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Abstract

This paper resolves a longstanding open question pertaining to the design of near-optimal first-order
algorithms for smooth and strongly-convex-strongly-concave minimax problems. Current state-of-
the-art first-order algorithms find an approximate Nash equilibrium using O(kx+ky ) (Tseng, 1995)

or O(min{ky. /Ry, \/Fxty }) (Alkousa et al., 2019) gradient evaluations, where # and xy are the
condition numbers for the strong-convexity and strong-concavity assumptions. A gap still remains
between these results and the best existing lower bound //ix/sy) (Ibrahim et al., 2019; Zhang

et al., 2019). This paper presents the first algorithm with O(m ) gradient complexity, match-
ing the lower bound up to logarithmic factors. Our algorithm is designed based on an accelerated
proximal point method and an accelerated solver for minimax proximal steps. It can be easily ex-
tended to the settings of strongly-convex-concave, convex-concave, nonconvex-strongly-concave,
and nonconvex-concave functions. This paper also presents algorithms that match or outperform
all existing methods in these settings in terms of gradient complexity, up to logarithmic factors.

1. Introduction

Let R™ and R"™ be finite-dimensional Euclidean spaces and let the function f : R™ x R®™ — R be
smooth. Let X and ) are two nonempty closed convex sets in R™ and R™. Our problem of interest
is the following minimax optimization problem:

min ma X,y). 1.1
min max f(x,y) (1.1)

The theoretical study of solutions of problem (1.1) has been an focus of several decades of research
in mathematics, statistics, economics and computer science (Basar and Olsder, 1999; Nisan et al.,
2007; Von Neumann and Morgenstern, 2007; Facchinei and Pang, 2007; Berger, 2013). Recently,
this line of research has become increasingly relevant to algorithmic machine learning, with ap-
plications including robustness in adversarial learning (Goodfellow et al., 2014; Sinha et al., 2018),
prediction and regression problems (Cesa-Bianchi and Lugosi, 2006; Xu et al., 2009) and distributed
computing (Shamma, 2008; Mateos et al., 2010). Moreover, real-world machine-learning sys-
tems are increasingly embedded in multi-agent systems or matching markets and subject to game-
theoretic constraints (Jordan, 2018).

Most existing work on minimax optimization focuses on the convex-concave setting, where the
function f(-,y) is convex for each y € R™ and the function f(x,-) is concave for each x € R™.

(© 2020 T. Lin, C. Jin & M.L Jordan.



NEAR-OPTIMAL ALGORITHMS FOR MINIMAX OPTIMIZATION

The best known convergence rate in a general convex-concave setting is O(1/¢) in terms of duality
gap, which can be achieved by Nemirovski’s mirror-prox algorithm (Nemirovski, 2004) (a special
case of which is the extragradient algorithm (Korpelevich, 1976)), Nesterov’s dual extrapolation
algorithm (Nesterov, 2007) or Tseng’s accelerated proximal gradient algorithm (Tseng, 2008). This
rate is known to be optimal for the class of smooth convex-concave problems (Ouyang and Xu,
2019). Furthermore, optimal algorithms are known for special instances of convex-concave setting;
e.g., for the affinely constrained smooth convex problem (Ouyang et al., 2015) and problems with a
composite bilinear objective function, f(x,y) = g(x) +x' Ay — h(y) (Chen et al., 2014).

Very recently, the lower complexity bound of first-order algorithms have been established for
solving general strongly-convex-strongly-concave and strongly-convex-concave minimax optimiza-
tion problems (Ouyang and Xu, 2019; Ibrahim et al., 2019; Zhang et al., 2019). For the strongly-
convex-strongly-concave setting, in which rx, Ky > 0 are the condition numbers for f(-,y) and
f(x,-), respectively, the complexity bound is Q(m) while the best known upper bounds are
O(kx+rky) (Tseng, 1995; Gidel et al., 2019; Mokhtari et al., 2019b) and O(min{x /Ry, fy\/Fx})
(Alkousa et al., 2019). For the strongly-convex-concave setting in which xx > 0 and xy = 0, the
lower complexity bound is (/kyx /€) while the best known upper bound is O(rx /€) (Thekumpara-
mpil et al., 2019). The existing algorithms that obtain a rate of O(y/kx/€) in this context are only
for special case of strongly-convex-linear, where x and y are connected only through a bilinear
term xTAy or f(x,-) is linear for each x € R™ (see, e.g., Nesterov, 2005; Chambolle and Pock,
2016; Juditsky and Nemirovski, 2011; Hamedani and Aybat, 2018). Thus, a gap remains between
the lower complexity bound and the upper complexity bound for existing algorithms in both the
strongly-convex-strongly-concave setting and the strongly-convex-concave setting. Accordingly,
we have the following open problem:

Can we design first-order algorithms that achieve the lower bounds in these settings?

This paper presents an affirmative answer by resolving the above open problem up to logarith-
mic factors. More specifically, our contribution is as follows. We propose the first near-optimal
algorithms for solving the strongly-convex-strongly-concave and strongly-convex-concave mini-
max optimization problems. In the former setting, our algorithm achieves a gradient complexity of

O(/kxky ) which matches the lower complexity bound (Ibrahim et al., 2019; Zhang et al., 2019) up

to logarithmic factors. In the latter setting, our algorithm attains a gradient complexity of O(\ /Kx/€)
which again matches the lower complexity bound (Ouyang and Xu, 2019) up to logarithmic factors.
In addition, our algorithm extends to the general convex-concave setting, achieving a gradient com-
plexity of O(e_l), which matches the lower bound of Ouyang and Xu (2019) as well as the best
existing upper bounds (Nemirovski, 2004; Nesterov, 2007; Tseng, 2008) up to logarithmic factors.

Our second contribution is a class of accelerated algorithms for the smooth nonconvex-strongly-
concave and nonconvex-concave minimax optimization problems. In the former setting, our algo-
rithm achieves a gradient complexity bound of O( Fye 2) which improves the best known bound
O(nz,e_Q) (Jin et al., 2019; Rafique et al., 2018; Lin et al., 2019; Lu et al., 2019). In the latter set-
ting, our algorithms specialize to a range of different notions of optimality. In particular, expressing
our results in terms of stationarity of f, our algorithm achieves a gradient complexity bound of
O(e=%5), which improves the best known bound O(e~3%) (Nouiched et al., 2019). In terms of
stationarity of the function ®(-) := maxycy f(-,y), our algorithm achieves a gradient complexity
bound of 0(6*3) which matches the current state-of-the-art results (Thekumparampil et al., 2019;
Kong and Monteiro, 2019).
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Table 1: Comparison of gradient complexities to find an e-saddle point (Definition 4) in the convex-
concave setting. This table highlights only the dependency on error tolerance € and the
strong-convexity and strong-concavity condition numbers, rx, Ky .

Settings References Gradient Complexity
Tseng (1995)
Nesterov and Scrimali (2006) -
O(kx + Ky)
Gidel et al. (2019)
Strongly-Convex-Strongly- Mokhtari et al. (2019b)
Concave Alkousa et al. (2019) O(min{kx /Ry, fiy\/Fx})
This paper (Theorem 9) O(,/FxFy)
Lower bound (Ibrahim et al., 2019) Q(, [FxRy)
Lower bound (Zhang et al., 2019) Q( RxRy)
Juditsky and Nemirovski (2011)
Strongly-Convex-Linear Hamedani and Aybat (2018) O(+/kx/€)
(special case of
strongly-convex-concave) Zhao (2019)
Thekumparampil et al. (2019) O(kx/\/€)
Strongly-Convex-Concave —
This paper (Corollary 10) O(\/kx/€)
Lower bound (Ouyang and Xu, 2019) Q(\/kix/€)
Nemirovski (2004)
Nesterov (2007) O(e™!)
Convex-Concave
Tseng (2008)
This paper (Corollary 11) O(e™ 1)
Lower bound (Ouyang and Xu, 2019) Qe b

We provide a head-to-head comparison between our results and existing results in the literature
in Table 1 for convex-concave settings, and Table 2 for nonconvex-concave settings.

2. Preliminaries

In this section, we clarify the notation used in this paper, review some background and provide
formal definitions for the class of functions and optimality measure considered in this paper.

Notation. We use bold lower-case letters to denote vectors, as in x,y, z and calligraphic upper
case letters to denote sets, as in X and ). For a differentiable function f(-) : R" — R, we ledt
V f(z) denote the gradient of f at z. For a function f(-,-) : R™ x R™ — R of two variables,
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Table 2: Comparison of gradient complexities to find an e-stationary point of f (Definition 5) or e-
stationary point of ®(-) := maxyey f(-,y) (Definition 14, 18) in the nonconvex-concave
settings. This table only highlights the dependence on tolerance ¢ and the condition num-

ber Ky .
Settings References Gradient Complexity
Jin et al. (2019)
Nonconvex-Strongly-Concave Rafique et al. (2018) O( K2 672)
(stationarity of f or Lin et al. (2019) Y
stationarity of ®)
Lu et al. (2019)
This paper (Theorem 12 & 20) O(/Rye2)
Lu et al. (2019) O(e*
Nonconvex-Concave . ~
(stationarity of f) Nouiehed et al. (2019) O(e=39)
Ostrovskii et al. (2020) O(e29)
This paper (Corollary 13) O(e=25)
Jin et al. (2019)
Rafique et al. (2018) O(e™9)
Nonconvex-Concave Lin et al. (2019)
(stationarity of ©) Thekumparampil et al. (2019) .
O(e™)
Zhao (2020)
This paper (Corollary 21) O(e3)

Vxf(x,y) (or Vy f(x,y)) to denote the partial gradient of f with respect to the first variable (or
the second variable) at point (x,y). We also use V f(x, y) to denote the full gradient at (x,y) where
Vxy) = (Vxf(x,¥), Vyf(x,y)). For a vector x, we denote ||x|| as its £2-norm. For constraint
sets X' and ), we let Dy and Dy denote their diameters, where Dy = maxy yex ||x — X’|| and
Dy = maxy ycy ||y — y'||. We use the notation P and Py to denote projections onto the sets X
and ). Finally, we use the notation O(+), ©(-) to hide only absolute constants which do not depend
on any problem parameter, and notation O(), Q() to hide only absolute constants and log factors.

2.1. Minimax optimization

We are interested in the /-smooth minimax optimization problems in the form (1.1). The regularity
conditions that we consider for the function f are as follows.

Definition 1 A function f is L-Lipschitz if for Vz,z' € R", that | f(z) — f(2')| < L||z — Z/||.

Definition 2 A function f is (-smooth if for Vz,z' € R", that ||V f(z) — V f(Z)| < l||z — Z/|.
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Definition 3 A differentiable function ¢ : R — R is p-strongly-convex if for any x',x € R%:

$(x') 2 d(x) + (x' = %) Vo(x) + (1/2)|x' — x|

Furthermore, ¢ is u-strongly-concave if —¢ is p-strongly-convex. If we set i = 0, then we recover
the definitions of convexity and concavity for a continuous differentiable function.

Convex-concave setting: we assume that f(-,y) is convex for eachy € ) and f(x, ) is concave
for each x € X. Here X and ) are both convex and bounded. Under these conditions, the Sion’s
minimax theorem (Sion, 1958) guarantees that
i = mi . 2.1
max min f(x,y) = min max f(x,y) 2.1)
Furthermore, there exists at least one saddle point (or Nash equilibrium) (x*,y*) € X x ) such
that the following equality holds true:

xmei;(lf(&y*) = f(xy") = I;lgf(X*jy)' (2.2)

Therefore, for any point (X,y) € X x Y, the duality gap maxycy f(X,y) — mingex f(x,y) forms
the basis for a standard optimality criterion. Formally, we define

Definition 4 A point (x,y) € X x )Y is an e-saddle point of a convex-concave function f(-,-) if
maxycy f(X,y) — mingcy f(x,¥) < e Ife =0, then (X,¥) is a saddle point.

