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Abstract
Motivated by applications in crowd-sourcing and rank aggregation, a recent line of work has studied
the problem of estimating an n×n bivariate isotonic matrix with an unknown permutation acting on
its rows (and possibly another unknown permutation acting on its columns) from partial and noisy
observations. There are wide and persistent computational vs. statistical gaps for this problem.
It is known that the minimax optimal rate is Õ(n−1) when error is measured in average squared
Frobenius norm. However the best known polynomial time computable estimator due to Mao et al.
(2018) achieves the rate Õ(n−

3
4 ), and this is the natural barrier to approaches based on using local

statistics to figure out the relative order of pairs of rows without using information from the rest of
the matrix.

Here we introduce a framework for exploiting global information in shape-constrained estima-
tion problems. In the case when only the rows are permuted, we give an algorithm that achieves
error rate O(n−1+o(1)), which essentially closes the computational vs. statistical gap for this prob-
lem. When both the rows and columns are permuted, we give an improved algorithm that achieves
error rate O(n−

5
6+o(1)). Additionally, all of our algorithms run in nearly linear time.

Keywords: Shape-constrained estimation, bivariate isotonic matrix, non-parametric model, stochas-
tic transitivity

1. Introduction

1.1. Background

Consider the following problem in crowd-sourcing: There are n workers and m tasks and there
is an unknown matrix M where the entry Mi,j represents the probability that worker i completes
task j correctly. We are interested in the calibration problem of estimating the entries of M from
partial and noisy observations. These observations could come from auditing the performance of
the workers on some random tasks. The key to this problem is making some assumption about
the shape of M . The Dawid-Skene model Dawid and Skene (1979) is a popular model in crowd-
sourcing Snow et al. (2008); Raykar et al. (2010); Karger et al. (2011) that makes a particularly
strong assumption about the shape of M – it assumes that each worker has some unknown but fixed
probability of completing any particular task correctly. This means that all the rows of M are scalar
multiples of each other, and hence it has rank one.

The problem with the Dawid-Skene model Dawid and Skene (1979) is that it precludes the very
realistic possibility that some tasks are inherently more difficult than others. Recently Shah et al.
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Shah et al. (2016b) proposed a challenging non-parametric1 extension of the Dawid-Skene model to
address this issue. We say that a matrix A is bivariate isotonic if each of its rows and columns are
non-decreasing. In the context of crowd-sourcing, this type of shape constraint is natural because it
translates to the assumption that there is an inherent ordering of which tasks are easier than others
and which workers are more capable than others, and that the probability of completing the task
correctly is a monotone increasing function of the easiness of the task and capability of the worker.
Of course, we do not know the ordering of the workers (or perhaps, the ordering of the tasks either).
Thus Shah et al. Shah et al. (2016b) proposed modeling M as the result of applying unknown
permutations to the rows and/or columns of a bivariate isotonic matrix.

Estimating shape constrained matrices also arises in the context of noisy sorting and aggregating
ranking information Shah et al. (2016b). We say that a matrixM is strongly stochastically transitive
(SST) ifMi,j+Mj,i = 1 and after applying some unknown permutation to its rows and columns we
get a matrix whose rows and columns are non-decreasing. The interpretation is that Mi,j represents
the probability of ranking element i above element j when we compare them. If we can estimate
M from partial and noisy observations, it would allow us to accurately predict the outcomes of
subsequent comparisons. This model is more flexible than making the parametric assumption that
there is some fixed probability that each comparison gives the correct answer, regardless of the pair
of elements being compared, as in earlier work Braverman and Mossel (2008). It is also supported
by a variety of empirical studies Davidson and Marschak (1959); McLaughlin and Luce (1965);
Tversky (1972). Notably, Ballinger and Wilcox Ballinger and Wilcox (1997) studied a number of
models for noisy rankings and found that the assumption of being strongly stochastically transitive
was the only one to usually survive their scrutiny.

In either of these problems, most works seek to find an estimate M̂ that minimizes

1

nm
‖M̂ −M‖2F

However there are currently wide and persistent computational vs. statistical gaps for non-parametric
shape constrained estimation. Chatterjee and Mukherjee Chatterjee and Mukherjee (2019) gave the
first efficient algorithms based on spectral methods. He showed that they achieve the rate Õ(n−1/4).
Shah et al. Shah et al. (2016a) showed that the minimax optimal rate is Õ(n−1) but computing their
estimator requires brute-force search over the set of all permutations. Shah et al. Shah et al. (2016a)
also improved the analysis of the spectral estimator to obtain the rate Õ(n−1/2). Later Shah et
al. Shah et al. (2019) gave an alternative estimator based on Borda counts that also achieves the
same rate. Finally, Mao et al. Mao et al. (2018) gave an estimator that works by approximately
sorting the rows and columns of the matrix of observations and then applying isotonic regression.
They proved that their estimator achieves the rate Õ(n−3/4). However this is the natural barrier to a
broad class of approaches that are based on figuring out the relative order of pairs of rows from local
statistics. Any approach that makes a polynomial improvement in the error rate must inherently use
information about the entire matrix to figure out the relative ordering of pairs of rows that cannot be
separated using only local information, as we explain later (see Theorem 3).

Question 1 Is it possible to exploit global information to get better estimators for shape-constrained
estimation?

1. The term non-parametric has multiple uses within statistics. Here, as in earlier work on this topic, we use it to refer
to models where the number of parameters is at least as large as the number of observations.
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Various authors Flammarion et al. (2019); Shah et al. (2019) have conjectured that there are funda-
mental computational vs. statistical gaps for shape-constrained estimation. The natural question is:
Have we already reached the algorithmic limits of what is possible?

1.2. Our Results

Here we introduce a framework for exploiting global information in shape-constrained estimation.
As we alluded to earlier, what confounds existing approaches is that there are pairs of rows r1 and r2
that are far apart but whose relative ordering we cannot figure out from information just about them.
In fact, if all the other rows in the matrix were 0, then it is information theoretically impossible to
figure out whether r1 is above r2 in the unknown permutation, or if it is the other way around. But
if that were the case, getting their relative order wrong would not contribute much to our overall
estimation error. The difficulty is: Can there be many such pairs of rows that drive our overall
estimation error up? Our key insight is that if this were the case, we could use information from the
other rows in the matrix to figure out the relative ordering of r1 and r2 (see Section 3 for a more
detailed explanation).

We introduce a new family of test functions. Rather than summing entries of M (or rather,
noisy estimates of the entries) over contiguous intervals as in Mao et al. Mao et al. (2018), we
use unions of contiguous intervals. In fact, Mao et al. Mao et al. (2018) conjecture that no algo-
rithm that uses only information about the sums of entries along contiguous intervals can break the
Õ(n−3/4) barrier. A major technical challenge in our work is that we need a superconstant number
of steps to recover all the information about the unknown permutations that we can. Roughly, we
use information from the columns to refine our estimate of the correct order of the rows, which we
then use in turn to further refine our estimate for the correct order of the columns, and so on. We
need many carefully chosen definitions to track how our iterative algorithm makes progress. These
complications were not present in earlier works that estimate the permutation on rows and columns
using a one-shot procedure.

Our first main result shows that there is actually no computational vs. statistical gap when only
the rows are permuted:

Theorem 1 There is an estimator M̂ computable in time O
(
n2+o(1)

)
so that for any bivariate

isotonic matrix with an unknown permutation σ applied to its rows M , given Θ(n2) Bernoulli
observations of its entries has

E[
1

n2
‖M̂ −M‖2F ] ≤ Cn−1+o(1)

Prior to our work, the best known error rates for polynomial time estimators were still stuck at
Õ(n−3/4) Mao et al. (2018) (even in the case when only the rows are permuted) which is quite far
from the minimax optimal error rate. Moreover the algorithm in Mao et al. (2018) runs in time
Õ(n2.5) which is worse than ours, which is essentially optimal and runs in time that is nearly linear
in the size of the output.

We also use our framework in the setting where there are unknown permutations acting on the
rows and columns (we remark that the special case of strong stochastically transitive matrices is
only easier than what we consider here, because it corresponds to making the further assumption
that the permutations acting on the rows and columns are the same and that Mi,j +Mj,i = 1). Our
second main result is:
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Theorem 2 There is an estimator M̂ computable in time O
(
n2+o(1)

)
so that for any bivariate

isotonic matrix with unknown permutations π and σ applied to its rows and columns M , given
Θ(n2) Bernoulli observations of its entries has

E[
1

n2
‖M̂ −M‖2F ] ≤ Cn−5/6+o(1)

There is a close connection between the error rate and how many entries of M we need to
observe to get some desired average error. In particular, suppose we fix a target accuracy ε = o(1)
and we are working in the model where an unknown permutation is acting on the rows. Further
suppose we choose uniformly random entries of M and get to observe the outcome of a Bernoulli
random variable whose probability of being one is the unknown value Mi,j . Then our first main
result implies that we only need to observe O(n1+o(1)) random entries to get the average error of
our estimator down to ε. See Section 2.1 for a discussion of how changing the parameter in the sub-
Gaussian bound on the noise affects the overall estimation error. When both the rows and columns
are permuted we need only O(n7/6+o(1)) observations. Finally we implement our algorithms and
show that, on a natural benchmark studied in prior work, our algorithm empirically achieves better
error rates too.

More broadly, our algorithms point to the likely difficulty of predicting where computational vs.
statistical gaps for shape-constrained estimation fit in. Using simple local statistics is not necessarily
the limit of what can be done with efficient algorithms, although it does seem (to us) that there ought
to be some inherent limits to what is possible.

