∈ [d] and every v ∈ Rd, the following is true.

Pr
w∼P

[wi = vi | w−j = v−j] = Pr
w∼P

[wi = −vi | w−j = v−j]. (10)

7

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

We will prove the following result for the infinite-width case.

Theorem 4 In the setting of Theorem 1, let the number of samples N go to infinity. Starting from
the initialization W (0) = P(0), let Ŵ be the final output network by Algorithm 1. The population
loss of Ŵ satisfies L(Ŵ) ≤ O(1/d1+Q).

For the rest of this section, we present an overview of how to prove Theorem 4 and the proof
detail can be found in Section A. First, we provide a simplifying formula for the gradient of L∞(P).
Then, recall that Algorithm 1 consists of two stages that differ by the gradient truncation parameter.
We describe an overview of each stage in Section 3.1 and 3.2, respectively.

Now we show how to simplify the gradient of L∞(P) in equation (8). Building on the setup
of Section 2, we can view the weights W (t) = P(t) in the t-th iteration as a distribution over Rd.
Note that P(0) is conditionally-symmetric by definition. Our main observation is that when P is
conditionally-symmetric, the conditionally-symmetric property is preserved during the update.

Claim 3.1 Suppose the update rule of P(t) is given in equation (9). If P(t) is conditionally-
symmetric, then P(t+1) is also conditionally-symmetric.

To see that Claim 3.1 is true, we first observe that the 1-st order gradient is always zero when
P(t) is conditionally symmetric. Now, we further observe that for every neuron v in P(t) and
every 1 ≤ j ≤ d, subject to v−j being fixed, ∇vL∞(P) is a polynomial of vj that only involves
odd degree monomials. Therefore, as long as P(t) is conditionally-symmetric, then P(t+1) is still
conditionally-symmetric. Given the conditionally-symmetric property, we can simplify the gradient
formula of equation (8) as folllows.

Claim 3.2 Suppose that P = P(t) is conditionally-symmetric. For any j ≥ 0, let ∇2j,v be a
shorthand for the gradient of the 2j-th tensor ∇2j,vL∞(P). For any 1 ≤ i ≤ d, let [∇2j,v]i be the
i-th coordinate of∇2j,v. Depending on j, we have that [∇2j,v]i is equal to the following

[∇0,v]i = b0

(
E

w∼P
‖w‖22 − 1

)
〈ei, v〉, [∇2,v]i = b2

(
E

w∼P
w2
i − ai

)
〈ei, v〉, (11)

[∇2j,v]i =
(
b2j + b′2j

) E
w∼P

 ∑
i1,··· ,ij

 ∏
r∈[j−1]

(w̄ir v̄ir)
2

 (wij)
2〈eij , v〉

− ai〈ei, v̄〉2j−2〈ei, v〉


− b′2j

 E
w∼P

‖w‖22 ∑
i1,··· ,ij

∏
r∈[j]

(w̄ir v̄ir)
2

−∑
r∈[d]

ar〈er, v̄〉2j
 vi,∀ j ≥ 2. (12)

The proof of Claim 3.2 is by applying Claim 3.1 to equation (8), which zeroes out the coordinates
in w that has an odd order before taking the expectation over w ∼ P . In particular, the 1st order
tensor in equation (6) becomes zero. For the 2nd order gradient [∇2,v]i, we have that

[∇2,v]i = b2

(
E

w∼P
〈w, v〉wi − ai〈ei, v〉ei

)
= b2

(
E

w∼P
w2
i − ai

)
vi.

Similar arguments apply to higher order gradients.
Claim 3.1 and 3.2 together implies that for the infinite-width case, the gradient descent update

is given by equation (11) and (12) . Another implication is that [∇v]i equals h(|v|)vi for a fixed

8

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

function h(·), where |v| ∈ Rd takes the entry-wise absolute value of v. In other words, the updates
of the coordinates of v are only correlated through the norm of v. This observation enables us to
essentially consider each coordinate of v separately.

3.1. Dynamic during Stage 1

Stage 1.1: learning 0th and 2nd order tensors. We show that Algorithm 1 minimizes the 0th and
2nd order tensor decompositions of the objective L∞ to zero first.

First, we show that the gradients from 4th and higher order tensors are dominated by ∇0,v and
∇2,v. For the 0th and 2nd order tensors, their gradients for the i-th coordinate of v ∼ P(0) satisfy

|[∇0,v]i|+ |[∇2,v]i| = Θ

(
1

d1.5

)
. (13)

This is because P(0) is a suitable truncation of N (0, Idd×d /d), hence we have that

‖v‖2∞, ‖v̄‖2∞ = Θ̃

(
1

d

)
and

∣∣∣∣ E
w∼P(0)

[
w2
i

]
− ai

∣∣∣∣ ≤ Oκ(1

d

)
.

Applying the above to equation (11), we obtain equation (13). For higher order tensors, in Propo-
sition 13, we show that for any j ≥ 2, |[∇2j,v]i| = Õ

(
1/d2.5

)
. Therefore, the 0th and 2nd order

gradients indeed dominate the higher order gradients and Algorithm 1 is simply minimizing the 0th
and 2nd order tensor terms of L∞.

Based on the above observation, we show that the 0th and 2nd order tensor terms converges to
approximately zero in Lemma 8. The main intuition is as follows. By equation (11), both the 0th and
2nd order gradient only depends on the i-th coordinates of neurons in P . Hence the update can be
viewed as d independent updates on the d dimensions. In Proposition 14, we show that throughout
the algorithm, |EP ‖w‖22 − 1| is smaller than maxi∈[d] |EP w2

i − ai|. Thus, it suffices to show
that the 2nd order term maxi∈[d]

∣∣EP w2
i − ai

∣∣ converges to zero. This case reduces to principal
component analysis and in Proposition 15, we show that the 2nd order term indeed converges by a
rate of Oκ(1/d) using standard techniques.

As shown in Lemma 8, Stage 1.1 finishes within Õκ (d/η) iterations, when eventually |[∇0,v]i|+
|[∇2,v]i| becomes Õ(1/d2.5) for all 1 ≤ i ≤ d, which is the same order as |[∇2j,v]i| for j ≥ 2. Thus,
the process enters the next substage where the gradients of the higher order terms become effective.

Stage 1.2: learning higher order tensor decompositions. After the 0th and 2nd order terms
converge to a small value, the gradients from higher order terms will start to dominate the update.
In Lemma 9, we show that for a small fraction of neurons v ∈ Rd, their norms become much larger
than an average neuron — a phenomenon that we term as “winning the lottery ticket”. We provide
an informal analysis below.

In Proposition 16, we show that the gradient of most neurons v except a small fraction can be
approximated by a signal term from the 4th order gradient plus a 1/d2 error term:

|[∇v]i| =
(
b4 + b′4

)
ai〈ei, v〉〈ei, v̄〉2 ±

Ct(κ) log d

d2
|vi|, (14)

where Ct(κ) is a function of κ that grows with t. To intuitively see this, first, except for a fraction
of 1/dα of the neurons, any neuron w satisfies ‖w‖2∞ ≤ α log d/d. Second, for the fraction of 1/dα

9

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

of the neurons, because we clip the gradient when a neuron grows larger than 1/λ0, the norm of any
neuron is no more than 1/λ0. Thus, for a sufficiently large α, the contribution of these neurons to
the gradient is negligible. Combined together, we prove equation (14) in Proposition 16.

Based on equation (14), we reduce the dynamic to tensor power method. We observe that the
update of vi is approximately v(t+1)

i ≈ v
(t)
i + η · ai · (v(t)

i)3, which is analogous to power method
for fourth order tensor decomposition. Hence for a larger initialization of v(0)

i , the growth of v(0)
i is

also faster. Based on the above intuition, we introduce the set of “basis-like” neurons Si,good in the
population P , which are defined more precisely in Lemma 9. Intuitively, Si,good includes neuron
v that satisfies [v

(0)
i]2 ≥ C2 log d/d, which has probability measure at least 1/dC

2
by standard

anti-concentration inequalities. Following equation (14), we show that the neurons in Si,good keeps
growing until they become roughly equal to ei/(λ0 poly(d)).

As shown in Lemma 9, the above process goes through a long plateau ofOκ(d2/(η poly log(d))
iterations, until the neurons of Si,good are sufficiently large. Intuitively, the scaling of d2 arises from
the 1/d2 increment in equation (14). This concludes Stage 1 and the update of these basis-like
neurons will be the focus of Stage 2.

3.2. Dynamic during Stage 2

In the second stage, we reduce the truncation parameter in Algorithm 1 from λ0 = Θ(1/ poly(d))
to a smaller value λ1 = Θ(1/polyκ(d)). This allows the neurons that are close to basis vectors to
further fit the target network more accurately.

Stage 2.1: obtaining a warm start initialization. This substage reduces the gradient truncation
parameter of the first stage. In Lemma 11, we show that after Θ(d log d/η) iterations, the population
loss reduces to less than o(1/(d log0.01 d)). The proof of Lemma 11 involves analyzing the 0th and
2nd order tensor decompositions, similar to Stage 1.1.

At the end of Stage 2.1, the weights of the learner neural network form a “warm start” initializa-
tion, meaning that its population loss is less than o(1/d) (Li and Yuan (2017); Zhong et al. (2017)).
The final substage will show that the population loss can be further reduced from o(1/(d log0.01 d))
to O(1/d1+Q), where Q is a fixed constant defined in Theorem 1.

Stage 2.2: the final substage. In Lemma 12, we show that the population loss further reduces to
O(1/d1+Q) after Θ(d1+10Q/η) iterations. We describe an informal argument by contrasting the
gradient update of neurons in Si,good and the rest of the neurons for a particular basis vector ei.

For neurons v ∈ Si,good, in Claim A.10, we show that v follows the following update during the
dynamic (cf. equation (60)):

[∇v]i ≈ b0
(
E
P
‖w‖22 − 1

)
vi + b2

(
E
P
w2
i − ai

)
vi − η

ctC(κ)

d2
vi, (15)

where ct is a function that grows with t and C(κ) is a fixed function of κ. For neurons v /∈ Si,good,
in Claim A.10, we show that vi follows a similar update but its corresponding value of ct is much
smaller than the neurons in Si,good. Thus, the basis-like neurons grow faster than the rest of the
neurons by an additive factor that scales with ct/d2.

Based on the above intuition, we analyze the dynamic following equation (15) using standard
techniques for analyzing the convergence of gradient descent. In Lemma 12, we show for after
O(d1+Q/η) iterations, the population loss of the 0th order tensor b0

(
EP ‖w‖22 − 1

)
and the 2nd

10

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

order tensor b2
(
EP w2

i − ai
)

reduces to below d1+Q, which corresponds to the scaling of ct/d in
the end. This concludes Lemma 12.

Once Lemma 12 is finished, the gradient descent process has learned an accurate approximation
of f?(·) and we can conclude the proof of Theorem 4. Specifically, we show that the population
loss has also reduced to below d1+Q (cf. equation (25)). Thus, we have finished the analysis of
Algorithm 1 for L∞(P). We provide the proof details of Theorem 4 in Section A.

4. Overview of the Finite-Width Case

Based on the analysis of the infinite-width case, we reduce the finite-width case to the infinite-
width case. By applying Claim 2.1 with P = P(t), when {w(t)

i }mi=1 are i.i.d. samples from P(t),
the empirical losses as well as their gradients are tightly concentrated around the population losses
and their corresponding gradients. Furthermore, as we increase the number of neurons m and the
number of samples N , the sampling errors reduce. Therefore, the goal of our reduction is to show
that the sampling errors remain small throughout the iterations of Algorithm 1. We describe our
reduction informally and leave the details to Section B.

We describe the connection between the dynamic of the finite-width case and the infinite-width
case. For a neuron w(t) sampled from P(t), our analysis in Section 3 has shown the dynamic of w(t)

in the infinite-width case starting from w(0). In the finite-width case, we introduce the notation w̃(t)

as the t-th iterate starting from the same initialization w(0) using Algorithm 1. Our goal is to show
that ξ(t)

w := w̃(t) − w(t) does not blow up exponentially large before Algorithm 1 finishes.
Based on the above connection, in Stage 1, we show that the propagation of the error ξ(t)

w remains
polynomially small in Lemma 18. Our analysis involves a bound on the average error of all neurons
Ew∼W [‖ξ(t+1)

w ‖22] and a bound on the individual error of every neuron maxw∈W ‖ξ(t+1)‖22. First,
in Proposition 23, we show that it suffices to consider the first order errors in ξ(t+1)

w , i.e. those that
involve at most one of ξ(t)

w . Based on the result, in Proposition 21 and 22, we bound the average
error and individual error as

E
w∼W

[‖ξ(t+1)
w ‖22] ≤ (1± o(1))

(
1 +

η

poly(d)

)
E[‖ξ(t)

w ‖22],

max
w∈W

‖ξ(t+1)
w ‖22 ≤ poly(d) E

w∼W
‖ξ(t+1)
w ‖22.

Combined together, we show in Lemma 18 that ξ(t)
w indeed remains polynomially small. For Stage

2, we analyze the propagation of error in Lemma 19 and 20 using similar arguments.
Combining the above three lemmas on error propagation and Theorem 4, we complete the proof

of Theorem 1 in Section B.

5. Simulations

We provide simulations to complement our theoretical result. We consider a setting where w?i = ei
and ai = 1/d, for 1 ≤ i ≤ d. The input is drawn from the Gaussian distribution. For the ith order
tensor, we measure the corresponding tensor term from the loss L(W).

Stage-wise convergence. We validate the insight of our analysis, which shows that the convergence
of gradient descent has two stages. We use the labeling function of equation (1) and a learner

11

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

0 10000 20000 30000 40000
Number of epochs

10−4

10−3

10−2

10−1

100

101
Sq

ua
re

d
er

ro
r

0th tensor
2th tensor
4th tensor
6th tensor

Figure 1: Illustrating the convergence of
each tensor during the gradient descent dy-
namic using absolute value activations.

0 20000 40000 60000 80000 100000
Number of epochs

10−2

10−1

100

Sq
ua

re
d

er
ro

r

0th tensor
2th tensor
4th tensor
6th tensor

Figure 2: For properly parametrized gradi-
ent descent, the 4th and 6th order tensors get
stuck using absolute value activations.

network with absolute value activation functions as in Section 3 and A to validate the dynamic. In
the first stage, the 0th and 2nd order tensors converge to zero quickly. In the second stage, the 4th
and higher order tensors converge to zero followed by a long plateau. Figure 1 shows the result.
Here we use d = 30 and m = 100 > 2d. The number of samples is 104.

We can see that initially, 0th and 2nd order tensor has higher loss than the 4th and higher
ones. However, at the beginning of the training, both the 0th and the 2nd order tensors decrease
significantly from the initial value and converge to below 10−1 very quickly. Moreover, after a
quick warm up period, the 0th order term always stays smaller than the 2nd term, as our theory
predicts. This is followed by a long plateau, which corresponds to Stage 1.2 of our analysis. During
this stage, the 4th and higher order tensors dominate the loss function, and the gradient descent
is simulating tensor power method to obtain basis-like neurons. Eventually, the neural network
accumulates enough basis-like neurons from the 4th and higher tensors in the objective function.
The 4th and higher order tensors reduce to the order of 10−2. The 0th and 2nd order tensors further
reduce to closer to zero. Our theory provides an in-depth explanation of this phenomenon.

Over-parametrization is necessary. It has been observed that for properly parameterized gradient
descent, i.e. for m = 2d, gradient descent gets stuck (Ge et al. (2017); Du et al. (2018b)). We
consider the same setting as the previous experiment but use m = 2d. Figure 2 shows the result.
We can see that the 0th order tensor term still converges close to zero. However, the 2nd, 4th and
6th order tensor terms all get stuck even after 105 epochs.

6. Conclusions and Discussions

In this work, we have shown that for learning a target network with absolute value activations,
truncated gradient descent can provably converge in polynomially many iterations starting from a
random initialization. The learned network is more accurate compared to kernel functions with
polynomially large feature mappings. It would be interesting to extend our result to settings where
the input layer weightsW ? are not orthonormal. A fundamental challenge is to analyze the gradient
descent dynamic beyond orthogonal tensors.

Acknowledgment. The work is in part supported by SDSI and SAIL. T. M is also supported in
part by Lam Research and Google Faculty Award.

12

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

References

Zeyuan Allen-Zhu and Yuanzhi Li. What Can ResNet Learn Efficiently, Going Beyond Kernels? In
NeurIPS, 2019a.

Zeyuan Allen-Zhu and Yuanzhi Li. Can SGD Learn Recurrent Neural Networks with Provable
Generalization? In NeurIPS, 2019b. Full version available at http://arxiv.org/abs/
1902.01028.

Zeyuan Allen-Zhu and Yuanzhi Li. Backward feature correction: How deep learning performs deep
learning. arXiv preprint arXiv:2001.04413, 2020a.

Zeyuan Allen-Zhu and Yuanzhi Li. Feature purification: How adversarial training performs robust
deep learning. arXiv preprint arXiv:2005.10190, 2020b.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and Generalization in Overparameter-
ized Neural Networks, Going Beyond Two Layers. In NeurIPS, 2019a.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. On the convergence rate of training recurrent neural
networks. In NeurIPS, 2019b.

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In ICML, 2019c.

Animashree Anandkumar, Rong Ge, and Majid Janzamin. Analyzing tensor power method dynam-
ics in overcomplete regime. The Journal of Machine Learning Research, 18(1):752–791, 2017.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955, 2019a.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis
of optimization and generalization for overparameterized two-layer neural networks. CoRR,
abs/1901.08584, 2019b. URL http://arxiv.org/abs/1901.08584.

Yu Bai and Jason D Lee. Beyond linearization: On quadratic and higher-order approximation of
wide neural networks. arXiv preprint arXiv:1910.01619, 2019.

Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified neural net-
works in polynomial time. arXiv preprint arXiv:1811.01885, 2018.

Digvijay Boob and Guanghui Lan. Theoretical properties of the global optimizer of two layer neural
network. arXiv preprint arXiv:1710.11241, 2017.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian
inputs. arXiv preprint arXiv:1702.07966, 2017.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and
deep neural networks. In Advances in Neural Information Processing Systems, pages 10835–
10845, 2019.

13

http://arxiv.org/abs/1902.01028
http://arxiv.org/abs/1902.01028
http://arxiv.org/abs/1901.08584

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Lenaic Chizat and Francis Bach. On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Advances in Neural Information Processing
Systems (NIPS). arXiv preprint arXiv:1805.09545, 2018a.

Lenaic Chizat and Francis Bach. A note on lazy training in supervised differentiable programming.
arXiv preprint arXiv:1812.07956, 8, 2018b.

Amit Daniely, Roy Frostig, and Yoram Singer. Toward deeper understanding of neural networks:
The power of initialization and a dual view on expressivity. In Advances in Neural Information
Processing Systems (NIPS), pages 2253–2261, 2016.

Simon S Du, Jason D Lee, Yuandong Tian, Barnabas Poczos, and Aarti Singh. Gradient de-
scent learns one-hidden-layer cnn: Don’t be afraid of spurious local minima. arXiv preprint
arXiv:1712.00779, 2017.

Simon S Du, Jason D Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global
minima of deep neural networks. arXiv preprint arXiv:1811.03804, November 2018a.

Simon S. Du, Jason D. Lee, Yuandong Tian, Barnabás Póczos, and Aarti Singh. Gradient descent
learns one-hidden-layer CNN: don’t be afraid of spurious local minima. In International Confer-
ence on Machine Learning (ICML). http://arxiv.org/abs/1712.00779, 2018b.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018c.

Rong Ge and Tengyu Ma. On the optimization landscape of tensor decompositions. In Advances in
Neural Information Processing Systems, pages 3653–3663, 2017.

Rong Ge, Furong Huang, Chi Jin, and Yang Yuan. Escaping from saddle points: online stochastic
gradient for tensor decomposition. In Conference on Learning Theory, pages 797–842, 2015.

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape
design. arXiv preprint arXiv:1711.00501, 2017.

Rong Ge, Rohith Kuditipudi, Zhize Li, and Xiang Wang. Learning two-layer neural networks with
symmetric inputs. arXiv preprint arXiv:1810.06793, 2018.

Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin. Convolutional
sequence to sequence learning. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1243–1252. JMLR. org, 2017.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Linearized two-layers
neural networks in high dimension. arXiv preprint arXiv:1904.12191, 2019.

Boris Hanin and Mihai Nica. Finite depth and width corrections to the neural tangent kernel. arXiv
preprint arXiv:1909.05989, 2019.

Jeff Z. HaoChen, Colin Wei, Jason D. Lee, and Tengyu Ma. Shape matters: Understanding the
implicit bias of the noise covariance, 2020.

14

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. In Advances in neural information processing systems, pages
8571–8580, 2018.

Kenji Kawaguchi. Deep learning without poor local minima. In Advances in Neural Information
Processing Systems, pages 586–594, 2016.

Robert Kleinberg, Yuanzhi Li, and Yang Yuan. An alternative view: When does sgd escape local
minima? arXiv preprint arXiv:1802.06175, 2018.

Jason D Lee, Ioannis Panageas, Georgios Piliouras, Max Simchowitz, Michael I Jordan, and
Benjamin Recht. First-order methods almost always avoid saddle points. arXiv preprint
arXiv:1710.07406, 2017.

Yuanzhi Li and Zehao Dou. When can wasserstein gans minimize wasserstein distance? arXiv
preprint arXiv:2003.04033, 2020.

Yuanzhi Li and Yingyu Liang. Provable alternating gradient descent for non-negative matrix factor-
ization with strong correlations. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2062–2070. JMLR. org, 2017.

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. In Advances in Neural Information Processing Systems, 2018.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with
relu activation. In Advances in Neural Information Processing Systems, pages 597–607.
http://arxiv.org/abs/1705.09886, 2017.

Yuanzhi Li, Yingyu Liang, and Andrej Risteski. Recovery guarantee of non-negative matrix fac-
torization via alternating updates. In Advances in neural information processing systems, pages
4987–4995, 2016.

Yuanzhi Li, Tengyu Ma, and Hongyang Zhang. Algorithmic regularization in over-parameterized
matrix sensing and neural networks with quadratic activations. In COLT, 2018.

Yuanzhi Li, Colin Wei, and Tengyu Ma. Towards explaining the regularization effect of initial large
learning rate in training neural networks. arXiv preprint arXiv:1907.04595, 2019a.