In the case when f(-,y) is strongly convex for each y € ) and f(x,-) is strongly concave for
each x € X', we refer i and piy, to the strongly-convex or strongly-concave module. If f is further
¢-smooth, we denote kx = £/ix and Ky = £/ 1y as the condition numbers of f(-,y) and f(x,-).

Nonconvex-concave setting: we only assume that f(x,-) is concave for each x € R™. The
function f(-,y) can be possibly nonconvex for some y € ). Here X is convex but possibly un-
bounded while Y is convex and bounded. In general, finding a global Nash equilibrium of f is
intractable since in the special case where ) has only a single element, this problem reduces to a
nonconvex optimization problem in which finding a global minimum is already NP-hard (Murty
and Kabadi, 1987). Similar to the literature in nonconvex constrained optimization, we opt to find
local surrogates—stationary points—whose gradient mappings are zero. Formally, we define our
optimality criterion as follows.

Definition 5 A point (X,y) € X x ) is an e-stationary point of an {-smooth function f(-,-) if
UPxx— (1/OVxf(X,3)] =% <€, LIPyly+(1/OVyf(X9)] -7l <e
If e = 0, then (X,y) is a stationary point.

In the absence of constraints, Definition 5 reduces to the standard condition ||V« f(X,y)| < €
and ||Vy f(x,¥)|| < e for unconstrained problems. Intuitively, the norms of the vector Py[y +
(1/0)Vy f(x,¥)] — ¥ represent the distance to the point (X,y) when performing one step of pro-
jected gradient ascent on y starting from that point. The vector also refers to gradient mapping at
(%,¥); see Nesterov (2013) for the details.

We note that this notion of stationarity of f (Definition 5) is closely related to an optimality
notion in terms of stationary points of the function ®(-) := maxycy f(-,y) for nonconvex-concave
functions. We refer readers to Appendix B.1 for more discussion.
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Algorithm 1 AGD(g, X', xq, ¢, p, €)
1: Input: initial point xg € X', smoothness /¢, strongly-convex module p and tolerance ¢ > 0.
. Initialize: set t < 0, X < x0, 1 < 1/0, k < {/p and 6 < ﬁ:
repeat
t—1t+1
Xt ¢ Px[Xi—1 —nVg(Xe-1)).
)Et — Xt + Q(Xt — thl).
until || x; — Py (x; — nVg(x))|]? < m is satisfied.
: Output: Py (x; — nVg(xy)).

B A A T o

2.2. Nesterov’s accelerated gradient descent

Nesterov’s Accelerated Gradient Descent (AGD) dates back to Nesterov’s seminal paper (Nesterov,
1983) where it is shown to be optimal among all the first-order algorithms for smooth and convex
functions (Nesterov, 2018). We present a version of AGD in Algorithm 1 which is frequently used
to minimize an /-smooth and p-strongly convex function g over a convex set . The key steps of
the AGD algorithm are Line 5-6, where Lines 5 performs a projected gradient descent step, while
Line 6 performs a momentum step, which “overshoots” the iterate in the direction of momentum
(x¢—x¢—1). Line 7 is the stopping condition to ensure that the output achieves the desired optimality.

The following theorem provides an upper bound on the gradient complexity of AGD; i.e., the
total number of gradient evaluations to find an e-optimal point in terms of function value.

Theorem 6 Assume that g is (-smooth and p-strongly convex, the output x = AGD(g, X0, ¢, pt, €)
satisfies g(X) < minyey g(x) + € and the total number of gradient evaluations is bounded by

3 _*|2
O(\/Elog (KJ EHXOE X || >>’

where k = £/ is the condition number, and x* € X is the unique global minimum of g.

Compared with the classical result for Gradient Descent (GD), which requires O(/i) gradient evalu-
ations in the same setting, AGD improves over GD by a factor of \/k. AGD will be used as a basic
component for acceleration in this paper.

3. Algorithm Components

In this section, we present two main algorithm components. Both of them are crucial for our final
algorithms to achieve near-optimal convergence rates.

3.1. Inexact Accelerated Proximal Point Algorithm

Our first component is the Accelerated Proximal Point Algorithm (APPA, Algorithm 2) for minimiz-
ing a function g(-). Comparing APPA with classical AGD (Algorithm 1), we note that both of them
have momentum steps which yield acceleration. The major difference is in Line 4 of Algorithm 2,
where APPA solves a proximal subproblem

x; + argmin g(x) + £||x — %;_1||. (3.1)
xeX
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Algorithm 2 INEXACT-APPA (g, %0, ¢, p, €, T)
1: Input: initial point xg € X, proximal parameter ¢, strongly-convex module p, tolerance ¢ > 0
and the maximum iteration number 7' > 0.
Initialize: set Xg < xg, kK ﬁ, 0+ W and 6 <~ ;ﬁ:
fort=1,--- ,T do
find x¢ so that g(x¢) + £||x; — X¢—1[* < minxea{g(x) +£]x — X¢—1[*} + 4.
it — X + Q(Xt — thl)-
end for
Output: x7.

A A S

instead of performing a gradient-descent step as in AGD (Line 5 in Algorithm 1). We refer to the
parameter ¢ in (3.1) as the proximal parameter.

We present an inexact version in Algorithm 2 where we tolerate a small error ¢ in terms of the
function value in solving the proximal subproblem (3.1). That is, the solution x; satisfies

g(x¢) + £l x¢ — %1 ||* < Xmei)f(l{g(x) +0[x — %1 ]|} + 6.

A theoretical guarantee for the inexact APPA algorithm is presented in the following theorem, which
claims that as long as ¢ is sufficiently small, the algorithm finds an e-optimal point of any p-strongly-
convex function g with proximal parameter ¢ in O(y/¢/u) iterations.

Theorem 7 Assume that g is p-strongly convex, € € (0,1) and £ > . There exists T' > 0 such that
the output x = INEXACT-APPA (g, %0, ¥, 1, €, T) satisfies g(X) < mingey g(x) +eand T > 0
satisfies the following inequality,

e \/Elog(Q(Xo)—Q(X*)+(M/4)||X0—X*||2>7

€

where k = (/1 is an effective condition number, x* € X is the unique global minimum of g, and
¢ > 0 is an absolute constant.

Comparing with Theorem 6, the most important difference here is that Theorem 7 does not require
the function g to have any smoothness property. In fact, ¢ is only a proximal parameter in proximal
subproblem (3.1), which does not necessarily relate to the smoothness of g. On the flip side, the
proximal subproblem (3.1) can not be easily solved in general. Theorem 7 guarantees the iteration
complexity of Algorithm 1 while the complexity for solving these proximal steps is not discussed.
We conclude that APPA has a unique advantage over AGD in settings where g does not have
a smoothness property but the proximal step (3.1) is easy to solve. These settings include LASSO
(Beck and Teboulle, 2009), as well as minimax optimization problems (as we show in later sections).

3.2. Accelerated Solver for Minimax Proximal Steps

In minimax optimization problems of the form (1.1), we are interested in solving the following
proximal subproblem as follows,

X¢y1 < argmin ®(x) 4 £||x — %||?, where ®(x) := max f(x,y), (3.2)
xXEX yey
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Algorithm 3 MAXIMIN-AG2(g,Xo, Y0, ¢, tix; [ty €)
1: Input: initial point X, yo, smoothness ¢, strongly convex module 1ix, ty, and tolerance € > 0.

2: Initialize: ¢ < 0, X < X0, 7] ¢ 57, Fix < Mix, Fry %, 0 i%;; & oy
3: repeat

4. t+t+1.

> Xi-1 4 AGD(Q('7yt—1)7X07€7NX7g)-
6

7

8

9

yt < Pylyi-1 +nVyg(Xe-1,¥e-1)]
Vi <y +0(yr —yi—1).
: Xy AGD(g(+, ¥¢), X0, £, lix, €).
until [y — Py(yr + nVyg(xe,y1) |2 < W is satisfied.
10: Output: Py (x¢ — (1/26y0)Vg(x¢,¥1)).

which is equivalent to solving the following minimax problem:

minmax §(x,y) = f(x,y) + ¢||x — x||°. 33
min max §(x,¥) 1= f(x,y) + fx ~ | (33)
For a generic strongly-convex-strongly-concave function g(-,-), solving a minimax problem is
equivalent to solving a maximin problem, due to Sion’s minimax theorem:

ReppEy o) = panipatoy)

A straightforward way of solving the maximin problem is to use a double-loop algorithm which
solves the maximization and minimization problems on two different time scales. Specifically, the
inner loop performs AGD on function g(-,y) to solve the inner minimization; i.e., to compute
U(y) := mingey g(x,y) for each y, and the outer loop performs Accelerated Gradient Ascent
(AGA) on the function ¥(-) to solve the outer maximization. Since the algorithm aims to solve a
maximin problem we use AGA-AGD, and we name the algorithm MAXIMIN-AG2. See Algorithm
3 for the formal version of this algorithm. We also incorporate Lines 8-9 to check termination
conditions, which ensures that the output achieves the desired optimality. The theoretical guarantee
for Algorithm 3 is given in the following theorem.

Theorem 8 Assume that g(-,-) is {-smooth, g(-,y) is pux-strongly convex for each' y € ) and
9(x,-) is py-strongly concave for each x € X. Then x = MAXIMIN-AG2(g,Xo, Y0, ¥, lix, [ty €)
satisfies that maxycy g(X,y) < mingcy maxycy g(x,y) + € and the total number of gradient
evaluations is bounded by

O (nx\/@- log? (

€

(kix + tiy )0(D2 + D2) ))

where tix = {/ux and ky = ]y are condition numbers, Dy = |x¢ — X, (yo)| is the initial
distance where x(yo) = argminyc y g(X, yo) and Dy > 0 is the diameter of the constraint set ).

Theorem 8 claims that Algorithm 3 finds an e-optimal point in O~(/~sx4 /Ky ) iterations for strongly-
convex-strongly-concave functions. This rate does not match the lower bound Q(, /FxFy) (Ibrahim
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et al., 2019; Zhang et al., 2019). At a high level, it takes AGD O(\/E) steps to solve the inner
minimization problem and compute ¥(y) := mingecx g(X,y). Despite the fact that the function
g is £-smooth, function W is only guaranteed to be (kx¢)-smooth in the worst case, which makes
the condition number of W be ryky. Thus, AGA requires O(\/m ) iterations in the outer loop to
solve the maximization of U, which gives a total gradient complexity O (ky VEy)-

The key observation here is that although Algorithm 3 is slow for general strongly-convex-
strongly-concave functions, the functions g of the form (3.3) in the proximal steps have a crucial
property that kx = O(1) if the proximal parameter ¢ is chosen to be the smoothness parameter of
function f. Therefore, when f(x, -) is strongly concave, by Theorem 8, it only takes Algorithm 3
O(\/@) gradient evaluations to solve the proximal subproblem (3.3), which is very efficient. We
will see the consequences of this fact in the following section.

4. Accelerating Convex-Concave Optimization

In this section, we present our main results for accelerating convex-concave optimization. We
first present our new near-optimal algorithm and its theoretical guarantee for optimizing strongly-
convex-strongly-concave functions. Then, we use simple reduction arguments to obtain results for
strongly-convex-concave and convex-concave functions.

4.1. Strongly-convex-strongly-concave setting

With the algorithm components from Section 3 in hand, we are now ready to state our near-optimal
algorithm. Algorithm 4 is a simple combination of Algorithm 2 and Algorithm 3. Its outer loop
performs an inexact APPA to minimize the function ®(-) := maxycy f(-,y), while the inner loop
uses Maximin-AG?2 to solve the proximal subproblem (3.2), which is equivalent to solving (3.3).
At the end, after finding a near-optimal x7, Algorithm 4 performs another AGD on the function
—f(xr,-) to find a near-optimal y7. The theoretical guarantee for the algorithm is given in the
following theorem.