2. Problem Setup

We let Matn×n be the set of n × n matrices with entries between 0 and 1. We let BISOn×n be the
subset of bivariate isotonic matrices, i.e. the subset of Matn×n with entries sorted in nondecreasing
order in each row and column. We use Permn×n to denote the subset of Matn×n consisting of all
matrices for which the rows and columns can be permuted to obtain a bivariate isotonic matrix. For
a matrix M , we let Mπ,σ denote applying the permutation π to its rows and the permutation σ to its
columns. If only the rows are being permuted, we may write Mπ for short.

All of the matrices we deal with are n× n and for simplicity, we assume that n is a power of 2.
Throughout we will let l = log2 n. We will often work with sets of consecutive integers, so when the
context is clear, we will use (a, b] to denote the set of integers {a+1, . . . , b}. Given a matrix, we use
the term block to refer to groups of consecutive rows and cluster to refer to groups of consecutive
columns. In general, we will view the rows and columns of our matrices as n-dimensional vectors.

2.1. Sampling Model

Let M ∈ BISOn×n. We use the same sampling model as Mao et al. (2018) where we observe noisy
entries of a matrix Mη,γ for some unknown permutations η, γ. More precisely, we receive N ∼ n2

observations of the form
yil,jl = Mη(il),γ(jl) + z (1)

where for 1 ≤ l ≤ N , il, jl are chosen independently and uniformly at random from [n] and z is
chosen from some sub-Gaussian noise distribution with mean 0. The goal is to construct an estimate
M̂ that minimizes ||M̂ −Mη,γ ||22.
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We use the same poissonization trick as Mao et al. (2018) where we assume that we receive
N ′ = Poi(N) samples of the form given by (1). Let pobs = 1− e−

N
n2 be the probability that we see

at least one observation of a fixed entry. From our samples, we construct a matrix M ′ whose entries
are

M ′ij =
1

pobs
·
∑

(il,jl)=(i,j) yiljl∑
(il,jl)=(i,j) 1

and M ′ij = 0 if the denominator in the above expression is 0.
Note we can write M ′ = Mη,γ + E where E has entries drawn independently and at random

from some sub-Gaussian distribution. From now on, we will assume that we receive observations
of the form M ′ = Mη,γ + E and that the entries of E are drawn from some sub-Gaussian noise
distribution with sub-Gaussian parameter 1. Note that changing the sub-Gaussian parameter of E
by a sub-polynomial factor affects our Frobenius squared error by a sub-polynomial factor since
we can simply re-scale our observations so that E has sub-Gaussian parameter 1. Since we receive
N ′ = Poi(N) total samples, we can split the samples into no(1) parts and assume that we actually
receive no(1) independent observations M ′ (at a sub-polynomial cost to the Frobenius error).

To help with clarity of notation, we use M ′η,γ to denote the observed matrix. we use id to denote
the identity permutation and when there is ambiguity we writeMid = M . We also useM ′id to denote
the noisy version of Mid obtained by sorting the rows and columns of M ′η,γ . In general we will use
ri to denote the ith row of M and r′i to denote the same row with added noise.

3. Technical Overview

Before delving into the technical definitions and algorithm descriptions, we attempt to give some
intuition towards why the algorithm in Mao et al. (2018) encounters a barrier at Õ

(
n−

3
4

)
and how

our techniques circumvent this barrier. Similar to Mao et al. (2018) our algorithm first attempts to
estimate the unknown row and column permutation by sorting the rows and columns, and then runs
isotonic regression to recover the original matrix. The error from isotonic regression is Õ

(
n−1

)
which matches the minimax optimal rate. We give a better algorithm for sorting the rows and
columns which allows us to break the Õ

(
n−

3
4

)
barrier.

3.1. Understanding the n−3/4-Barrier

The key limitation of the algorithm in Mao et al. (2018) is that when sorting the rows it only com-
pares two rows at a time in a vacuum, without using information from the other rows. The authors
show that even in the case when the columns are perfectly sorted, there could be pairs of rows that
are Õ

(
n1/4

)
apart in Frobenius squared error that cannot be placed in the correct order with high

probability. This is captured in the theorem below.

Theorem 3 (Restated from Mao et al. (2018)) Say we receive noisy observations of a matrix Mπ

where M ∈ BISOn×n is an unknown matrix and π is an unknown permutation. Let the rows of
M be r1, . . . , rn. For any algorithm that estimates the permutation π̂, there must be some instance
M,π such that

E
[
max
i∈[n]
||rπ(i) − rπ̂(i)||22

]
≥ Õ

(
n1/4

)
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Note a row-wise error of Õ
(
n1/4

)
leads to a normalized Frobenius squared error of Õ

(
n−3/4

)
,

which is exactly the barrier that Mao et al. (2018) hits. Thus, in order to break this barrier, we must
use information from many rows simultaneously.

It is also worth noting that (by the above theorem) there may be rows ri, rj which are Õ
(
n1/4

)
apart in Frobenius squared error and such that their relative order cannot be determined even when
using information from the rest of the matrix. However, if this occurs, we show that the error from
failing to distinguish ri and rj can be amortized by lower error in estimating the rest of the matrix.

Another limitation of the algorithm of Mao et al. (2018) is in how it compares two rows. Given
noisy observations r′i, r

′
j of two rows, a natural way to compare them would be to take a subset

S ⊂ [n] and compare the sum of the entries indexed by S in each row. The algorithm in Mao
et al. (2018) only considers partial sums, i.e. when S is a contiguous interval. They conjecture that
algorithms which only exploit partial row and column sums cannot break the Õ

(
n−3/4

)
barrier. We

do not tackle this conjecture. However, we give some intuition for why partial sums are limited and
explain how to make more precise comparisons by looking at a more general family of subsets.

Say we have two rows ri, rj whose entries are sorted in increasing order and such that all entries
of ri are at most all entries of rj . Also for the sake of simplicity, assume that all entries of ri and rj
are integer multiples of 1

k for some integer k. Let S ⊂ [n] be the set of indices a, such that the ath

entry of ri and rj are not equal. It is not difficult to show that S can be written as the union of at
most k disjoint contiguous intervals (see Lemma 11). The main intuition from this example is that
the locations where two rows are different must “concentrate”. While one contiguous interval does
not suffice to capture the “difference”, looking at unions of small numbers of contiguous intervals
gives us improved distinguishing power.

3.2. Our Method For Comparing Rows

In the previous section, we outlined three key aspects that are crucial to breaking the Õ
(
n−3/4

)
barrier in the case when only the rows are permuted. They are

• Use information from many rows simultaneously

• Amortize the error from being unable to distinguish two rows ri, rj that are far apart in Frobe-
nius norm

• For determining the relative order of rows, look at the entries indexed by a subset S where S
is a union of a small number of contiguous intervals

Now we give more detailed intuition for how our algorithm accomplishes the above. Return
to the setup where we have two rows ri and rj whose entries are integer multiples of 1

k . A few
key intuitions are as follows. These intuitions will be explained in more detail in the proceeding
paragraphs.

• We need information from ∼ k rows to identify differences of size 1
k

• If there are less than k rows between two rows ri, rj whose differences have size ∼ 1
k then

the error from not distinguishing ri and rj can be amortized

• To select S, we analyze contiguous rectangles and compute the mean of all of the entries in
each rectangle

6
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In our example, assume for the sake of simplicity that the corresponding entries of ri and rj
either differ by 0 or 1

k . Note if there are fewer than k2 locations where ri and rj are different, then
the Frobenius squared error between ri and rj is less than 1 and we do not actually need to be able
to distinguish them in order to reach the minimax optimal error rate. Essentially, the threshold for
which our algorithm needs to work is when there are∼ k2 differences between ri and rj . If there are
no rows between ri and rj in the sorted order then we may still run into the same issue that pairwise
comparisons only allow us to guarantee normalized Frobenius error down to Õ

(
n−3/4

)
. However,

observe the following. The L1 distance between ri and rj is ∼ k. The L1 distance between the
smallest and largest row is at most n. Thus, very roughly, the threshold that our algorithm needs
to handle is when there are ∼ k rows in between ri and rj in the sorted order. If there are fewer
rows between ri and rj , then our algorithm makes up for the error of not distinguishing ri and rj
by having smaller error elsewhere. The intuition that we need k rows to identify differences of size
1
k is crucial in the actual algorithm and proof (for instance, see the second clause of Lemma 18 and
the third clause of Definition 21).

Now, making one more simplification, we arrive at the following “core instance”. We have
k
2 copies of ri and k

2 copies of rj that form a k × n matrix. We are given noisy observations of
their entries and we need to separate the two “types”. Partition [n] into intervals of size k, say
I1 = {1, 2, . . . , k}, I2 = {k + 1, . . . , 2k}, . . . , In

k
= {n − k + 1, . . . , n}. We further simplify the

instance by assuming that ri and rj are constant on each interval. To see why this is a reasonable
assumption, note that there are ∼ k2 differences and the set of differences is the union of at most
k distinct intervals. Thus, it suffices to look at intervals of length k. Our goal is to identify the
intervals where ri and rj are different.