Zhiyuan Li, Ruosong Wang, Dingli Yu, Simon S Du, Wei Hu, Ruslan Salakhutdinov, and Sanjeev
Arora. Enhanced convolutional neural tangent kernels. arXiv preprint arXiv:1911.00809, 2019b.

Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-
layer neural networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671,
2018.

Stephen Merity, Nitish Shirish Keskar, and Richard Socher. Regularizing and optimizing lstm lan-
guage models. arXiv preprint arXiv:1708.02182, 2017.

Samet Oymak and Mahdi Soltanolkotabi. Towards moderate overparameterization: global conver-
gence guarantees for training shallow neural networks. arXiv preprint arXiv:1902.04674, 2019.

15

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and
Luke Zettlemoyer. Deep contextualized word representations. arXiv preprint arXiv:1802.05365,
2018.

Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization
landscape of over-parameterized shallow neural networks. arXiv preprint arXiv:1707.04926,
2017.

Daniel Soudry and Yair Carmon. No bad local minima: Data independent training error guarantees
for multilayer neural networks. arXiv preprint arXiv:1605.08361, 2016.

Ju Sun, Qing Qu, and John Wright. When are nonconvex problems not scary? arXiv preprint
arXiv:1510.06096, 2015.

Ruoyu Sun. Optimization for deep learning: theory and algorithms. arXiv preprint
arXiv:1912.08957, 2019.

Yuandong Tian. An analytical formula of population gradient for two-layered relu network and its
applications in convergence and critical point analysis. arXiv preprint arXiv:1703.00560, 2017.

Santosh Vempala and John Wilmes. Polynomial convergence of gradient descent for training one-
hidden-layer neural networks. arXiv preprint arXiv:1805.02677, 2018.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. On the margin theory of feedforward neural
networks. arXiv preprint arXiv:1810.05369, 2018.

Colin Wei, Jason D Lee, Qiang Liu, and Tengyu Ma. Regularization matters: Generalization and
optimization of neural nets vs their induced kernel. In Advances in Neural Information Processing
Systems, pages 9709–9721, 2019.

Bo Xie, Yingyu Liang, and Le Song. Diversity leads to generalization in neural networks. arXiv
preprint Arxiv:1611.03131, 2016.

Greg Yang. Scaling limits of wide neural networks with weight sharing: Gaussian process behavior,
gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760,
2019.

Gilad Yehudai and Ohad Shamir. On the power and limitations of random features for understanding
neural networks. arXiv preprint arXiv:1904.00687, 2019.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European conference on computer vision, pages 818–833. Springer, 2014.

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer relu
networks via gradient descent. arXiv preprint arXiv:1806.07808, 2018.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guarantees
for one-hidden-layer neural networks. arXiv preprint arXiv:1706.03175, 2017.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Stochastic gradient descent optimizes
over-parameterized deep relu networks. arXiv preprint arXiv:1811.08888, 2018.

16

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Organizations. The appendix provides complete proofs to Theorem 1 and 2.

• In Section A, we describe the proof of Theorem 4 for the infinite-width case. This section
comprises the bulk of the appendix.

• In Section B, we describe the proof of Theorem 1, by reducing the finite-width case to the
infinite-width case.

• In Section C, we prove Theorem 2 using ideas from the work of Allen-Zhu and Li (2019a).

Appendix A. Proof of the Infinite-Width Case

We provide the proof of Theorem 4, which shows that running truncated gradient descent on an
infinite-width network can recovery the target network with population loss at most d1+Q, where Q
is a sufficiently small constant defined in Theorem 4. Recall from Section 3 that our analysis begins
by setting up the random initialization, and then proceeds in two stages. We fill in the proof details
missing from Section 3. The rest of this section is organized as follows.

• Initialization: We set up the random initialization of the neuron distribution.

• Stage 1: We fill in the proof details of the dynamic during Stage 1, which subsumes Stage
1.1 and Stage 1.2 described in Section 3.1. This stage runs for Θ(d2

ηC(κ) log d) iterations.

• Stage 2: We fill in the proof details of the dynamic during Stage 2, which subsumes Stage
2.1 and Stage 2.2 described in Section 3.2. This stage runs for Θ(d

1+10Q

η) iterations.

Initialization. Recall that for the infinite-width case, our initialization of the neuron distribution is
a probability measure truncated from a Gaussian distribution with identity covariance. We formally
define the truncation and the initialization, denoted by P(0), as follows.

Definition 5 (Truncated neuron space) Let Sg ⊆ Rd be the set of all w ∈ Rd that satisfy the
following properties:

• The maximum entry of w is bounded: ‖w‖∞ ≤ poly log(d)√
d

.

• The entrywise square of w satisfies

‖w‖22 and
d∑
i=1

aid · w2
i are both in the range

[
1− poly log(d)√

d
, 1 +

poly log(d)√
d

]
. (16)

• There are at most O(log0.01(d)) coordinates i ∈ [d] of w such that w2
i ≥

log d
d .

We define P(0) as the probability measure of N (0, Idd×d /d) conditional on the support set Sg.

Remark. For our purpose of proving the finite-width case later in Section B, it suffices to consider
P(0) as the initialization as opposed to N (0, Idd×d /d). This is because when Algorithm 1 samples
m = polyκ(d) neurons from N (0, Idd×d /d), with high probability all the m samples are in the set
Sg. To see this, by standard concentration inequalities for the Gaussian distribution, we can show

17

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

that the set Sg has probability measure at least µ(Sg) ≥ 1− 1
dω(1)

. Thus by union bound, with high
probability all m samples are in Sg.

As stated in Section 3, we are going to heavily use the conditionally-symmetric property de-
fined in Definition 3 throughout the analysis of the population loss L∞(P). We observe that the
initialization P(0) is indeed conditionally-symmetric. This is because N (0, Idd×d /d) satisfies the
conditionally-symmetric property and our truncation in Definition 5 only involves restrictions on
the squares of the coordinates of w. Hence the truncation of N (0, Idd×d /d) to Sg preserves the
conditionally-symmetric condition.

Notations for gradients. Before describing the analysis, we first introduce several notations for the
gradients of neurons. Recall from Claim 3.2 that the gradient of a neuron v in the distribution P
can be simplified under the conditionally-symmetric property. For each coordinate 1 ≤ i ≤ d,
the gradient of neuron v satisfies that [∇v]i =

∑
j≥0 [∇2j,v]i, where ∇v = ∇vL∞(P), ∇2j,v =

∇2j,vL∞(P) denotes the gradient of v for the 2j-th tensor, and [∇v]i denotes the i-th coordinate of
∇v. To state the proofs, we require the following notation. Let B1,2j = b2j + b′2j and B2,2j = b′2j ,
where b2j and b′2j are the Hermite coefficients of the 2j-th tensor given in Section 2. For a vector
w ∈ Sg, let w(0) denote a neuron with initialization w in the initialization P(0). Let P(t) denote the
t-th iterate of P(0) following the update rule of equation (9).

Stage 1. Recall from Section 3.1 that the goal of Stage 1 is to show that a small fraction of
neurons becomes basis-like, i.e. close to a basis ei times a scaling factor of poly(d) at the end of
Θκ(d2/η log d) iterations. To facilitate the analysis, we maintain a running inductive hypothesis
throughout Stage 1 that provides an upper bound on the norm of a typical neuron during the update.
We first introduce the set of neurons that will not become basis-like by the end of Stage 1.

Definition 6 Let C0 be a large enough constant. Let c0 = C0 log d and S be the set of all vectors
w in Sg such that

‖w‖2∞ ≤
c0

d
and ‖w̄‖2∞ ≤

c0

d
,

where w̄ = w/‖w‖ denotes w after being normalized.

Based on the above definition, we introduce the following inductive hypothesis that shows the
neurons in S remain “small and dense” (i.e. not basis-like) throughout Stage 1. This stage runs for
Θ(d2

η log d) iterations. We use κ1 to denote a value on the order of Θ(exp(poly(κ))).

Proposition 7 (Inductive hypothesisH1 for Stage 1) In the setting of Theorem 4, let the number
of iterations in the second stage be T2 = Θ(d2

ηc0 exp(poly(κ))). There exists an increasing sequence

{ct}T2t=1 where ct ≤ exp(poly(κ)) log d such that for every neuron w(0) ∈ S , and every t ≤ T2, the
t-th iterate of the neuron w(t) satisfies that

‖w(t)‖2∞ ≤
ct
d
, ‖w̄(t)‖2∞ ≤

ct
d
. (17)

Furthermore, for every coordinate i ∈ [d], we have that in expectation,

E
w(t)∼P(t)

[w
(t)
i

2
] ≤ 2κ

d
and E

w(t)∼P(t)
[w̄(t)

2

i] ≤
4κ2

d
. (18)

18

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Equation (17) and (18), which we also refer to as the inductive hypothesisH1, show that the neurons
in S will not grow beyond Oκ(log d/d). Hence they will not become basis-like at the end of Stage
1.

The set S consists of most of neurons in P(0) because by standard anti-concentration inequali-
ties, the measure of the set S is at least 1 − d−O(C0). Hence, 1 − µ(S) is at most d−O(C0). Based
on this fact, we state a simple fact on the norm of neurons that are not in S that will be used later in
the analysis:

E
w(t)∼P(t),w(0) /∈S

‖w(t)‖22 ≤ Λ := O

(
1

λ0
(1− µ(S))

)
≤ 1

poly(d)
. (19)

To see that equation (19) is true, recall that the truncation of Algorithm 1 ensures that ‖w‖2 ≤ 1/λ0.
Combined with the fact that 1 − µ(S) ≤ d−O(C) and λ0 = Θ(1/ poly(d)), we have that equation
(19) holds for a sufficiently large constant C0. This finishes our introduction of the inductive hy-
pothesisH1. The proof of Proposition 7 can be found in Section A.2.2.

Given the inductive hypothesis H1, we can state the formal result that corresponds to Stage 1.1
in Section 3.1. For a neuron distribution P , let us first introduce the following notations, which
corresponds to the population loss of the 0th and 2nd order tensors.

∆+ := b0
∑
i∈[d]

[E
w∼P

w2
i − ai]+,∆− := b0

∑
i∈[d]

[ai − E
w∼P

w2
i]

+,

δ+ := b2 max
i∈[d]

[E
w∼P

w2
i − ai]+, δ− := b2 max

i∈[d]
[ai − E

w∼P
w2
i]

+.

Let ∆ := ∆+ − ∆− denote an absolute upper bound on the loss of the 0th tensor. Let δi :=

b2(EP w2
i −ai) for every 1 ≤ i ≤ d. At the t-th iteration, we use δ(t)

i to denote the value of δi given
the neuron distribution P(t), as well as ∆(t) for ∆, δ(t)

+ for δ+, and δ(t)
− for δ−.

Based on the above notations, we show the following convergence result at the end of Stage 1.1.

Lemma 8 (Stage 1.1: learning 0th and 2nd order tensors) In the setting of Theorem 4, suppose
that Proposition 7 holds. Let T1 = Θ

(
poly(κ1)d log d

η

)
. Then, for every t ≥ T1, we have that

∆(t), δ
(t)
+ , δ

(t)
− are all less than ct poly(κ1)

d2
, where ct is given in Proposition 7.

The above result implies that after T1 iterations, the population loss of equation (6), which can be
upper bounded by ∆(t) + δ

(t)
+ + δ

(t)
− , remains less than O(ct poly(κ1)/d2). The proof of Lemma 8

can be found in Section A.2.1.

Once Stage 1.1 is finished, recall from Section 3 that the higher order tensors begin to dominate
the gradient update. Hence Algorithm 1 enters Stage 1.2. We state the formal result that corresponds
to Stage 1.2 in Section 3 below. Let us introduce the following notations in order to state the
formal result. Let T ′2 = T2 − d2

η poly log(d) . For every 1 ≤ i ≤ d, let Γi = 1
2B1,4(a2i d)(ηT ′2)

. Let

ρ = poly(κ1)·log d
d . Here, by our assumption, we know that a2

i = Θ(1/d2), T ′2 = Θ(d2/(η log d)), so
we can see that Γi = Θ(log d/d). Consider a coordinate i ∈ [d]. We define the set of good neurons
whose i-th coordinate is larger than Γi + ρ as

Si,good :=
{
v ∈ Sg | [v(0)]2i ≥ Γi + ρ and for all other j : [v(0)]2j < Γj − ρ

}
.

19

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Then we define the set of bad neurons that have two large coordinates as

Si,bad =
{
v ∈ Sg | [v(0)]2i ≥ Γi − ρ and there exists r 6= i : [v(0)]2r ≥ Γr − ρ

}
.

The following lemma shows that, among other statements, the neurons in Si,good will win the lottery
and become basis-like at the end of Stage 1.2 in the sense described below.

Lemma 9 (Stage 1.2: learning higher order tensors) In the setting of Theorem 4, suppose that
Proposition 7 holds. At iteration T2, the following holds for Si,good and Si,bad:

• For every i ∈ [d] and v ∈ Si,good, we have that

|v(T2)
i |2 ≥ 1

λ0 poly(d)
≥ poly(d), and for every j 6= i, |v(T2)

j | ≤ 2(log d)2

√
d

.

• For every 1 ≤ i ≤ d and every v ∈ Sg, if there exists j 6= i such that |v(T2)
i | and |v(T2)

j | are

both greater than 2(log d)2√
d

, then the neuron v is in both Si,bad and Sj,bad.

• For every i ∈ [d], the probability measure of Si,good and Si,bad satisfies that

µ(Si,good) ≥ d− exp(poly(κ1)) and µ(Si,good) ≥ µ(Si,bad) · dexp(poly(κ1)).

In the above result, the set Si,good contains neurons that become approximately a large scaling
of the basis ei after T2 iterations, a phenomenon that we term as winning the lottery ticket. These
neurons become much larger than the neurons in S, which are bounded by Oκ(log d/d). The set
Si,bad contains neurons whose coordinate i might be large in the end, but not close to a basis – In
other words, these are neurons that “win the lottery ticket” but not close to a scaling of ei. The final
statement in this lemma shows that the measurements of such neurons is small, comparing to those
who are basis-like. Lemma 9 is proved in Section A.3. This concludes Stage 1.

Stage 2. The second stage begins by reducing the gradient truncation parameter from λ0 =
Θ(1

poly(d)) to λ1 = Θ(1
polyκ(d)).2 Recall from Section 3.2 that the goal of Stage 2 is to allow

basis-like neurons to grow until they fit the target network with population loss at most O(d1+Q).

• The first substage of the analysis shows that the population loss reduces below O(1
d log0.01 d

),
after T3 = Θ(d log d/η) many iterations.

• The second substage of the analysis shows that the population loss further reduces below
O
(
1/d1+Q

)
, after T4 = Θ(d1+10Q/η) many iterations.

To facilitate the analysis, we introduce a running inductive hypothesis throughout Stage 2 that
describes the behavior of the good and bad neurons. Let us introduce several notations first. Let the
union of the bad neurons for all coordinates be given by

Sbad := {v ∈ Sg | ∃i 6= j ∈ [d], [v(0)]2i ≥ Γi − ρ and [v(0)]2j ≥ Γj − ρ}.

2. As a remark, the rational for this technical twist is that the neurons do not grow too large during the process. This is
useful for the error analysis later in the finite-width case.

20

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

The set of potential neurons is given by

Si,pot =
{
v ∈ Sg | [v(0)]2i ≥ Γi − ρ

}
.

We remark that these are the set of neurons whose coordinate i can have a magnitude larger than
poly log(d)/

√
d at the end of Stage 1 (cf. Section A.2.1). As another remark, the set of good

neurons, which grows much larger larger than poly log(d)/
√
d for a particular coordinate, is a

subset of potential neurons. Let the union of the potential neurons for all coordinates be given by

Spot := {v ∈ Sg | ∃i ∈ [d], [v(0)]2i ≥ Γi − ρ}.

We maintain the following running hypothesis that, among other things, specifies the behavior of
the potential, good, and bad neurons in detail.

Proposition 10 (Inductive hypothesisH2 for Stage 2) In the setting of Theorem 4, there exists
cT2 = poly(log d) and a monotonically increasing sequence cT2 ≤ ct ≤ dO(Q) ≤ d1/10 such that
for every T2 < t ≤ T4, the following list of properties hold for the neuron distribution P(t) at the
t-th iteration.

1. For every v ∈ Sg, ‖v(t)‖22 ≤ 1/λ1. As a result, gradient truncation never happens during this
stage.

2. For every v /∈ Spot,

‖v̄(t)‖2∞ ≤
ct
d

and ‖v(t)‖2∞ ≤
ct
d
. (20)

For every i ∈ [d], every v ∈ Si,pot\Sbad, and j 6= i

‖v(t)
j ‖

2
2 ≤

ct
d
. (21)

3. The mass of the set of bad neurons is small:

E
v(t)∼P(t),v∈Sbad

‖v(t)‖22 ≤
1

poly(d)
. (22)

4. For every i ∈ [d] and every v ∈ Si,good, we have that ‖v(t)
i ‖22 ≥

1
λ0 poly(d) .

5. For every i ∈ [d], the following masses regarding the potential and bad neurons hold:

γ
(t)
i := E

v(t)∼P(t),v∈Si,pot\Sbad
v

(t)
i

2
≤ poly(κ2)

d
, (23)

β
(t)
i := E

v(t)∼P(t),v /∈Spot
v

(t)
i

2
≤ poly(κ2)

d
. (24)

where κ2 denotes exp(poly(κ1)) and κ1 denotes exp(poly(κ)).

21

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

We remark that in the above inductive hypothesis, equation (20) and (21) show similar con-
ditions as equation (17) provided in Proposition 7. For the rest of the section, we refer to the
conclusion of Proposition 10 as inductive hypothesisH2. The proof of Proposition 10 can be found
in Section A.4.1.

Given the inductive hypothesis, we can state the formal result that corresponds to Stage 2.1 in
Section 3.1. We introduce the notation ∆(t) = 2b0

(∑d
i=1(γ

(t)
i + β

(t)
i)−

∑d
i=1 ai

)
that measures

the average error of the neurons across all coordinates. We show that by the end of T3 = T2 +

Θ(d log d/η) iterations, we have obtained a warm start neuron distribution for ∆,
{
β

(t)
1 , . . . , β

(t)
d

}
, and

{
γ

(t)
1 , . . . , γ

(t)
d

}
. We state the result below.

Lemma 11 (Stage 2.1: Obtaining a warm start initialization) In the setting of Theorem 4, sup-
pose Proposition 10 holds. There exists an iteration T3 = T2 + Θ(d log d/η) such that at iteration
t = T3, the following holds:

For any i ∈ [d], β
(t)
i ≤

1

d log0.01 d
, |ai − γ(t)

i | ≤
1

d log0.01 d
; and |∆(t)| ≤ 1

d log0.01 d
.

The above result implies that the set of potential neurons has fit the i-th coordinate of the target
network by an error less than o(1/d). The population loss of the 0th order tensor is also reduced
below o(1/d). The proof of Lemma 11 can be found in Appendix A.3.

In the end, we describe the formal result that corresponds to Stage 2.2 in Section 3.2. We
construct a potential function to show that β(t)

i +γ
(t)
i converges to ai beyond iteration t = T3. After

running for T4 = T3 + Θ(d
1+10Q

η) many iterations, we show that a certain set of potential neurons
has converged to ai with error at most O(1/d2+Q), for every 1 ≤ i ≤ d.

The result is shown in Lemma 12 below. We need the following notations for defining the
potential function:

δ
(t)
− = max

{
max
i∈[d]

{
C1(ai − β(t)

i − γ
(t)
i) +

C2γ
(t)
i

β
(t)
i + γ

(t)
i

(
ai − γ(t)

i

)}
, 0

}
,

δ
(t)
+ = max

{
max
i∈[d]

{
C1(β

(t)
i + γ

(t)
i − ai) +

C2γ
(t)
i

β
(t)
i + γ

(t)
i

(
γ

(t)
i − ai

)}
, 0

}
.

whereC1, C2 denote two sufficiently large constants. Let ∆+ = max{∆, 0}, and ∆− = max{−∆, 0}.
Consider the following functions:

Φ
(t)
+ = max

{
δ

(t)
+ ,

(
1 +

1

poly(κ)

)
∆

(t)
−

}
,

Φ
(t)
− = max

{
δ

(t)
− ,

(
1 +

1

poly(κ)

)
∆

(t)
+

}
.

Let β(t)
+ = 1

C maxi∈[d]{β
(t)
i }. Let Φ(t) = max{Φ(t)

+ ,Φ
(t)
− , β

(t)
+ } be our potential function. Lemma

11 implies that by the end of t = T3 iterations, we have δ(t)
− , δ

(t)
+ , β

(t)
+ ,∆

(t)
+ ,∆

(t)
− are all less than

O
(
1/d log0.01 d

)
. Hence Φ(T3) ≤ O(1/(d log0.01 d)). The result below shows that after iteration

T3, Φ(t) further decreases whenever it is at least O(poly(κ2)ct)
d2

).

22

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Lemma 12 (Stage 2.2: the final substage) In the setting of Theorem 4, suppose that Proposition
10 holds. For any T3 < t ≤ T4, as long as Φ(t) ≥ poly(κ2)ct

d2
(recalling that ct is defined in

Proposition 10) we have that

Φ(t+1) ≤ Φ(t)

(
1− ηmin{C1, 1}

8
Φ(t)

)
.

By combining the results from Stage 1 and 2, we are ready to prove Theorem 4.
Proof [Proof of Theorem 4] When Proposition 7 and 10 hold, we can obtain the following obser-
vation. Using the induction hypothesis in Eq (22), we have that for the infinite-width case, the
population loss L∞(P(t)) satisfies:

L∞(P(t)) = O

∑
i∈[d]

[
γ

(t)
i + β

(t)
i

]
−
∑
i∈[d]

ai

2+O

∑
i∈[d]

[
(ai − γ(t)

i)2 + β2
i

]+
1

poly(d)
,

(25)

where the first term comes from the zero-order term in the population loss and the second term
comes from 2nd and higher order tensors in the population loss. This observation also implies that

L∞(P(t)) = O
(
d[Φ(t)]2

)
+

1

poly(d)
. (26)

At the beginning of Stage 2.2, by Lemma 11, we know that Φ(T3) ≤ 1/(d log0.01 d). During
Stage 2.2, by Lemma 12, as long as Φ(t) ≥ Oκ(ct/d

2), Φt+1 ≤ Φ(t) ≤ Φ(t)(1− O(Φ(t))). Hence,
after at most d1+O(Q)/η iterations (or T4 − T3 more precisely), Φ(T4) reduces to below O(d1+Q).
Applying this result to equation (26), we conclude that L∞(P(T4)) ≤ O(1/d1+Q).