Theorem 9 Assume that f is {-smooth and jix-strongly-convex- iy -strongly-concave. Then there
exists T' > 0 such that the output (X,y) = MINIMAX-APPA(f, X0, Y0, ¢, ix, ly, €, T) is an e-
saddle point, and the total number of gradient evaluations is bounded by

(Kx + ky) (D2 + Df,)))

€

0] (1/Iixliy log® <

where kx = U/ 1x and ky = L/, are condition numbers.

Theorem 9 asserts that Algorithm 4 finds e-saddle points in O(\/m ) gradient evaluations, match-
ing the lower bound (Ibrahim et al., 2019; Zhang et al., 2019), up to logarithmic factors. At a high
level, despite the function ¢ having undesirable smoothness properties, APPA minimizes ® in the
outer loop using O(\/@) iterations according to Theorem 7, regardless of the smoothness of ®.
According to the discussion in Section 3.2, Maximin-AG?2 solves the proximal step in the inner
loop using O(\/@) gradient evaluations, since the condition number of g;(-,y) for any y € } is

O(1). This gives the total gradient complexity O(, [FxRy ).
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Algorithm 4 MINIMAX-APPA( f, %0, y0, 4, fix; ty, €, 1)
1: Input: initial point xg, y¢, proximity ¢, strongly-convex parameter u, tolerance ¢, iteration 7.

2: Initialize: X < Xq, Kx uix’ 0 «— ;\/‘/%: 0 — (105;@)4 and € «— m.
3: fort=1,--- ,T do

4. denote g;(-,-) where g;(x,y) == f(x,y) + £||x — %1 ]

5. xy < MAXIMIN-AG2(g¢, X0, Y0, 3¢, 24, f1y, 0)

6: Xy ¢ Xt + Q(Xt — thl).

7: end for

8: y < AGD(—f(x7,"),¥0, 4, iy, €).

9. Y1 Py (7 + (1/26x0)Vy (x1,5).

10: Output: (x7,y7).

4.2. Strongly-convex-concave setting

Our result in the strongly-convex-strongly-concave setting readily implies a near-optimal result in
the strongly-convex-concave setting. Consider the following auxiliary function for an arbitrary
yo € Y which is defined by

fey(x,y) = f(x,y) — (/4D3)|ly — yoll*. (4.1)

By construction, it is clear that the difference between f and fc y is small in terms of function value:

— Je ) < 4.
(xvyn)lggxy\f(x,y) Jey(x,y)] < €/

This implies, according to Definition 4, that any (e/2)-saddle point of function f y is also a e-saddle
point of function f, and thus it is sufficient to only solve the problem minyex maxxey fey(X,y).
Finally, when f is a px-strongly-convex-concave function, f. y becomes pix-strongly-convex-e/ (2D§,)—
strongly-concave, which can be fed into Algorithm 4 to obtain the following result.

Corollary 10 Assume that f is £-smooth and jix-strongly-convex-concave. Then there exists T > 0
such that the output (X,y) = MINIMAX-APPA( fc y,X0, Y0, ¢, i, e/(4D§,), €/2,T) is an e-saddle
point, and the total number of gradient evaluations is bounded by

/ (D2 + D2
O ( LXEDy log3 (H (Dx y)>>
€ €

where kx = U/ is the condition number, and fe y is defined as in (4.1).

4.3. Convex-concave setting

Similar to the previous subsection, when f is only convex-concave, we can construct following
strongly-convex-strongly-concave function f:

fe(x,y) = f(x,5) + (¢/8D%)|Ix — xo|* — (¢/8D3)lly — yoll*, 4.2)

which can be fed into Algorithm 4 to obtain the following result.

10
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Corollary 11 Assume function f is {-smooth and convex-concave, then there exists T' > 0, where
the output (X,y) = MINIMAX-APPA( f., X0, yo0, ¢, €/(4D2), 6/(4D§,), €/2,T) will be an e-saddle
point, and the total number of gradient evaluations is bounded by

(D2 + D?
o (éDny bgg( (D2 y>>>7
€ €

where f. is defined as in (4.2).
5. Accelerating Nonconvex-Concave Optimization

In this section, we present methods for accelerating nonconvex-concave optimization. Similar to
Section 4, we first present our algorithm and its theoretical guarantee for optimizing nonconvex-
strongly-concave functions. We then use a simple reduction argument to obtain results for nonconvex-
concave functions. This section present results using the stationarity of the function f (Definition
5) as an optimality measure. Please see Appendix B for additional results using the stationarity of
the function ®(-) := maxycy f(-,y) as the optimality measure (Definition 14 and 18).

5.1. Nonconvex-strongly-concave setting

Our algorithm for nonconvex-strongly-concave optimization is described in Algorithm 5. Similar to
Algorithm 4, we still use our accelerated solver Maximin-AG?2 for the same proximal subproblem
in the inner loop. The only minor difference is that, in the outer loop, Algorithm 5 only uses
the Proximal Point Algorithm (PPA) on function ®(-) := maxycy f(-,y) without acceleration (or
momentum steps). This is due to fact that gradient descent is already optimal among all first-order
algorithm for finding stationary points of smooth nonconvex functions (Carmon et al., 2019a). The
standard acceleration technique will not help for smooth nonconvex functions. We presents the
theoretical guarantees for Algorithm 5 in the following theorem.

Theorem 12 Assume that f is {-smooth and f(x,-) is jy-strongly-concave for all x. Then there
exists T > 0 such that the output (X,y) = MINIMAX-PPA(f, X0, y0, %, ity, €, T) is an e-stationary
point of f with probability at least 2/3, and the total number of gradient evaluations is bounded by

Ay kiyl(D2 4 D2)
o) (62 - /oy log? <yy ’

€

where iy = [/ py is the condition number, Ay = ®(xo) — minxegm ®(x) is the initial function
value gap and Dx = ||xo — X3, (yo)|| is the initial distance where x}(yo) = argmin,cy 9(X, yo)-

Theorem 12 claims that Algorithm 5 will find an e-stationary point, with at least constant probability,
in é(\/@ /€?) gradient evaluations. Similar to Theorem 9, the inner loop takes O(\/@ ) gradient
evaluations to solve the proximal step since the condition number of ¢;(-,y) is O(1) forany y € ).
In the outer loop, regardless of the smoothness of ®(-), PPA with proximal parameter / is capable of
finding the stationary point in O(1/€?) iterations. In total, the gradient complexity is O(\/@ /€2).
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Algorithm 5 MINIMAX-PPA (g, X0, yo, {, jty, €,T)
1: Imput: initial point xg, y¢, proximity ¢, strongly-convex parameter u, tolerance J, iteration 7.
Initialize: set § < 557 - (ﬁ)?
fort=1,---,Tdo
denote gi(-,-) where g;(x,y) = f(x,y) + fllx — xt1]%
X¢ < MAXIMIN-AG2(g¢,X0,¥0, 3, ¢, 11,0).
end for
sample s uniformly from {1,2,--- ,T}.
Ys — AGD(_f(XS7 ')7 Yo, 67 M, 6)
Output: (xs,ys).

R A U

5.2. Nonconvex-concave setting

Our result in the nonconvex-strongly-concave setting readily implies a fast result in the nonconvex-
concave setting. Consider the following auxiliary function for an arbitrary yo € -

fe(x,y) = f(x,y) — (¢/4Dy)|ly — yoll*- (5.1)

By construction, it is clear that the gradient of f and f; are close in the sense

max [|Vf(x,y) = Vie(x,y)| < /4.
(x,y)ER™ XY
This implies that any (e/2)-stationary point of fe~is also a e-stationary point of f, and thus it is
sufficient to solve the problem minyey maxxey fe(X,y). Finally, the function f.(x,-) is always
€/(2Dy)-strongly-concave, which can be fed into Algorithm 5 to obtain the following result.

Corollary 13 Assume that f is £-smooth and f (x~, -) is concave for all x. Then there exists T > 0
such that the output (X,y) = MINIMAX-PPA(fc,x0,y0,¢,€/(2Dy),€/2,T) is an e-stationary
point of f with probability at least 2 /3, and the total number of gradient evaluations is bounded by

/ (D2 + D?
0 (EAQCD . @logg ( ( X y))) ’
€ € €

where Dy > 0, Ag = ®(xq) — mingegm ®(x) is the initial function value gap and Dy = ||xo —
Xy, (o) || is the initial distance where x;;(yo) = argminyc y (X, yo)-

6. Conclusions

This paper has provided the first set of near-optimal algorithms for strongly-convex-(strongly)-
concave minimax optimization problems and the state-of-the-art algorithms for nonconvex-(strongly)-
concave minimax optimization problems. For the former class of problems, our algorithms match
the lower complexity bound for first-order algorithms (Ouyang and Xu, 2019; Ibrahim et al., 2019;
Zhang et al., 2019) up to logarithmic factors. For the latter class of problems, our algorithms
achieve the best known upper bound. In the future research, one important direction is to inves-
tigate the lower complexity bound of first-order algorithms for nonconvex-(strongly)-concave min-
imax problems. Despite several striking results on lower complexity bounds for nonconvex smooth
problems (Carmon et al., 2019a,b), this problem remains challenging as solving it requires a new
construction of “chain-style” functions and resisting oracles.
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Appendix A. Related work

To the best of our knowledge, the earliest algorithmic schemes for solving the bilinear minimax
problem, minyeAm maxyear x " Ay, date back to Brown’s fictitious play (Brown, 1951) and Dantzig’s
simplex method (Dantzig, 1998). This problem can also be solved by Korpelevich’s extragradient
(EG) algorithm (Korpelevich, 1976), which can be shown to be linearly convergent when A is square
and full rank (Tseng, 1995). There are also several recent papers studying the convergence of EG
and its variants; see Chambolle and Pock (2011); Malitsky (2015); Yadav et al. (2018) for reflected
gradient descent ascent, Daskalakis et al. (2018); Mokhtari et al. (2019b,a) for optimistic gradient
descent ascent (OGDA) and Rakhlin and Sridharan (2013a,b); Mertikopoulos et al. (2019); Chav-
darova et al. (2019); Hsieh et al. (2019); Mishchenko et al. (2019) for other variants. In the bilinear
setting, Daskalakis et al. (2018) established the convergence of the optimistic gradient descent as-
cent (OGDA) method to a neighborhood of the solution; Liang and Stokes (2019) proved the linear
convergence of the OGDA algorithm using a dynamical system approach. Very recently, Mokhtari
et al. (2019b) have proposed a unified framework for achieving the sharpest convergence rates of
both EG and OGDA algorithms.

For the convex-concave minimax problem, Nemirovski (2004) proved that his mirror-prox al-
gorithm returns an e-saddle point within the gradient complexity of O(e~!) when X and ) are
bounded. This algorithm was subsequently generalized by Auslender and Teboulle (2005) to a class
of distance-generating functions, and the complexity result was extended to unbounded sets and
composite objectives (Monteiro and Svaiter, 2010, 2011) using the hybrid proximal extragradient
algorithm with different error criteria. Nesterov (2007) developed a dual extrapolation algorithm
which possesses the same complexity bound as in Nemirovski (2004). Tseng (2008) presented a
unified treatment of these algorithms and a refined convergence analysis with same complexity
result. Nedi¢ and Ozdaglar (2009) analyzed the (sub)gradient descent ascent algorithm for convex-
concave saddle point problems when the (sub)gradients are bounded over the constraint sets. Aber-
nethy et al. (2019) presented a Hamiltonian gradient descent algorithm with last-iterate convergence
under a “sufficiently bilinear” condition.