We now show a technique for the special case outlined above and provide some intuition for how
our algorithm works in the general case. Say we have three consecutive intervals Ia−1, Ia, Ia+1 such
that ri and rj differ on Ia but not Ia−1 or Ia+1. Say on Ia the entries of ri are x

k and the entries
of rj are x+1

k . Then the mean of the entries in Ia−1 across all of the rows is at most x
k while the

mean of the entries in Ia+1 across all of the rows is at least x+1
k . This suggests that to identify

the differences between ri and rj , we should look at the means of all of the entries in each of
the intervals I1, . . . , In

k
. Note that in one interval, there are k2 entries (since there are k rows), so a

difference of 1
k can be detected after adding entry-wise noise. Note it is the step of computing means

of contiguous blocks that allows us to aggregate information from many rows simultaneously.
In the general case there are many complications. Even in the special case above, there is

an additional complication when the intervals where ri and rj differ are consecutive (i.e. ri, rj
differ on Ia and Ia+1). Our full algorithms require many additional procedures to deal with such
complications, which will not be discussed here. we hope the simplified example above illuminates
the motivation for one crucial step of our algorithm.

3.3. Our Method for 2D Sorting

In the case when both the rows and columns of the matrix are permuted, there is one more aspect
of our algorithm that allows us to beat the Õ

(
n−3/4

)
barrier. This is the number of rounds of

“adaptivity”. In particular, our algorithm iteratively sorts the rows and columns, using an improved
estimate of the row permutation to help sort the columns and vice versa. While the algorithm in
Mao et al. (2018) only performs 2 adaptive rounds, our algorithm performs no(1) adaptive rounds,
and we believe this is necessary for obtaining better error rates.
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4. Basic Definitions

We will use L to denote the set {1, 2, 4, . . . , 2l}, the set of powers of 2 between 1 and n. For a
matrix M or vector v, let µ(M) (respectively µ(v)) denote the mean of its entries and for a vector
v, we may use vi or v(i) interchangeably to denote its ith entry. For two vectors u, v, we say u ≤ v
if every entry of u is at most as large as the corresponding entry of v. When u and v are rows in a
matrix M ∈ Permn×n, we say v is bigger than u or u is smaller than v if u ≤ v.

Throughout this paper, when we say that an event Xn occurs with negligible probability, we mean
that for any constant c, as n→∞, Xn occurs with probability less than 1

nc .

Definition 4 Let Vn be the set of n-dimensional vectors with all entries between 0 and 1. Let
Un ⊂ Vn be the subset of Vn containing all vectors with entries sorted in nondecreasing order. We
call vectors in Un well-sorted. Note that the rows and columns of Mid are well-sorted.

Definition 5 For a vector v ∈ Rn and a set of indices S ⊂ [n], we define

σ(v, S) =
1√
|S|

∑
i∈S

vi

Definition 6 For a set of vectors v1, . . . , vk, define the multidimensional variance

V ({v1, . . . , vk}) =
1

k

∑
1≤i<j≤k

||vi − vj ||22

Note that if the vectors are 1-dimensional (i.e. real numbers) then the above coincides with the
usual definition of variance.

Definition 7 Given a matrix M , a set S of rows and a set T of columns, let R(M,S, T ) denote
the restriction of M to the rows in S and the columns in T . If T is the set of all columns, we may
write R(M,S) for simplicity. Define µ(M,S) as the mean of all of the entries in the corresponding
restriction and define µ(M,S, T ) similarly.

Definition 8 Let Ina,b denote the set of integers in the interval (ab, a(b+ 1)]. Let Di,j = In2i,j

denote the set of integers in the interval
(
j · 2i, (j + 1) · 2i

]
. We call intervals of the form Di,j

dyadic. We call a set of consecutive rows indexed by Di,j a dyadic block and a set of columns
indexed by Di,j a dyadic cluster.

5. Algorithms

5.1. Meta Algorithm

Our algorithm for the general case when both the rows and columns are permuted consists of three
high-level steps, similar to the previous algorithm given in Mao et al. (2018).

8
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Algorithm 1 Meta Algorithm

1: Split the observations into no(1) parts
2: Run 2D MULTISCALE SORT (described below) to obtain estimates for the hidden permutations
η̂, γ̂.

3: Let M̂ be the matrix in the family {Mη̂,γ̂ |M ∈ BISOn×n} that minimizes ||M̂ −M ′||22. Output
M̂ .

Note that the last step is a convex optimization problem and can be solved in almost-linear time
Kyng et al. (2015); Bril et al. (1984). The main contribution in this paper is an improved algorithm
for the sorting step which we describe in the proceeding sections. To see why the problem of
estimating the original matrix reduces to sorting the rows and columns, we recall Proposition 1 in
Mao et al. (2018).

Theorem 9 [Restated from Mao et al. (2018)] Let M ∈ BISOn×n and let M ′η,γ = Mη,γ + E
where η, γ are permutations on [n] and E is a matrix with entries drawn from a sub-Gaussian noise
distribution with variance ζ2.

Let η̂ and γ̂ be estimates for η, γ and let M̂ be the matrix in the family {Mη̂,γ̂ |M ∈ BISOn×n}
that minimizes ||M̂ −M ′η,γ ||22. Then with at least 1− 1

n6 probability

||M̂ −Mη,γ ||22 ≤ O
(
max(ζ2, 1)

(
n log2 n+ ||Mη,γ̂ −Mη,γ ||22 + ||Mη̂,γ −Mη,γ ||22

))
5.2. 2D Multiscale Sort

The goal of the 2D MULTISCALE SORT algorithm is to obtain estimates of η, γ from observing a
matrix M ′η,γ . More specifically, we will attempt to sort the rows and columns in increasing order.
The output of our sorting algorithm will be a matrix M ′η̂−1η,γ̂−1γ and η̂, γ̂ will be our estimates of
the hidden permutations.

In light of Theorem 9, if we let π = η̂−1η and σ = γ̂−1γ it suffices to bound ||Mπ,id −Mid||22
and ||Mid,σ −Mid||22

The MULTISCALE SORT algorithm will iteratively call several subroutines which we describe be-
low. At a high level, in MULTISCALE SORT we iteratively sort the rows and the columns. To sort
the rows, we split the rows into two halves using BLOCK SORTING such that the rows in one half
are larger than the rows in the other half. We then recurse to further sort the rows within each half.

Algorithm 2 2D MULTISCALE SORT Overview
Input matrix M ′η,γ ;

for i in [l10] do
for j in {0, 1, . . . , l − 1} do

Run BLOCK SORTING on all dyadic blocks of size n
2j

;
end

Transpose matrix to swap rows and columns;
end
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Algorithm 3 BLOCK SORTING Overview
Input block R(M ′, (a, b]);
Initialize lower set X1 = ∅, upper set X2 = ∅, count = 0; while |X1| + |X2| < b − a and
count < no(1) do

Run 2D PIVOTING ALGORITHM to add some subset of rows to X1 or X2;
Consider restriction of M ′ to rows that have not yet been added to either X1 or X2;
count = count + 1;

end
Add rows that have not been added to X1 or X2 arbitrarily so that

|X1| = b
b− a

2
c, |X2| = d

b− a
2
e

;
Permute rows in R(M ′, (a, b]) so that all rows in X2 appear above all rows in X1;

As mentioned in Section 2, we can assume that we have access to a sub-polynomial number of
independent samples M ′η,γ (i.e. the noise is drawn independently for each of the samples).

5.3. Block Sorting

Goal: The block sorting subroutine splits the rows in a block of the observed matrixR(M ′, (a, b])
into two parts, an upper and lower half. The goal is to obtain a partition that almost satisfies the
property that all rows in the upper half are larger than all rows in the lower half. More formally, our
goal is to obtain a partition X1 ∪X2 = (a, b] such that

• X1 and X2 are disjoint

• |X1| − |X2| ∈ {0, 1}

• For any i ∈ X1 and j ∈ X2, ri < rj .

In the above, X1 is the lower half and X2 is the upper half. We will not be able to satisfy the last
property exactly, but we will show that our algorithm obtains a partition that is close to satisfying
the desired property, where closeness is quantified in terms of Frobenius error.

Overview: To sort a block of the observed matrix, we will iteratively add rows, for which we are
confident about their position, to the upper and lower half. We will do this using the 2D PIVOTING

ALGORITHM described below. To sort the entire block, we iteratively apply the pivoting algorithm,
remove the rows that have been added to the upper or lower half, and then recurse on the remaining
rows.

5.3.1. 2D PIVOTING ALGORITHM

Goal: Given a block and an index, determine for some subset of the rows whether their rank is
higher or lower than the given index. More formally, we will work with a block R(M ′, (a, b]) and
also a pivot index, say 0 ≤ d ≤ k where k = b − a. The goal is to create two sets of rows X1 and
X2 such that the following holds with high probability.

• For any r′i ∈ X1, ri is among the d smallest rows in the set {ra+1, . . . , rb}.

10
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• For any r′i ∈ X2, ri is among the k − d largest rows in the set {ra+1, . . . , rb}.

We call X1 the lower set and X2 the upper set.

Algorithm Description: We will draw a fresh set of samples for each run of the pivoting algo-
rithm. Now we choose three integers r, t, w ∈ L. We will call r the cluster size and t the difference
size. Note there are at most l3 possible choices for r, t, w. For each tuple (r, t, w) we run the three
steps below.

STEP 1

Overview: We will find a set of candidate locations that will be used to distinguish the rows in
the given block R(M ′, (a, b]). The set we construct will be a union of disjoint intervals of length r.
We construct the set by comparing the means of the entries in various contiguous rectangles. Note
how this idea was motivated in Section 3.