A.1. Stage 1.1: Proof of Convergence for 0th and 2nd Order Tensors

This section provides the proof of Lemma 8 is organized as follows.

• In Proposition 13, we first show that the gradients from 4+ order tensor decomposition terms
are small compared to that of the 0th and 2nd order tensor terms.

• The above shows that the dynamic is mainly dominated by the 0th and 2nd tensor terms
initially. In Proposition 14 and Proposition 15, we show the gradient update of the 0th and
2nd order. Based on these, we show the proof Lemma 8 at the end of this subsection.

Upper bound on the gradient of 4+ order terms. We first show that the 4th and higher order
tensor gradients do not have much contribution to the gradient, for all the neurons in S. We introduce
the following notations for convenience. For a neuron distribution P , let the following denote the
gradient term of v involving only other neurons w.

∇2j,v,n :=
(
b2j + b′2j

)(
E

w∼P
〈w, v〉〈w̄, v̄〉2j−2w

)
− b′2j

(
E

w∼P
〈w, v〉〈w̄, v̄〉2j−2〈w, v̄〉

)
v̄. (27)

23

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Recall that∇2j,v is the gradient of v for the 2j-th tensor (cf. equation (12)). Let

∇≥4,v =
∑
j≥2

∇2j,v, and ∇≥4,v,n =
∑
j≥2

∇2j,v,n.

The following result provides an upper bound on the higher order gradients.

Proposition 13 (Upper bound for 4th or higher order gradients) In the setting of Lemma 8, sup-
pose Proposition 7 holds. Then there exists an absolute constant C > 0 such that for every i ∈ [d]
and v ∈ Sg, at the t-th iteration for t ≤ T2, the neuron v from distribution P(t) satisfies that∣∣[∇≥4,v]i

∣∣ ≤ C

4

(ctκ
d2

+
κ

d
‖v̄(t)‖2∞

)
|v(t)
i |.

Moreover, the gradient from the network satisfies∣∣[∇≥4,v,n]i
∣∣ ≤ C

4
· ctκ
d2
|v(t)
i |.

As a corollary, for every v ∈ S ⊆ Sg, we have that∣∣[∇≥4,v]i
∣∣ ≤ C

2
· ctκ
d2
|v(t)
i |.

Proof Let us focus on∇4,v first. We now bound each terms in [∇4,v]i in equation (12) separately.

[∇4,v]i =
(
b4 + b′4

) E
w∼P

∑
i1,i2

(∏
r=1

(w̄ir v̄ir)
2

)
(wij)

2vij

− ai〈ei, v〉〈ei, v̄〉2


− b′4

 E
w∼P

‖w‖22∑
i1,i2

2∏
r=1

(w̄ir v̄ir)
2

−∑
r∈[d]

ar〈er, v̄〉4
 vi.

For the second two line of the above,∣∣∣∣∣∣EP
w2

i

d∑
j=1

(w̄j v̄j)
2

 vi
∣∣∣∣∣∣ ≤

∣∣∣∣∣∣ E
w∼P,w(0)∈S

w2
i

d∑
j=1

(w̄j v̄j)
2

 vi
∣∣∣∣∣∣+

∣∣∣∣∣∣ E
w∼P,w(0) /∈S

w2
i

d∑
j=1

(w̄j v̄j)
2

 vi
∣∣∣∣∣∣

≤ |vi|

∣∣∣∣∣∣ E
w∼P,w(0)∈S

w2
i

d∑
j=1

(w̄j v̄j)
2

∣∣∣∣∣∣+ Λ|vi|

≤ |vi|
ct
d

∣∣∣∣∣∣ E
w∼P,w(0)∈S

w2
i

d∑
j=1

(v̄j)
2

∣∣∣∣∣∣+ Λ|vi|

≤ |vi|
(

2ctκ

d2
+

1

poly(d)

)
(28)

where the second inequality uses inequality (19) so Ew∼P(t),w(0) /∈S ‖w‖22 ≤ Λ, and the second last
inequality uses EP [w2

i] ≤ 2κ
d as in Eq (17).

24

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

For the signal term in the gradient, ai〈ei, v〉〈ei, v̄〉2, because ai ≤ κ/d, we have∣∣ai〈ei, v〉〈ei, v̄〉2∣∣ ≤ κ

d
|vi||v̄i|2 (29)

Another term in the gradient is (again, using the fact that for w with w(0) ∈ S, ‖w‖2∞ ≤ ct
d):∣∣∣∣∣∣

∑
r,r′

E
P

w2
rv

2
rw

2
r′v

2
r′

‖w‖22‖v‖42

∣∣∣∣∣∣ |vi| ≤
∣∣∣∣∣∣
∑
r,r′

E
w∼P,w(0)∈S

w2
rv

2
rw

2
r′v

2
r′

‖w‖22‖v‖42

∣∣∣∣∣∣ |vi|+
∣∣∣∣∣∣
∑
r,r′

E
w∼P,w(0) 6S

w2
rv

2
rw

2
r′v

2
r′

‖w‖22‖v‖42

∣∣∣∣∣∣ |vi|
≤ ct
d
|vi|
∑
r,r′

E
P

w2
r

‖w‖22
v2
rv

2
r′

‖v‖42
+ Λ poly(d)|vi|

≤ |vi|
(

2κct
d2

+
1

poly(d)

)
(30)

The last term in the gradient is given by:∣∣∣∣∣
(∑

r

ar〈er, v〉〈er, v̄〉3
)
v̄i

∣∣∣∣∣ ≤ κ

d

(∑
r

vrv̄
3
r

)
|v̄i|

≤ κ

d

‖v‖44
‖v‖42

|vi| ≤
κ

d
‖v̄‖2∞|vi| (31)

Combining Eq (28), Eq (29), Eq (30) and Eq (31), we obtain that∣∣[∇≥4,v]i
∣∣ ≤ O(1)×

(ctκ
d2

+
κ

d
‖v̄‖2∞

)
|vi|.

For ∆2j,v, with j ≥ 3, we can apply the same calculation as above, and show that∣∣[∇2j,v]i
∣∣ ≤ O(b2j)×

(ctκ
d2

+
κ

d
‖v̄‖2∞

)
|vi|.

Since∇≥4,v =
∑

j≥2∇2j,v and
∑

j b2j = O(1) we complete the proof.

Based on the above result, we describe the dynamic of the 0th order tensor in the following
proposition.

Proposition 14 (Learning 0th order tensor) In the setting of Lemma 8, suppose Proposition 7
holds. Assume that for every 1 ≤ i ≤ d, Ew(t)∼P(t) [w(t)2

i] ≥ 1
κ1d

. Then for every t ≤ T2, at least
one of the following holds:

1. |∆(t)| ≤ ct poly(κ1)
d2

.

2. If ∆(t) > 0, then ∆(t) ≤ δ(t)
−
(
1− 1

16κ2d

)
. If ∆(t) < 0, then |∆(t)| ≤

(
1− 1

5κ51d

)
δ

(t)
+ .

Moreover, when ∆(t) ≥ max
{

8κ2δ
(t)
+ , ct poly(κ1)

d2

}
, it holds that

∆(t+1) ≤ ∆(t) − η 1

4κd
∆(t)|S(t)

+ |, (32)

where S(t)
+ is the set of all i ∈ [d] with δ(t)

i ≥ 0 and
∣∣∣S(t)

+

∣∣∣ denotes its cardinality.

25

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Proof Consider the iteration t, we have that for every i and every v ∈ Sg, the update of v(t)
i is given

as:

v
(t+1)
i = v

(t)
i − η(∆(t) + δ

(t)
i)v

(t)
i − η[∇(t)

≥4,v]i.

Hence, using Proposition 13 and inequality (19), it holds that

E
P(t+1)

[w2
i] = (1− 2η(∆(t) + δ

(t)
i)) E

P(t)
[w2
i]±

(
2ηC

ctκ
2

d3
+ η2 1

λ0
+ ηΛ

1

λ0

)
. (33)

This implies that for every sufficiently small η ≤ λ2
0 and Λ ≤ λ2

0, it holds:

δ
(t+1)
i = δ

(t)
i − 2η

(
∆(t) + δ

(t)
i

)
E
P(t)

[w2
i]± 3ηC

ctκ
2

d3
(34)

Let us consider two cases when Abs ∆(t) = Ω(κ8
1ct/d

2).

Case 1. ∆(t) = Ω
(
κ81ct
d2

)
, we have that for every i with δ(t)

i ≥ 0, it holds that EP(t) [w2
i] ≥ ai ≥

1
κd . Hence,

δ
(t+1)
i ≤ δ(t)

i

(
1− η 1

κd

)
+ 3ηC

ctκ
2

d3
− η∆(t) 1

κd

≤ δ(t)
i

(
1− η 1

κd

)
− η 1

2κd
∆(t).

Summing up over all those i gives us

∆
(t+1)
+ ≤ ∆

(t)
+

(
1− η 1

κd

)
− η 1

2κd
∆(t)|S(t)

+ |. (35)

On the other hand, for every i with δ(t)
i ≤ 0, it holds that EP(t) [w2

i] ≤ ai ≤ κ
d . Hence,

|δ(t+1)
i | ≥ |δ(t)

i | − η
(
|δ(t)
i | −∆(t)

)
E
P(t)

[w2
i]− 3ηC

ctκ
2

d3
. (36)

Now, consider a value ρ = 1
4κ2d

, when ∆(t) ≥ δ(t)
− (1− ρ

2), it holds that (1− ρ
2)∆(t) ≥ δ(t)

− (1− ρ).

Therefore, when ∆(t) ≥ δ(t)
− (1− ρ

2), Eq (36) implies that

|δ(t+1)
i | ≥ |δ(t)

i | − ηρ
(
|δ(t)
i |
) κ
d
− 3ηC

ctκ
2

d3
+ η

ρ

2
∆(t) E

P(t)
[w2
i]. (37)

Hence, using the assumption that EP(t) [w2
i] ≥ 1

κ1d
, it holds that

|δ(t+1)
i | ≥ |δ(t)

i | − ηρ
(
|δ(t)
i |
) κ
d

= |δ(t)
i |
(

1− ηρκ
d

)
. (38)

Summing up all δ(t)
i with δ(t)

i ≤ 0, this implies that

∆
(t+1)
− ≥ ∆

(t)
−

(
1− ηρκ

d

)
.

26

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Combine the above inequality with inequality (35), we have that (using ∆(t) ≥ 0 so that ∆
(t)
+ ≥

∆
(t)
−):

∆(t+1) = ∆
(t+1)
+ −∆

(t+1)
− ≤ ∆

(t)
+ −∆

(t)
− − η

1

κd
∆

(t)
+ + η

ρκ

d
∆

(t)
− − η

1

2κd
∆(t)|S(t)

+ |

≤ ∆(t) − η 1

2κd
∆

(t)
+ − η

1

2κd
∆(t)|S(t)

+ |.

Therefore we conclude that when ∆(t) ≥ Ω
(
ctκ8

d2

)
and ∆(t) ≥ δ(t)

− (1− ρ
2), it must holds that

∆(t+1) ≤ ∆(t)

(
1− η 1

2κd

)
δ

(t+1)
− ≥ δ(t+1)

−

(
1− η 1

4κd

)
.

Here the second inequality comes from Eq (38). This implies that ∆(t+1) will decrease faster than
δ

(t+1)
− at the next iteration. Hence, when ∆(t) ≥ Ω

(
ctκ8

d2

)
, then ∆(t) ≥ δ

(t)
− (1 − ρ

2) can never

happen. Hence, by our choice of ρ, we conclude that as long as ∆(t) ≥ Ω
(
ctκ8

d2

)
, then

∆(t) ≤ δ(t)
−

(
1− η 1

16κ2d

)
.

On the other hand, even when ∆(t) ≤ δ(t)
− (1− ρ

2) but ∆(t) = Ω
(
κ81ct
d2

)
, we still have that for every

i with δ(t)
i ≤ 0, by Eq (37):

|δ(t+1)
i | ≥ |δ(t)

i | − η
(
|δ(t)
i | −∆(t)

)
E
P(t)

[w2
i]− 3ηC

ctκ
2

d3

≥ |δ(t)
i |
(

1− η2κ

d

)
.

Hence, as long as ∆(t) = Ω
(
κ81ct
d2

)
, we will always have

∆
(t+1)
− ≥ ∆

(t)
−

(
1− η2κ

d

)
.

Combining the above with equation (35), we have that

∆(t+1) = ∆
(t+1)
+ −∆

(t+1)
− ≤ ∆

(t)
+ −∆

(t)
− − η

1

κd
∆

(t)
+ + η

2κ

d
∆

(t)
− − η

1

2κd
∆(t)|S(t)

+ |

≤ ∆(t) + η
2κ

d
δ

(t)
+ |S

(t)
+ | − η

1

2κd
∆(t)|S(t)

+ |.

Here, we are using the fact that ∆
(t)
− ≤ ∆

(t)
+ ≤ δ

(t)
+ |S

(t)
+ |. Now, this implies that when ∆(t) ≥

max
{

8κ2δ
(t)
+ ,Ω

(
κ81ct
d2

)}
, it also holds that

∆(t+1) ≤ ∆(t) − η 1

4κd
∆(t)|S(t)

+ |.

27

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Case 2. In the second case ∆(t) ≤ −Ω
(
ctκ81
d2

)
, we shall use the similar proof, but with the as-

sumption that EP(t) [w2
i] ∈

[
1
κ1d

, 2κ
d

]
, it holds that when |∆(t)| ≥ δ

(t)
+ (1 − ρ), for ρ = 1

10κ51d
.

Therefore, we can also conclude:

−∆(t+1) ≤ −∆(t) − η 1

5κ5
1d

∆
(t)
− .

The proof follows by a similar argument to Case 1.

Based on the above result, next we describe the dynamic of the 2nd order tensor.

Proposition 15 (Learning 2nd order tensor) In the setting of Lemma 8, suppose Proposition 7
holds. Assume that for every 1 ≤ i ≤ d, Ew(t)∼P(t) [w(t)2

i] ≥ 1
κ1d

. For every t ≤ T2, we have that

δ
(t+1)
+ ≤ δ(t)

+

(
1− η 1

poly(κ1)d

)
+ η

ct poly(κ1)

d3
,

δ
(t+1)
− ≤ δ(t)

−

(
1− η 1

poly(κ1)d

)
+ η

ct poly(κ1)

d3
.

Moreover, when ∆(t) > 0, we have the following improved bound for δ(t+1)
+ :

δ
(t+1)
+ ≤ δ(t)

+

(
1− η 1

4κd

)
+ η

ct poly(κ1)

d3
.

Proof By the update rule, we can obtain (in Eq (34)) that

δ
(t+1)
i = δ

(t)
i − 2η

(
∆(t) + δ

(t)
i

)
E
P(t)

[w2
i]± 3ηC

ctκ
2

d3
.

Let us first consider the case when ∆(t) > 0, then, for δ(t)
i ≥ 0, it holds that EP(t) [w2

i] ≥ ai ≥ 1
κ ,

thus,

δ
(t+1)
+ ≤ δ(t)

+

(
1− η 1

κd

)
+ 3ηC

ctκ
2

d3
.

Now, for δ(t+1)
− , consider two cases: δ(t)

− ≥
ct poly(κ1)

d2
or δ(t)
− ≤

ct poly(κ1)
d2

. In the first case, we have

that when |∆(t)| >
(

1− 1
5κ51d

)
δ

(t)
− , it must be that |∆(t)| ≥ ct poly(κ1)

d2
. By Proposition 14, this can

not happen. Therefore, we must have |∆(t)| ≤
(

1− 1
5κ51d

)
δ

(t)
− . Hence, using EP [w2

i] ≥ 1
κ1d

, we
have that

δ
(t+1)
− ≤ δ(t)

− − η
(
δ

(t)
− − |∆(t)|

) 1

κ1d
+ 3ηC

ctκ
2

d3

≤ δ(t)
− − ηδ

(t)
−

1

5κ9
1d

+ 3ηC
ctκ

2

d3
,

which proves the condition. On the other hand when δ(t)
− ≤

ct poly(κ1)
d2

, we directly completes the
proof by choosing a larger poly in ct poly(κ1)

d3
. We can apply the same argument for δ+, and the

improved bound for the case when ∆(t) > 0.

28

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

A.1.1. PROOF OF THE MAIN LEMMA

Now we are ready to show the final convergence lemma. We first provide the following claim that
shows on average, each coordinate of the neuron distribution lies in a bounded range. This also
proves the first equation of (18) in the inductive hypothesisH1.

Claim A.1 In the setting of Lemma 8, for every t ≤ T ′2 = Θ(d2

ηcT2 exp(poly(κ))) and every i ∈ [d],

we have that Ew(t)∼P(t) [w(t)2
i] ∈

[
1
κ1d

, 2κ
d

]
.

Proof The upper bound follows from δ
(t)
+ ≤ δ

(0)
+ ≤ κ

d , so EP(t) [w2
i] ≤ ai + δ

(t)
+ ≤ 2κ

d . For the
lower bound, we will prove it by induction. Let us assume that the lower bounds hold for t ≤ T0

for some T0 < T2. For t = T0 + 1, denote T the iterations t ≤ T0 + 1 where ∆(t) > 0, and T c be
the other iterations. To show the lower bound, for i ∈ [d], we know that when EP(t) [w2

i] ≤ 1
2κd , by

the update rule in Eq (33), we can conclude that:

t ∈ T c =⇒ E
P(t+1)

[w2
i] ≥ E

P(t)
[w2
i], (39)

t ∈ T =⇒ E
P(t+1)

[w2
i] ≥ E

P(t)
[w2
i]
(

1− η∆(t)
)
. (40)

Hence, we only need to consider t ∈ T , for these iterations, by Proposition 15 we know that

δ
(t+1)
+ ≤ δ(t)

+

(
1− η 1

4κd

)
+ η

ct poly(κ1)

d3
.

On the other hand by Proposition 14, we have that when ∆(t) ≥ max
{

8κ2δ
(t)
+ , ct poly(κ1)

d2

}
, it

holds that:

∆(t+1) ≤ ∆(t) − η 1

4κd
∆(t)|S(t)

+ | ≤ ∆(t) − η 1

4κd
∆(t).

Now, let us define γ0 = δ0
+ ≤ 2κ

d , with γt+1 = γt
(
1− η 1

4κd

)
+ η ct poly(κ1)

d3
for every t ∈ T and

γt+1 = γt + η ct poly(κ1)
d3

otherwise. We know that as long as ∆(t) ≥ ct poly(κ1)
d2

, we have:

∆(t) ≤ 8κ2γt.

This implies that

η
∑
t∈T

∆(t) ≤ η
∑
t∈T

(
8κ2γt +

ct poly(κ1)

d2

)
≤ η cT2 poly(κ1)

d2
× T2 + η8κ2

∑
t∈T

γt

≤ 1 + 8κ2 (4κd)

(
γ0 + η

cT2 poly(κ1)

d3
× T2

)
≤ 2 + 64κ4 (41)

Using equation (40), we have that

E
P(T0+1)

[w2
i] ≥ E

P(0)
[w2
i] exp

{
−η
∑
s∈T

∆(s) − η2 poly(1/λ0)T2

}
.

29

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Together with Eq (41) we conclude that EP(T0+1) [w2
i] ≥ 1

κ1d
. By induction we complete the proof.

Based on Claim A.1, we prove Lemma 8.
Proof [Proof of Lemma 8] Clearly, by Proposition 15 once δ(t)

+ or δ(t)
− ≤

ct poly(κ1)
d2

, they will stay

within the interval for the next iterations. By Proposition 14, after both δ(t)
+ and δ(t)

− ≤
ct poly(κ1)

d2
,

we know ∆(t) will be within the interval as well.
Hence, we just need to consider the first time that δ(t)

+ and δ(t)
− goes outside the interval. Fol-

lowing Proposition 15, we know that when δ(t)
+ ≥

ct poly(κ1)
d2

, it holds:

δ
(t+1)
+ ≤ δ(t)

+

(
1− η 1

poly(κ1)d

)
,

which gives the convergence error rate of δ+ after T1 iterations. The same holds for δ(t)
− .

Finally, we have an estimate of how big each coordinate is for the neurons at the end of Stage
1.1, which can be given by the output layer weights {ai}di=1. We show the following claim, which
will be used in the proof of Stage 2.

Claim A.2 (The end of Stage 1.1) In the setting of Lemma 8, at iteration T1 (recalling that T1 =

Θ(poly(κ1)d log d
η)), for every v ∈ Sg and every i ∈ [d], we have that

v
(T1)
i = (aid)v

(0)
i ±

poly(log d)

d3/2
.

Proof Let us first show the upper bound. For every v(0) ∈ Sg. By the update rule, we have that

v
(t+1)
i = v

(t)
i − η(∆(t) + δ

(t)
i)v

(t)
i − η[∇(t)

≥4,v]i.

Using Proposition 13, we have that:(
v

(t+1)
i

)2
≤
(
v

(t)
i

)2
− 2η(∆(t) + δ

(t)
i)
(
v

(t)
i

)2
+ η[∇(t)

≥4,v]iv
(t)
i + η2O

(
1

λ2
0

)
≤
(
v

(t)
i

)2 (
1− 2η(∆(t) + δ

(t)
i)
)

+ η
C

4

(ctκ
d2

+
κ

d
‖v(t)‖∞‖v̄(t)‖∞

)
|v(t)
i |

2 + η2O

(
1

λ2
0

)
.

On the other hand, we have that by Eq (33), it holds:

E
P(t+1)

[w2
i] ≥ (1− 2η(∆(t) + δ

(t)
i)) E

P(t)
[w2
i]−

(
3ηC

ctκ
2

d3

)
Using Claim A.1, we have that EP(t) [w2

i] ≥ 1
κ1d

, which implies

(v
(t+1)
i)2

EP(t+1) [w2
i]
≤

(v
(t)
i)2

EP(t) [w2
i]

+ η

(
10C

ctκ
2κ1

d2
+ C

(ctκκ1

d
+ κκ1‖v(t)‖∞‖v̄(t)‖∞

)
|v(t)
i |

2

)
.

30

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Similarly, we also have that

(v
(t+1)
i)2

EP(t+1) [w2
i]
≥

(v
(t)
i)2

EP(t) [w2
i]
− η

(
10C

ctκ
2κ1

d2
+ C

(ctκκ1

d
+ κκ1‖v(t)‖∞‖v̄(t)‖∞

)
|v(t)
i |

2

)
.