Several papers have studied special cases in the convex-concave setting. For the special case
when the objective function is a composite bilinear form, f(x,y) = g(x) + x' Ay — h(y), Cham-
bolle and Pock (2011) introduced a primal-dual algorithm that converges to a saddle point with the
rate of O(1/¢) when the convex functions g and h are smooth. Nesterov (2005) proposed a smooth-
ing technique and proved that the resulting algorithm achieves an improved rate with better depen-
dence on Lipschitz constant of Vg when h is the convex and smooth function and X', ) are both
bounded. He and Monteiro (2016) and Kolossoski and Monteiro (2017) proved that such result also
hold when X', Y are unbounded or the space is non-Euclidean. Chen et al. (2014, 2017) generalized
Nesterov’s technique to develop optimal algorithms for solving a class of stochastic saddle point
problems and stochastic monotone variational inequalities. For a class of certain purely bilinear
games where g and h are zero functions, Azizian et al. (2020) demonstrated that linear convergence
is possible for several algorithms and their new algorithm achieved the tight bound. The second case
is the so-called affinely constrained smooth convex problem, i.e., minyex g(x),s.t. Ax = u. Esser
et al. (2010) proposed a O(e~!) primal-dual algorithm while Lan and Monteiro (2016) provided
a first-order augmented Lagrangian method with the same O(e~!) rate. By exploiting the struc-
ture, Ouyang et al. (2015) proposed a near-optimal algorithm in this setting.
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For the strongly convex-concave minimax problem, Tseng (1995) and Nesterov and Scrimali
(2006) proved that their algorithms find an e-saddle point with a gradient complexity of O(Iix +Ky)
using a variational inequality. Using a different approach, Gidel et al. (2019) and Mokhtari et al.
(2019b) derived the same complexity results for the OGDA algorithm. Very recently, Alkousa
et al. (2019) proposed an accelerated gradient sliding algorithm with a gradient complexity of
O(min{fix\/@, Ky+/Fx}) while Ibrahim et al. (2019); Zhang et al. (2019) established a lower
complexity bound of Q(m ) among all the first-order algorithms in this setting.

For strongly-convex-concave minimax problems, the best known general lower bound for first-
order algorithm is O(y/kx/€), as shown by Ouyang and Xu (2019). Several papers have studied
strongly-convex-concave minimax problem with additional structures. This includex optimizing
a strongly convex function with linear constraints (Goldstein et al., 2014; Xu and Zhang, 2018;
Xu, 2019), the case when x and y are connected only through a bilinear term x' Ay (Nesterov,
2005; Chambolle and Pock, 2016; Xie and Shi, 2019) and the case when f(x,-) is linear for each
x € R™ (Juditsky and Nemirovski, 2011; Hamedani and Aybat, 2018; Zhao, 2019). The algorithms
developed in these works were all guaranteed to return an e-saddle point with a gradient complexity
of O(1/+/€) and some of them even achieve a near-optimal gradient complexity of O(+/ky/€) (Nes-
terov, 2005; Chambolle and Pock, 2016). However, the best known upper complexity bound for
general strongly-convex-concave minimax problems is O(ky /+/€) which was shown using the dual
implicit accelerated gradient algorithm (Thekumparampil et al., 2019).

For nonconvex-concave minimax problems, a line of recent work (Jin et al., 2019; Rafique
et al.,, 2018; Lin et al., 2019) has studied various algorithms and proved that they can find an
approximate stationary point of ®(-) := maxycy f(-,y). In a deterministic setting, all of these
algorithms guarantee a rate of O(m?,e”) and O(e~%) when f(x,-) is strongly concave and con-
cave respectively. Thekumparampil et al. (2019) consider the same setting as ours and proposed
a proximal dual implicit accelerated gradient algorithm and proved that it finds an approximate
stationary point of ®(-) with the total gradient complexity of O(e~?). Kong and Monteiro (2019)
consider a general nonconvex minimax optimization model: miny h(x) + p(x), where h is a “sim-
ple” proper, lower semi-continuous and convex function and p(x) = maxycy f(x,y) with f sat-
isfying that — f(x, -) is proper, convex, and lower semi-continuous. They propose to smooth p to
pe(x) = maxyey f(x,y) — (1/28)|ly — yol|* and apply an accelerated inexact proximal point
method to solve the smoothed problem miny h(x) + p¢(x). The resulting AIPP-S algorithm at-
tains the iteration complexity of O(e~3) using a slightly different but equivalent notion of sta-
tionarity but requires the exact gradient of p¢ at each iteration. This amounts to assuming that
maxyey f(x,y) — (1/28)|ly — yol* can be solved exactly, which is restrictive due to the poten-
tially complicated structure of f(x,-) or ). If f is further assumed to be smooth, Zhao (2020)
developed a variant of AIPP-S algorithm which only requires an inexact gradient of p¢ at each it-
eration and attains the total gradient complexity of 0(6_3). On the other hand, the stationarity of
f(-,-) is proposed for quantifying the efficiency in nonconvex-concave minimax optimization (Lu
et al., 2019; Nouiehed et al., 2019; Kong and Monteiro, 2019; Ostrovskii et al., 2020). Using this
notion of stationarity, Kong and Monteiro (2019) attains the rate of O(e~2°) but requires the exact
gradient of p¢ at each iteration. Without this assumption, the current state-of-the-art rate is 0(6_2‘5)
achieved by our Algorithm 5 and the algorithm proposed by a concurrent work (Ostrovskii et al.,
2020). Both algorithms are based on constructing an auxiliary function f, and applying an accel-
erated solver for minimax proximal steps. Finally, several other algorithms have been developed
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either for specific nonconvex-concave minimax problems or in stochastic setting; see Namkoong
and Duchi (2016); Sinha et al. (2018); Sanjabi et al. (2018); Grnarova et al. (2018) for the details.

Appendix B. Additional Results for Nonconvex-Concave Optimization

In this section, we present our results for nonconvex-concave optimization using stationary of
®(-) := maxyey f(:,y) (Definition 14 and Definition 18) as the optimality measure.

B.1. Optimality notion based on Moreau envelope

We present another optimality notion based on Moreau envelope for nonconvex-concave setting in
which f(-,y) is not necessarily convex for each y € ) but f(x,-) is concave for each x € X.
For simplicity, we let X = R™ and ) be convex and bounded. In general, finding a global saddle
point of f is intractable since solving the special case with a singleton ) globally is already NP-
hard (Murty and Kabadi, 1987) as mentioned in the main text.

One approach, inspired by nonconvex optimization, is to equivalently reformulate problem (1.1)
as the following nonconvex minimization problem:

xeR™

min {(I)(x) = r;lez%))(f(x,y)} , (B.1)

and define an optimality notion for the local surrogate of global optimum of ®. In robust learning,
x is the classifier while y is the adversarial noise. Practitioners are often only interested in finding
a robust classifier x instead of an adversarial response y to each data point. Such a stationary point
x precisely corresponds to a robust classifier that is stationary to the robust classification error.

If f(x,-) is further assumed to be strongly concave for each x € R™, then ® is smooth and a
standard optimality notion is the stationary point.

Definition 14 We call x an e-stationary point of a smooth function ® if |[V®(x)|| < e. Ife =0,
then X is called a stationary point.

In contrast, when f(x, -) is merely concave for each x € X, ® is not necessarily smooth and even
not differentiable. A weaker sufficient condition for the purpose of our paper is the weak convexity.

Definition 15 A function ® : R — R is L-weakly convex if ®(-) + (L/2)||-||* is convex.

First, a function ® is /-weakly convex if it is /-smooth. Second, the subdifferential of a ¢-weakly
convex function ® can be uniquely determined by the subdifferential of ®(-) + (¢/2)]| - ||?. This
implies that the optimality notion can be defined by a point x € R™ with at least one small sub-
gradient: mingcpp(x) [|€]| < €. Unfortunately, this notion can be restrictive if ® is nonsmooth.
Considering a one-dimensional function ®(-) = | - |, a point x must be 0 if it satisfies the optimality
notion with € € [0, 1). This means that finding a sufficiently accurate solution under such optimality
notion is as difficult as solving the minimization exactly. Another popular optimality notion is based
on the Moreau envelope of ® when @ is weakly convex (Davis and Drusvyatskiy, 2019).

Definition 16 A function ®) is the Moreau envelope of ® with A > 0 if for Vx € R™, that

@a(x) = min B(w)+(1/2))|w - x|,
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Lemma 17 (Properties of Moreau envelopes) [f the function ®(-) is {-weakly convex, its Moreau
envelope ®1 5(-) is 4l-smooth with the gradient V1 j5¢(-) = 20(- — prox(I,/%(-)) in which a point
Proxg jo0(+) = argming cpm {®(w) + £[|w — 1%} is defined.

Thus, an e-stationary point of an /-weakly convex function ® can be alternatively defined as a point
X satisfying that the gradient norm of Moreau envelope ||V ® /9,(X)|| is small.

Definition 18 We call x an e-stationary point of a {-weakly convex function ® if HV@l /20(%) H <
€. If e = 0, then X is called a stationary point.

Lemma 19 (Properties of c-stationary point) If X is an e-stationary point of a {-weakly convex
function ®, then there exists X € R™ such that mingcpp(x) [[€]| < € and [|[%x — x| < €/2L.

Lemma 19 shows that an e-stationary point defined by the Moreau envelope can be interpreted as
the relaxation for a point with at least one small subgradient. In particular, if X is an e-stationary
point of a /-weakly convex function @, then it is close to a point which has small subgradient.

B.2. Nonconvex-strongly-concave setting

In the setting of nonconvex-strongly-concave function, we still use Algorithm 5. Similar to Theorem
12, we can obtain a guarantee, which finds a point x satisfying | V®(%x)|| < € in the same number
of iterations as in Theorem 12.

Theorem 20 Assume that f is {-smooth and f (X, -) is jiy,-strongly-concave for all x. Then there ex-
ists T' > 0 such that the output (X,y) = MINIMAX-PPA(f,x0,y0, ¢, iy, €, T) satisfies || VO (x)|| <
e with probability at least 2/3, and the total number of gradient evaluations is bounded by

Ay riyl(D2 + D2)
O (62 Ry log? (yy

€

where ky = /iy is the condition number, Ay = P(x¢) — mingcgm P(x) is the initial function
value gap and Dx = |xo — xp, (yo)|| is the initial distance where x,(yo) = argmin,¢ y 9(X, yo)-

B.3. Nonconvex-concave setting

We can similarly reduce the problem of optimizing a nonconvex-concave function to the problem
of optimizing a nonconvex-strongly-concave function. The only caveat is that, in order to achieve
the near-optimal point using Definition 18 as optimality measure, we can only add a O(¢?) term as
follows:

fe(x,y) = f(x,y) = (€/200£D3)[ly — yol*. (B.2)
Now f.(x,-) is only €2/ (100£D}2,)—concave, by feeding it to Algorithm 5 and through a slightly

more complicated reduction argument, we can only obtain gradient complexity bound of O~(e*3)
instead of O(e=29) as in Corollary 13. Formally, we have
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Corollary 21 Assume that f is {-smooth, and f(x,-) is concave for all x. Then there exists
T > 0 such that the output (x,y) = MINIMAX-PPA( fc, X0, ¥0, ¢, 62/(1OO€D§,), €/10,T) satis-
fies ||V @1 j20(X)|| < € with probability at least 2/3, and the total number of gradient evaluations is

bounded by 3
o <€2DyAq> og? <£(D§ + D§)>>
€3 €

where Dy > 0, Ay = ®(xq) — mingegrm ®(x) is the initial function value gap and Dy = ||xo —
Xy, (o) || is the initial distance where x};(yo) = argminye v (X, yo)-

Appendix C. Proofs for Algorithm Components

In this section, we present proofs for our algorithm components.

C.1. Proof of Theorem 6

We divide the proof into three parts. In the first part, we show that the output X satisfies g(x) <
mingey g(x)+e€. In the second part, we derive the sufficient condition for guaranteeing the stopping
criteria in Algorithm 1. In the third part, we derive the gradient complexity of the algorithm using
the condition derived in the second part.

PartI. Letx; = Px(x: — (1/£)Vg(x:)) be defined as the point achieved by one-step projected
gradient descent from x;. Since g is £-smooth and pu-strongly convex, it is straightforward to derive
from Nesterov (2018, Corollary 2.3.2) that

- - 14 -
g(x) > g(Xe) +U(xe — %) (x — x¢) + §th — %412 + %Hx —x|?, forallx € X.