Description: For each (r, t) we build an auxiliary matrix M ′(a, b, r, t) as follows. Note the entire
block in consideration is a k× n matrix. We can break this into n

r matrices of size k× r. Say these
matrices are, in order from left to right, A1, . . . , An

r
. Let S0 be the subset of {1, . . . , nr } containing

indices i such that either |µ(Ai)−µ(Ai+1)| ≥ 1
30t or |µ(Ai)−µ(Ai−1)| ≥ 1

30t . Let µ
(
An

r
+1

)
= 1

and µ(A0) = 0 (as these indices are “out of bounds”). Let

S = {1, . . . , n
r
} ∩

⋃
i∈S0

{i− 1, i, i+ 1}


Note S is the union of S0 and the set of all indices adjacent to some element of S0. If the set S
consists of more than 1000t elements, don’t proceed to the second step. We call S0 the starter-set
and S the preliminary-set.

STEP 2

Overview: We will further refine the set constructed in the previous step. For each of the disjoint
intervals of length r in the set from the previous step, we look at the corresponding r × k rectangle
of R(M ′, (a, b]) and take the mean of the entries in each row to get a vector v ∈ Rk. We keep the
intervals for which ||v||2 is large and throw away the rest.

Description: We have a set S with |S| ≤ 1000t. Say S = {i1, . . . , ia}. For each i ∈ {1, 2, . . . , nr },
let ci be the column vector obtained by taking the mean of the entries in each row of Ai. Note ci
has dimension k. Now let c′i be the column vector obtained by subtracting µ(ci) from each entry
of ci (so c′i is a k-dimensional vector such that the mean of its entries is 0). We will now construct
T ⊂ S as follows. If a ≤ w, set T = S. Otherwise, let T be a set of w indices among {i1, . . . , ia}
corresponding to the w columns where the vector c′ij has the largest magnitude.

STEP 3

Overview: Given a set R ⊂ [n] of candidate locations from the previous step, we sort the rows
based on σ(r′i, R), the sum of their entries in locations indexed by R. If the sum is too small, the
row is added to the lower set and if the sum is too large, the row is added to the upper set.

11
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Description: Define the test-set R =
⋃
j∈T (r(j − 1), rj]. Draw a fresh sample M ′ (i.e. the noise

added to each entry is resampled from the noise distribution). Sort the rows in the current block
r′1, . . . , r

′
k according to σ(r′i, R). Let λ be a permutation on k elements such that σ(r′λ(1), R) ≤

· · · ≤ σ(r′λ(k), R). Let τ ≈ 10l be a chosen threshold. Let Y1|(r,t,w) be the set of all 1 ≤ i ≤ k such
that

σ(r′λ(d+1), R)− σ(r′i, R) ≥ τ

and let Y2|(r,t,w) be the set of all 1 ≤ i ≤ k such that

σ(r′i, R)− σ(r′λ(d), R) ≥ τ

For edge cases, if d = 0 let Y1|(r,t,w) = {1, 2, . . . , k} and Y2|(r,t,w) be empty and vice versa if d = k.
Now take X1 to be the union of the set Y1|(r,t,w) over all choices of r, t, w and similarly let X2 be
the union of Y2|(r,t,w) over all choices of r, t, w. As we will show later on, with high probability the
sets X1 and X2 will be disjoint.

5.3.2. BLOCK SORTING USING THE PIVOTING ALGORITHM

We now explain how to split a blockR(M ′, (a, b]) into two halves by iteratively running the pivoting
algorithm. First run the pivoting algorithm on the entire block with d = bk2c. we obtain two sets X1

and X2. Add all elements of X1 to L and all elements of X2 to U . Now set d = bk2c − |X1| and
run the pivoting algorithm on the matrix formed by the remaining rows, R(M ′, (a, b]/(X1 ∪X2)).
Repeat this process ll

0.51
times or until all rows have been added to either the upper or lower half. If

any rows remain, add them to either half arbitrarily so that U and L have the correct size.

5.4. Omitted Algorithms

A complete description of all relevant algorithms in our paper can be found in Appendix B. This
includes a full description of 2D MULTISCALE SORT and a variant, 1D MULTISCALE SORT, that
allows us to obtain a better error guarantee when only the rows are permuted.
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Appendix A. Experimental Results

We implemented a simplified version of our algorithm and a version of the algorithm described in
Mao et al. (2018). Below we plot the performance of both algorithms. Note the steeper slope of the
blue lines indicates a better dependence on n in the error of the estimator.

Figure 1: The diagram on the left shows the family of matrices that we work with. The plot on the
right shows the log-normalized Frobenius error, 1

n2 ||M̂ −M ||22, of the two estimators for
various values of n.

Appendix B. Omitted Algorithm Descriptions

B.1. Full 2D MULTISCALE SORT Algorithm

Here we complete the description of the 2D MULTISCALE SORT algorithm, using BLOCK SORTING

as a subroutine.

B.1.1. FULL ROW SORTING

We will iteratively use the block sorting algorithm to sort all of the rows of the observed matrix.
First we run the block sorting algorithm on the entire matrix to split the set of rows into two halves
of size ∼ n

2 . We will permute the rows of M ′ so that all rows indexed by U appear above all rows
indexed by L. We call the set of rows indexed by U the upper block and the set of rows indexed
by L the lower block. We will then run the block sorting algorithm on the upper and lower block
to split each of the two blocks obtained in the first step into an upper and lower block of size ∼ n

4 .
We recurse again on the blocks of size n

4 . In total we will run l phases. Note that the number of
independent samples we need in one step of the recursion is upper bounded by the largest number
of samples required by the block sorting algorithm (since the blocks we are sorting are independent,
we can split a fresh sample of the entire matrix into one sample for each block).

B.1.2. FULL ALGORITHM

The full MULTISCALE SORT algorithm works by first sorting the rows using the method described
above. Then we fix the row permutation and sort the columns using the same method. We repeatedly
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sort the rows and then columns forO(l10) iterations and output the resulting matrix. It is not difficult
to see that we need at most ll

0.52
= no(1) independent samples.

B.2. 1D Multiscale Sort

We now show a different algorithm, called 1D MULTISCALE SORT that (when plugged into our
meta algorithm in place of 2D MULTISCALE SORT) gives a better error guarantee when the column
permutation is known to be the identity. The overall algorithm will involve one pass of the full row
sorting algorithm, except we will use a different pivoting algorithm. Note that we do not change the
block sorting algorithm and full row sorting algorithm except for the different pivoting subroutine
described below.

B.2.1. 1D PIVOTING ALGORITHM

The goal and setup of the 1D PIVOTING ALGORITHM is the same as for the 2D PIVOTING ALGO-
RITHM. Say we are given a pivoting index d. As in the general case, we will draw a fresh set of
samples for each run of the pivoting algorithm. Choose parameters r, t as in the general pivoting
algorithm.

STEP 1

Construct the preliminary set as in the 2D PIVOTING ALGORITHM.

STEP 2

Overview: Given the set from the previous step, we will compute weights for the elements. We
will compute the weights by constructing an auxiliary matrix and using its principal component.
Note we can view a weighted set as a vector v.

Description: We have a set with |S| ≤ 1000t. Say S = {i1, . . . , ia}. For each i ∈ {1, 2, . . . , nr },
let ci be the column vector obtained by taking the mean of the entries in each row of Ai. Let c′i be
obtained by demeaning ci (i.e. subtracting the mean of the entries of ci from each entry). Now let
N be the k × a matrix that has columns c′i1 , . . . , c

′
ia

. Let v ∈ Ra be a unit vector that maximizes
||Nv||2. Let v+ be the vector obtained by taking the positive entries of v and zeroing out the other
entries and let v− be the vector obtained by taking the negative entries of v and zeroing out the other
entries. Note v = v+ − v−.

STEP 3

Overview: We will sort the rows based on their inner product ri · v where v is the vector con-
structed in the previous step. Rows for which the inner product is too small are added to the lower
set and rows for which the inner product is too large are added to the upper set.

Description: Draw a fresh sample M ′ and use it to construct the matrix N (i.e. we construct the
same matrix N as before but the noise is effectively resampled). Let the rows of N be s′1, . . . , s

′
k.

If ||Nv+||2 ≥ ||Nv−||2 let vtest = v+

||v+|| and otherwise set vtest = −v−
||v−|| . We essentially imitate the

third step of the general pivoting algorithm but project onto vtest to sort the rows. In particular, let
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λ be a permutation on [k] such that s′λ(1) · vtest ≤ · · · ≤ s′λ(k) · vtest and let τ ≈ 10l be a chosen
threshold. Let Y1|(r,t) be the set of all 1 ≤ i ≤ k such that

s′λ(d+1) · vtest − s′i · vtest ≥
τ√
r

and let Y2|(r,t) be the set of all 1 ≤ i ≤ k such that

s′i · vtest − s′λ(d) · vtest ≥
τ√
r

Edge cases d = 0 and d = k are dealt with as in the general case. Now let X1 be the union of
Y1|(r,t) over all choices of r, t and let X2 be the union of Y2|(r,t) over all choices of r, t.

Appendix C. Block Differences

The analysis of our algorithms will rely on understanding certain structures in the rows and differ-
ences between rows of the underlying matrix. In this section, we formally introduce several tools
that will be used extensively later on.

Definition 10 Given vectors u, v, we say u is (x, y)-above v if u ≥ v and there are x locations
where the entry in u is at least 1

y more than the corresponding entry in v.