Using these two inequalities, with the conclude EP(t) [w2
i] ∈

[
1
κ1d

, 2κ
d

]
in Claim A.1 and the assump-

tion about initialization of Sg, which says that for every v ∈ Sg, ‖v̄(0)‖∞, ‖v(0)‖∞ ≤ poly(log d)
d , we

can conclude that for every v(0) ∈ Sg, we have for every t ∈ [T1],

(v
(t)
i)2

EP(t) [w2
i]

=
(v

(0)
i)2

EP0 [w2
i]
± poly(log d)

d
. (42)

Note that v(t)
i do not change sign during the gradient process (otherwise v(t)

i will be close to zero, vi-
olating the above inequality). Since EP0 [w2

i] = 1
d and by Lemma 8,

∣∣EP(T1) [w
2
i]− ai

∣∣ ≤ ct poly(κ1)
d2

.
This implies that

v
(T1)
i = (aid)v

(0)
i ±

poly(log d)

d3/2
,

which completes the proof.

A.2. Stage 1.2: Proof of Convergence for Higher Order Tensors

In this section, we prove Lemma 9, which shows that by the end of Stage 1, a small fraction of
neurons have won the lottery ticket by growing much larger than a typical neuron. This stage runs
for approximately Θκ(d2

η log d) many iterations (or T2 − T1 more precisely). The proof of Lemma 9
is organized as follows.

• First, in Proposition 16, we show that the dynamic is mainly determined by the 4th order
gradients by bounding the gradients contributed by the 0th and 2nd order terms so that, as
described in Section 3.1. Based on this result, we can relate the dynamic of this substage to
tensor power method.

• Second, we provide a lower bound on the norm of every neuron in Claim A.3. Based on this
result, we prove Claim A.4 that shows the growth of good neurons. This leads to the proof of
Lemma 9 in Section A.2.1.

• Finally, we prove the inductive hypothesisH1 in Section A.2.2.

We describe the following proposition to bound the gradients of 4th or higher tensors.

Proposition 16 (Gradient bound for Stage 1.2) In the setting of Lemma 9, suppose that Proposi-
tion 7 holds. Consider any iteration t ∈ [T1 + 1, T2] and any neuron v ∈ Sg. Suppose that for every
s ≤ t, ‖v(s)‖∞ ≤ poly(log d)√

d
. Then for every i ∈ [d], the gradient of v at iteration t satisfies

−[∇v]i = B1,4ai〈ei, v(t)〉〈ei, v̄(t)〉2 ± ct poly(κ1)

d2
|v(t)
i |.

31

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Proof The result mainly follows from combining Proposition 13 for the gradient coming from 4+
order terms with Proposition 8 for the gradient of 0, 2 order terms.

The only remaining term is∣∣∣∣∣
(∑

r

ar〈er, v(t)〉〈er, v̄(t)〉3
)
v̄

(t)
i

∣∣∣∣∣ ≤ κ

d

(∑
r

v(t)
r (v̄(t)

r)3

)
|v̄(t)
i | ≤

κ

d

‖v(t)‖44
‖v(t)‖42

|v(t)
i |.

Hence, we have

−[∇v(t)]i = B1,4ai〈ei, v(t)〉〈ei, v̄(t)〉2 ± ct poly(κ1)

d2
|v(t)
i | ±

κ

d

‖v(t)‖44
‖v(t)‖42

|v(t)
i |. (43)

By the definition of Sg, we know that at T1 every v ∈ Sg satisfies

‖v(T1)‖22 ≥
1

2κ
, and for at most O(log d) many i ∈ [d], |v(T1)

i |2 ≥ κ log d

d
.

We will maintain the following condition by induction.

‖v(t)‖22 ≥
1

4κ
, and for at most O(log d) many i ∈ [d], |v(t)

i |
2 ≥ ct poly(κ1)

d
. (44)

Now suppose the following is true at some iteration t ≥ T1, then we have that

‖v(t)‖44
‖v(t)‖42

≤ ct poly(κ1)

d
.

Thus, for iteration t+ 1, using Eq (43) we know that

(v
(t+1)
i)2 = (v

(t)
i)2 + ηB1,4ai|v(t)

i |
2〈ei, v̄(t)〉2 ± ct poly(κ1)

d2
|v(t)
i |

2 ± η2O

(
1

λ2
0

)
.

Hence, we have that for every i with |v(t)
i |2 ≤

poly(κ1)ct
d , it holds that

(v
(t+1)
i)2 = (v

(t)
i)2

(
1± η ct poly(κ1)

d2

)
. (45)

Hence for every t ≤ T2, as long as |v(T1)
i |2 ≤ poly(κ1)ct

d , we have:

(v
(t+1)
i)2 ∈

[
2

3
(v

(T1)
i)2,

3

2
(v

(T1)
i)2

]
.

This proves inequality (44) for t+ 1.

Next, we use the following claim to maintain a lower bound on the norm of each neuron.

Claim A.3 (Norm lower bound for Stage 1.2) In the setting of Lemma 9, suppose Proposition 7
holds. For every v ∈ Sg, the norm of v at any iteration t ∈ [T1 + 1, T2] satisfies ‖v(t)‖22 ≥ Ω

(
1
κ

)
.

32

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Proof By the update rule, using Proposition 13 we know that for every p ∈ [d]:

−[∇v(t)]p =
∑
j≥2

(
B1,2jap〈ep, v(t)〉〈ep, v̄(t)〉2j−2 −B2,2j

(∑
r

ar〈er, v(t)〉〈er, v̄(t)〉2j−1

)
v̄(t)
p

)

± ct poly(κ1)

d2
v(t)
p

=
∑
j≥2

(
B1,2jap

(v
(t)
p)2j−1

‖v(t)‖2j−2
2

−B2,2j

∑
r ar(v

(t)
r)2j

‖v(t)‖2j2
v(t)
p

)
± ct poly(κ1)

d2
v(t)
p

= v(t)
p Q(t)

p ±
ct poly(κ1)

d2
v(t)
p , (46)

where

Q(t)
p :=

∑
j≥2

(
B1,2jap

(v
(t)
p)2j−2

‖v(t)‖2j−2
2

−B2,2j

∑
r ar(v

(t)
r)2j

‖v(t)‖2j2

)

=
∑
j≥2

1

‖v(t)‖2j−2
2

(
B1,2jap(v

(t)
p)2j−2 −B2,2j

∑
r ar(v

(t)
r)2j

‖v(t)‖22

)
. (47)

We have that

∑
p

(
v(t)
p

)2
Q(t)
p =

∑
p

∑
j≥2

1

‖v(t)‖2j−2
2

(
B1,2jap(v

(t)
p)2j−2 −B2,2j

∑
r ar(v

(t)
r)2j

‖v(t)‖22

)(
v(t)
p

)2

=
∑
p

∑
j≥2

1

‖v(t)‖2j−2
2

(
B1,2jap(v

(t)
p)2j −B2,2j

(∑
r

ar(v
(t)
r)2j

))

=
∑
j≥2

1

‖v(t)‖2j−2
2

(B1,2j −B2,2j)

(∑
r

ar(v
(t)
r)2j

)
≥ 0 (48)

This implies the following

‖v(t+1)‖22 ≥ ‖v(t)‖22
(

1− η ct poly(κ1)

d2

)
. (49)

Combined with Proposition 16 , we have that for every neuron v, ‖v(t)‖22 = Ω
(

1
κ

)
for every t ∈

[T1, T2].

A.2.1. PROOF OF THE MAIN LEMMA

Provided with the gradient bound and norm lower bound, we are now ready to prove the main result
of Stage 1.2. Towards showing Lemma 9, we prove the following claim, which shows that if a
neuron has grown beyond poly log(d)

d at a certain iteration T ′2, then this neuron will become basis-
like at iteartion T2.

33

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Claim A.4 (Growth of good neurons) In the setting of Lemma 9, suppose that Proposition 7
holds. For every v ∈ Sg, suppose at iteration T ′2 (recalling that T ′2 = T2 − d2

η poly log(d)), only one

coordinate i ∈ [d] satisfies |v(T ′2)
i | ≥ log10 d√

d
and all the other coordinates satisfies |v(T ′2)

j | ≤ (log d)2√
d

,
then at iteration T2, we have that

|v(T2)
i |2 = Ω

(
1

λ0 poly(d)

)
≥ poly(d), and for any other j 6= i, |v(T2)

j | ≤ 2(log d)2

√
d

.

In other words, the claim says that for neuron v, its i-th coordinate at iteration T2, denoted by
|v(T2)
i |, will be as large as poly(d), which implies that this neuron has won the lottery. We describe

the proof of Claim A.4.
Proof We shall prove the claim by doing an induction. Consider the condition |v(t)

i | ≥
poly(log d)√

d

and all the other coordinates satisfies |v(t)
j | ≤

2(log d)2√
d

for t ∈ [T ′2, T]. Suppose it is true up to

iteration t, consider iteration t+ 1. When p = i, we have that ai(v
(t)
i)2j−2 ≥ ar(v(t)

r)2j−2 for every
r 6= i, hence this implies that (using the fact that B1,2j > B2,2j and B1,4 is greater than B2,4 plus a
fixed constant):

Q
(t)
i = Ω

(
ai(v

(t)
i)2

‖v(t)‖22

)
= Ω

(
poly(log d)

d2
+
ai(v

(t)
i)2

‖v(t)‖22

)
,

where Q(t)
i is defined in the proof of Claim A.3. With equation (48), this implies that

(v
(t+1)
i)2 ≥ (v

(t)
i)2

(
1 + ηΩ

(
poly(log d)

d2
+
ai(v

(t)
i)2

‖v(t)‖22

))
, (50)

which provides a direct the lower bound on (v
(t+1)
i)2. Now, to show the upper bound of the other

coordinates, recall that we have shown ‖v(t)‖22 = Ω
(

1
κ

)
for every t ∈ [T1, T2],

Q(t)
p ≤

∑
j≥2

1

‖v(t)‖2j−2
2

(
B1,2jap(v

(t)
p)2j−2

)
= O

(
κ2 log8 d

d2

)
.

This implies that

(v(t+1)
p)2 ≤ (v(t)

p)2

(
1 + ηC2O

(
log8 d

d2

))
.

Hence we prove all the other p 6= i satisfies |v(t)
p | ≤ 2(log d)2√

d
as long as T2 − T ′2 ≤ d2

η log9(d)
, which

complete the induction. In the end, since |v(t)
i | ≥

poly(log d)√
d

and all the other coordinates satisfies

|v(t)
j | ≤

2(log d)2√
d

for every t ∈ [T ′2, T], we can further simplify Eq (51) as:

(v
(t+1)
i)2 ≥ (v

(t)
i)2

(
1 +

κ(v
(t)
i)2

d log5 d

)
, (51)

34

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

which directly gives us the bound |v(T2)
i |2 = Ω

(
1

λ0 poly(d)

)
at iteration T2.

Now we are ready to prove Lemma 9. We define the union of good neurons as

Sgood =
{
v ∈ Sg | ∃i ∈ [d], [v(0)]2i ≥ Γi + ρ and all other j : [v(0)]2j < Γj − ρ

}
,

where we recall that Γi and ρ have been defined before the statement of Lemma 9. In the proof, we
focus on the dynamic of a neuron v until the point that ‖v‖∞ ≥ poly(log d)√

d
. The key step is to track

the dynamic via a tensor gradient update.
Proof [Proof of Lemma 9] We focus on proving the following three statements.

1. For every v /∈ Spot, ‖v(t)‖∞ ≥ poly(log d)√
d

never happen for any t ≤ T2.

2. For every v ∈ Sgood, ‖v(t)‖∞ ≥ poly(log d)√
d

must happen for some t ≤ T ′2 and when it happens,

the condition in Claim A.4 meets for i = arg maxj∈[d]{v
(0)
j }.

3. For every v ∈ Spot\Sbad, ‖v(t)‖∞ ≥ poly(log d)√
d

might happen for some t ≤ T ′2. If ‖v(t)‖∞ ≥
poly(log d)√

d
happens for some t ≤ T2, then the condition in Claim A.4 meets for the coordinate

i = arg maxj∈[d]{v
(0)
j }.

The first and second statement of Lemma 9 follow by combining the above three statements and
Claim A.4. The third statement can be proved by standard anti-concentration inequalities for the
Gaussian distribution. For the rest of the proof, we focus on proving the above three statements.
We know by Proposition 16 that when ‖v(t)‖∞ ≤ poly(log d)√

d
the update of v(t) at every iteration

t ∈ [T1, T2] is given by

−[∇v(t)]i = B1,4ai〈ei, v(t)〉〈ei, v̄(t)〉2 ± ct poly(κ1)

d2
|v(t)
i |

= B1,4ai
(v

(t)
i)3

‖v(t)‖22
± ct poly(κ1)

d2
|v(t)
i |.

For every i, consider a process where p(T1), q(T1) = v
(T1)
i , with

p(t+1) = p(t) + ηp(t)

(
B1,4ai(p

(t))2 +
ct poly(κ1)

d2

)
,

q(t+1) = q(t) + ηq(t)

(
B1,4ai(q

(t))2 − ct poly(κ1)

d2

)
.

Along with Eq (53), we can see that for every t where ‖v(t)‖∞ ≤ poly(log d)√
d

,

|p(t)| ≥ |v(t)
i | ×max

{
1,

1

‖v(t)‖2

}
,

|q(t)| ≤ |v(t)
i | ×min

{
1,

1

‖v(t)‖2

}
.

35

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

To analyze this process, we introduce the following differential equation

dx(t)

dt
= τ1x

3, x(0)2 = τ2.

The solution is given as x2(t) = 1
1
τ2
−2τ1t

. Therefore, we can easily obtain that as long as ρ =

Ω
(
ct poly(κ1)

d2

)
, when τ1 = B1,4ai, η2τ1T

′
2 = 1

τ2
which implies that τ2 = 1

η2τ1T ′2
= 1

η2(b4+b′4)aiT ′2
,

we have that

|v(T1)
i |2 ≥ τ2 + ρ =⇒ |q(T ′2)| = +∞.

On the other hand,

|v(T1)
i |2 ≤ τ2 − ρ =⇒ |p(T ′2)|2 = O

(
τ2

2

ρ

)
= O

(
log3 d

d

)
.

In the end, by Proposition A.1 and the definition of Sg (Eq (16)), we know that for every v ∈ Sg
and every i ∈ [d], we have that

v
(T1)
i = (aid)v

(0)
i ±

poly(log d)

d3/2
.

Putting into the definition of τ2 we complete the proof.

In addition, we state the following claim that will be used in Appendix B for the error analysis.

Claim A.5 (Upper bound on gradient norm at the end of Stage 1) In the setting of Theorem 4,
at the first iteration t where ‖v(t)‖22 > 1

λ0
, i.e. the threshold where gradients are truncated, we have

that

t−1∑
s=1

‖v̄(s)‖2∞ ≤ O

(
poly(κ1)d log 1

λ0

η

)
.

Proof When ‖v̄(t)‖2∞ ≤ 1
poly(κ1) , we have that for p = arg maxr∈[d]{ar(v

(t)
r)2}, the following

holds

j = 2 :
1

‖v(t)‖2j−2
2

(
B1,2jap(v

(t)
p)2j−2 −B2,2j

∑
r ar(v

(t)
r)2j

‖v(t)‖22

)

= Ω

(
ap(v

(t)
p)2

‖v(t)‖22

)
= Ω

(
1

poly(κ1)d
‖v̄(t)‖2∞

)
.

j ≥ 2 :
1

‖v(t)‖2j−2
2

(
B1,2jap(v

(t)
p)2j−2 −B2,2j

∑
r ar(v

(t)
r)2j

‖v(t)‖22

)

= O

(
ap(v

(t)
p)2

‖v(t)‖22

)
×
(
κ2‖v̄(t)‖2j−4

∞

)
.

36

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

The above implies that as long as ‖v̄(t)‖2∞ ≤ 1
poly(κ1) , we have:

max{ar(v(t+1)
r)2} ≥ max{ar(v(t)

r)2}
(

1 + ηΩ

(
1

poly(κ1)d
‖v̄(t)‖2∞

))
. (52)

After that, when ‖v̄(t)‖2∞ ≥ 1
poly(κ1) , we have that ‖v̄(t)‖4∞ ≥ 1

poly(κ1) as well, which implies∑
r ar(v

(t)
r)4

‖v(t)‖22
≥ 1

κd
‖v̄(t)‖4∞ ≥

1

poly(κ1)d
.

Hence, as long as ‖v̄(t)‖2∞ ≥ 1
poly(κ1) , Eq (48) implies that

(∗) : ‖v(t+1)‖22 ≥ ‖v(t)‖22
(

1 + η
1

poly(κ1)d

)
.

On the other hand, we also have for every iteration, by Eq (49):

‖v(t+1)‖22 ≥ ‖v(t)‖22
(

1− η ct poly(κ1)

d2

)
. (53)

The above implies that (∗) can only happen for poly(κ1)d
η log 1

λ0
iterations until the norm of v is too

large and gradient clipping happens. For these iterations when ‖v̄(t)‖2∞ ≥ 1
poly(κ1) , we can also

easily see that

max{ar(v(t+1)
r)2} ≥ max{ar(v(t)

r)2}
(

1− ηO
(κ
d

))
.

For all the other iterations when ‖v̄(t)‖2∞ ≤ 1
poly(κ1) , we have Eq (52) holds, which implies that as

long as ‖v(t−1)‖22 ≤ 1
2λ0

:

η
t−1∑
s=1

‖v̄(s)‖2∞ ≤ poly(κ1)d log
1

λ0
+ η

κ

d
× poly(κ1)d

η
log

1

λ0

≤ poly(κ1)d log
1

λ0
.

A.2.2. PROOF OF THE INDUCTIVE HYPOTHESIS

Verifying the inductive hypothesisH0 during Stage 1. Proof [Proof of Proposition 7] Note that
the first part of equation (18) has been shown in Claim A.1 — the second part can be shown via
a similar proof of Claim A.1. For the rest of the proof, we focus on proving equation (17). The
construction of the sequence {ct}T2t=1 will be shown below.

By inequality (42) in the proof of Claim A.1, we know that for every v(0) ∈ Sg and t ≤ T1, it
holds that

(v
(t)
i)2

EP(t) [w2
i]

=
(v

(0)
i)2

EP0 [w2
i]
± poly(log d)

d
, (54)

37

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

which implies that for every t ∈ [T1], ct ≤ 2κ1κc0. Now, we focus on t ∈ [T1, T2]. By Lemma 8
,we know that for every t ≥ T1 , we have that

∆(t), δ
(t)
+ , δ

(t)
− ≤

ct poly(κ1)

d2

By Proposition 13, we have that for every v(0) ∈ S,
∣∣∣[∇≥4,v(t)

]
i

∣∣∣ ≤ C
2
ctκ
d2
|v(t)
i |. Hence,

[v
(t+1)
i]2 = [v

(t)
i]2 ± η ct poly(κ1)

d2
[v

(t)
i]2.

This also implies that

‖v(t+1)‖22 = ‖v(t)‖22
(

1± η ct poly(κ1)

d2

)
. (55)

Hence the above implies that

ct+1 ≤
(

1 + η
ct poly(κ1)

d2

)
ct.

Iterating the above equation over t gives us the sequence {ct}T2t=1. By maintaining that for every
v ∈ S, the norm of v at iteration t satisfies ct ≤ poly(κ1)c0 and the fact that T2 ≤ d2

ηc0 poly(κ1) , we
have verified the running hypothesisH1.

A.3. Stage 2.1: Obtaining a Warm Start Initialization

At the beginning of Stage 2, we reduce the gradient truncation parameter. This allows the basis-like
neurons to continue to grow and we can obtain a warm start initialization at the end of Stage 2.1 in
the sense described in Lemma 11. The proof of Lemma 11 consists of the following steps. First,
we analyze the 0th order term in Claim A.6 and A.8. Second, We analyze the 2nd order term in
Proposition 17. Combined together, we prove Lemma 11 in Section A.3.1.
Notations for gradients. To facilitate the analysis, we introduce several notations on the gradients
of a neuron v. We separate the gradient of v into several components at the t-th iteration as∇v,2j =
∇v,2j,sig +∇v,2j,¬pot +∇v,2j,bad +∇v,2j,pot\bad, where each term is given by

∇2j,v,sig =−B1,2j

(∑
i

ai〈ei, v〉〈ei, v̄〉2j−2ei

)
+ b′2j

(∑
i

ai〈ei, v〉〈ei, v̄〉2j−1

)
v̄,

∇v,2j,¬pot =B1,2j

(
E

w(t)∼P(t),w/∈Spot
〈w(t), v〉〈w̄(t), v̄〉2j−2w(t)

)
− b′2j

(
E

w(t)∼P(t),w/∈Spot
〈w(t), v〉〈w̄(t), v̄〉2j−2〈w(t), v̄〉

)
v̄,

∇v,2j,bad =B1,2j

(
E

w(t)∼P(t),w∈Sbad

〈w(t), v〉〈w̄(t), v̄〉2j−2w(t)

)
− b′2j

(
E

w(t)∼P(t),w∈Sbad

〈w(t), v〉〈w̄(t), v̄〉2j−2〈w(t), v̄〉
)
v̄,

∇v,2j,pot\bad =B1,2j

(
E

w(t)∼P(t),w∈Spot\Sbad

〈w(t), v〉〈w̄(t), v̄〉2j−2w(t)

)
− b′2j

(
E

w(t)∼P,w∈Spot\Sbad

〈w(t), v〉〈w̄(t), v̄〉2j−2〈w(t), v̄〉
)
v̄.

38

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Dynamic of 0th order tensor. Recall that this substage runs for T3 ≤ d log1.01 d
η iterations. We

first focus on the update of the 0th order term ∆(t). Let κ2 denote epoly(κ1). We show the following
claim.

Claim A.6 (Dynamic of 0th order tensor I) In the setting of Lemma 11, suppose that Proposition
10 holds. Let δ be any value in the range [poly(κ2)ct

d2
, 1
κd]. When ∆(t) ≥ δ, for any iteration t ∈

[T2 + 1, T3], we have that

E
w∼P(t)

‖∇wL∞(P(t))‖22 ≥ Ω
(
d2δ4/κ

)
.

Proof Let us denote δ′ = min{δ, max{C1,C2}
10κd }. We shall see that when ∆(t) ≥ δ, then for every i

with β(t)
i + γ

(t)
i ≥ ai −

δ′

4 max{C1,C2} , we have that

−∆(t) + C1(ai − β(t)
i − γ

(t)
i) ≤ −δ

2

Therefore, using equation 59, we have that

E
w∼P(t),w/∈Spot

[∇w]2i = Ω(β
(t)
i δ2).