Using the Young’s inequality, we have (x; — %X¢) | (x — x;) > —(1/2)(||x¢ — %¢||? + [|x — x¢[|?).
Putting these pieces together with x = x* yields that

- . - -

o5 - i g(x) = g0~ g0x) < (51 ) I -1
xeX 2

Without loss of generality, we assume ¢ > p. Indeed, if ¢/ = i, then one-step projected gradient de-

scent from any points in X’ guarantees that g(X;) —mingex g(x) = 0. Since x = X, in Algorithm 1,

it suffices to show that the following statement holds true,

€ 2¢

[x¢ — Pa(xe — (1/0)Vg(x))]| < 22— 1) = [jx —x*|| < 7_

(C.1)

Let X; = Px(xt — (1/0)Vg(x¢)) be defined as the point achieved by one-step projected gradient
descent from x;, the {-smoothness of g implies

|x: — x*|| < ||l — x*| (C.2)
Using the definition of X; and x*, we have

(x* — %) T (0(%¢ — %) + Vg(xy)) > 0, (%, —x*)"Vg(x*) > 0.
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Summing up the above two inequalities and rearranging yields that
(x* = x0) T (Vglxe) = Vg(x*) > €0x* = %) (% — %) + (% — x0) | (Vg(x1) — Vg(x*)).

Since g is £-smooth and pu-strongly convex, we have

N N (€2 -
—pllxe = xM? > ke = Rel| (7= Rl I = xe]) > =20 — e flxe — x|
Therefore, we conclude that

- (C.1) 2
It =71 < 2l =il = 2nlxe = P = (1/0VgG)| <4/

Part II. We first show that

% — x*|| < 31/1\/2@67 = |x¢ — Pa(xe — (1/)Vg(xp))| < \/m

By the definition of x*, we have x* = Py (x* — (1/¢)Vg(x*)). This equation together with the
triangle inequality and the nonexpansiveness of Py yields that ||x; — Px(x; — (1/0)Vg(xy))|| <
3||x¢ — x*|| which implies the desired result. Then we derive a sufficient condition for guaranteeing

that ||x; — x*|| < (1/(3k))\/€/(2(¢ — p)). Since g is p-strongly convex and x; € X, Nesterov
(2018, Theorem 2.1.5) together with the fact that (x; — x*) T Vg(x*) > 0 implies that

xeX

=1 = 2 (g0~ migatx) )

Putting these pieces together yields the desired sufficient condition as follows,

€

g(x) —ming(x) < (C.3)

xeX 36K3°

Part III. We proceed to derive the gradient complexity of the algorithm using the condition in
Eq. (C.3). Since Algorithm 1 is exactly Nesterov’s accelerated gradient descent, standard arguments
based on estimate sequence (Nesterov, 2018) implies

pllx* — %ol

o) ~mina) < (1- \}) (900 ~ mi g0 + P70

Therefore, the gradient complexity of Algorithm 1 to guarantee Eq. (C.3) is bounded by

3 o *||2
O<1+\/g10g (MHXOXHD
€

This completes the proof.
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C.2. Proof of Theorem 7

Letting X = INEXACT-APPA(g,x0, ¢, u,€,T). Since X = xp, it suffices for us to estimate an
lower bound for the maximum number of iterations 7" such that g(x7) < mingey g(x) + €. The
following technical lemma is crucial to the subsequent analysis.

Lemma 22 For any x € X and {(x¢, X¢) }+>0 generated by Algorithm 2, we have

pllx — x4”

1 —7ké. (C4)

9(x) > g(xe) = 20(x = Xe—1) T (% — K1) + 2% — Ke1[|* +
Proof. Using the definition of x; in Algorithm 2, we have
9(xe) + Lxe = %o || < min {g(x) + fx — Xe1[*} + 6.

Defining x; = argmin,v{g(x) + ¢||x — X¢—1||*} and using u-strongly convexity of g, we have
the following for any x € X

9x) = g(x7) + €t — Ko ? = Ox = Koa |2+ (€4 5) I = 1%

Equivalently, we have

Y

9(x) = glxe) + Clxe = K] = = K|+ (£+5) e = x[? —

> glxe) = 20(x —x0) (¢ = Ke1) = Olx =il + (04 5) e = x[2 = 6.

On the other hand, we have

pllx — x|

(04 5) =t Pl = 25

+2t+)(x—x0) T e=x))+ (£ + 5) =2
Using Young’s inequality yields

e = x|

—(1+2 — x|
2201 1) (14 25) % — x7||

(x—x) " (x¢ —x}) >

Putting these pieces together yields that

pllx — x|

9(x) = g(xe) = 26(x —x¢) " (x¢ — Xe—1) + = 20+ p) (1 + 26) e — x7|* — 4.

4
Furthermore, we have
(x— %) (xe —Fem1) = (x—Fe1) | (x¢ — Ke1) — [|Jxe — K1),
and
*(12 - 2 . - 5 26
=1 = 2 (gt + s — w00 + €l —xeaf?}) < 20
Putting these pieces together with k > 1 yields the desired inequality. g
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The remaining proof is based on Lemma 22. Indeed, we have

(1 - 2\1/E> g(xe—1) + 2\1/E (g(x*) + 14/{3/25)

Eq. (C4) 1 3 ) i 1 — 2
= (1 - Q\/E) (g(xt) — 20(x¢—1 — Xt—1>T(Xt — X¢—1) + 20||x; — Xt—1H2 + ’UW _ 7/€5>
1 ~ 5 B X* - x 2
+2\/E <9(Xt) —20(x* — Xt—l)T(Xt —Xy1) + 20||x¢ — xt,1\|2 + 'u||4t|| _ 7/{5> +TKS

1 ) T ) ~ x* —x 2
= g(xt) — 2 ((1 — M) X¢—1+ ——= \/» Xt—1> (Xt - Xt—l) + 2€th - xt—1H2 + W

Equivalently, we have

o) —gx) = (1= 50l - gt +2e (1 52 ) w2 - x)T (0 — %i1)

pllx — x|

—20||x; — %1 ||* - NG + k6. (C.5)
Consider X; = x; + 2§+1( — x¢—1), we let wy = Xy + 24/k(X; — x¢) and obtain that
(14 2vR)%: — 2v/k 2kx; — (2vk — 1) I b - ol
w; = k)X — 2VKX = KXy — k—1)x_1 = - | Wy Xp — ——— X
t t t t t—1 2\/E t—1 KXy 2\/E t—1
- Xt—1
= 1——— _ 2 — Xy .
( 2\f>Wt 14+ 2VE (xe — %t 1)+2\/E
This implies that
|w: —x*||? = 1—L w —i—ﬁ—x*—i—%/ﬁ(x—i )2 (C.6)
t NG t—1 NG t— Xt—1 .

= 1—Lw th X*2
2\/E t—1+ 2\/*

—|—4K,||Xt — )~(t,1||2.

Since wy_1 = X1 + 2v/Kk(Xt—1 — X¢—1), we have

1 X¢—1 -
1— ——)wy = 2 1—(2 — 1)x—1. Cc.7
( 2\/E)Wt1+2\/g VEX 1 — (2VE = 1)x 1 (C.7)
Using the Young’s inequality, we have
2
* C.8
(=2 w3 =
1 8k —5
< 1 1 - .= * |12 _ 1 v = ~_ _ * 12
< ( M) (14 g7m=s ) Iwis =1+ g (14 2522 s =
1 2[|%¢—1 — x*|?
< [1-—= (14 —— x| e 2 0
= ( 2\/E)< +8\/E—5> Wiy =71+ =57
1 2||xe—1 — x*||?
< 1—-— xR =
_< 6\/E>Hwt1 x*||* + N
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Using the Young’s inequality again, we have

Blx* — x|
4

Putting Eq. (C.6)-Eq. (C.9) together with x > 1, we have

%1 — x*||2 < +5)|%—1 — x| (C.9)

Hw _ * (12 < 1_ _ * (|2 ||}(‘k_:><t||2 6 < 2 C 10
= X7 < —= | [we1 — x| s klxe —x-1|” (C.10)

*

+8 ( % I <\ - %)

Xi1 — - — x4y 1 — —= X — Xp_1) .
K t—1 2\/E t—1 2\/E t t—1
Combining Eq. (C.5) and Eq. (C.10) yields that

w; — x*||? Wi — X2
o) = gxt) + D < (G ) Gt g + (10 g ) P

1 2/ 6y/k 1
< (1 - 6%) (g<x“> — o) + “”W4‘X”2) 7o,

Repeating the above inequality yields that

ey, Mllwr — x| R e, ko = x| 3/2
g(xr) —g(x*) + 1 < (1 NG g(x0) — g(x*) + 1 + 42K°744.

Therefore, we conclude that

T xo — x*||?
g(xr) - g(x*) < (1 _ 6%) <g<x0> o) + “”04“) © 42632,

Since the tolerance § < ex 3/ 2 /84, we conclude that the iteration complexity of Algorithm 2 to
guarantee that g(x7) — mingey g(x) < € if there exists an absolute constant ¢ > 0 such that

S <g<xO>—g(x*>+m/4>||xo—x*||2>_

€

This completes the proof.

C.3. Proof of Theorem 8

Before presenting the main proof, we define the following important functions:

~—
|

Py(1) = maxyey 9(-,y), yy() = argmaxyey g(-y),
U,(-) = mingkex g(x,-), x;(-) = argmingcy g(x,).

All the above functions are well defined since g(-, -) is strongly convex-concave. We provide their
complete characterization in the following structural lemma.

Lemma 23 Under the assumptions imposed in Theorem 8, we have

(a) A functionyy(-) is ky-Lipschitz.
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(b) A function ®y(-) is 2y L-smooth and jix-strongly convex with V®,(-) = Vxg(-, y ().

(c) A function x;(-) is kx-Lipschitz.

(d) A function V() is 2kxl-smooth and py-strongly concave with VWy(-) = Vyg(x3(-), ")
where kx = U/ ix and ky = £/, are condition numbers.

Now we are ready to prove Theorem 8. We divide the proof into three parts. In the first part, we
show that the output X = MAXIMIN-AG2(g, X0, Yo, ¢, fix; [ty €) satisfies

max ¢(Xx,y) < minmax g(x,y) +e€ (C.11)

yey xeEX yeY

In the second part, we get the sufficient condition for guaranteeing the stopping criteria in Algo-
rithm 3. In the third part, we estimate an upper bound for the gradient complexity of the algorithm
using the condition derived in the second part. For the ease of presentation, we denote (x;, y;) as
the unique solution to the minimax optimization minye y maxycy g(x,y).

Part I. By the definition of @, the inequality in Eq. (C.11) can be rewritten as follows,

®4(%) < min @ .
g(¥X) < min By(x) +e

Since X = Px(x7 — (1/2ky0)Vxg(x7,yT)), We have

0 < (x—%)" (26y4(% — x7) + Vxg(X7,¥7))

= (x0T 2y b(& — x7) + VBy(x7)) + (x — )T (Vaglxr, yr) — V4 (x7)).

Since V@4 (x1) = Vxg(xr, y;(x1)), we have ||Vxg(xr,yr) — V@4 (x7)|| < {llyr — ¥y (x7)]|-
Using the Young’s inequality, we have

rylll = xrl? mytllx — xr]?
2 2

Since @ is 2k, f-smooth and 1ix-strongly convex, we have

1.