Lemma 11 Say we have two vectors v = (v1, . . . , vn) and u = (u1, . . . , un) with u ≥ v and
u, v ∈ Un. Let ti = ui − vi. Then for any subsequence i1, . . . , ik of 1, 2, . . . , n,

|ti2 − ti1 |+ · · ·+ |tik − tik−1
| ≤ 2

Proof We have

|tij+1−tij | = |(uij+1−vij+1)−(uij−vij )| ≤ |uij+1−uij |+|vij+1−vij | = (uij+1−uij )+(vij+1−vij )

Plugging this in we get,

|ti2 − ti1 |+ · · ·+ |tik − tik−1
| ≤ (uik − ui1) + (vik − vi1) ≤ 2

Lemma 12 Say we have two vectors u, v ∈ Vn such that u ≥ v and ||u − v||2 ≥ 2
n . Then there

exists x, y ∈ L such that u is (x, y)-above v and x
y2
≥ ||u−v||

2

16l .

Proof For each 1 ≤ i ≤ l, let xi be the number of locations where the entry in u is at least 1
2i

larger than the corresponding entry in v. Let x′i be the smallest power of 2 that is at least xi (or 0 if

xi = 0). Note by the minimality of x′i, u is
(
dx
′
i
2 e, 2

i
)

-above v for every i. Next note that

||u− v||2 ≤ x′1 + x′2

(
1

2

)2

+ · · ·+ x′l

(
1

2l−1

)2

+
1

n
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This is because all entries of u − v are at most 1. The number of entries that are between 1
2 and 1

is at most x′1, the number of entries that are between 1
4 and 1

2 is at most x′2 and so on. For the last
term, the total L2 error contributed by entries where u − v is less than 1

2l
is at most 1

n . Therefore,
there exists some i such that

x′i

(
1

2i−1

)2

≥
||u− v||2 − 1

n

l
≥ ||u− v||

2

2l

Since u is
(
dx
′
i
2 e, 2

i
)

-above v, choosing x = dx
′
i
2 e and y = 2i, we are done (note dx

′
i
2 e is a power of

2 since x′i is, the ceiling is only there for the case when x′i = 1).

Claim Say we have a set of row vectors r1 ≤ · · · ≤ rk+1 ∈ Vn such that ri+1 is (x, y)-above ri
for all 1 ≤ i ≤ k. Also assume k ≤ n. Then there must exist x′, y′ such that

• x′ is a power of 2 between 1 and n

• y′ is a power of 2

• rk+1 is (x′, y′) above r1

• x′ ≥ x
2l

• y
n ≤ y

′ ≤ 2y

• x′

y′2
≥ 1

8l ·
kx
y2

Proof For each i, place a marker on the locations among {1, 2, . . . n} where the entry in ri+1 is
at least 1

y larger than the entry of ri. For each j ∈ [n], let αj be the total number of markers on
location j and for a constant c let βc be the number of locations with at least c markers. Using a
standard argument, there exists an integer c such that

cβc ≥
α1 + · · ·+ αn

l
≥ kx

l

Note that rk+1 is
(
βc,

y
c

)
-above r1. We can now set x′ to be the largest power of 2 at most βc and y′

to be the smallest power of 2 at least yc . We now verify the remaining conditions. Note y
n ≤ y

′ ≤ 2y
is clear.

x′ ≥ βc
2
≥ kx

2cl
≥ x

2l

x′

y′2
≥ c2βc

8y2
≥ cβc

8y2
≥ kx

8ly2

Definition 13 Let M ∈ Matn×n. We say two sets of rows (r1, . . . , rk), (s1, . . . , sk) of M form a
(k, x, y) difference if r1 ≤ · · · ≤ rk, s1 ≤ · · · ≤ sk , and s1 is (x, y)-above rk.
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Definition 14 Let M ∈ Matn×n. We say two sets of rows (r1, . . . , rk), (s1, . . . , sk) in M form a
(k, x, y)-error if they form a (k, x, y)-difference and all of (s1, . . . , sk) are below (r1, . . . , rk). We
say the size of a (k, x, y) error is kx

y2
.

Definition 15 We say that a matrix M ∈ Matn×n contains a type (a, b, x, y)-error if the following
holds. There exist a sets of 2b rows S1, . . . , Sa such that all rows of Si are below all rows of Sj for
i < j and each set forms a (b, x, y)-error. We define an (a, b, x, y)-difference similarly except we
require that each set forms a (b, x, y)-difference. We say the size of a (a, b, x, y) error or difference
is abx

y2
.

Lemma 16 Let M ∈ Matn×n and let r1, . . . , rk be some of its rows such that r1 ≤ · · · ≤
rk and V ({r1, . . . , rk}) ≥ 2 log2 k. There exist c, x, y ∈ L such that cx

y2
≥ V ({r1,...,rk})

32l2
and

(rk−c+1, . . . , rk) and (r1, . . . rc) form a (c, x, y)-difference.

Proof First note that

V ({r1, . . . , rk}) =
1

k

 ∑
1≤i<j≤k

||ri − rj ||22



=
1

k

||r k2+1 − r k
2
||22 +

log2 k−1∑
i′=0

∑
i<j

2i
′≤min(i,k+1−j)<2i

′+1

||ri − rj ||22


≤ 1

k

log2 k−1∑
i′=0

2i
′+1k||rk+1−2i′ − r2i′ ||

2
2

 =

log2 k−1∑
i′=0

2i
′+1||rk+1−2i′ − r2i′ ||

2
2

In particular for some index i0,

2i0 ||rk+1−2i0 − r2i0 ||22 ≥
V ({r1, . . . , rk})

2 log2 k

We set c = 2i0 . Note that the above gives us ||rk+1−2i0 − r2i0 ||22 ≥ 1
2i0
≥ 2

n so applying Lemma

12, there exist x, y ∈ L such that rk+1−2i0 is (x, y)-above r2i0 and x
y2
≥
||r
k+1−2i0

−r
2i0
||22

16l . We get

that cx
y2
≥ V ({r1,...,rk})

32l2
. Also note that (rk−c+1, . . . , rk) and (r1, . . . rc) form a (c, x, y)-difference

so we are done.

C.1. Detectable Block Differences

Now that we have introduced basic tools for dealing with difference structures, the main goal in this
section is to show that it “suffices” to consider (a, b, x, y) errors where the parameters a, b, x, y are
in a range that can be detected by our algorithm. In other words, we show that once we control
(a, b, x, y) errors for a certain regime of a, b, x, y we have an upper bound on the L2 error. Below,
f(n) will be some function with 1 < f(n) < n. We will set it more precisely later on.
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Definition 17 For a permutation π on {1, 2, . . . , n}, its dyadic decomposition is a set of l + 1
permutations (π0, π1, π2, . . . , πl) defined as follows. Consider the list {π(1), . . . , π(n)} (which
contains each integer between 1 and n exactly once). To obtain πi, consider the dyadic intervals
Dl−i,0 . . . , Dl−i,2i−1 and for each dyadic interval, sort the elements of the list within that dyadic
interval in increasing order.

Example 1 For π = (4, 5, 1, 6, 3, 8, 7, 2), we have π0 = id = (1, 2, 3, 4, 5, 6, 7, 8), π1 = (1, 4, 5, 6, 2, 3, 7, 8),
π2 = (4, 5, 1, 6, 3, 8, 2, 7), π3 = π = (4, 5, 1, 6, 3, 8, 7, 2).

Lemma 18 Let M ∈ BISOn×n and π be a permutation. If ||Mπ − Mid||2 ≥ E ≥ nl1000l
0.5

then there must exist an (a, b, x, y) error in Mπ where a, b, x, y are powers of 2 with the following
properties.

• ab x
y2
≥ E

ll0.5

• y ≤ b

Consider the dyadic decomposition of π, (π0, π1, . . . , πl). There must exist an index 0 ≤ i ≤
l − 1 such that ||Mπi − Mπi+1 ||2 ≥ E

l . We will first focus on each dyadic block Dl−i,j . Let
k = n

2i+1 . The block R(Mπi , Dl−i,0) consists of 2k rows, say r1, . . . , rk, rk+1, . . . , r2k in order.
We know r1 ≤ r2 ≤ · · · ≤ r2k by definition. The block R(Mπi+1 , Dl−i,0) consists of the same
rows but in a different permutation. We use the term first half to refer to the first k rows and
second half to refer to the second k rows of R(Mπi+1 , Dl−i,0). There must exist an integer c such
that exactly c rows are swapped between the two halves when compared to R(Mπi , Dl−i,0). Let
{i1, . . . , ic} ⊂ {1, 2, . . . , k} and {i′1, . . . , i′c} ⊂ {k + 1, . . . , 2k} such that ri1 , . . . , ric occur in the
second half ofR(Mπi+1 , Dl−i,0) and ri′1 , . . . , ri′c occur in the first half of R(Mπi+1 , Dl−i,0). Also
WLOG i1 < · · · < ic and i′1 < · · · < i′c. we first prove the following inequality. Claim

||R(Mπi , Dl−i,0)−R(Mπi+1 , Dl−i,0)||2 ≤ 2
c∑
j=1

||rij − ri′c+1−j
||2

Proof First note

||R(Mπi , Dl−i,0)−R(Mπi+1 , Dl−i,0)||2 = ||R(Mπi , Dl−i−1,0)−R(Mπi+1 , Dl−i−1,0)||2+
||R(Mπi , Dl−i−1,1)−R(Mπi+1 , Dl−i−1,1)||2

For a permutation σ on k elements, letRσ(Mπi+1 , Dl−i−1,0) denote permuting the rows inR(Mπi+1 , Dl−i−1,0)
according to σ. Over all permutations σ, the identity permutation minimizes ||R(Mπi , Dl−i−1,0)−
Rσ(Mπi+1 , Dl−i−1,0)||2 since when σ is the identity permutation, the rows of both matrices are
sorted in increasing order. It is clear that there exists a permutation σ such that

||R(Mπi , Dl−i−1,0)−Rσ(Mπi+1 , Dl−i−1,0)||2 =

c∑
j=1

||rij − ri′c+1−j
||2

Thus, we have

||R(Mπi , Dl−i−1,0)−R(Mπi+1 , Dl−i−1,0)||2 ≤
c∑
j=1

||rij − ri′c+1−j
||2
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Using a similar argument for the dyadic block Dl−i−1,1 and adding the two inequalities, we get the
desired.