On the other hand, when γ(t)
i ≥ ai −

δ′

3 max{C1,C2} , we have that

−∆(t) + C1(ai − β(t)
i − γ

(t)
i) + C2(ai − γ(t)

i) ≤ −δ
6
.

This implies that

E
w∼P(t),w∈Si,pot

[∇w]2i = Ω
(
γ

(t)
i δ2

)
.

In either case, we have that as long as β(t)
i + γ

(t)
i ≥ ai −

δ′

4 max{C1,C2} , it holds that

E
w∼P(t),w

[∇w]2i ≥ Ω

(
d

κ
(γ

(t)
i + β

(t)
i)δ2δ′

)
.

Notice that ∑
i∈[d]

[β
(t)
i + γ

(t)
i]1

β
(t)
i +γ

(t)
i ≤ai−

δ′
4max{C1,C2}

≤ 1− d δ′

4 max{C1, C2}
.

Using ∆(t) ≥ 0, we obtain that∑
i∈[d]

[β
(t)
i + γ

(t)
i]1

β
(t)
i +γ

(t)
i ≥ai−

δ′
4max{C1,C2}

≥ d δ′

4 max{C1, C2}
,

39

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

which implies that ∑
i∈[d]

E
w∼P(t),w

[∇w]2i ≥ Ω

(
d

κ
(δ′)2δ2

)
.

Next, we focus on the other side when ∆(t) is negative. We first show the first lower bound on
the neuron mass.

Claim A.7 (Lower bound) In the setting of Lemma 11, suppose that Proposition 10 holds. Then
we have that for any t ∈ [T2 + 1, T3], the following holds:

β
(t)
i + γ

(t)
i ≥

1

poly(κ1)d
.

Proof Initially at t = 0, we have that L∞(P(0)) = O
(

1
d

)
). Now, for every δ ≤ min{C1,1}

100κd , when

∆(t) ≤ δ, we know that as long as β(t)
i +γ

(t)
i ≤ ai−

2δ
C1

and β(t)
i +γ

(t)
i ≥

1
poly(d) , we also have that

β
(t+1)
i + γ

(t+1)
i ≥ β(t)

i + γ
(t)
i

Thus, when β(t)
i + γ

(t)
i ≤ ai

2 , it can decrease at next iteration t + 1 only when δ = Ω
(

1
κd

)
, in

which case, the total decrement is bounded by exp{−η
∑

t≤T |∆(t)|1∆(t)≥δ}. Therefore, taking

δ = Θ
(

1
κd

)
, with the fact that β(0)

i ≥
1
κd , we obtain the result by combining equation 57.

Based on the above claim, we move on to the case when ∆(t) is negative. We show the following
proposition.

Claim A.8 (Dynamic of the 0th order update II) In the setting of Lemma 11, suppose that Propo-
sition 10 holds. Let δ be any value in the range [poly(κ2)ct

d2
, 1
κd]. When ∆(t) ≤ −δ, we have

E
w∼P(t)

‖∇wL∞(P(t))‖22 ≥ Ω

(
δ3d

poly(κ1)

)
.

Proof We shall see that when ∆(t) ≤ −δ, then for every i with β(t)
i + γ

(t)
i ≤ ai + δ

12 max{C1,C2} ,
we have that

−∆(t) + C1(ai − β(t)
i − γ

(t)
i) ≥ 2

3
δ.

Therefore, we have that

E
w∼P(t),w/∈Spot

[∇w]2i = Ω(β
(t)
i δ2).

On the other hand, γ(t)
i ≤ ai + δ′

12 max{C1,C2} as well, this implies that

−∆(t) + C1(ai − β(t)
i − γ

(t)
i) + C2(ai − γ(t)

i) ≥ δ

3
.

40

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

This implies that

E
w∼P(t),w∈Si,pot

[∇w]2i = Ω
(
γ

(t)
i δ2

)
.

Combining both cases, we have that

E
w∼P(t),w

[∇w]2i ≥ Ω
(

(γ
(t)
i + β

(t)
i)δ2

)
.

Notice that ∆(t) ≤ 0. This implies that∑
i∈[d]

1
β
(t)
i +γ

(t)
i ≥ai+

δ′
12max{C1,C2}

= d− Ω

(
min

{
1
κd , δ

}
d2

κ

)
.

Using the Claim A.7, we have that∑
i∈[d]

1
β
(t)
i +γ

(t)
i ≤ai+

δ′
12max{C1,C2}

[β
(t)
i + γ

(t)
i] ≥ δd

poly(κ1)
,

which implies that

E
w∼P(t),w

[∇w]2i ≥ Ω

(
δ2 min

{
1
κd , δ

}
d

poly(κ1)

)
.

Claim A.9 In the setting of Claim A.6 and A.8, for every T ∈ [T2 + 1, T3], the following holds:

η

T∑
t=T2+1

|∆(t)| = O

((
ηT poly(κ1)

d

)3/4

+

(
ηT poly(κ1)

d

)1/2
)

Furthermore, we have that:

η

T3∑
t=T2+1

|∆(t)| ≤ (log d)0.8. (56)

Proof To prove the above equation, we consider two scenarios. Using Claim A.6, for every δ ∈[
1
d1.5

, 1
κd

]
, we have:

η

T∑
t=T2+1

|∆(t)|1∆(t)≥δ = O

(
κ3

d3δ3

)
. (57)

Using Claim A.8, we have:

η
T∑

t=T2+1

|∆(t)|1∆(t)<−δ = O

(
poly(κ1)

d3δ3

)
. (58)

Combined together, using the fact that T3 ≤ d log1.01 d
η , we obtain equation (56).

41

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

The masses of potential neurons and bad neurons. We now focus on the update of γ(t)
i and β(t)

i .
We first prove the following claim on the dynamic of the potential, good, and bad neurons. Based
on the claim, we can obtain the update of γ(t)

i and β(t)
i . Let κ2 denote epoly(κ1). For any i ∈ [d], let

γ̂
(t)
i = Ew(t)∼P(t),w∈Si,good w

(t)
i

2
.

Claim A.10 In the setting of Lemma 11, suppose Proposition 10 holds. There exists fixed constants
C1, C2 > 0 such that for any t ∈ [T2 + 1, T3] and any i ∈ [d], the update of γ̂i(t), β

(t)
i satisfies that

γ̂
(t+1)
i =

(
1− η∆(t) + ηC1(ai − β(t)

i − γ
(t)
i) + ηC2(ai − γ(t)

i)± ηpoly(κ2)ct
d2

)
γ̂

(t)
i ,

β
(t+1)
i =

(
1− η∆(t) + ηC1(ai − β(t)

i − γ
(t)
i)± ηpoly(κ2)ct

d2

)
β

(t)
i .

Moreover, when γ(t)
i ≥

1
poly(d) , we have that

γ
(t+1)
i =

(
1− η∆(t) + ηC1(ai − β(t)

i − γ
(t)
i) + ηC2(ai − γ(t)

i)± ηpoly(κ2)ct
d2

)
γ

(t)
i .

The above claim implies that the update between the potential neurons and those not in the
potential set differs by a multiplicative factor of ai−γ(t)

i . Intuitively, this gap allows us to show that
the mass of potential neurons will converge and reduce the value of ai − γ(t)

i . On the other hand,
the mass of bad neurons β(t+1)

i will remain polynomially small throughout the update, since its
increment only scales with poly(κ2)ct/d

2 every iteration. We now describe the proof of the above
proposition, which is based on a simple claim that bounds the gradient from irrelevant neurons in
equation (59).
Proof We first show the following claim. For every v ∈ Sg, every i ∈ [d]:∣∣∣[∇v,2j,sig +∇v,2j,¬pot +∇v,2j,bad +∇v,2j,pot\bad −∇2j,v,sd

]
i

∣∣∣ ≤ (ct poly(κ2)

d2

)
|vi| (59)

To see that the above claim is true, for v /∈ Spot, we can bound ∇v,2j,¬pot as in Lemma 13. For
v ∈ Sbad, we can bound∇v,2j,bad directly using equation (22). For v ∈ Si,pot, we notice

E
w∼P,w∈Spot,‖w‖2≤d6

‖w‖22 ≤
1

poly(d)

On the other hand, when v ∈ Si,pot and ‖v‖2 ≥ d6, we have that ‖v̄ − ei‖2 ≤ 1
d4

by Eq (21). This
implies that for

∇2j,v,sd := −
(
b2j + b′2j

)(∑
i

(ai − γi)〈ei, v〉〈ei, v̄〉2j−2ei

)
+ b′2j

(∑
i

(ai − γi)〈ei, v〉〈ei, v̄〉2j−1

)
v̄.

By plugging in the claim in the beginning of the proof into the gradient update rule, we can prove
the update rules for each set of neurons. For every v /∈ Spot and every i ∈ [d], we have that

v
(t+1)
i =

(
1− η

2
∆(t) + η

C1

2
(ai − β(t)

i − γ
(t)
i)± ηpoly(κ2)ct

d2

)
v

(t)
i .

42

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

For every v ∈ Si,pot with |vi| ≥ d6, we have that

v
(t+1)
i =

(
1− η

2
∆(t) + η

C1

2
(ai − β(t)

i − γ
(t)
i) + ηC2(ai − γ(t)

i)± ηpoly(κ2)ct
d2

)
v

(t)
i . (60)

For all other coordinates j 6= i,

v
(t+1)
j =

(
1− η

2
∆(t) + η

C1

2
(aj − β(t)

j − γ
(t)
j)± ηpoly(κ2)ct

d2

)
v

(t)
j .

By applying the above results on each set of neurons, we obtain the result of this claim.

A.3.1. PROOF OF THE MAIN LEMMA

We are now ready to prove Lemma 11. Based on the dynamic of 0th order tensor and the update of
the 2nd order terms shown above, we prove the following proposition that shows β(t)

i + γ
(t)
i cannot

be too far away from ai for too many iterations.

Proposition 17 (Bounds on β(t)
i + γ

(t)
i during Stage 2.1) In the setting of Lemma 11, suppose

that Proposition 10 holds, then for every t ∈ [T2 + 1, T3], we have that

η

t∑
s=T2+1

|ai − β(s)
i − γ

(s)
i | ≤ (log d)0.9. (61)

Moreover, for every δ ≤ 1
100κd , we have:

η

t∑
s=T2+1

1
β
(s)
i +γ

(s)
i ≥ai+δ

|ai − β(s)
i − γ

(s)
i | = O

(
poly(κ2)

d3δ3

)
. (62)

Proof Let us construct an auxiliary function

Φ(t) = C1

(
ai − β(t)

i − γ
(t)
i

)2
+ C2

(
ai − γ(t)

i

)2
.

We consider an update step, then it holds that as long as β(t)
i + γ

(t)
i ≤

poly(κ2)
d , using Claim A.10,

the update of Φ(t) is given as:

Φ(t+1) =Φ(t) − 2η

(
C2

1

(
ai − β(t)

i − γ
(t)
i

)2
β(t) +

(
C1(ai − β(t)

i − γ
(t)
i) + C2(ai − γ(t)

i)
)2
γ(t)

)
+ 2η∆(t)

(
C1

(
ai − β(t)

i − γ
(t)
i

)
(β

(t)
i + γ

(t)
i) + C2

(
ai − γ(t)

i

)
(γ

(t)
i)
)
± η ct poly(κ2)

d4
.

This also implies that

Φ(t+1) ≤Φ(t) − 2η

(
C2

1

(
ai − β(t)

i − γ
(t)
i

)2
β(t) +

(
C1(ai − β(t)

i − γ
(t)
i) + C2(ai − γ(t)

i)
)2
γ(t)

)
+ η|∆(t)|poly(κ2)

d2
+ η

ct poly(κ2)

d4
,

43

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

which implies that for every t ≥ 0:

Φ(t+1) ≤ Φ(t) + η|∆(t)|poly(κ2)

d2
+ η

ct poly(κ2)

d4
. (63)

Hence, consider the case that β(t)
i + γ

(t)
i = ai − ρ(t) for ρ(t) ≥ 0, we have that γ(t)

i ≤ ai − ρ(t).
Hence in addition to Eq (63), we also have (using Claim A.7):

Φ(t+1) ≤ Φ(t) − ηΩ

(
1

poly(κ1)d
(ρ(t))2

)
+ η|∆(t)|poly(κ2)

d2
+ η

ct poly(κ2)

d4
.

Note that originally Φ(0) = O
(

1
d2

)
using the fact that β(0)

i ≤ 2ai and γ
(0)
i ≤ 1

poly(d) , with

Claim A.9, we have that for T ≤ d
η log1.01 d:

η
∑
t≤T

1
β
(t)
i +γ

(t)
i ≤ai

(ai − β(t)
i − γ

(t)
i)2 ≤ 1

d
(log d)0.81.

This implies that

η
∑
t≤T

1
β
(t)
i +γ

(t)
i ≤ai

(ai − β(t)
i − γ

(t)
i) ≤

√
η

1

d
(log d)0.81 × T ≤ 1

2
(log d)0.9.

Similarly, we can see that when β(t)
i + γ

(t)
i = ai + ρ(t) for ρ(t) ≥ 0, then either β(t)

i ≥ ρ(t)/2 or
γ

(t)
i ≥ ai − ρ(t)/2. In either case, we have that

Φ(t+1) ≤ Φ(t) − ηΩ

(
1

poly(κ2)
(ρ(t))3

)
+ η|∆(t)|poly(κ2)

d2
+ η

ct poly(κ2)

d4
.

Hence we can also show that

η
∑
t≤T

1
β
(t)
i +γ

(t)
i ≥ai

(ai − β(t)
i − γ

(t)
i) ≤ 1

2
(log d)0.9.

Eventually, consider for every δ ≤ 1
100κd , when β(t)

i + γ
(t)
i ≥ ai + δ and |∆(t)| ≤ d2

poly(κ2)δ
3, then

we also have

Φ(t+1) ≤ Φ(t) − ηΩ

(
1

poly(κ2)
δ3

)
+ η

ct poly(κ2)

d4
.

Using equation 58, we obtain that when T ≤ T3,

η
∑
t≤T

1
β
(t)
i +γ

(t)
i ≥ai+δ

|ai − β(t)
i − γ

(t)
i | = O

(
poly(κ2)

d3δ3

)
.

Based on the above proposition, we are ready to prove the main Lemma of Stage 2.1, which
provides a warm start initialization at a certain iteration T3 = Θ(d log d/η).

44

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Proof [Proof of Lemma 11] We first define T3 more precisely. We note that initially, for any i ∈ [d],
γ̂

(0)
i ≤ 1/poly(d) by construction. Using equation (56) and equation (61), by working on γ̂(t)

i and
noticing that γ̂(t)

i ≤ γ
(t)
i , we have that there exists an iteration T (i) = O(dκ log(1

γ̂
(0)
i

)/η) such that

at this iteration, γT
(i)

i ≥ 1
10κd . We shall fix T3 to be the maximum of T (i) over i ∈ [d], which is on

the order of Θ(d log d/η).
Next, similar to the proof of Proposition 17, we consider the function

Φ(t) = max
i∈[d]

{
C1

(
ai − β(t)

i − γ
(t)
i

)2
+ C2

(
ai − γ(t)

i

)2
}
.

Let i be the coordinate that achieves the maximum for the function above. We show that

Φ(t+1) ≤ Φ(t) − 2η

(
C2

1

(
ai − β(t)

i − γ
(t)
i

)2
β(t) +

(
C1(ai − β(t)

i − γ
(t)
i) + C2(ai − γ(t)

i)
)2
γ(t)

)
+ η|∆(t)|poly(κ2)

d2
+ η

ct poly(κ2)

d4
.

Let µ = C1(ai − β(t)
i − γ

(t)
i) + C2(ai − γ(t)

i), ν = C1(ai − β(t)
i − γ

(t)
i), we have that

Φ(t) = (µ− ν)2 + ν2,

with β(t)
i = µ−ν

C2
− ν

C1
. So we have when γ(t)

i ≥
1

poly(κ3)d ,

Φ(t+1) ≤ Φ(t) − 2ην2

(
µ− ν
C2

− ν

C1

)2

− η 1

poly(κ3)d
µ2 + η|∆(t)|poly(κ2)

d2
+ η

ct poly(κ2)

d4
.

When Φ(t) ≥ δ, we have that either µ2 ≥ δ
100 , or µ2 ≤ δ

100 and ν2 ≥ δ
2 . In the first case, we have

that

Φ(t+1) ≤ Φ(t) − η 1

poly(κ3)d
δ + η|∆(t)|poly(κ2)

d2
+ η

ct poly(κ2)

d4
.

In the second case, we have that

Φ(t+1) ≤ Φ(t) − ηΩ(δ2) + η|∆(t)|poly(κ2)

d2
+ η

ct poly(κ2)

d4
.

Combining this equation with the bound in equation (56), we know that for δ = 1
d log0.01 d

, we have

that Φ(t) ≥ δ can only happen for at most d log0.5 d
η many of the iterations within t ∈ [T2 + 1, T3].

Combining the above with equation (58), we obtain the desired result.

A.4. Stage 2.2: The Final Substage

In this section, we present the proof of Lemma 12 for the final substage. In the end, we prove the
running inductive hypothesisH1 in Proposition 10.

45

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Proof [Proof of Lemma 12] Suppose the lemma holds at iteration t, then using the condition at
iteration t, together with Φ(0) = O

(
1

d log0.01 d

)
, we have that

∀i ∈ [d] : γ
(t)
i ≥ ai −

1

d log0.001 d
and β(t)

i ≤
1

d log0.001 d
(64)

Define the following function

τi := C1(ai − βi − γi) +
C2γi
βi + γi

(ai − γi) ,

Then we have the following

β
(t+1)
i + γ

(t+1)
i =

(
β

(t)
i + γ

(t)
i

)(
1− η∆(t) + ητ

(t)
i ± η

poly(κ2)ct
d2

)
.

Similar to the proof of Lemma 14, we have that as long as ∆
(t)
+ ≥

poly(κ2)ct
d2

and

∆
(t)
+ ≥

(
1− 1

poly(κ)

)
δ

(t)
− .

Then it must satisfy that ∆
(t+1)
+ ≤ ∆

(t)
+

(
1− η 1

d poly(κ)

)
. Hence, if the maximizer of Φ is ∆+,

Then it must be the case that

∆
(t+1)
+ ≤ ∆

(t)
+

(
1− η 1

d poly(κ)

)
. (65)

Now, consider another case when ∆
(t)
− ≤

(
1− 1

poly(κ)

)
δ

(t)
+ , let i be the argmax of {τj}j∈[d], then

we must have that

β
(t+1)
i + γ

(t+1)
i =

(
β

(t)
i + γ

(t)
i

)(
1− η∆(t) + ηδ

(t)
+ ± η

poly(κ2)ct
d2

)
≥
(
β

(t)
i + γ

(t)
i

)(
1 + η

1

poly(κ)
δ

(t)
− − η

poly(κ2)ct
d2

)
.

Hence as long as δ(t)
− ≥

poly(κ2)ct
d2

, we have that

β
(t+1)
i + γ

(t+1)
i ≥

(
β

(t)
i + γ

(t)
i

)(
1 + η

1

poly(κ)
δ

(t)
−

)
. (66)

On the other hand, since

γ
(t+1)
i = γ

(t)
i

(
1− η∆(t) + ηC1(ai − βi − γi) + ηC2 (ai − γi)± η

poly(κ2)ct
d2

)
≥ γ(t)

i

(
1− η∆(t) + ηδ

(t)
− − η

poly(κ2)ct
d2

)
≥ γ(t)

i

(
1 + η

1

poly(κ)
δ

(t)
−

)
. (67)

46

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Notice that

f(γi) = γi (ai − γi)

is a decreasing function of γi with slop at least 0.5γi when γi ≥ ai
2 , which holds true using Eq (64).

Combining Eq (66) and Eq (67), we have that if the maximizer of Φ is δ−, the following is true

δ
(t+1)
− ≤ δ(t+1)

−

(
1− η 1

poly(κ)d

)
. (68)

Consider another case when the maximizer is ∆−. Similar to the proof of Lemma 14, as long as
∆

(t)
− ≥

poly(κ2)ct
d2

, we have that

∆
(t)
− ≥

(
1− 1

poly(κ)

)
δ

(t)
+ .

Hence, if the maximizer of Φ is ∆−, then it must be the case that

∆
(t+1)
− ≤ ∆

(t)
−

(
1− η 1

poly(κ)d

)
. (69)

Moreover, using the fact that when ∆
(t)
− ≤

(
1− 1

poly(κ)

)
δ

(t)
+ , let i be the argmax of {−τj}j∈[d],

then we must have that as long as δ(t)
+ ≥

poly(κ2)ct
d2

, we have that

β
(t+1)
i + γ

(t+1)
i ≤

(
β

(t)
i + γ

(t)
i

)(
1− η 1

poly(κ)
δ

(t)
+

)
Consider two cases.

1. The maximizer is δ+. Then we must have that for every i ∈ [d], β(t)
i ≤ Cδ

(t)
+ , then we must

have that ai − γ(t) ≤ Cδ(t)
+ as well. Hence, it holds that

γ
(t+1)
i ≤ γ(t)

i

(
1− η 1

poly(κ)
δ

(t)
+ + η

βi
γi + βi

(ai − γ(t)
i)

)
≤ γ(t)

i

(
1− η 1

poly(κ)
δ

(t)
+ + η2κd(Cδ

(t)
+)2

)
≤ γ(t)

i

(
1− η 1

poly(κ)
δ

(t)
+

)
.

Hence if the maximizer of Φ is δ+, it must be the case:

δ
(t+1)
+ ≤ δ(t+1)

+

(
1− η 1

poly(κ)d

)
. (70)

2. The maximizer is β+. Then there is a j ∈ [d] such that β(t)
j ≥ Cδ

(t)
+ , β(t)

j ≥ Cδ
(t)
− and β(t)

j ≥
C|∆(t)|, we have that for this j, it holds: let S = C1

(
β

(t)
j + γ

(t)
j − aj

)
and ρ = (aj − γ(t)

j),

we have: if ρ ≤ 1
4β

(t)
j , then

S ≥ C1β
(t)
j − 2C1ρ ≥

C1

2
β

(t)
j ≥ 2|∆(t)|.

47

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

On the other hand if ρ > 1
4β

(t)
j , then using δ(t)

− , we have:

−S + ρ ≤ δ(t)
− .