(x—%) " (Vxg(x7,y7) — VOy(x7)) < + iy |lyr — ¥ (x7)

(x — %) T 20y l(X —x7) + VOy(x7)) < 2hyl(x —x7) (X —%X7) + Dy(x) — By(X)

x| — x|

—rylll% = x? =

Using the Young’s inequality, we have (x —x7) " (X —x7) < ||x —x7||?+(1/4)||% — x7||>. Putting
these pieces together yields with x = x7 yields that

By(%) — min By(x) < 3nyllxr — x| + pyllyr — v er)| (C€.12)

In what follows, we prove that ®,(%) < mingex ®4(x) + € if the following stopping conditions
hold true,
<
T 648k3Ky
1 €

< - | 14
I< 24K2ky \| Kyl C.14)

g(xr,yr) — 9(x5(y1), y7) (C.13)

lyr = Py(yr + (1/26x0)Vyg(x1, y7))
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Indeed, we observe that [|x7 — x;|| < |lxr — x5 (y7) |l + x5 (yr) — x5y )l + x5 (y5) — x5 -
By definition, we have x(y}) = xj. Also, x(+) is sx-Lipschitz. Therefore, we have

g
Ixr —xgll < [lxr —xg(yo)ll + rxllyr — ygll- (C.15)
By the similar argument, we have

lyr =y, (x0)ll < llyr =yl +ryllxr —xgll < ryllxr —x3(yr)ll + kxkyllyr —y3 - (C.16)

First, we bound the term ||x7 — x;(yr)||- Since g(-, y7) is px-strongly convex, we have

— C.17
Ux T 18kxky \ Kyl ( )

Ixr —x5(yr)ll < \/2(9(XT’YT) — o yr)yr) 1 ¢
g

It remains to bound the term ||y — y||. Indeed, we have VW, (yr) = Vyg(x;(yr),yr) and

lyr = Py(yr + (1/26xl)V¥(yr))| < llyr = Py(yr + (1/26x0)Vyg(xr, y7))|
HPy(yr + (1/26x0)Vyg(x7,¥7)) = Py(yr + (1/26xL) VU4 (y7)) -

Since Py is nonexpansive and Vy g is {-Lipschitz, we have

IPy(yr + (1/26x0)Vyg(x7,y7)) = Py(yr + (1/26x) V4 (y7))|| < Ier = x5 Grn)ll

2Kk
Putting these pieces together with Eq. (C.14) and Eq. (C.17) yields that
1 €
— 1/2kx0)V U < 0 —. C.18
Iyr = Polyr +(1/2m) VLG < fo /o5 (C18)

Since yj, = argmaxycy Vy(y) and yr = Py(yr + (1/26xf)V¥,(y7T)) is achieved by one-step
projected gradient ascent from yr, we derive from the 2k /-smoothness of ¥, we have

1y7 =yl < llyr — ;- (C.19)

Using the definition of y7 and yy, we have

(vi—97) 1 —yr — (1/26:0)VTUy(y7)) > 0,  (yi—37) VU,(y;) > 0.

Summing up the above two inequalities and rearranging yields that

(vy=yr) (VO (y5)=VU(yr) = 26xb(y;—37) (yr—y1)+Fr—y1) (V¥(y5) -V TG(yT)).

Since ¥, is 2kx/-smooth and iy -strongly concave, we have

) ) (C.19) )
—pyllys—yrll* = =26xlllyr—yrl (Iy; =32l + Iy —yrl) = —4slllyr—yrlly;—yzrl-

lhlS ln’lplles that
||Bg )1 || <— 1 X :y||37 3’1 H (<—1 : (C 20)
Pl 4/‘6x K}r/e‘ ’
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Plugging Eq. (C.17) and Eq. (C.20) into Eq. (C.15) yields that

xr — x%|| < 1 +1 Lﬁx’?zll €
T2l = \U8kgny  4) kgt = 2\ kyt’

Plugging Eq. (C.17) and Eq. (C.20) into Eq. (C.16) yields that

1 K € rxory2l 1 (ke
o < Ky \ [e ™=t Lo JRye
lyr = yy(er)ll < (18/<cx+ 4 > Vgl = 2\ ¢

Putting these pieces together Eq. (C.12) yields the desired result.

Part II.  We first show that [[yr — y}|| < (1/216k%ky)+/€/ryl and Eq. (C.13) are sufficient to
guarantee Eq. (C.14). Indeed, we have y; = Py(y; + (1/2rxl)V¥4(y})). This together with the
triangle inequality and the nonexpansiveness of Py yields

IVyg(xr,yr) — V¥, (y5)ll

lyr — Py(yr + (1/26x0)Vyg(xr, y7))|| < 2|lyr — y3ll + P,

Furthermore, VU, (yr) = Vyg(x*(y7), yr) and

IVyg(er, yr) = VU(yo)ll < [Vyg(xr,yr) = VygOg(yr), yr)l +[VU(yr) = VT4(y)l-

Since g is £-smooth and ¥, is 2k /-smooth, we have

IVyg(xr,yr) = VU(yg)ll < Lxr —xg(yr)ll + 2rxlllyr — ygll-

Also, Eq. (C.13) guarantees that Eq. (C.17) holds true. Then we have

1 €
—P 1/2kxl)V , <3lyr -yl + —o— [ —.
lyr = Py(yr + (1/26x0)Vyg(xz, y7)) | < 3llyr — vyl + 36r2ry \| oyl
The above inequality together with [[yr — yy[| < (1/ 2162 ky )/ €/ iyl guarantees Eq. (C.14).
Next we derive a sufficient condition for guaranteeing ||y — y}| < (1/216k3ky)+/€/ryl. Since
W, is py-strongly concave, Nesterov (2018, Theorem 2.1.5) implies that

2
R —— Uy(y)— .
Iyr vl < 2 (max () = Wotvr)

Putting these pieces together yields the desired condition as follows,

max U,(y) — U, (yr) < (C.21)

< —
yey = 93312k%k5

PartIII. We proceed to estimate an upper bound for the gradient complexity of Algorithm 3 using
Eq. (C.21). Note that & < €/(4477676(kxry)'/?) and we provide a key technical lemma which is
crucial to the subsequent analysis.

Lemma 24 Foranyy € Y and {(y+,¥) }+>0 generated by Algorithm 3, we have

_txlllye = el pylly =yl

Uy(y) < 2"<ﬂx€(y—}~’t—1)—r(}’t_S’t—l)‘i‘q/g(}’t) 5 1

+3kxky€.
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Proof. For any y € ), the update formula y; < Py (¥i—1 + (1/26x¢0)Vyg(X¢—1,¥¢—1)) implies
that

0 < (v =y (2rxl(ye = F1-1) = Vyg(Xe—1,91-1))
= (Y —y1) Crxllyr —311) = VU(F1) + (y —v0)  (VUy(F1-1) — Vyg(Ri-1,5:1))-
Since VU, (y;-1) = Vyg(x}(¥t-1),¥¢-1), we have
|VUy(yi-1) — Vyg(Xi—1,¥e-1)|| < 4x5(Fe-1) — %e-1]-

Since g(+, ¥¢—1) is pux-strongly convex, we have

29X 1.511) — 9 (F11). o 9%
I35 (Ft-1) — X1 < \/ (9(xe-1,¥1-1) — 95 (¥1-1), ¥e-1)) é
Hx Hx

Using Young’s inequality, we have

5 _ rxlllye — Vi1l pylly — ye—1l?
(v —y) (VO (Fi-1) — Vyg(Xe_1,¥1-1)) < | t2 i1l + yl 1 |

Since ¥, is 2kx/-smooth and 1ty -strongly concave, we have

(v = ve)  Crxl(yt — Fi-1) = VU(Fi-1)) < 28xl(y — Fi-1) (vt — Fe—1) + Py(ye) — Yy (y)

pylly = el
5 .
Putting these pieces together yields the desired inequality. U

+ 3kxky€.

| P |

The remaining proof is based on the modification of Nesterov’s techniques (Nesterov, 2018, Sec-
tion 2.2.5). Indeed, we define the estimate sequence as follows,

2
Hylly — Yo
Toly) = Wylyo) - Yol
1 - - kxl|yer1 — yil?
r — (v 2xl(y — V1) — Vi) - =
t+1(y) 4W< g(Yi41) + 2600y = ¥¢) (Vi1 — Y1) 5
pylly — 3l? 3/2 1
_Yf — 12(kxky)?%E) + (1 - s Iy(y) forallt > 0.
We apply the inductive argument to prove,
max I'i(y) < Vy(y:) forallt>0. (C.22)
yeRr®

Eq. (C.22) holds trivially when ¢ = 0. In what follows, we show that Eq. (C.22) holds true when ¢ =
T'if Eq. (C.22) holds true forall ¢ < T'—1. Let vy = argmaxy cgn I't(y) and I'y = maxyegn 't (y),
we have the canonical form I'y(y) = I’y — (i /4)||y — v¢||?. The following recursive rules hold for
v and I'}:

Vil = ( ) + xRy (Yir1 — ¥t)s

! [k K
. B 3/2:\ (£ [Rx  Kx <112
m ( )T (%(ytm 120005,)%2) = (/= = 5 ) Iy~ 50

pyllye — vel?

s (1 ﬁ) < ;

— 265l (ve — §1) T (Y11 — 5’t)> .
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It follows from the recursive rule for I'; and its canonical form that

1 Ly (Y — Vi) 1 ~ py(y — ¥t)
I = —(1-— 2kx — - =],
VIia(y) ( 4\/%) 5 +4m kxl(Yir1 — ¥t) 5

The recursive rule for v; can be achieved by solving VI';11(vy+1) = 0. Then we have

Iy = T (Vi)

N P P P pylveer —vel® 1 (\I' (yis1) — 12(kxky)?/2¢
4, /Fxky t 4, /Fxky 4 4, /Fxky g\ItHl >y
Exlllye -y

2wl (Vir1 — 1) (Yir1 — Fi) —

Py |[Ver1 — 5’t||2>

yel? n
2 4, [FxFy 4

Then we conclude the recursive rule for I'} by plugging the recursive rule for v into the above
equality. By the induction, Eq. (C.22) holds true when ¢t = T" — 1 which implies

Iy <

< (1 - ‘WLT) U, (y7_1) + W;Ty (\I/g(yT) _ 12(,€xﬁy>3/2g)

C [Rx _ kxt S 1 1 pyllyr—1 = vr_1|?
s ~ 2 ) Iyr = yrall” - 1-
Ky 4 4, /Fxky 4, /Fxky 2

—26xl(vr_1 —Y7-1) (y7 — 5’T—1)> -

Applying Lemma 24 with t = 7" and y = y7_1 further implies that

K/XEHYT - S’TfIH2

Uy(yr-1) < 20xl(yr—1—Y7-1) (yr —¥7-1) + U(yT) —

2
_ 5 2
_MyHYT—lz yr—ll + Bk .
Putting these pieces together yields that
b Wylyr) + (1 e ) 2blyr — Fr-0)T | (771 — 7o) + e (Vi — §r1)
i rE— K — — -1 — — — (V71 — _
T = g\yT 4\/W xt\¥YT —¥Y1-1 Yr-1—YT-1 4\/WTl yr-1

4, /Fxcy —1
4, fRxchiy +1
inductive argument, it is straightforward that (y; — y:) + ﬁ(vt —y:) = 0forall t > 0. This
implies that [}, < U, (yr). Therefore, we conclude that Eq. (C.22) holds true for all ¢ > 0.

On the other hand, Lemma 24 and the update formula for I'; implies that

Using the update formula y; = y; + (yt — yt—1) and the recursive rule for v; with the

1 1
> - _ 3/2z _ ¢ - .
Lepa(y) 2 T rary (‘I’g(Y) 12(rxtiy)” "8 3ﬂx/~’»y6) + (1 4\/%) Ti(y)

Since Ky, Ky > 1, we have

1
4, /Fxky
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Repeating the above inequality yields that

1 T 3/9
B0) ~Trly) < (1= s ) () = Tuly) + 200mmy) 22
Therefore, we conclude that
T -\ 12
1 2kl + 1) D
max U, (y) — Uy(yr) < (1- Crxl T DY | o g sy )32,
yeY 4, /Fxky 2

. : < .
Since the tolerance € < e —e——775 77676y 1172

guarantee Eq. (C.21) is bounded by O(,/FxFy log(¢D3 /e)).