The next step in the proof of Lemma 18 will be to upper bound the quantity
∑c

j=1 ||rij −
ri′c+1−j

||2 in terms of (a, b, x, y) differences. Let 2f be the largest power of 2 at most c. Note

2f∑
j=1

||rij − ri′c+1−j
||2 ≥ 1

2

c∑
j=1

||rij − ri′c+1−j
||2

since in the sum on the left hand side, we are taking the largest terms. Now note that since the terms
in the sum are (weakly) decreasing,

S =

2f∑
j=1

||rij − ri′c+1−j
||2 ≤ ||ri1 − ri′c ||

2 + 2||ri2 − ri′c−2
||2 + · · ·+ 2f ||ri

2f
− ri′

c+1−2f
||2

Therefore, there exists some index 0 ≤ g ≤ f such that 2g||ri2g − ri′c+1−2g
||2 ≥ S

f+1 . We will
use the above and apply Lemma 12 on the rows ri2g and ri′

c+1−2g
to deduce the following. Claim

If ||R(Mπi , Dl−i,0)− R(Mπi+1 , Dl−i,0)||2 ≥ 8k(f+1)
n then there exist three integers b0, x0, y0 ∈ L

such that R(Mπ, Dl−i,0) contains a (b0, x0, y0)-error and

b0x0
y20
≥
||R(Mπi , Dl−i,0)−R(Mπi+1 , Dl−i,0)||2

100l2

.
Proof By the computations in the previous paragraph

||R(Mπi , Dl−i,0)−R(Mπi+1 , Dl−i,0)||2 ≤ 2
c∑
j=1

||rij − ri′c+1−j
||2 ≤ 4

2f∑
j=1

||rij − ri′c+1−j
||2

≤ 4(f + 1)2g||ri2g − ri′c+1−2g
||2

In particular ||ri2g − ri′
c+1−2g

||2 ≥ 8k(f+1)
n

1
4(f+1)2g ≥

2
n so we can apply Lemma 12 and find

integers x0, y0 such that ri′
c+1−2g

is (x0, y0)-above ri2g and x0
y20
≥
||ri2g−ri′c+1−2g

||2

16l . Set b0 = 2g.
The rows (ri1 , . . . , ri2g ), (ri′c , . . . , ri′c+1−2g

) form a (b0, x0, y0) error in Mπ. We have

b0x0
y20
≥ 2g

||ri2g − ri′c+1−2g
||2

16l
≥
||R(Mπi , Dl−i,0)−R(Mπi+1 , Dl−i,0)||2

4(f + 1) · 16l

≥
||R(Mπi , Dl−i,0)−R(Mπi+1 , Dl−i,0)||2

100l2

So far we have only worked with the dyadic block Dl−i,0 to find a (b, x, y)-error. Clearly Claim
C.1 also applies to other dyadic blocksDl−i,j . If we “amortize” the above inequality over all dyadic
blocks at level i, we will be able to find an (a, b, x, y)-error of sufficient size.
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Claim There exist a, b, x, y ∈ L such that Mπ contains an (a, b, x, y)-error and abx
y2
≥ E

400l6

Proof Note

||Mπi −Mπi+1 ||2 =
2i−1∑
j=0

||R(Mπi , Dl−i,j)−R(Mπi+1 , Dl−i,j)||2

Let S be the set of indices j such that ||R(Mπi , Dl−i,j)−R(Mπi+1 , Dl−i,j)||2 ≥ 8k(f+1)
n . We have∑

j 6∈S
||R(Mπi , Dl−i,j)−R(Mπi+1 , Dl−i,j)||2 ≤

8k(f + 1)

n
|S| ≤ 4(f + 1)

Since we assumed E > n,∑
j∈S
||R(Mπi , Dl−i,j)−R(Mπi+1 , Dl−i,j)||2 ≥ ||Mπi −Mπi+1 ||2 − 4(f + 1) ≥ E

l
− 4(f + 1) ≥ E

2l

Now for each j ∈ S, by Claim C.1, we can find bj , xj , yj ∈ L such thatR(Mπ, Dl−i,j) contains
a (bj , xj , yj)-error and

bjxj
y2j
≥
||R(Mπi , Dl−i,j)−R(Mπi+1 , Dl−i,j)||2

100l2

There are only l3 possibilities for the triple (bj , xj , yj). Thus, there exists some (b, x, y) such that∑
j∈S|(bj ,xj ,yj)=(b,x,y)

bjxj
y2j
≥

∑
j∈S|(bj ,xj ,yj)=(b,x,y)

||R(Mπi , Dl−i,j)−R(Mπi+1 , Dl−i,j)||2

100l2

≥ 1

100l2

∑
j∈S ||R(Mπi , Dl−i,j)−R(Mπi+1 , Dl−i,j)||2

l3
≥ E

200l6

Let a′ = |{j ∈ S|(bj , xj , yj) = (b, x, y)}|. InMπ, there are a′ dyadic blocks amongDl−i,0, . . . , Dl−i,2i−1
that contain a (b, x, y)-error. Also, all of these (b, x, y)-errors are clearly disjoint. If we let a be the
largest power of 2 that is at most a′, we can simply combine a of these (b, x, y)-errors to get an
(a, b, x, y)-error. Note that

abx

y2
≥ a′bx

2y2
≥ E

400l6

so we have proved the claim.

In the statement of Lemma 18, we want to find an (a, b, x, y)-error of sufficient size where
y ≤ b. Note that so far we have shown how to find an (a, b, x, y)-error of sufficient size but have
not dealt with the y ≤ b condition. The error that we found so far has a certain structure captured
by the fact that we only needed to compare two consecutive permutations πi, πi+1 in the dyadic
decomposition of π. Call such an error an (a, b, x, y)-error at level i. Formally

Definition 19 Say we have a matrix M ∈ BISOn×n and a permutation π on [n]. Let the dyadic
decomposition of π be (π0, . . . , πl). We say the matrix Mπ contains an (a, b, x, y)-error at level i if
there are distinct indices i1, . . . , ia ∈ {0, 1, . . . , 2i− 1} such that for each j ∈ [a], when comparing
the matrices R(Mπi , Dl−i,ij ) and R(Mπi+1 , Dl−i,ij ), the latter contains a (b, x, y) error (note that
the rows of R(Mπi , Dl−i,ij ) are sorted in increasing order).
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In order to show that we can find an (a, b, x, y)-error with y ≤ b, we will argue that if when
comparing πi, πi+1, the error we find does not satisfy y ≤ b, then we can find an (a′, b′, x′, y′)-error
of almost the same size at a significantly earlier level in the dyadic decomposition of π. Note that
if we find an (a, b, x, y)-error at the first level of the dyadic decomposition with abx

y2
≥ n, we must

have a = 1 and since clearly x ≤ n, we conclude y ≤ b.

Claim Assume Mπ contains an (a, b, x, y)-error at level i with abx
y2
≥ 4nf(n) and y > b. Then

for i′ = di− log f(n)e

||Mid −Mπi′ ||
2 ≥ abx

16y2

Proof If i ≤ log f(n), then a ≤ 2i ≤ f(n). Clearly x ≤ n so if y > b then abx
y2
≤ 4nf(n). Thus,

we only need to consider when i ≥ log f(n).
Consider the dyadic blocks at level i′, Dl−i′,0, . . . , Dl−i′,2i′−1.

||Mid −Mπi′ ||
2 =

2i
′−1∑
j=0

||R(Mid, Dl−i′,j)−R(Mπi′ , Dl−i′,j)||2

Now we will lower bound the terms on the right hand side. For each 0 ≤ j ≤ 2i
′ − 1, let Mj be

the largest L1 distance between two rows in R(Mid, Dl−i′,j). Note M0 + · · · + M2i′−1 ≤ n since
the rows ofMid are sorted in increasing order and theL1 distance between any two rows is at most n.

Let T be the set of j such that |Mj | ≥ x
2y . We have |T | ≤ 2ny

x . In the (a, b, x, y)-error at level i
that we start with, we naturally have a disjoint (b, x, y)-errors. Call these selected errors. At most
2ny
x

2i

2i′
≤ 2nyf(n)

x of the selected (b, x, y)-errors can be included in the dyadic blocks indexed by T .
This is because there is at most one selected (b, x, y)-error within each dyadic block of size n

2i
so

there are at most 2i

2i′
selected (b, x, y)-errors in each dyadic block of size n

2i′
. Thus, if we remove

all dyadic blocks indexed by T , there must still be at least a − 2nyf(n)
x selected errors remaining.