This implies that

S ≥ ρ− δ(t)
− ≥

1

4
β

(t)
j − δ

(t)
− ≥ |∆(t)|+ 1

8
βj .

Hence if the maximizer of Φ is β+, it must be the case:

β
(t+1)
j = β

(t)
j

(
1− η∆(t) − ηS ± ηpoly(κ2)ct

d2

)
≤ β(t)

j

(
1− η1

8
β

(t)
j

)
. (71)

To sum up, the result follows by combining Eq (71), (70), (69), (65) and (68).

A.4.1. PROOF OF THE INDUCTIVE HYPOTHESIS

Verifying the inductive hypothesis H1 during Stage 2. Proof [Proof of Proposition 10] We
first verify the inductive hypothesis for t ≤ T3. The bound for v /∈ Spot follows from Claim A.9
and Proposition 17. We prove the bound for v ∈ Spot by tracking the gradient descent dynamic.
Following Eq (46), for every neuron v, and every p ∈ [d], define

Q(t)
p := 2

∑
j≥2

(
B1,2j(ap − γ(t)

p)
(v

(t)
p)2j−2

‖v(t)‖2j−2
2

−B2,2j

∑
r(ar − γ

(t)
r)(v

(t)
r)2j

‖v(t)‖2j2

)
,

R(t)
p := 2

∑
j≥2

(
B1,2j(ap − γ(t)

p)
(v

(t)
p)2j−2

‖v(t)‖2j−2
2

)
.

Hence, using Eq (59), we have that for every i ∈ [d][
v

(t+1)
i

]2
=
[
v

(t)
i

]2(
1− η∆(t) + ηC1(ai − β(t)

i − γ
(t)
i) + ηQ(t)

p ± η
ct poly(κ1)

d2

)
. (72)

Hence, we have that for every i, j ∈ [d],[
v

(t+1)
i

]2
[
v

(t+1)
j

]2 =

[
v

(t)
i

]2
[
v

(t)
j

]2 (1 + ηC1(ai − β(t)
i − γ

(t)
i)− ηC1(aj − β(t)

j − γ
(t)
j) + ηR

(t)
i − ηR

(t)
j ±

ct poly(κ1)

d2

)
.

Now, if |v̄(t)
i |2, |v̄

(t)
j |2 ≤

ct
d , we also have that[

v
(t+1)
i

]2
[
v

(t+1)
j

]2 =

[
v

(t)
i

]2
[
v

(t)
j

]2 (1 + ηC1(ai − β(t)
i − γ

(t)
i)− ηC1(aj − β(t)

j − γ
(t)
j)± η ct poly(κ1)

d2

)
.

48

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

This implies that[
v

(t+1)
i

]2
[
v

(t+1)
j

]2 =

[
v

(0)
i

]2
[
v

(0)
j

]2 exp

±2ηC1

∑
s≤t

(
|ai − β(t)

i − γ
(t)
i |+ |aj − β

(t)
j − γ

(t)
j |
)
± η ct poly(κ1)

d2
t± η2t

 .

Hence using Proposition 17 we show that when |v̄(0)
i |2, |v̄

(0)
j |2 ≤

c0
d , then |v̄(t)

i |2, |v̄
(t)
j |2 ≤

ct
d as

well for every t ≤ T3. Now, we need to give an upper bound on the the coordinates of the neurons.
For every v /∈ Spot, we know that all coordinates j ∈ [d] satisfies that |v̄(0)

j |2 ≤
c0
d . Hence, by

Eq (72), we have that[
v

(t+1)
i

]2
≤
[
v

(t)
i

]2 (
1 + η|∆(t)|+ ηC1|ai − β(t)

i − γ
(t)
i |+ ηκO(‖v(t)‖44)

)
,

≤
[
v

(t)
i

]2(
1 + η|∆(t)|+ ηC1|ai − β(t)

i − γ
(t)
i |+ ηκ

c2t
d2

)
.

Hence we have that

[
v

(t+1)
i

]2
≤
[
v

(0)
i

]2
exp

η∑
s≤t

(
|∆(s)|+ C1|ai − β(s)

i − γ
(s)
i |
)

+ ηκ
c2
t

d
t

 .

Hence using Proposition 17 and Claim A.9, we have proved Eq (20) and Eq (21).
Next, we proceed to the norm of neurons v ∈ Si,good. For this neuron, using the fact that

|v(t)
i | ≥ d6 and equation 60, we have that

v
(t+1)
i =

(
1− η∆(t) + ηC1(ai − β(t)

i − γ
(t)
i) + ηC2(ai − γ(t)

i)± ηpoly(κ2)ct
d2

)
v

(t)
i .

Hence, for every t, using Eq (61) we obtain that:

[
v

(t)
i

]2
≥

[
v

(0)
i

]2

d
≥ 1

λ0 poly(d)
.

Notice that for every neuron v ∈ Sg, we have that |v̄(0)
i |2 ≤

c0
d can happen for at most O(log0.01 d)

many i ∈ [d]. Denote this set as Qv, we have that
[
v

(t+1)
i

]2
/
[
v

(t)
i

]2
is at most

1− η∆(t) + ηC1(ai − β(t)
i − γ

(t)
i) + ηC2(ai − γ(t)

i) + ηO

∑
p∈Qv

[(γ(t)
p − ap)]+

+ η
ct poly(κ1)

d2

≤ 1− η∆(t) + ηC1(ai − β(t)
i − γ

(t)
i) + ηC2(ai − γ(t)

i) + ηO

∑
p∈Qv

|ap − β(t)
p − γ(t)

p |

+ η
ct poly(κ1)

d2
.

Hence, for every t ≤ T ≤ T3, using Eq (56) and Eq (61), by working on γ̂i and notice that γ̂i ≤ γi,
we conclude that for every i ∈ [d].

η
∑
t≤T
|ai − γ(t)

i | ≤ log

(
d

γ̂
(0)
i

)
.

49

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Combining the above equation with Eq (61) we have that for every i ∈ [d]:[
v

(t)
i

]2
≤
[
v

(t)
0

]2
exp{Γi} ≤

[
v

(t)
0

]2 d

γ̂
(0)
i

This proves that gradient truncation never happens during this substage. Now, apply Lemma 9,
which says that

γ̂
(0)
i ≥ µ(Si,good)

λ0

poly(d)
≥ poly(d)µ(Si,bad). (73)

We complete the proof of the first our statements. For the last statement on γ, β, Claim A.8 also
proves the upper bound on γ(t)

i + β
(t)
i as in equations (23) and (24). Taking δ = 1

κd , we can show
that

β
(t)
i + γ

(t)
i ≤

poly(κ2)

d
.

Next verify the running inductive hypothesis H2 for T3 ≤ t ≤ T4. Based on Lemma 12, we
have the following bounds on the update of each coordinate of each neuron. For every i ∈ [d], using
Eq (59), we have that

|v(t+1)
i | = |v(t)

i |
(

1± ηO
(
|∆(t)|+ |ai − β(t)

i − γ
(t)
i |+ |ai − γ

(t)
i |
)
± ctκ1

d2

)
Note that by the definition of Φ(t) at Lemma 12, we have that

|ai − γi| ≤ O
(∣∣∣∣C1(ai − γi) +

C2γi
βi + γi

(ai − γi)
∣∣∣∣)+O(|βi|)

≤ O (β+ + δ+ + δ−) = O(Φ) (74)

Hence, we obtain that for t ∈ [T3, T4], with Lemma 12:

|v(t)
i | = |v

(T3)
i | exp

{
±O

(
log

t

d

)}
Hence as long as T4 ≤ d1+10Q

η , we obtain the running hypothesisH2 at this substage.

Appendix B. Proof of the Finite-Width Case

We begin by describing the connection between the finite-width dynamic and the infinite-width
dynamic. For a vector w ∈ Sg, let w̃(0) and w(0) be a neuron with initialization w in the finite-width
and infinite-width case, respectively. Let P denote the infinite neuron distribution and P̃ denote the
finite neuron population with m samples. Our idea is to track the difference between w̃(t) and w(t),
denoted by ξ(t)

w , throughout the update. The neuron w denotes a weight vector from the infinite
width case that we specify below. Specifically, the truncated gradient descent update of w̃ for the
finite-width case and the update of w for the infinite-width case is equal to the following.

w(t+1) = w(t) − η · 1‖w(t)‖2≤1/λ∇w(t)L∞(P), (75)

w̃(t+1) = w̃(t) − η · 1‖w̃(t)‖2≤1/λ∇w̃(t)L(P̃) + ηΞ(t)
w , (76)

50

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

where Ξ
(t)
w is an extra error term that arises from the sampling error of the empirical loss.

Our main result in this section is that provided with polynomially many neuron samples and
training samples, the errors ξ(t)

w and Ξ
(t)
w in equation (76) remain polynomially small throughout

Algorithm 1. We first state the result for Stage 1.

Lemma 18 (Error propagation of Stage 1) In the setting of Theorem 1, let P̃(0) be a uniform
distribution over m i.i.d. samples from P . There exists a fixed value Ξ ∈ [0, λ0/poly(d)] such that
for every iteration t ≤ T2, the average norm of the error is small: Ew̃∼P̃(t) ‖ξw‖22 ≤ poly(d)Ξ.

Furthermore, for every w̃(t) in P̃(t), the individual error terms are small: ‖Ξ(t)
w ‖22 ≤ Ξ and

‖ξ(t)
w ‖22 ≤ poly(d) · Ξ/λ0.

The proof of Lemma 18 can be found in Section B.2.3. Next, we consider the error propagation
of Stage 2.1. We show that the norm of ξw is much smaller than that of w.

Lemma 19 (Error propagation of Stage 2.1) In the setting of Theorem 1, let P̃(T2+1) be a uni-
form distribution over m i.i.d. samples from PT2+1. There exists a fixed value Ξ ∈

[
0, 1

polyκ(d)

]
such that for every iteration T2 < t ≤ T3 and every neuron w̃(t) in P̃(t), the error terms are small:

‖Ξ(t)
w ‖22 ≤ Ξ, ‖ξ(t)

w ‖22 ≤ min(polyκ(d)Ξ, ‖ξ(t)
w ‖22 ≤ ‖w(t)‖22/d20).

The proof of Lemma 19 involves carefully studying the error term and follows a similar argu-
ment to Lemma 18. The details can be found in Section B.3. Finally, we consider the error terms in
the final stage. We use a different error analysis. At iteration T3, let us consider the set

Si,singleton :=

{
v ∈ Sg | ‖v̄ − ei‖2 ≤

1

poly(d)

}
, for 1 ≤ i ≤ d.

Let Ssingleton = ∪di=1Si,singleton. Consider the set

Signore := {v ∈ Sg | v ∈ Spot, v /∈ Ssingleton} ,

where we recall the definition of Spot in Proposition 10. We state the error propagation of the final
substage as follows.

Lemma 20 (Error propagation of Stage 2.2) In the setting of Theorem 1, let P̃(T3+1) be a uni-
form distribution overm i.i.d. samples from P(T3+1). There exists a fixed value Ξ ∈ [0, 1/polyκ(d)]

such that for every iteration T3 < t ≤ T4 and for every w̃(t), the error term ‖Ξ(t)
w ‖22 ≤ Ξ.

For every neuron w with w /∈ Signore, we have that ‖ξ(t)
w ‖22 ≤ ‖w(t)‖22/poly(d) and

E
w̃∼P̃(t),w∈Signore

‖ξ(t)
w ‖22 ≤ 1/poly(d).

The proof of Lemma 20 can be found in Section B.4. Based on the analysis of error propagation,
we are now ready to prove our main result. We prove Theorem 1 as follows.
Proof [Proof of Theorem 1] Let us denote w̃(t) to be the weight of the neuron w̃ at iteration t,
following the update of Algorithm 1. For the next iteration, we have that

w̃(t+1) = w̃(t) − η · 1‖w̃(t)‖22≤
1
2λ
∇
w̃

(t)
i

L̂(P̃(t)),

51

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

where L̂(W) denotes the empirical loss.
Recall that we assume that the learning rate η ≤ 1

polyκ(d) . Using Claim 2.1, we can see that

when N for a sufficiently large polynomial in d, we have that with probability at least 1− e− log2 d,
for every w ∈W and every t ≤ T4:

∥∥∥∇w̃(t+1)L̂(P̃(t+1))−∇w(t+1)L∞(P)
∥∥∥

2
≤ 1

polyκ(d) .

For Stage 1, we can first apply Lemma 18 with Ξ = 1
polyκ(d) and P̃ being a uniform distribution

overW . Usingm = polyκ(d), we can conclude that for everyw ∈W and t ≤ T2: ‖w̃(t)−w(t)‖2 ≤
1

polyκ(d) .
For Stage 2.1, we can use Lemma 19 with Ξ = 1

polyκ(d) to conclude that for every t ≤ T3,

‖w̃(t) − w(t)‖2 ≤ 1
polyκ(d) as well. For Stage 2.2, we shall use Lemma 20 with Ξ = 1

poly(d) to
conclude that for every neuron w /∈ Signore, we have:

‖w̃(T4) − w(T4)‖22 ≤
1

poly(d)
‖w‖22 and E

w̃(T4)∼P̃(T4),w∈Signore
‖w̃(T4) − w(T4)‖22 ≤

1

poly(d)
.

These statements together give us the following

E
x∼N (0,Idd×d)

(
f{w̃(T4)|w∈W}(x)− f{w(T4)|w∈W}(x)

)2
≤ 1

poly(d)
.

Finally, combined with Claim 2.1 and Theorem 4 we complete the proof of Theorem 1.

B.1. Stage 1.1: Analysis of 0th and 2nd Order Tensor Decompositions

In this substage, we consider the error terms in the gradients of the 0th and 2nd order tensor decom-
positions. Let H̃0 is the running hypothesisH0 in Proposition 7 without the conditionally-symmetric
property. For a neuron v, similar to the definition of ∇v in Claim 3.2, we define the error gradient
∇̃v as ∇̃v := ∇vL∞(P̃) =

∑
j≥0 ∇̃2j,v. Using the update of equation (75) for the infinite-width

case, the gradient of v for the 0th and 2nd order terms over the population loss is given by

∇≤2,v = b0

(
E
P
‖w‖22 − 1

)
v + b2

(
E
P
ww> −A

)
v,

where A = diag({ai}i∈[d]). Using the update of equation (76) for the finite-width case, the gradient
of v for the 0th and 2nd order terms over the population loss is given by

∇̃≤2,v = b0

(
Ẽ
P
‖w̃‖22 − 1

)
ṽ + b2

(
Ẽ
P
w̃w̃> −A

)
ṽ.

The first order terms of the error term ξv for the neuron v is given by

∇̃0,v,1 := 2b0

(
Ẽ
P
〈w, ξw〉

)
v + b0

(
Ẽ
P
‖w‖22 − 1

)
ξv,

∇̃2,v,1 := b2

(
Ẽ
P
ww> −A

)
ξv + b2

(
Ẽ
P
wξ>w

)
v + b2

(
Ẽ
P
ξww

>
)
v. (77)

Let ∇̃≤2,v,1 denote the sum of ∇̃0,v,1 and ∇̃2,v,1. We have the following claim for the error of the
0th and 2nd order terms. We use the notation (w, ξw) ∼ P̃ to denote a neuron w̃ = w+ ξw sampled
from P̃ .

52

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Claim B.1 (Error of 0th and 2nd order gradients) In the setting of Theorem 1, at every iteration
t ≤ T4, the following is true for the neuron distribution P̃ = P̃(t),(

E
(w,ξw)∼P̃

〈w, ξw〉

)
E

(v,ξv)∼P̃
〈v, ξv〉 ≥ 0, and

E
(v,ξv)∼P̃

(〈(
E

(w,ξw)∼P̃
wξ>w

)
v, ξv

〉)
+ E

(v,ξv)∼P̃

(〈(
E

(w,ξw)∼P̃
ξww

>

)
v, ξv

〉)
≥ 0,

As a corollary,

E
(v,ξv)∼P̃

〈∇̃≤2,v,1, ξv〉 ≥ b0
(
Ẽ
P
‖w‖22 − 1

)
Ẽ
P

[‖ξv‖22] + b2 Ẽ
P

[
ξ>v

(
Ẽ
P
ww> −A

)
ξv

]
. (78)

Proof The first inequality is obviously true. Now we consider the second inequality, we have that

〈wξ>wv, ξv〉+ 〈ξww>v, ξv〉 = ξ>v wξ
>
wv + ξ>v ξww

>v

=
1

2
Tr
((
ξvv
> + vξ>v

)(
ξww

> + wξ>w

))
.

This implies that

E
(v,ξv)∼P̃,(w,ξw)∼P̃

〈wξ>wv, ξv〉+ 〈ξww>v, ξv〉

=
1

2
E

(v,ξv)∼P̃,(w,ξw)∼P̃
Tr
((
ξvv
> + vξ>v

)(
ξww

> + wξ>w

))
=

1

2
Tr

(
E

(w,ξw)∼P̃

(
ξww

> + wξ>w

))2

≥ 0.

Next we consider the first order tensor. The first order gradient in the finite-width case for the
population loss is

∇̃1,v = b1 Ẽ
P

(〈w̃, ṽ〉‖w̃‖2 ¯̃v + ‖w̃‖2‖ṽ‖2w̃) .

The 1-order term in the gradient is zero in the infinite-width case of Section A. The first-order
expansion of the error is given by:

∇̃1,v,1 := b1 Ẽ
P
〈w̄, ξw〉〈w, v〉v̄ + b1 Ẽ

P
〈v̄, ξw〉‖w‖2v

+ b1 Ẽ
P
〈w̄, ξw〉‖v‖2w + b1 Ẽ

P
‖w‖2‖v‖2ξw

We have the following claim for the error in the first order gradients.

Claim B.2 (Error of 1st order gradient) In the setting of Theorem 1, the following holds for any
distribution P̃ on w, ξw (v, ξv follows the same distribution).

〈∇̃1,v,1, ξv〉 = b1

∥∥∥∥ẼP ‖w‖2ξw + w〈w̄, ξw〉
∥∥∥∥2

F

≥ 0

53

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

B.2. Stage 1.2: Analysis of Higher Order Tensor Decompositions

In this substage, we consider the error terms of the gradients of the higher order tensor decomposi-
tions. Towards showing the error propagation in Lemma 18, our proof outline is as follows.

• We decompose the error of the gradients into individual terms that we analyze one by one.

• In Proposition 21, we provide an upper bound on the average norm of the error. In Proposition
24, we bound the error of the individual terms from the decomposition.

• Finally, we present the proof of Lemma 18 in Section B.2.3.

We begin by writing down the gradient of higher order terms for the population loss..

∇̃2j,v =
(
b2j + b′2j

)(
Ẽ
P
〈w̃, ṽ〉〈 ¯̃w, ¯̃v〉2j−2w̃ −

∑
i

ai〈ei, ṽ〉〈ei, ¯̃v〉2j−2ei

)

− b′2j

(
Ẽ
P
〈w̃, ṽ〉〈 ¯̃w, ¯̃v〉2j−2〈w̃, ¯̃v〉 −

∑
i

ai〈ei, ṽ〉〈ei, ¯̃v〉2j−1

)
¯̃v.

A crucial result is a bound on the average norm of the error. Let us define ∆̃ :=
∣∣Ew∼P̃ ‖w‖22 − 1

∣∣
and δ̃ =

∥∥Ew∼P̃ ww> −A∥∥2
. We have the following result.

Proposition 21 (Average error bound) In the setting of Lemma 18, suppose the running hypoth-
esis H̃0 holds for every t ∈ [T2]. In addition,

• For every neuron w, it holds that ‖ξw‖2 ≤ 1
d20
‖w‖2;

• |Ew∼P̃ [w‖w‖2]| ≤ 1
d40

and ‖Ew∼P̃ ww
>‖2 ≤ 1.

As long as for every w ∈ S (recalling its definition in Def. 6), ‖ξw‖2 ≤ 1
poly(d) , then we have

E
P̃(t+1),w∈S

‖ξw‖22 ≤
(

1 + η
ct poly(κ)

d2

)
E

P̃(t),w∈S
‖ξw‖22

+ ηO

(
1

λ0

)(
E

P̃(t),w/∈S
‖ξw‖2

)(
E

P̃(t),w∈S
‖ξw‖2

)
+ ηO

(
max

{
∆̃(t), δ̃(t)

})
E

P̃(t),w∈S
‖ξw‖22.

Next we show that the norm of the error in each individual neuron can also be bounded.

Proposition 22 (Individual error bound) In the setting of Lemma 18, suppose that for every t ∈
[T2], we have Ew,ξw∼P̃t ‖ξw‖

2
2 ≤ Ξ. Then for every v ∈ Sg and every t ∈ [T2]:

‖ξ(t)
v ‖22 ≤

poly(d)

λ0

(
‖ξ(0)
v ‖22 + Ξ

)
.

The proof of Proposition 21 and Proposition 22 is left to Section B.2.3.

54

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

B.2.1. DECOMPOSITION OF GRADIENT TERMS

We focus on the leading term that contains the first order term in ξ. We decompose ∇̃2j,v into the

following terms. In particular, these include terms from v + ξv = v̄+ ξv
‖v‖2 −

〈ξv,v̄〉v̄
‖v‖2 +O

((
‖ξv‖2
‖v‖2

)2
)

.