Now it suffices to establish the gradient complexity of the two AGD subroutines at each iteration.
In particular, we use the gradient complexity of the AGD subroutine to guarantee that g(x) <
miny g(x) + € is bounded by

3 g
O(l—&—\/glog (/M>),
€

where & is the condition number of g and x* is the global optimum of g over X. Since ) is a convex
and bounded set, {y: }+>0 is a bounded sequence. Hence {y; }+>¢ is also a bounded sequence. Since
X, () is kx-Lipschitz (cf. Lemma 23), the sequences {x}(¥:)}:>0 and {x}(y:)}:>0 are bounded.
Thus, we have

we conclude that the iteration complexity Algorithm 3 to

1o — x5 (¥2)|I* = lIx0 — x5(30) I = O(llx0 — x5 (y0)|I* + K5 D5).

Putting these pieces together yields that the gradient complexity of every AGD subroutines at each
iteration is bounded by O(/kix log((k3(|lx0 — x}(yo)[|*> + k2D3)/€)). Therefore, the gradient

X

complexity of Algorithm 3 to guarantee Eq. (C.21) is bounded by

(kx + toy)0(D2 + D2) >>

€

O (/{x\/@- log2 (

where kx = £/pix and ky = £/py are condition numbers, Dy = |[xo — x;(yo)|| is the initial
distance where x;(yo) = argminycy (X, yo) and Dy > 0 is the diameter of the constraint set ).

Appendix D. Proofs for Convex-Concave Settings

In this section, we present proofs for all results in Section 4.

D.1. Proof of Theorem 9

We first show that there exists 7' > 0 such that (X, y) = MINIMAX-APPA( f, X0, yo, , iix, fty, €, 1)
is an e-saddle point. Then we estimate the total number of gradient evaluations required to output
an e-approximate saddle point.
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First, we note that MINIMAX-APPA in Algorithm 4 can be interpreted as an inexact accelerated
proximal point algorithm INEXACT-APPA with the inner loop solver MAXIMIN-AG2 and AGD.
Using Theorem 6 and Theorem 7, the point (X, y) satisfies

max f(X,y)—-minmax f(x,y) < (1-— LY D(xg) — ¢(x*) + M +4265/%6.
yey xeX yey - 6+/kx 4

andy < Py (¥ + (1/26xf)Vy f(X,¥)) where y € ) satisfies that

r;lggf(ﬁ,y)—f(ﬁ,if) < e

We let ®(-) = maxycy f(-,y) and note that ® is px-strongly convex function. Since f is pix-
strongly-convex- /iy -strongly-concave, the Nash equilibrium (x*, y*) is unique and x* = argmin . y ®(x).
Therefore, we have

2

x — x*[|? < = [ max f(%,y) — min max f(x, .
=P < 2 (o 5, ) ~ mig o Fx.3) )

Since f(X, ) is py-strongly concave, Nesterov (2018, Theorem 2.1.5) implies that

2 2€
-y @I < 2 (max fy) - fx5)) < 2
Hy \y&€Y Hy
Since y*(-) = argmaxycy f(-,y) is ry-Lipschitz (cf. Lemma 23), |ly* — y*(X)||? = [ly*(x*) —
y*(%)||? < w2 ||%x — x*|[*. Thus, we have
~ . 4€
Iy =31 < 265 [% - x*|* + —.
y

Let U(-) = mingex f(X,-). By the definition of y, the following inequality holds true for any
yed,

0 < (y—3) @ty —¥) — Vyf(%,

= (=9 @l (y —3) = V) + (v =) (VEE) - Vy [ (x.9).

Since VU(§) = Vy/(x*(§),§), we have [ V(§) — Vy f(%,5)]| < ¢|x*(§) - %|. Using the
Young’s inequality, we have

N ~ ~ o~ Kxgy_yQ ’ixgy_y2 * (= N
v 9 (VEE) - Vyfg) < ST oY I e () - 52

Since W is iy -strongly concave and 2k ¢-smooth, we have
(Y =9) " 2rxl(3 —9) = V() < 26xlly —3) (§ = §) + ¥(F) — ¥(y)

N pxlly — ¥
y|F - =

—Rxl|ly — B
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Using the Young’s inequality, we have (y — ¥)"(y —¥) < |ly — ¥/> + (1/4)||y — ¥||>. Putting
these pieces together with y = y™* yields that

: . ~ — PU(v*) = U(v) < £~_*2 * (S o2
xmelgr(lryng;;f(x,y) )r(rgjylf(x,y) (y) —9(y) < 3uxllly —y*|I7 + px||x*(¥) — X||
< 3Brxl||y — y¥II? + 2ux X5 (F) — ()P + 2px[|x* — x|
<

Brixl[[y — y* |17 + 2 |x* — x|,

Therefore, we conclude that

A . N ~ 2 9 N .
max fxy) - min f(x,¥) < 20kxky€ + (20K5k5 + 5) (1;135 fx,y) - min max f(x, y)> :

Note that € < ¢/80kxry and § < €/ 4200/@,7/ ®k2. This together with the above inequality implies

that v
>T (o) - ) 01

3
max (X, y)—min f(x,§) < T+(20kEr345) .

1
1 _
yey x€eX 4 ( 6+/Fx

To this end, there exists an absolute constant ¢ > 0 such that maxycy f(X,y)—mingex f(x,y) < €
if the maximum number of iterations T > ¢,/kx log(mifff,é |x* — xo/|?/€). This implies that the
total number of iterations is bounded by

Kk llx* — xol|?
O | v/kxlog . .

Furthermore, we call the solver MAXIMIN-AG?2 at each iteration. Using Theorem 8 and § =
¢/(10kxky )%, the number of gradient evaluations at each iteration is bounded by

7/2 3y D2+D2 4,4 912
0] (,/fiylog <HX ty (Ex y)> log (W))

Recalling D = max{Dx, Dy} < 400, we conclude that the total number of gradient evaluations is

bounded by
xtiylD?
0 (vrmyie (255) )

This completes the proof.

D.2. Proof of Corollary 10

We first show that (X,y) = MINIMAX-APPA(fcy, X0, ¥0,?, fix; e/(4D§,), €/2,T) is an e-saddle
point. Then we estimate the number of gradient evaluations to output an e-saddle point using Theo-
rem 9. By the definition of f, the output (X, y) satisfies

max {f()A(,Y) o E||y — yO”Z} — min {f(X,f’) - 6”5’ - y0||2} <

€
yey AD2 xeX 4D2 2’
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Since the function f(x, -) is concave for each x € X', we have

. elly — yol? €
y)————, > —.
?33)2( {f(x’ ) 4D§ B ?33)2( JGer41,y) 4

On the other hand, we have

. o elly — yol? ) €
L LA L < —.
Eg;(l {f(X’Y) 4D}2, - Eg;(l f(X7Y) + 4

Putting these pieces together yields that maxycy f(X,y) — mingey f(x,¥) < e
Furthermore, letting ky = 2£D}2, /€ in the gradient complexity bound presented in Theorem 9,
we conclude that the total number of gradient evaluations is bounded by

2
o (,/MDylogs (MD>>
€ €

This completes the proof.

D.3. Proof of Corollary 11

We first show that (X,y) = MINIMAX-APPA(fc,Xo,y0,(,€/(4D%),€/(4D3),€/2,T) is an e-
saddle point. Then we estimate the number of gradient evaluations to output an e-saddle point using
Theorem 9. By the definition of f, the output (X, y) satisfies

. elx —xol? elly — yol? : L edlx=xol? elly —yol?
— - — <
yes {f &)+ " 8D2 min \JY) + =5 8D2 =

€
5
Since the function f(x, -) is concave for each x € X', we have

o 2 _ 2
max {f(f(,y)-l-eHx Xof — clly = yol } > max f(fc,y)—f.

yey 8D2 8D2 yey 1
On the other hand,
: v, ellx=x0l”  elly = yol? . €
_ < —.
min {f(x,y)+ SD2 302 < min f(x,3) + 7

Putting these pieces together yields that maxycy f(X,y) — mingex f(x,y) < e
Furthermore, letting kx = 4¢D3 /e and ry = 2(D3 /e in the gradient complexity bound pre-
sented in Theorem 9, we conclude that the total number of gradient evaluations is bounded by

2
0 <wny log? (ep)) _
€ €

Appendix E. Proofs for Nonconvex-Concave Settings

This completes the proof.

In this section, we present proofs for all results in Section 5 and Section B
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E.1. Proof of Theorem 12
Using the definition of g, we have

a , 14 —x¢||? < mi a Ly) + 0x — x¢ 0.
e x1,3) + e~ < min o y) + - x]2 +

This implies that
Dlxi1) + xee = xil2 < min {(x) + lx = xi[2} +6 < B(xe) +0.

Equivalently, we have
D(xq) — P(xp41) +0
7 .

Note that the function ®(-) + £|| - —x||? is £-strongly convex and its minimizer x} is well defined
and unique (Davis and Drusvyatskiy, 2019). Since the function ®(-) + £|| - —x¢||? is ¢-strongly
convex, we derive from Nesterov (2018, Theorem 2.1.5) that

[xe1 — x¢[|* < (E.1)

2
‘

. 26
[%er1 = x7 [ < <<I>(Xt+1) + U xpg1 — x| — o, {@(x) + (|x — Xt||2}> < 7 (E.2)

Since @ is differentiable, we have

Vo (x; 20(xF —
x; — P <x;‘— (xt)w L xt))” _ 0.
Therefore, we have
Vo(x . N Vo (xi) — Ve (x
xt+1 — P <Xt+1—(/“)>H < 2fxegs — x|+ 20l — x| + L2 ; Gees)l

Since ®(-) is 2kyf-smooth, we have [|[V®(x41) — VO (x})| < 2kyl||x4+1 — xf||. Putting these
pieces together yields that

VRD(Xt+1)
l

xtﬂ—m(xtﬂ— )H < @y + Dk — x4 2% — x| (E3)

Ky>1
< Omylixen =gl + 2flxeen - xel]-

Putting Eq. (E.1), Eq. (E.2) and Eq. (E.3) together with the Cauchy-Schwarz inequality yields

(llxtr1 = Pa (k1 — (1/OVO(xer1)) )P < 7265 x001 — X7 |17 + 867 [[x41 — xo?
< 80(P(x¢) — P(xey1) + 0) + 144K2106.

Summing up the above inequality over t = 0,1, ...,7 — 1 and dividing it by 7" yields that
80(P(x0) — P(x7))
T

ryzl 80(D(xg) — P(x7))
T

1 T-1
T ( (LlIxt41 = P (X401 — (1/€)V¢(Xt+1))H)2> =<
0

t=

+ 800 + 144K306

+ 152k3£0.
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Since X = X, is uniformly chosen from {x;}1<s<7 and § < 62/(10/13,)46, we have

T—1
E [(¢|% — Px (% — (1/0)VO(X))|)?] % (Z(f X1 — P (Xep1 — (1/£)vq>(xt+1))ll)2)

t=0
80(P(xg) — P(x7))
T

8¢A 2
e €

< .
- T 8

+ 1526346 <

Using the Markov inequality, we conclude that there exists T > clAge 2, where the output % will
satisfy /|| x — Px (x — (1/£)V®(x))|| < €/2 with probability at least 2/3. Since y is obtained by
running AGD on — f(%, ) to optimal with tolerance § < €2/(10ky)*¢, and f(X, ) is jy-concave
function, we know that §-optimality guarantees:

UPyly + (A/OVy f(%,9)] =¥
Iy =y Xl

IN
o

IN

Putting these pieces together yields that

L% =Pa (X = (1/0)Vxf(%,9))]l Lx =Pa (x = (1/0VOX))[ + [[VO(x) - Vxf(%,3)]|
L% =Px (x = (1/0)VOX))[ + Ly —y* (%)

€.