Combining abx
y2
≥ 4nf(n) and y > b, we get axy ≥ 4nf(n). Thus a− 2nyf(n)

x ≥ a
2 .

Next, consider a (b, x, y)-error in level i consisting of rows (r1, . . . , rb), (r
′
1, . . . , r

′
b) contained in

the dyadic block Dl−i,j . Say the dyadic block at level i′ containing Dl−i,j is Dl−i′,j′ with j′ 6∈ T .
Let S be the set of indices indexing the locations of r1, . . . , rb, r′1, . . . , r

′
b in the matrix Mπi′ . Note

all elements of S are in Dl−i′,j′ by definition. Now

||R(Mid, S)−R(Mπi′ , S)||2 ≥ bx

8y2

since the L1 distance between the biggest and smallest rows in R(Mid, S) is at most x
2y while there

is a (x, y)-gap between all of (r′1, . . . , r
′
b) and all of (r1, . . . , rb). We can obtain similar inequalities

for all (b, x, y)-errors that occur outside all of the dyadic blocks indexed by T and combine them to
get

||Mid −Mπi′ ||
2 ≥ abx

16y2
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Note we can iteratively apply Claim C.1 to find errors in earlier levels of the permutation de-
composition of π. We will do this to complete the proof of Lemma 18. First note the following:
Claim If Mπ contains an (a0, b0, x0, y0)-error at level i0 with a0b0x0

y20
≥ nl100l

0.5
and y0 > b0 then

Mπ contains an (a1, b1, x1, y1)-error at some level i1 < i0 − 100
√
l log l with a1b1x1

y21
≥ a0b0x0

6400y20 l
6 .

Proof Combining Claim C.1 and Claim C.1, we get that if Mπ contains an (a0, b0, x0, y0)-error
at level i0 with a0b0x0

y20
≥ nl100l

0.5
and y0 > b0 then Mπi′0

(i′0 = i0 − 100
√
l log l) contains a

(a1, b1, x1, y1)-error at some level i1 with a1b1x1
y21
≥ a0b0x0

6400y20 l
6 . Note that we must have i1 < i′0 since

the dyadic decomposition of πi′0 is constant at level i′0 and beyond. We conclude that Mπ must
contain the same (a1, b1, x1, y1)-error at level i1 < i0 − 100

√
l log l.

Proof [Proof of Lemma 18] By Claim C.1, there must exist an (a0, b0, x0, y0)-error at some level
i0 with a0b0x0

y20
≥ E

400l6
. If y0 ≤ b0 we are done. Otherwise, y0 > b0 and we can apply the above to

find an (a1, b1, x1, y1)-error at level i1 < i0 − 100
√
l log l. If y1 > b1 we can recurse again.

We can have at most
√
l

100 steps of recursion i0 → i1 → · · · → ij while maintaining that ij ≥ 0.
Note it can easily be verified that the condition ajbjxj

y2j
≥ nl100l0.5 is maintained at each step. There-

fore, there must be some index 0 ≤ g ≤
√
l

100 such that bg ≥ yg and then Mπ must contain a
(ag, bg, xg, yg)-error satisfying

agbgxg
y2g

≥ E

(6400l6)
√
l

10

≥ E

ll0.5

as desired.

Remark 20 Note that the proof above actually allows us to slightly strengthen Lemma 18 to ensure
that the (a, b, x, y)-error occurs at some level i in the dyadic decomposition.

C.2. Finer Characterization of Difference Structures

Intuitively, Lemma 11 says that if two rows r and r′ are well-sorted and r > r′, then the locations
where the entry in r is larger than the corresponding entry in r′ must “concentrate” together. The
next result, Lemma 23, gives us a precise way to formulate this intuition when we consider a block
of several rows simultaneously. This will be central to proving the correctness of our algorithms.
First we make a few technical definitions.

Definition 21 Let M ∈ Permn×n. We say a set of its rows r1 . . . rk contains a (c, x, y)-detectable
difference if

• There exist two disjoint subsets of {i1, . . . , ic}, {j1, . . . , jc} ⊂ {1, 2, . . . k} such that (ri1 , . . . , ric)
and (rj1 , . . . rjc) form a (c, x, y)-difference

• There do not exist two disjoint subsets of {i′1, . . . , i′c}, {j′1, . . . , j′c} ⊂ {1, 2, . . . k} such that
(ri′1 , . . . , ri′c) and (rj′1 , . . . rj′c) form a (c′, x′, y′)-difference and c′x′

y′2
≥ ll0.5 cx

y2

• c ≥ y
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• cx
y2
≥ kl104l0.5

• x
y ≤
√
nl2

Definition 22 We define a (c, x, y)-strongly detectable difference in the same way as a (c, x, y)-
detectable difference except we require that

cx

y2
≥ kn

1
6 l10

4l0.5

Note that all strongly detectable differences are detectable.

Lemma 23 Say we have a matrixMid ∈ BISOn×n and consider some subset of its rows r1, . . . , rk
with r1 < · · · < rk. Let c, x, y be powers of 2 such that (rk−c+1, . . . , rk) and (r1, . . . rc) form a
(c, x, y)-detectable difference. For an integer I , consider dividing the columns into dyadic clusters
of size 2I ,

DI,0, . . . , DI, n
2I
−1

There exists some integer I for which we can mark some subset of the dyadic clusters, sayDI,j1 , . . . , DI,je ,
such that the following properties hold.

• x
5yl2
≤ 2I ≤ 200ll

0.5
x

• e ≤ 4y

• For each marked dyadic cluster, the mean of its two neighbors differ by at least 1
10y . In other

words for all 1 ≤ i ≤ e, the following equation holds:

|µ (M, {r1, . . . , rk}, DI,ji−1)− µ (M, {r1, . . . , rk}, DI,ji+1)| ≥
1

10y

(We handle the case when the index ji ± 1 is out of bounds as usual. If ji − 1 < 0, the mean
is 0 and if ji + 1 ≥ 2I , the mean is 1.)

• Within each marked dyadic cluster DI,jb , 1 ≤ b ≤ e, highlight all of the columns such that
the corresponding entries in rc and rk−c+1 differ by at least 1

y . The number of highlighted

entries in each dyadic cluster is at least z where z is a power of 2 and satisfies z ≥ 2I

800l2+l0.5

and ze ≥ x
600l2

.

• LetR be the matrix obtained by restrictingMid to the rows rk−c+1, . . . , rk, r1, . . . rc. Let j be
an index corresponding to a highlighted column and say j ∈ DI,jb where DI,jb is a marked
dyadic cluster. Let j′ be an index such that j′ /∈ DI,jb−1 ∪DI,jb ∪DI,jb+1. Then the columns
of R indexed by j and j′ differ by 1

2y in at least c2 different locations.

Proof Define Sd ⊂ [n] to be the set of locations where rk−c+1 is larger than rc by at least d. Let
Td ⊂ [n] be the set of locations where rk−d c

2
e+1 is larger than rd c

2
e by at least d. The set T 1

4y
can be

broken down into a collection of “maximal” intervals. Say these are [a1, b1), [a2, b2), . . . , [am, bm)
(where [ai, bi) denotes the set of locations {ai, ai + 1 . . . , bi − 1}) and b1 < a2 < b2 < a3 < · · · <
bm−1 < am.
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For all i, let si = bi − ai be length of the corresponding interval. Let ti =
∣∣∣S 1

y
∩ [ai, bi)

∣∣∣ be

the number of elements of S 1
y

in the interval [ai, bi). Note that maximality implies

|r(bi)k−c+1 − r
(bi)
c | ≤ |r

(bi)
k−d c

2
e+1 − r

(bi)
d c
2
e| <

1

4y

Also

x ≤ t1 + · · ·+ tm ≤ s1 + · · ·+ sm

For integers i, i′, let ci,i′ be the number of indices j such that sj ∈ [2i, 2i+1) and tj ∈ [2i
′
, 2i
′+1).

There must exist some I0, I ′0 such that

2I
′
0cI0,I′0 ≥

x

3l2

Let [ai1 , bi1), . . . , [aig , big) with g = cI0,I′0 be the intervals satisfying the condition sij ∈ [2I0 , 2I0+1)

and tij ∈ [2I
′
0 , 2I

′
0+1). By Lemma 11, we must have g ≤ 4y. This is because otherwise, we would

be able to find x1 ∈ [ai1 , bi1), . . . , xg ∈ [aig , big) such that |r(xi)k−c+1 − r
(xi)
c | ≥ 1

y and considering
the subsequence x1, bi1 , x2, bi2 , . . . , xg, big would give us a contradiction.

We will set I = I0 + 2. Divide the columns into dyadic clusters of size 2I . We will now per-
form the marking and highlighting process. Note that for each index 1 ≤ j ≤ g, the interval
[aij , bij ) is either contained in a dyadic cluster of size 2I or contained in the union of two consec-
utive dyadic clusters. If it is contained in a dyadic cluster, mark that cluster. If it is contained in
the union of two consecutive dyadic clusters, mark the dyadic cluster (among the two) that contains
more elements of the set [aij , bij ) ∩ S 1

y
. It is fine if we mark a dyadic cluster multiple times. Now

highlight the columns that are in a marked dyadic cluster and in S 1
y

. We proceed to show that the
desired conditions are satisfied.

• First, we bound the number of highlighted columns. Note that
∑m

i=0 si ≤ 33ll
0.5
x since other-

wise we would have a d c2e, 33ll
0.5
x, 4y difference, contradicting the detectability of the (c, x, y)-

difference.