∇̃2j,v,1 := (2j − 1)
(
b2j + b′2j

)(
Ẽ
P
〈ξw, v〉〈w̄, v̄〉2j−2w + Ẽ

P
〈w, ξv〉〈w̄, v̄〉2j−2w

)
,

∇̃2j,v,2 :=
(
b2j + b′2j

)
Ẽ
P
〈w, v〉〈w̄, v̄〉2j−2ξw,

∇̃2j,v,3 := −(2j − 2)
(
b2j + b′2j

)(
Ẽ
P
〈w̄, v〉〈w̄, v̄〉2j−2〈ξw, w̄〉w

)
,

∇̃2j,v,4 := −(2j − 2)
(
b2j + b′2j

)(
Ẽ
P
〈w, v̄〉〈w̄, v̄〉2j−2〈ξv, v̄〉w

)
,

∇̃2j,v,5 := −(2j)b′2j

(
Ẽ
P
〈ξw, v〉〈w̄, v̄〉2j−2〈w, v̄〉v̄

)
, ∇̃2j,v,6 := −(2j)b′2j

(
Ẽ
P
〈ξv, w〉〈w̄, v̄〉2j−2〈w, v̄〉v̄

)
,

∇̃2j,v,7 := (2j − 2)b′2j

(
Ẽ
P
〈ξw, w̄〉〈w̄, v̄〉2j−1〈w, v〉v̄

)
,

∇̃2j,v,8 := (2j − 1)b′2j

(
Ẽ
P
〈ξv, v̄〉〈w̄, v̄〉2j−2〈w, v̄〉2v̄

)
,

∇̃2j,v,9 := −b′2j
(
Ẽ
P
〈w, v̄〉〈w̄, v̄〉2j−2〈w, v̄〉ξv

)
, ∇̃2j,v,10 := b′2j

(
Ẽ
P
〈w, v̄〉〈w̄, v̄〉2j−2〈w, v̄〉〈ξv, v̄〉v̄

)
,

∇̃2j,v,11 := −(2j − 1)
(
b2j + b′2j

)(∑
i

ai〈ei, ξv〉〈ei, v̄〉2j−2ei

)
,

∇̃2j,v,12 := (2j − 2)
(
b2j + b′2j

)(∑
i

ai〈ξv, v̄〉〈ei, v̄〉2j−1ei

)
,

∇̃2j,v,13 := (2j)b′2j

(∑
i

ai〈ei, ξv〉〈ei, v̄〉2j−1

)
v̄, ∇̃2j,v,14 := −(2j − 1)b′2j

(∑
i

ai〈ξv, v̄〉〈ei, v̄〉2j
)
v̄,

∇̃2j,v,15 := b′2j

(∑
i

ai〈ei, v̄〉2j
)
ξv, ∇̃2j,v,16 := −b′2j

(∑
i

ai〈ei, v̄〉2j
)
〈ξv, v̄〉v̄.

In addition, we show that the second order terms in ξ that contains ‖ξw‖p2 and ‖ξv‖q2 for p + q ≥ 3
are of a lower order compared to the first order terms. Informally, we know that ‖ξw‖2 and ‖ξv‖2
are less than λ2

0. Meanwhile, ‖w‖2 and v‖2 are at least Ω
(

1
d

)
, for every w, v ∈ Sg by Lemma A.3.

Combined together, we show the following result.

Proposition 23 In the setting of Proposition 21, let (w, ξw) be a random sample of P̃ .

‖∇̃≤2,v − ∇̃0,v,1 − ∇̃2,v,1‖2 + ‖∇̃1,v,1 − ∇̃1,v‖2 +
∑
j≥0

∥∥∥∥∥∇̃2j,v −
∑
p

∇̃2j,v,p

∥∥∥∥∥
2

≤O

(
1

d10

(
‖v‖2

√
E

ξw∼P̃
‖ξw‖22 + ‖ξv‖2

))
.

55

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

B.2.2. INDIVIDUAL ERROR NORM BOUND

Based on the decomposition above, we provide several helper claims for bounding the error of the
gradient terms. First, for v ∈ S, we have the following claim.

Claim B.3 In the setting of Proposition 21, we have that

E
(v,ξv)∼P̃,(w,ξw)∼P̃

(
〈ξw, v〉〈w̄, v̄〉2j−2〈w, ξv〉+ 〈w, ξv〉〈w̄, v̄〉2j−2〈w, ξv〉

)
≥ 0, and

E
(v,ξv)∼P̃,(w,ξw)∼P̃

〈w, v〉〈w̄, v̄〉2j−2〈ξw, ξv〉 ≥ 0.

This implies that for p = 1, 2:

E
(v,ξv)∼P̃

〈ξv, ∇̃2j,v,p〉 ≥ 0.

Proof For the first inequality, we know that

E
(v,ξv)∼P̃,(w,ξw)∼P̃

(
〈ξw, v〉〈w̄, v̄〉2j−2〈w, ξv〉+ 〈w, ξv〉〈w̄, v̄〉2j−2〈w, ξv〉

)
= E

(v,ξv)∼P̃,(w,ξw)∼P̃

(
〈w̄, v̄〉2j−2

(
〈ξw, v〉〈w, ξv〉+ 〈w, ξv〉2

))
= E

(v,ξv)∼P̃,(w,ξw)∼P̃

(
〈w̄, v̄〉2j−2

(
〈ξw, v〉〈w, ξv〉+

1

2
〈w, ξv〉2 +

1

2
〈v, ξw〉2

))
=

1

2
E

(v,ξv)∼P̃,(w,ξw)∼P̃

(
〈w̄, v̄〉2j−2(〈w, ξv〉+ 〈v, ξw〉)2

)
≥ 0.

The second inequality in the Lemma follows from the fact that (〈w, v〉)w,v, (w̄, v̄〉)w,v, (〈ξw, ξv〉)w,v
forms PSD matrices, and the Hadamard product of PSD matrices is PSD.

We also have the following claim, which serves as an upper bound of

∇̃2j,v,3, ∇̃2j,v,4, ∇̃2j,v,5, ∇̃2j,v,6, ∇̃2j,v,7, ∇̃2j,v,8, ∇̃2j,v,9, ∇̃2j,v,10.

Claim B.4 In the setting of Proposition 21, we have that

E
(v,ξv)∼P̃,(w,ξw)∼P̃,w,v∈S

[
〈w̄, v̄〉2|〈ξw, v〉〈ξv, w〉|

]
≤ ctκ

d2
E

(w,ξw)∼P̃,w∈S
‖ξw‖22, and

E
(v,ξv)∼P̃,(w,ξw)∼P̃,w,v∈S

[
〈w̄, v̄〉2〈ξw, v〉2

]
≤ ctκ

d2
E

(w,ξw)∼P̃,w∈S
‖ξw‖22, and

E
(v,ξv)∼P̃,(w,ξw)∼P̃,w,v∈S

[
〈w̄, v̄〉2〈w, v̄〉2

]
≤ ctκ

d2
.

As a corollary, combine the above inequality with Proposition 7, we obtain

∑
j≥2

E
(v,ξv)∼P̃,v∈S

|〈ξv, ∇̃2j,v,p〉| = O

(
ctκ

d2
E

(v,ξv)∼P̃,v∈S
‖ξv‖22 +

1

λ0
E

(w,ξw)∼P̃,w/∈S
‖ξw‖22

)
,

where p = 3, 4, 5, 6, 7, 8, 9, 10.

56

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Proof The proof is a direct calculation, using 〈w̄, v̄〉2 ≤ ct
d for w ∈ S, we have that

E
(v,ξv)∼P̃,(w,ξw)∼P̃,w,v∈S

[
〈w̄, v̄〉2|〈ξw, v〉〈ξv, w〉|

]
≤ ct

d
E

(v,ξv)∼P̃,(w,ξw)∼P̃,w,v∈S
|〈ξw, v〉〈ξv, w〉|

≤ ct
d

E
(v,ξv)∼P̃,(w,ξw)∼P̃,w,v∈S

|〈ξw, v〉〈ξv, w〉|

≤ ct
d

E
(v,ξv)∼P̃,(w,ξw)∼P̃,w,v∈S

(
〈ξv, w〉2 + 〈ξw, v〉2

)
.

Now, we can easily calculate that (using the Eq (17))

E
(v,ξv)∼P̃,v∈S

〈ξw, v〉2 ≤ E
(v,ξv)∼P̃

〈ξw, v〉2 ≤
2κ

d
‖ξw‖22,

which completes the proof. For the other two inequalities, we can bound them in the exact same
way.

The final claim aims to bound the rest of the terms.

Claim B.5 In the setting of Proposition 21, we have that(
d∑
i=1

ai〈ei, v̄〉2〈ei, ξv〉2
)

= O
(ctκ
d2
‖ξv‖22

)
and

(
d∑
i=1

ai〈ei, v̄〉2
)

= O
(ctκ
d2

)
.

As a corollary, combining the above inequality with Proposition 7, we obtain

∑
j≥2

E
(v,ξv)∼P̃,v∈S

|〈ξv, ∇̃2j,v,p〉| = O

(
ctκ

d2
E

(v,ξv)∼P̃,v∈S
‖ξv‖22

)
,

where p = 11, 12, 13, 14, 15, 16.

Individual Error Norm Bound for v ∈ S . Below we also consider the error individually, we
will mainly focus on the error term with ξv.

Claim B.6 In the setting of Proposition 21, we have that

E
(w,ξw)∼P̃

〈w, ξv〉2〈w̄, v̄〉2 ≤ O
(κct
d2
‖ξv‖22

)
, and∣∣∣∣∣ E

(w,ξw)∼P̃
〈w, v̄〉〈w̄, v̄〉2〈ξv, v̄〉〈w, ξv〉

∣∣∣∣∣ ≤ O (κctd2
‖ξv‖22

)
.

.

57

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Proof The first inequality is almost trivial. To see the second one, using Ew∈S,w∼P̃ [〈w̄, v̄〉2] ≤ ct
d ,

we have that ∣∣∣∣∣ E
(w,ξw)∼P̃,w∈S

〈w, v̄〉〈w̄, v̄〉2〈ξv, v̄〉〈w, ξv〉

∣∣∣∣∣
≤ ct
d

E
(w,ξw)∼P̃

|〈w, v̄〉〈w, ξv〉| ‖ξv‖2

≤ ct
d
‖ξv‖2 E

(w,ξw)∼P̃

(
〈w, v̄〉2 +

〈w, ξv〉2

‖ξv‖22

)
≤ O

(κct
d2
‖ξv‖22

)
.

For w /∈ S , we can naively bound |〈w, v̄〉〈w̄, v̄〉2〈ξv, v̄〉〈w, ξv〉| ≤ ‖w‖22‖ξv‖22. Hence, using
Eq (19), we have:∣∣∣∣∣ E

(w,ξw)∼P̃,w/∈S
〈w, v̄〉〈w̄, v̄〉2〈ξv, v̄〉〈w, ξv〉

∣∣∣∣∣ ≤ Λ‖ξv‖22 =
1

poly(d)
‖ξv‖22.

This claim together with Claim B.5 implies that

Claim B.7 (Error bound, v ∈ S) In the setting of Proposition 21, for every v ∈ S, we have that

‖ξ(t+1)
v ‖22 ≤

(
1 + ηO

(
max

{
∆̃(t), δ̃(t)

})
+ η

ct poly(κ)

d2

)
‖ξ(t)
v ‖22 +O

(
d2

λ0

)(
Ẽ
P(t)
‖ξw‖22

)
.

Individual error bound for all the other neurons. Now we move on to the harder terms, we
have the following claim.

Claim B.8 In the setting of Proposition 21, for every v ∈ S, we have that for p = 11, 13:∑
j≥2

|〈ξv,∇2j,v,p +∇2j,v,p+1〉| = O
(κ
d
‖v̄‖2∞‖ξv‖22

)
, and

〈∇̃2j,v,15 + ∇̃2j,v,16, ξv〉 ≥ 0.

Proof We first consider p = 11. Let Q′2j,v,11 = −
(
b2j + b′2j

)∑
i

(
ai〈ei, v̄〉2j−2eie

>
i

)
. We have

that

∇̃2j,v,11 + ∇̃2j,v,12

=− (2j − 1)
(
b2j + b′2j

)(∑
i

ai〈ei, ξv〉〈ei, v̄〉2j−2ei

)

+ (2j − 2)
(
b2j + b′2j

)(∑
i

ai〈ξv, v̄〉〈ei, v̄〉2j−1ei

)

=Q′2j,v,11ξv − (2j − 1)
(
b2j + b′2j

)(∑
i

ai〈ei, ξv〉〈ei, v̄〉2j−2ei −
∑
i

ai〈ξv, v̄〉〈ei, v̄〉2j−1ei

)
.

58

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Let us assume that ‖v̄‖∞ = 1− δ for some value δ ≥ 0, then we have that ‖v̄ − er‖22 = O(δ).∣∣∣∣∣∣
∑
i∈[d]

(
ai〈ξv, ei〉2〈ei, v̄〉2 − ai〈ei, v̄〉3〈ei, ξv〉〈ξv, v̄〉

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

i∈[d],i 6=r

(
ai〈ξv, ei〉2〈ei, v̄〉2 − ai〈ei, v̄〉3〈ei, ξv〉〈ξv, v̄〉

)∣∣∣∣∣∣
+
κ

d

∣∣〈ξv, er〉2〈er, v̄〉2 − 〈er, v̄〉3〈er, ξv〉〈ξv, v̄〉∣∣
≤ O

(κ
d

(1− δ)2
√
δ‖ξv‖22

)
.

Using the fact that b2j , b′2j = Θ(1
j2

), we know that

∑
j≥2

(2j − 1)
(
b2j + b′2j

) ∣∣∣∣∣∑
i

ai〈ei, ξv〉〈ei, v̄〉2j−2〈ei, ξv〉 −
∑
i

ai〈ξv, v̄〉〈ei, v̄〉2j−1〈ei, ξv〉

∣∣∣∣∣
≤
∑
j≥2

O

(
1

j
(1− δ)j

√
δ
κ

d
‖ξv‖22

)
.

Note that
∑

j≥2
1
j (1− δ)j = (1− δ) log 1

δ we obtain:

∑
j≥2

∣∣∣〈∇̃2j,v,11 + ∇̃2j,v,12 −Q′2j,v,11ξv, ξv〉
∣∣∣ ≤ O(κ

d
(1− δ)2 log

1

δ

√
δ‖ξv‖22

)
= O

(κ
d
‖ξv‖22

)
.

Similarly, we can also show that

∑
j≥2

‖Q′2j,v,11‖2 =
∑
j≥2

(
b2j + b′2j

) ∥∥∥∥∥∑
i

(
ai〈ei, v̄〉2j−2eie

>
i

)∥∥∥∥∥
2

≤O
(κ
d
‖v̄‖2∞

)
,

which completes the proof. On the other hand, for p = 13, letQ′2j,v,13 = b′2j
(∑

i ai〈ei, v̄〉2j−1v̄e>i
)
..

We have that

∇̃2j,v,13 + ∇̃2j,v,14

=(2j)b′2j

(∑
i

ai〈ei, ξv〉〈ei, v̄〉2j−1

)
v̄ − (2j − 1)b′2j

(∑
i

ai〈ξv, v̄〉〈ei, v̄〉2j
)
v̄

=Q′2j,v,13ξv + (2j − 1)b′2j

(∑
i

ai〈ei, ξv〉〈ei, v̄〉2j−1 −
∑
i

ai〈ξv, v̄〉〈ei, v̄〉2j
)
v̄,

We can bound the terms in a similar way.

Using the aforementioned claims, we conclude the proof of the following proposition.

59

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Proposition 24 (Individual error bound) In the setting of Proposition 21, for every v, we have
that

1. For p = 4, 6, 8, 9, 10, using Claim B.6, we have∑
j≥2

|〈ξv, ∇̃2j,v,p〉| ≤ O
(
ct poly(κ)

d2
‖ξv‖22

)

2. When ‖w‖2, ‖ξw‖2 ≤ 1
λ0

, for p = 2, 3, 5, 7, the following is true

∑
j≥2

|〈ξv, ∇̃2j,v,p〉| ≤ O
(

1

λ0

)(
E

(w,ξw)∼P̃
‖ξw‖2

)
‖ξv‖2

≤ O
(
d2

λ0

)(
E

(w,ξw)∼P̃
‖ξw‖22

)
+

1

d2
‖ξv‖22

3. For p = 1, similarly we have:

∑
j≥2

|〈ξv, ∇̃2j,v,p〉| ≤ O

(
ctκ

d2
‖ξv‖22 +

1

λ0

(
E

(w,ξw)∼P̃
‖ξw‖22

))

4. For p = 15: ∑
j≥2

〈ξv, ∇̃2j,v,p + ∇̃2j,v,p+1〉 ≥ 0

5. For p = 11, 12, 13, 14, we have that for p = 11, 13, using Claim B.8, we get∑
j≥2

|〈ξv,∇2j,v,p +∇2j,v,p+1〉| = O
(κ
d
‖v̄‖2∞‖ξv‖22

)
B.2.3. PROOF OF ERROR PROPAGATION

Based on the individual error norm bound and the average error norm bound, we are ready to prove
the main result of stage 1. We first state the proof of the individual error norm bound.
Proof [Proof of Proposition 22] We consider the error caused by gradient clipping, since we might
clip v and ṽ at different time step. We have that at the iteration t when ‖v(t)‖22 ≥ 1

2λ0
or ‖v(t) +

ξ
(t)
v ‖22 ≥ 1

2λ0
, we have that

‖v(t) + ξ(t)
v ‖22, ‖v(t)‖22 ≥

1

2λ0
− 2√

λ0
‖ξ(t)
v ‖2.

On the other hand, by Eq (48), we have that for this v, if the gradient clipping is not performed, then
by the definition of Sg, we have that ‖v̄(t)‖2 ≥ 1

log d . Therefore,

‖v(t+1)‖22 ≥ ‖v(t)‖22
(

1 + ηΩ

(
1

d log3 d

))
,

60

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

which implies that after t′ = O

(√
λ0d log3 d‖ξ(t)v ‖2

η

)
, many iterations, if gradient clipping is not

performed, we should have that

‖v(t+t′) + ξ(t+t′)
v ‖22, ‖v(t+t′)‖22 ≥

1

2λ0
.

Since each iteration shall introduce at most O
(
η 1
λ0

)
amount error, so we have:

‖ξ(t+t′)
v ‖2 ≤ O

(
d log3 d‖ξ(t)

v ‖2√
λ0

)
.

This gives us the final error bound of the individual error when combined with Claim B.5.

Next we state the proof of the average error norm bound.
Proof [Proof of Proposition 21] Using Proposition 24 (together with Eq (78)) and by the definition
of Eq (77), we can obtain the desired result.

Based on Proposition 21, Proposition 22, and Proposition 24, we are ready to prove Lemma 18.
Proof [Proof of Lemma 18] Clearly, whenm ≥ poly(d)

poly(λ0) , then the running hypothesis H̃0 is satisfied
for every t ≤ T2. To prove this Lemma, we shall maintain using induction that at every iteration
t ∈ [T2],

E
w,ξw∼P̃(t)

‖ξw‖22 ≤ poly(d)Ξ,

and for every neuron v, ‖ξ(t)
v ‖22 ≤

poly(d)
λ0

Ξ. Suppose this is true for all t ≤ T0, then consider
t = T0 + 1. We apply Proposition 21, which says that as long as for every w ∈ S, ‖ξw‖2 ≤ 1

d3
, we

have that

E
P̃(t+1),w∈S

‖ξw‖22 ≤
(

1 + η
ct poly(κ)

d2

)
E

P̃(t),w∈S
‖ξw‖22

+ ηO

(
1

λ0

)(
E

P̃(t),w/∈S
‖ξw‖2

)(
E

P̃(t),w∈S
‖ξw‖2

)
+ ηO

(
max

{
|∆̃(t)|, δ̃(t)

})
E

P̃(t),w∈S
‖ξw‖22 + η E

P̃(t),w∈S
‖ξw‖2‖Ξw‖2.

Combining this with Proposition 22 and EP̃(t),w∈S ‖ξw‖2‖Ξw‖2 ≤
1
d2

EP̃(t),w∈S ‖ξw‖2 + d2Ξ, we
have that

E
P̃(t+1),w∈S

‖ξw‖22 ≤
(

1 + η
ct poly(κ)

d2

)
E

P̃(t),w∈S
‖ξw‖22 + ηO

(
poly(d)

λ2
0

)
µ(S) poly(κ2)Ξ

+ ηO
(

max
{
|∆̃(t)|, δ(t)

})
E

P̃(t),w∈S
‖ξw‖22 + ηd2Ξ.

Hence, denote εt = EP̃(t),w∈S ‖ξw‖
2
2, we have that for every s ≤ t:

εs+1 ≤ εs
(

1 + η
ct poly(κ)

d2
+ ηO

(
max

{
|∆(t)|, δ(t)

+ , δ
(t)
−

}))
+ ηd2Ξ.

61

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

By m ≥ poly(d)
poly(λ0) , a simple Chernoff bound gives us:

max
{
|∆̃(t)|, δ̃(t)

}
≤ O

(
max

{
|∆(t)|, δ(t)

+ , δ
(t)
−

})
+

1

poly(d)
.

Now, using the update rule of Eq (32) and in Proposition 15, we have that∑
t≤T2

(
η
ct poly(κ)

d2
+ ηmax

{
|∆(t)|, δ(t)

+ , δ
(t)
−

})
≤ poly(κ1)

Note that at iteration 0, ε0 = 0. This implies that for t+ 1: εt+1 ≤ poly(d)Ξ as well. Combine this
with Proposition 24 on the individual norm bound we complete the proof.

B.3. Stage 2.1: Analysis After Reducing the Gradient Truncation Parameter

In this section, we prove Lemma 19, which analyzes the error propagation of this substage. We
analyze the formula of ∇̃2j,v,p in Section B.2 and show the following claim.

Claim B.9 In the setting of Lemma 19, let σmax = max
{
‖Ew∼P̃ ww

>‖2, κd
}

. Then we have the
following average error norm bound

∑
j≥2

∑
p

E
(v,ξv)∼P̃

〈∇̃2j,v,p, ξv〉 ≥ −O

(
σmax E

ξw∼P̃
‖ξw‖22

)
.

For every individual neuron v and every value α ≥ 1, the following holds

∑
j≥2

∑
p

|〈∇̃2j,v,p, ξv〉| ≤ O

(
ασmax‖ξv‖22 +

1

α
‖v‖22 E

ξw∼P̃
‖ξw‖22

)
.

Proof The proof of this claim is quite straightforward. We have that for p = 1, 2, we use Claim B.3,
which gives us:

E
(v,ξv)∼P̃

〈ξv, ∇̃2j,v,p〉 ≥ 0.

For p = 3, we use that |〈w̄, v̄〉| ≤ 1 and

E
(w,ξw),(v,ξv)∼P̃

|〈ξw, w̄〉||〈ξv, w〉||〈w̄, v〉| ≤
1

2
E

(w,ξw),(v,ξv)∼P̃

(
|〈ξw, w̄〉|2〈w, v〉2 + |〈ξv, w〉|2

)
≤ σmax E

ξw∼P̃
‖ξw‖22.

For p = 4, we use that

E
(w,ξw),(v,ξv)∼P̃

|〈ξv, v̄〉||〈ξv, w〉||〈v̄, w〉| ≤ E
(w,ξw),(v,ξv)∼P̃

‖ξv‖2|ξ>v ww>v̄|

≤ σmax E
ξw∼P̃

‖ξw‖22.