IN A CIA

This implies that (X, y) is an e-stationary point. Furthermore, we call the solver MAXIMIN-AG?2 at
each iteration. Using Theorem 8 and § < €2/ (10/<;y)4€, the number of gradient evaluations at each
iteration is bounded by

k202 (D2 4 D2) k{02 D2
0] (w//iy log ( L4 2 Y~ ) log % .

€

Therefore, we conclude that the total number of gradient evaluations is bounded by

A ¢(D2 + D2
0 (5;, Lo (M)) |
€ €

This completes the proof.

E.2. Proof of Corollary 13
Recall that the function fe is defined by

N ellv — vall2
oey) = fxy) - P

This implies that the following statement holds for all (x,y) € X x ) that

vxf(xv Y) - vxfe(xv y) =
IVyf(x,y) = Vyfe(x,y)ll <

=

DN
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Since (%, y) = MINIMAX-PPA(f., X0, ¥0, ¢, €/(2Dy), €/2,T), we have

UPxx = (1/0)Vfe(%,9)] = %]

UPyly + (1/0Vy fe(x,3)] =3 <

IN
NGNS ORI}

Putting these pieces together yields that

UPxlx = (1/OVxf(x,¥y)] = ||
UPyly + (1/OVy f(%,9)] =¥l

IN

< €

UPyly + (1/0Vy fe(3.9)] =31 + [ Vy f(x,y) = Vy fe(x.¥)ll

€.

N

IAIA

Therefore, we conclude that (X, y) is an e-stationary point of f. Furthermore, letting s, = 2¢Dy, /€
in the gradient complexity bound presented in Theorem 12, we conclude that the total number of
gradient evaluations is bounded by

/ (D2 + D?
0 <£lé¢ . {%zzlogg ( ( X y))i)'
€ € €

E.3. Proof of Theorem 20

This completes the proof.

Using the same argument as in Theorem 12, we have

D(x¢) — P(x¢41) + (5‘

7 (E4)

%1 — x¢]|? <

and

x 2 . 26
Ixet —xi I < 2 <<1><xt+1> e~ — min (@) + - xtn?}) < ¥ @5
Since @ is differentiable, we have V®(x}) 4 2¢(x} —x;) = 0 which implies | V®(x})|| = 2¢||x} —
x¢||. Since ®(-) is 2Ky ¢-smooth, we have | VO (x41) — VO(x})|| < 2ky0||x¢+1 — x7||. Putting
these pieces together yields that

V(x| 2rylllxern = x| + 200 — x| < 2ryl + 20)|[xe1 — X || 4 260 x40 — %4

<
Ky>1

< Akl xpp1 — X5 ||+ 20 %1 — x| (E.6)
Putting Eq. (E.4), Eq. (E.5) and Eq. (E.6) together with the Cauchy-Schwarz inequality yields
[V®(xis1)||> < 32&362th+1—x§||2+862\|xt+1—xt\|2 < 80 (P(xt) — P(x¢41) + 5)4—64&?,&5.
Summing up the above inequality over t = 0,1,...,7 — 1 and dividing it by 7" yields that

T—1 B o1 B
;(Z \|V<I>(Xt+1)|!2> < BU0x0) =) g5y gan2es “ BA0) =) L gp 25
t=0

T T
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Since X = X, is uniformly chosen from {x;}1<s<7 and § < 62/144/€§,£, we have

T-1
% 1 8¢(® -9 VA 2
E[Ive®)°] = T(E ||V(I)(Xt+1)||2> < (XO)T 1)) | 7205 < =2+
t=0

Using the Markov inequality, we conclude that there exists 7' > c/Age 2, where the output X will
satisfy [|[V®(x)|| < e with probability at least 2/3. Furthermore, we call the solver MAXIMIN-AG2
at each iteration. Using Theorem 8 and § < €2/ 1445?,5, the number of gradient evaluations at each
iteration is bounded by

302(D2 4 D2 2 2 )2
O( /iy log (’{y ( ); y)>10g (W))
€ €

Therefore, we conclude that the total number of gradient evaluations is bounded by

(A ryl(D2 + D2)
O (62 /Ry log? (yy )

€

This completes the proof.

E.4. Proof of Corollary 21
Recall that the function f, is defined by

: [y — yol|?
fe(x,y) = f(x,y) — W

This implies that the following statement holds for all (x,y) € X x ) that
vxf(xv Y) - vxfe(xa y) = Oa
IVyf(x,y) = Vyfexy) <

62

100£Dy”

Using Theorem 20 and letting y;(-) = argmingcy, fe(-,y), we have

IVl y: GO < <
APYly: (%) + (/0 Vy fulf,y2 (30)] - y2 R = 0.

Putting these pieces together yields that

IVxfEyex)I < =

10’
2
~ ~ ~ N €
AP (R) + (/0¥ %,V - ¥i ) < gip-
Now let x*(X) = argminycgm @1 /9¢(x) 1= ®(x) + £l|x — % 2, we have

IV®1 20 (%)[|* = 4% [1% — x*||?
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Since ®(-) + ¢|| - —%||? is £/2-strongly-convex, we have

. ‘s froy o2 s . oy < (% — x*(x)|?
ma f (%, y)—max f(x"(x), y)—¢l|x () =%|* = 2(F)=@(x" (%)) ~([[x" (%) —%|* > ==~
Since (%, y*()) satisfies |V f (5, yA ()| < /10 and [Py(y?(%) + (1/0Vy f(k,y*(%)) —
yi(%)| < €2/(50¢Dy), we have

max f(%,y) — max f(x*(%),y) - £|x*(x) - x|
yey

yEY
= max f(X,y) - f(%YI(X)) + f(%, yI(%)) — max f(x*(%),y) — £]x* (%) — %[
yey yey

IA

max f(%,y) = F(%ye (%) + (% ye(%) - F (%), ye (%) — flx" (%) - x|

) e . 5 5 o k(g {% — x*(%)]?
< ADy[[Py(ye(x) + (1/OVy f(X ye(%))) = ye X + 1% = x"E) Vi f (% ye ) = =
R A ACO)]

50¢ 14 — 164

Putting these pieces together yields that || V®; 54(X)|| < €. Furthermore, letting ry = 100£°D3 /€

in the gradient complexity bound presented in Theorem 20, we conclude that the total number of

gradient evaluations is bounded by

Dy A (D2 + D2
(e (1))

Appendix F. Proof of Technical Lemmas

<

This completes the proof.

In this section, we provide complete proofs for the lemmas in the paper.

F.1. Proof of Lemma 17

We provide a proof for an expanded version of Lemma 17.

Lemma 25 [If ® is {-weakly convex, we have

(a) ®1/2¢(x) and proxg o(x) = argmin (w) + £||lw — x||? are well defined for any x € R™.
(b) ®(proxg 9e(x)) < ®(x) for any x € R™.

(c) @y o is 4l-smooth with NV Py j50(x) = 2((x — proxg jo(x)).

Proof. Since ® is (-weakly convex, ®(-) 4 (¢£/2) || — x||* is convex for any x € R™. This implies
that ®(-) 4 £ |- — x||* is (¢/2)-strongly convex and @1 /9¢(x) and proxg, 9,(x) are well defined. For
any x € R™, the definition of proxy /5,(x) implies that

P (proxg jop(x)) < P1/20(proxg oe(x)) < @(x).

Using Davis and Drusvyatskiy (2019, Lemma 2.2), ® /9, is differentiable with V&, /QZ(X) =
20(x — proxg jo,(x)). Since proxg o, is 1-Lipschitz, we [[V®y jo0(x) — VP o (x) || < 44]]x — X[
Therefore, the function @y /5 is 4¢-smooth. O
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F.2. Proof of Lemma 19

Denote X := proxg j5¢(x), part (¢) in Lemma 17 implies

[V /90(x)||
20 '

% —x] =
Furthermore, we have 2/(x — x) € 0®(%). Putting these pieces together yields the desired result.

F.3. Proof of Lemma 23
Part (a): Letx,x’ € R™, the points y;(x) and y; (x’) satisfy that

(v - y;(x) ' Vyg(x,y;(x) <0, Vyey, (ED
(y - y;(x) Vyg(x,yis(x)) <0, Vye. (F2)
Summing up Eq. (F.1) with y = y;(x') and Eq. (F.2) with y =y} (x) yields
(v5 () =y () T (Vyg(x,y5(x) = Vyg(x', y;(x))) < 0.
Since g(x, -) is jty-strongly concave, we have
(v;(x') = y5(x)) " (Vyg(x,y5(x)) = Vyg(x,¥;(x))) + nyllys (x) —y;(x)[* < 0.
Summing up the above two inequalities yields that
(v; (') = ¥5(x)) T (Vyg(x, y5(x) = Vyg(x', y; (X)) + mylyy (%) = y5 (x> < 0.
Since Vy g is ¢-Lipschitz, we have
pyllys(x) =y, (0)1? < Llys(x) =y lllx" —x].
Therefore, we conclude that the function y(-) is ky-Lipschitz.

Part (b): Since the function y;(-) is unique, Danskin’s theorem (Rockafellar, 1970) implies that
®,, is differentiable and V@, (-) = Vxg(-, y;(-)). Letx,x" € R™, we have

VO, (x) = VO,(X)| = [[Vxg(x,y5(x)) = Vag(X', ¥, ()| < £x = x| +£lly;(x) — vy, (X))
R>1
< Rylllx =X+ Ly (x) =y ()]

Since y;(-) is ky-Lipschitz, the function ® is 2y ¢-smooth. Furthermore, let x, x' € R™, we have

By(x) = By(x) — (x' —x)'VE(x) = g(x,y;(x) —9(x,y5(x) = (x' = %) Vxg(x,y;(x))

> g(xy,(x) = 9(x,¥;(x)) = (%' = x) " Vxg(x, ¥ (x)).
Since g(-,y) is pux-strongly convex for each y € ), we have

pac X — x|

By (x) = Bg(x) — (' — %) VB, (x) > LI

Therefore, the function @ is jix-strongly convex.
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Part (¢): Lety,y’ € R, the points x;(y) and x; (y’) satisfy that

Vx € X, (F.3)

(x —x5(y) Vxg(x5(¥),¥)
! Vx e X. (F4)

> 0,
(x = x}(y") " Vxg(x5(y),y") = 0,

Summing up Eq. (F.3) with x = x(y’) and Eq. (F.4) with x = x}(y) yields

(x5 (v") = x5 () T (Vxg(x5(¥),¥) = Vxg(x5(y'),¥")) > 0.
Since g(+,y) is ux-strongly convex, we have
(x;(v") =%, (7)) (Vxg (x5 (¥),¥") = Vxg(x5(), ")) = px[x5(y") = x5(v) I > 0.
Summing up the above two inequalities yields that
(x, (") =%, () (Vxg (x5 (), ¥) = Vxg (x5 (), ¥")) — il (v") = x;(3)I*> = 0.
Since Vg is £-smooth, we have

* * 2 * *
pxllxg(y') —xg (I < Llx3(y") —xgWIY = vl-

*

Therefore, we conclude that the function X,

is kx-Lipschitz.

Part (d): Since the function xj(-) is unique, Danskin’s theorem (Rockafellar, 1970) implies that
W, is differentiable and VW, (-) = Vyg(x;(-),-). Lety,y’ € R", we have

IV, (y) =V () = IVyg(x5(y),¥)—Vya(xg(¥), ) < Llixg(y) —x5(y") I+ Ly =l

Since x;(~) is kx-Lipschitz, the function ¥, is 2k f-smooth. Furthermore, let y, y' € R", we have

Uo(y) = Te(y) = (y —¥) VI(y) = gxy).y) -9y, y) = vy —y) Vyg(xi(y).y)
> g(x5(y),y) = 9(x;(¥),¥) = (y = ¥)  Vyg(x5(y),y).

Since g(x, -) is py-strongly concave for each x € X', we have

pylly' = yI*

U, (y) — \I/g(y/> —(y— y/)Tv\I/g(Y) > 5

Therefore, the function ¥, is 1y -strongly concave.
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