62

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

For p = 5, we use that

E
(w,ξw),(v,ξv)∼P̃

|〈ξw, v〉||〈ξv, v̄〉||〈v̄, w〉| ≤
1

2
E

(w,ξw),(v,ξv)∼P̃

(
〈ξw, v〉2 + 〈ξv, v̄〉2〈v̄, w〉2

)
≤ σmax E

ξw∼P̃
‖ξw‖22.

For p = 6, we use that

E
(w,ξw),(v,ξv)∼P̃

|〈ξv, w〉||〈ξv, v̄〉||〈v̄, w〉| ≤
1

2
E

(w,ξw),(v,ξv)∼P̃

(
〈ξv, w〉2 + 〈ξv, v̄〉2〈v̄, w〉2

)
≤ σmax E

ξw∼P̃
‖ξw‖22.

For p = 7, we use that

E
(w,ξw),(v,ξv)∼P̃

|〈ξw, w̄〉||〈ξv, v̄〉||〈v, w〉||〈w̄, v̄〉|

= E
(w,ξw),(v,ξv)∼P̃

|〈ξw, w̄〉||〈ξv, v̄〉||〈v, w̄〉||〈w, v̄〉|

≤ 1

2
E

(w,ξw),(v,ξv)∼P̃

(
〈ξw, w̄〉2〈v, w̄〉2 + 〈ξv, v̄〉2〈v̄, w〉2

)
≤ σmax E

ξw∼P̃
‖ξw‖22.

For p = 8, 9, 10, 11, the result can be obtained similarly. For p = 12, 13, we use that∑
i

ai|〈ξv, v̄〉||〈ei, v̄〉||〈ei, ξv〉|

≤ κ

d
‖ξv‖2

∣∣∣∣∣ξ>v ∑
i

eie
>
i v̄

∣∣∣∣∣ ≤ κ

d
‖ξv‖22.

For p = 14, we use that ∑
i

ai|〈ξv, v̄〉||〈ei, v̄〉|2|〈v̄, ξv〉|

≤ ‖ξv‖22
∑
i

ai〈ei, v̄〉2 ≤
κ

d
‖ξv‖22.

Finally, the individual error bound comes from the following simple calculation.∑
j≥2

|〈∇̃2j,v,p, ξv〉| ≤ O

(
κ

d
‖ξv‖22 + E

w,ξw∼P̃
‖w‖22‖ξv‖22 + ‖w‖2‖ξw‖2‖v‖2‖ξv‖2

)

≤ O

(
ασmax‖ξv‖22 +

1

α
‖v‖22 E

ξw∼P̃
‖ξw‖22

)
.

Proof [Proof of Lemma 19] Note that this substage has T3 many iterations, where T3 is upper
bounded by dC(κ) log d

η for some value C(κ) > 0 that only depends on κ. By by taking α = 1 in
Claim B.9, the rest of the proof is similar to the proof of Lemma 18. We omit the details.

63

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

B.4. Stage 2.2: The Final Substage

We provide the proof of Lemma 20, which analyzes the error propagation in the final substage. Re-
call that Si,singleton and Signore have been defined in the beginning of this section. At the beginning
of Stage 2.2 when t = T3 + 1, we do a modification:

1. If v in Si,singleton we will just set v̄ = ei and keep the norm not changed.

2. If v in Signore, then we will just set v = 0.

Thus, we can see that v(t) = 0 for every v ∈ Signore and for every t > T3. We define a new update
for the infinite neuron process at this substage for v ∈ Si,singleton. We define v+, v− such that at
every iteration t ≥ T3:

v
(t)
+ = −v(t)

− = 〈v(t+1), ei〉.

We will replace v in the infinite neuron process with two neurons v+, v−. For the simplicity of
notation, we write v+ simply as v. For the other neurons, the update does not change.

We can see that this new initial state also satisfies the running hypothesisH1 and the conditional-
symmetric property as well. Thus, the update in Claim A.10 still holds. We consider the new infinite
neuron process starting from this initial state. We can see that when v ∈ Si,singleton, then v̄(t) = ei
for every t ≥ T3 + 1. Moreover, when v ∈ Si,singleton, we define ṽ = v + ξv where 〈ξv, ei〉 = 0.
Thus, we do not consider the scaling difference between the singleton neurons in the infinite-width
case and the finite-width case as an error.

By the running hypothesisH1 in Proposition 10, we have that at iteration T3,

E
w∼P(T3),w∈Signore

‖w‖22 ≤
1

poly(d)
.

Therefore, the following is also true.

E
w∼P(T3+1),w∈Signore

‖ξw‖22 ≤
1

poly(d)
.

Moreover, throughout the entire process, by Lemma 12, we will always have that

E
w∼P̃(t),w∈Signore

‖ξw‖22 ≤
1

poly(d)
.

Therefore, we only need to consider the error ofw /∈ Signore. We denote the new running hypothesis
H̃1 as for every t ≤ T4:

1. For every v ∈ Sg, we have that:

‖v(t)‖22 ≤
1

2λ1
.

2. For every v /∈ Spot (cf. Lemma 9 for the definition),

‖v̄‖2∞, ‖v‖2∞ ≤
ct
d
.

64

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

3. The mass of the ignore set is small.

E
w∼P̃,w∈Signore

‖ξ‖22 ≤
1

poly(d)
.

We first prove the following claim.

Claim B.10 In the setting of Lemma 20, suppose that the distribution P̃ = P̃(t) satisfies the
running hypothesis H̃1. For every i ∈ [d] and for v ∈ Si,singleton, the following holds:∑
j≥2

〈∇̃2j,v, ξv〉 =
∑
j≥2

〈∇̃2j,v,1 + ∇̃2j,v,2, ξv〉

±O

(
|Φ̃|‖ξv‖22 +

ct poly(κ2)

d2
‖ξv‖22 +

ct poly(κ2)

d2
‖v‖22 E

(w,ξw)∼P̃,w/∈Spot
‖ξw‖22 +

1

poly(d)
‖ξv‖2

)
,

where Φ is defined as in Lemma 12 with P̃ instead of P .

Proof We consider v ∈ Si,singleton. For these neurons, we have that

〈∇̃2j,v,p, ξv〉 = 0.

Let

∇2j,v,w :=
(
b2j + b′2j

) (
〈w, v〉〈w̄, v̄〉2j−2w

)
− b′2j

(
〈w, v〉〈w̄, v̄〉2j−2〈w, v̄〉

)
v̄ (79)

as the gradient of v involving only a single neuron w. For p = 5, 6, 7, 8, 10, 13, 14, 16. Now, for
p = 3 we have that

E
(w,ξw)∼P̃

〈w̄, v〉〈w̄, v̄〉2j−2〈ξw, w̄〉〈w̄, ξv〉

= E
(w,ξw)∼P̃,w/∈Spot

〈w̄, v〉〈w̄, v̄〉2j−2〈ξw, w̄〉〈w̄, ξv〉

+
∑
j∈[d]

E
(w,ξw)∼P̃,w∈Sj,singleton

〈w̄, v〉〈w̄, v̄〉2j−2〈ξw, w̄〉〈w̄, ξv〉+
∑

w∈Signore

〈∇2j,v,w, ξv〉,

where ∇2j,v,w is defined in Eq (79). For the first term, using the running hypothesis H̃1 that for
every w /∈ Spot, ‖w̄‖2∞ ≤ ct

d , we have that 〈w̄, v̄〉2 ≤ ct
d . This implies that

∑
j≥2

∣∣∣∣∣ E
(w,ξw)∼P̃,w/∈Spot

〈w̄, v〉〈w̄, v̄〉2j−2〈ξw, w̄〉〈w̄, ξv〉

∣∣∣∣∣
≤ct poly(κ2)

d2
‖v‖2 E

(w,ξw)∼P̃,w/∈Spot
‖ξw‖2‖ξv‖2

≤ct poly(κ2)

d2
‖ξv‖22 + ‖v‖22

ct poly(κ2)

d2
E

(w,ξw)∼P̃,w/∈Spot
‖ξw‖22.

65

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

For the second term, we have that when j = i, we have for every w ∈ Sj,singleton: 〈w̄, ξv〉 = 0.
Otherwise, when j 6= i, we have that 〈w̄, v̄〉 = 0. Therefore,∑

j∈[d]

E
(w,ξw)∼P̃,w∈Sj,singleton

〈w̄, v〉〈w̄, v̄〉2j−2〈ξw, w̄〉〈w̄, ξv〉 = 0.

For the third term, we have that∣∣∣∣∣∣
∑

w∈Signore

〈∇2j,v,w, ξv〉

∣∣∣∣∣∣ ≤
∑

w∈Signore

‖w‖22‖ξv‖2 ≤
1

poly(d)
‖ξv‖2.

Hence we have that∣∣∣〈∇̃2j,v,p, ξv〉
∣∣∣ ≤ ct poly(κ2)

d2
‖ξv‖22 +

ct poly(κ2)

d2
E

(w,ξw)∼P̃,w/∈Spot
‖ξw‖22 +

1

poly(d)
‖ξv‖2.

For p = 4, we also have:∣∣∣∣∣ E
(w,ξw)∼P̃

〈w, v̄〉〈w̄, v̄〉2j−2〈ξv, v̄〉〈w̄, ξv〉

∣∣∣∣∣
≤

∣∣∣∣∣ E
(w,ξw)∼P̃,w/∈Spot

〈w, v̄〉〈w̄, v̄〉2j−2〈ξv, v̄〉〈w̄, ξv〉

∣∣∣∣∣+
1

poly(d)
‖ξv‖2

≤ct poly(κ2)

d2
‖ξv‖22 +

ct poly(κ2)

d2
E

(w,ξw)∼P̃,w/∈Spot
‖ξw‖22 +

1

poly(d)
‖ξv‖2.

Now for p = 11, 12, we also know

〈∇̃2j,v,p, ξv〉 = 0.

For p = 9, 15, following the same calculation by dividing w into three parts we can easily conclude
that∣∣∣〈∇̃2j,v,9 + ∇̃2j,v,15〉

∣∣∣
≤
∣∣b′2j(ai − γ̃i)∣∣ ‖ξv‖22 +

ct poly(κ2)

d2
‖ξv‖22 +

ct poly(κ2)

d2
E

(w,ξw)∼P̃,w/∈Spot
‖ξw‖22 +

1

poly(d)
‖ξv‖2,

where γ̃i = Ew∼P̃,w∈Si,pot\Sbad w
2
i . Therefore we finish the proof with Eq (74).

Next, we consider the error of the neurons not in Spot. We use a direct corollary of Claim B.9 ,
except that for every v /∈ Spot, it holds that 〈v̄, w̄〉2 ≤ ct

d instead of 1 for every vector w. We state
the result as follows.

Claim B.11 In the setting of Lemma 20, let σmax = max
{
‖Ew∼P̃ ww

>‖2, κd
}

. Let P̃ = P̃(t)

denote the distribution of the neurons. For every v such that ‖v̄‖2∞, ‖v‖2∞ ≤ ct
d and any α ≥ 1, we

have: ∑
j≥2

∑
p

|〈∇̃2j,v,p, ξv〉| ≤ O

(
α
ct
d
σmax‖ξv‖22 +

1

α

ct
d
‖v‖22 E

ξw∼P̃
‖ξw‖22

)
.

66

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Based on Claim B.10 and B.11, we prove Lemma 20.
Proof [Proof of Lemma 20]Let α =

√
d in Claim B.11, we show the following result the bound.

For every v /∈ Spot,

∑
j≥2

〈∇̃2j,v, ξv〉 ≥ −O

(
|Φ̃|‖ξv‖22 +

ct poly(κ2)

d1.5
‖ξv‖22 +

ct poly(κ2)

d1.5
‖v‖22 E

(w,ξw)∼P̃
‖ξw‖22 +

1

poly(d)
‖ξv‖2

)
.

Together with the individual error bound as in Claim B.9, we can obtain the desired result using a
similar proof to Lemma 18. The details are omitted.

Appendix C. Proof of Lower Bound

We follow the proof of Theorem 2 in Allen-Zhu and Li (2019a) for proving the lower bound. We
first describe the construction of the hardness distributionW . We first show the following lemma.

Lemma 25 For a positive integer r, for every d ≥ r2 which is a multiple of r, there exists at least
H = dΩ(r) many sets C(j) = {C(j)

1 ∈ [d], · · · , C(j)
d/r ∈ [d]} for j = 1, . . . , Q such that

1. For every 1 ≤ i ≤ d/r and 1 ≤ j ≤ H , C(j)
i is a subset of [d] of size r.

2. For every 1 ≤ i 6= i′ ≤ d/r and 1 ≤ j ≤ H , C(j)
i ∩ C

(j)
i′ = ∅.

3. For every 1 ≤ i, i′ ≤ d/r and 1 ≤ j 6= j′ ≤ H , C(j)
i 6= C

(j′)
i′ .

Proof We consider a uniformly at random distribution over the set C = {C1, · · · , Cd/r}, where Ci
is a subset of [d] of size r and for every i 6= i′, we have that Ci ∩ Ci′ = ∅. Let us sample Q many
sets {C(j)}j∈[Q] from it, then using union bound, we have that:

Pr
[
∃j 6= j′, i, i′ such that C(j)

i = C(j′)
i′

]
≤ Q2

(
d

r

)2 (r
d

)r
.

Hence when d ≥ r2, for some H = dO(r), the above probability is smaller than one. This proves
the existence of these sets.

Now, we define the distribution W . Recall that the Hadamard transform of dimension r is a
unitary matrix in dimension r whose entries are all ∈ {−1/

√
r, 1/
√
r}.

Definition 26 (The hardness distribution for the lower bound) For every r that is a power of 2,
for every d that is a multiple of r bigger than r2, we generateW as:

1. Pick C uniformly at random from the set {C(j)}j∈[H] given by Lemma 25.

2. Define w?i ∈ Rd with i = pr + q, for p ∈ {0, 1, · · · d/r − 1} and q ∈ [r] as:

w?i = (0pr, h?q , 0
d−(p+1)r),

where h?q is the i-th column of the Hadamard transform of dimension r.

67

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

3. Sample b1, · · · , bd independent from [1, 2] uniformly at random. Define

ai =
bi∑
j∈[d] bj

.

The proof of the lower bound relies on the following Lemma.

Lemma 27 (The boolean analysis lemma) For every even r ∈ N?, let µ = (µ1, µ2, · · · , µr) ∈ Rr
be sampled from the Gaussian distribution N (0, Idr×r). With probability at least r−O(r) over the
choice of µ, it holds that:

λµ :=

∣∣∣∣∣∣ E
τ∼Uniform({−1,1}r)

∣∣∣∣∣∣
∑
i∈[r]

µiτi

∣∣∣∣∣∣
∏
i∈[r]

τi

∣∣∣∣∣∣ ≥ r−O(r)

To prove this Lemma, we use Lemma F.2 and the proof of Corollary 7.1 in Allen-Zhu and Li
(2019a), which says the following.

Corollary 28 (Lemma F.2 and Corollary 7.1 in Allen-Zhu and Li (2019a)) For every ε > 0,
there exists a value Vr,ε = (r log 1

ε)O(r) and a function h : Rr → [Vr,ε, Vr,ε] such that for every
τ ∈ {−1, 1}r, it holds that:

E
µ∼N (0,Idd×d)

∣∣∣∣∣∣
∑
i∈[r]

µiτi

∣∣∣∣∣∣h(µ)

 =
∏
i∈[r]

τi ± ε

Using this Corollary, we can prove Lemma 27.
Proof [Proof of Lemma 27] By applying Corollary 28 with ε = 0.5, we have that there exists a
value V = rO(r) and a function h : Rr → [V, V] such that

E
µ∼N (0,Idd×d)

Abs

∑
i∈[r]

µiτi

h(µ)

 =
∏
i∈[r]

τi ± 0.5.

Hence we have that by τi ∈ {−1, 1}:

E
µ∼N (0,Idd×d)

h(µ) Abs

∑
i∈[r]

µiτi

 ∏
i∈[r]

τi

 = 1± 0.5,

which means that

E
µ∼N (0,Idd×d);τ∼Uniform({−1,1}r)

h(µ) Abs

∑
i∈[r]

µiτi

 ∏
i∈[r]

τi

 ≥ 1

2
.

This immediately implies that

E
µ∼N (0,Idd×d)

|h(µ)|

∣∣∣∣∣∣ E
τ∼Uniform({−1,1}r)

Abs

∑
i∈[r]

µiτi

 ∏
i∈[r]

τi

∣∣∣∣∣∣
 ≥ 1

2
.

68

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Using the fact that |h(µ)| ≤ V , we have that

E
µ∼N (0,Idd×d)

[λµ] ≥ 1

2V

Notice that with probability at least 1− er2 over µ, we have that λµ ≤ rO(r). Note that λµ ≥ 0 as
well. Thus, using Markov’s inequality we complete the proof.

Next we can derive the following corollary of Lemma 27. For two vectors x, y with the same
dimension, we denote x ◦ y as the entry-wise product of x, y.

Corollary 29 Let p1, · · · , pr be r vectors in {−1/
√
r, 1/
√
r}r, let q1, · · · , qr be i.i.d. random

variable chosen uniformly at random from [1, 2], define Fµ(τ) =
∑

i∈[r] qi |〈pi ◦ µ, τ〉|, we have
that with probability at least r−O(r) over µ ∼ N (0, Idd×d) and q:

λ?µ :=

∣∣∣∣∣∣ E
τ∼Uniform({−1,1}r)

Fµ(τ)
∏
i∈[r]

τi

∣∣∣∣∣∣ ≥ r−O(r).

Finally, we can complete the proof of Theorem 2.
Proof [Proof of Theorem 2] We prove by contradiction. Suppose on the contrary that equation (3)
does not hold. Then, there exists ≥ 0.01 fraction of {ai, w?}i∈[d] generated fromW such that for
some w(R) we haveR(x) := w>Rφ(x), and it holds that

E
x∼N (0,Idd×d)

(f?(x)−R(x))2 = o

(
1

d

)
(80)

We consider x = x̄ ◦ τ where x̄ ∼ N (0, Idd×d) and τ ∼ Uniform({−1, 1}d). Clearly, x ∼
N (0, Idd×d) as well. Thus,

E
x∼N (0,Idd×d)

(f?(x)−R(x))2 = E
τ∼Uniform({−1,1}d);x̄∼N (0,Idd×d)

(f?(x̄ ◦ τ)−R(x̄ ◦ τ))2

Therefore, by Markov’s inequality we have that with probability at least 0.999 over the choice of x̄,
we have that

E
τ∼Uniform({−1,1}d)

(f?(x̄ ◦ τ)−R(x̄ ◦ τ))2 = O

(
E

x∼N (0,Idd×d)
(f?(x)−R(x))2

)
Now we perform Boolean Fourier analysis over f?(x̄ ◦ τ) and R(x̄ ◦ τ). For a function f :
{−1, 1}d → R, we define it’s Fourier expansion as:

f(τ) =
∑
B⊆[d]

λB
∏
j∈B

τj ,

where λB if the Fourier coefficient of the subset B. Now, define λ?B to be the Fourier coefficients of
f?(x̄◦ τ) and λRB to be the Fourier coefficient ofR(x̄◦ τ), we can observe that if we sample C from
W to generate w? according to Definition 26, then it holds that for every B ⊂ [d] of size r, we have:

B /∈ C =⇒ λ?B = 0.

69

LEARNING OVER-PARAMETRIZED TWO-LAYER RELU NEURAL NETWORKS

Moreover, using Corollary 29, we can conclude that w.p. at least 0.999 overW ,

∑
B∈C

(λ?B)2 ≥ r−O(r)

d
. (81)

On the other hand, for every ε > 0, as long as Eτ∼Uniform({−1,1}d) (f?(x̄ ◦ τ)−R(x̄ ◦ τ))2 ≤ ε,
we have that ∑

B∈C

(
λ?B − λRB

)2
+
∑
B/∈C

(
λRB
)2 ≤ ε

Let us consider the set Sgd of {ai, w?}i∈[d] generated fromW . We call {ai, w?i }i∈[d] ∈ Sgd if and
only if the function f? defined using {ai, w?}i∈[d] satisfies Eq (81) and there is a w(R) such that for
R(x) := w>Rφ(x) with

E
x∼N (0,Idd×d)

(f?(x)−R(x))2 = o

(
1

d

)
We already know that there are at least 0.999 fraction {ai, w?}i∈[d] generated fromW that satisfies
Eq (81). By our assumption, there are ≥ 0.01 fraction of {ai, w?}i∈[d] generated fromW satisfying
that for some w(R) such thatR(x) := w>Rφ(x), it holds that

E
x∼N (0,Idd×d)

(f?(x)−R(x))2 = o

(
1

d

)
Thus, we can conclude |Sgd| ≥ 0.005|W|. Together with Lemma 25 which shows that |W| ≥ dΩ(r),
we know that |Sgd| ≥ dΩ(r).

Now, we consider a matrix M , whose rows are indexed by each set of {ai, w?i }i∈[d] ∈ Sgd and
Eq (80), whose columns are indexed by λ?B with |B| = r.

We know that this matrix is of size dΩ(r) × dΩ(r). Moreover, for any matrix M ′ satisfies that

∀i, ‖Mi −M ′i‖22 = o

(
1

d

)
whereMi is the i-th row ofM . It must holds that rank(M ′) = dΩ(r). We immediately complete the
proof by contradiction, following exactly the same argument in the lower bound proof in Allen-Zhu
and Li (2019a) while taking r to be a sufficiently large constant.

70

	Introduction
	Setup and Main Result
	Related Work

	Preliminaries
	Overview of the Infinite-Width Case
	Dynamic during Stage 1
	Dynamic during Stage 2

	Overview of the Finite-Width Case
	Simulations
	Conclusions and Discussions
	Proof of the Infinite-Width Case
	Stage 1.1: Proof of Convergence for 0th and 2nd Order Tensors
	Proof of the Main Lemma

	Stage 1.2: Proof of Convergence for Higher Order Tensors
	Proof of the Main Lemma
	Proof of the Inductive Hypothesis

	Stage 2.1: Obtaining a Warm Start Initialization
	Proof of the Main Lemma

	Stage 2.2: The Final Substage
	Proof of the Inductive Hypothesis

	Proof of the Finite-Width Case
	Stage 1.1: Analysis of 0th and 2nd Order Tensor Decompositions
	Stage 1.2: Analysis of Higher Order Tensor Decompositions
	Decomposition of Gradient Terms
	Individual Error Norm bound
	Proof of Error Propagation

	Stage 2.1: Analysis After Reducing the Gradient Truncation Parameter
	Stage 2.2: The Final Substage

	Proof of Lower Bound