We also trivially must have I0 ≥ I ′0 so

2I0 ≥ 2I
′
0 ≥ x

3l2cI0,I′0
≥ x

3gl2
≥ x

20yl2
(2)

Thus, 2I ≥ x
5yl2

. Also note that none of the elements s1, . . . , sg can be larger than 33ll
0.5
x so

2I ≤ 200ll
0.5
x. This completes the proof of the first property.

• The second property is clear since g ≤ 4y and we mark e ≤ g total dyadic clusters.

• Now we show that the means of the marked dyadic clusters differ from the means of their neigh-
bors. Each marked dyadic cluster, say DI,z , must correspond to some interval [aij , bij ) in the
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marking process. Note DI,z may correspond to multiple intervals in which case we let [aij , bij )
be one of them.

Note that

r
(aij−1)
k−d c

2
e+1 − r

(aij−1)
d c
2
e <

1

4y

r
(bij )

k−d c
2
e+1 − r

(bij )

d c
2
e <

1

4y

and there must exist some integer xij ∈ [aij , bij ) such that

r
(xij )

k−d c
2
e+1 − r

(xij )

d c
2
e ≥

1

y

Since the rows have all of their entries in increasing order, we conclude

r
(bij )

d c
2
e >

1

2y
+ r

(aij−1)
k−d c

2
e+1 (3)

First we consider the case where DI,z contains the interval [aij , bij ). We bound the difference
between the means of DI,z−1 and DI,z+1. Let N = R(Mid, {r1, . . . , rk}) be the matrix formed
by rows r1, . . . , rk and all n columns. Consider restricting N to each of blocks

{r1, . . . , rd c
2
e−1}, {rd c

2
e, . . . , rk−d c

2
e+1}, {rk−d c

2
e+2, . . . , rk}

and each of the dyadic clusters DI,z−1 and DI,z+1. Note that

µ
(
N,
(

0, d c
2
e − 1

]
, DI,z−1

)
≤ µ

(
N,
(

0, d c
2
e − 1

]
, DI,z+1

)
1

2y
+ µ

(
N,
(
d c
2
e − 1, k − d c

2
e+ 1

]
, DI,z−1

)
≤ µ

(
N,
(
d c
2
e − 1, k − d c

2
e+ 1

]
, DI,z+1

)
µ
(
N,
(
k − d c

2
e+ 1, k

]
, DI,z−1

)
≤ µ

(
N,
(
k − d c

2
e+ 1, k

]
, DI,z+1

)
where the second inequality follows from (3) and the others are immediate. Also note that at least
half of the entries of R(N, (0, k], DI,z−1) and R(N, (0, k], DI,z+1) are captured in the second
inequality so we conclude

µ(N, (0, k], DI,z+1)− µ(N, (0, k], DI,z−1) ≥
1

4y

Now consider the case whereDI,z does not fully contain the interval [aij , bij ). WLOG, the union
of DI,z and DI,z+1 contains [aij , bij ). We can use essentially the same argument and note that
since bij − aij < 2I0+1 = 2I

2 , then at least 1
4 of the entries of DI,z+1 are in the restriction

R
(
N,
(
d c2e − 1, k − d c2e+ 1

]
,
(
bij , (z + 1) n

2I

])
so

1

4y
+ µ

(
N,
(
d c
2
e − 1, k − d c

2
e+ 1

]
, DI,z−1

)
≤ µ

(
N,
(
d c
2
e − 1, k − d c

2
e+ 1

]
, DI,z+1

)
In the end, we conclude

µ(N, (0, k], DI,z+1)− µ(N, (0, k], DI,z−1) ≥
1

8y

This completes the proof of the third property.
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• Note that
x

3l2
≤ 2I

′
0g ≤ 2I0g ≤ s1 + · · ·+ sm ≤ 33ll

0.5
x

Thus,

2I
′
0 ≥ x

3gl2
≥ 2I0

100ll0.5+2

and clearly each marked dyadic cluster must contain at least z = 2I
′
0−1 ≥ 2I0

200ll0.5+2
≥ 2I

800ll0.5+2

highlighted columns since it must contain more than
tij
2 elements from some set of the form∣∣∣S 1

y
∩ [aij , bij )

∣∣∣. Next, each marked dyadic cluster contains between z and 100z columns from
the set

S′ = S 1
y
∩
(
[ai1 , bi1) ∪ · · · ∪ [aig , big)

)
In total, all of the marked dyadic clusters must contain at least

ti1 + · · ·+ tig
2

≥ 2I
′
0−1g ≥ x

6l2

elements of S′ so if e is the total number of marked dyadic clusters, we get

ze ≥ x

600l2

• To prove the last property, we will start with the same observation as the third part. Each marked
dyadic cluster, say DI,z , must correspond to some interval [aij , bij ) in the marking process. For
any xij ∈ [aij , bij ) with xij highlighted,

r
(aij−1)
k−d c

2
e+1 − r

(aij−1)
d c
2
e <

1

4y

r
(xij )

k−c+1 − r
(xij )
c ≥ 1

y

r
(bij )

k−d c
2
e+1 − r

(bij )

d c
2
e <

1

4y

Since the entries are in increasing order in each row, the above implies that

r
(bij )

d c
2
e − r

(xij )
c ≥ 3

4y

r
(xij )

k−c+1 − r
(aij−1)
k−d c

2
e+1 ≥

3

4y

The union ofDI,z−1, DI,z, DI,z+1 contains the interval [aij , bij ). Comparing the column indexed
by xij to any column with index smaller than (z−1)2I , the entries in the rows rk−c+1, . . . , rk−d c

2
e+1

must differ by at least 3
4y . Comparing the column indexed by xij to any column with index larger

than (z + 2)2I , the entries in rows rd c
2
e, . . . , rc must differ by at least 3

4y . This completes the
proof of the final property.
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Appendix D. 1D Multiscale Sort Analysis

We now analyze our algorithm in the case when the columns are perfectly sorted. Throughout this
section, when we say pivoting algorithm, we are referring to the 1D PIVOTING ALGORITHM. We
show that with high probability, the 1D MULTISCALE SORT algorithm successfully sorts the rows.

Theorem 24 We have a base matrix Mid ∈ BISOn×n. Say the observed noisy matrix is M ′η,id.
After running 1D MULTISCALE SORT, say the output is the matrix M ′τ,id. Then with at least 1− 1

n7

probability over the random noise

||Mτ −Mid||2 ≤ n1+o(1)

Remark 25 The precise bound we will show is

||Mτ −Mid||2 ≤ nl10
5l0.5

The first important observation is that when running the 1D pivoting algorithm on a block that
contains detectable differences, the total row variance among the remaining rows decreases by a
non-negligible fraction at every step.

Lemma 26 Say we have rows r1 < · · · < rk of the matrix Mid and let c, x, y be powers of 2 such
that (rk−c+1, . . . , rk) and (r1, . . . rc) form a (c, x, y)-detectable difference. Recall that this means
the following properties hold:

• c ≥ y

• cx
y2
≥ kl104l0.5

• x
y ≤
√
nl2

Let r′i be rows obtained by adding noise to each entry of ri. Let π be a permutation on [k] and let
A be a k × n matrix with rows r′π(1), . . . , r

′
π(k) in order from bottom to top. Consider running the

1D pivoting algorithm on A with any index 0 ≤ m ≤ k. Let r′i1 , . . . r
′
im

be the set of rows that are
not added to either the upper or lower set. Then with probability at least 1− 1

n10 (over the random
noise), we have

V (ri1 , . . . rim) ≤
(

1− 1

l10l0.5

)
V (r1, . . . , rk)

Let I be the integer that satisfies the properties of Lemma 23. Let DI,j1 , . . . , DI,je be the
marked dyadic clusters according to Lemma 23. Throughout this proof we use B to denote the
matrix with rows rπ(1), . . . , rπ(k) in order from bottom to top (so B is A with the noise removed).
We will actually show that running the pivoting algorithm with parameters r = 2I and t = y will
produce the desired result. Note that in the first step of the pivoting algorithm, we divide the columns
into clusters of size r and form k × r matrices A1, . . . , An

r
. Let Ah1 , . . . , Ahb be the set of these

matrices that contain (exactly) one of the marked dyadic clusters. Claim Let S be the preliminary
set we construct when running the pivoting algorithm onA with parameters r = 2I and t = y. With
at least 1− 1

n20 probability, {h1, . . . , hb} ⊂ S and |S| ≤ 1000y.
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Proof Let B1, . . . , Bn
r

be analogous to A1, . . . , An
r

except for the matrix B. By the third property
of Lemma 23, the following holds for all 1 ≤ i ≤ b: either |µ(Bhi) − µ(Bhi−1)| ≥ 1

20y or
|µ(Bhi) − µ(Bhi+1)| ≥ 1

20y (since each of Bhi contains one of the marked dyadic clusters). Next
we claim that for any j, |µ(Bj) − µ(Aj)| ≤ 1

100y with high probability. Note that the difference
between the means of Aj and Bj is the mean of kr samples from the noise distribution. We have

kr ≥ 2Ic ≥ xc

5yl2
≥ 1

5
kyl100 ≥ y2l10

so this implies |µ(Bj)−µ(Aj)| ≤ 1
100y with negligible failure probability. Thus with probability at

least 1− 1
n20 , either |µ(Ahi)− µ(Ahi−1)| ≥ 1

30y or |µ(Ahi)− µ(Ahi+1)| ≥ 1
30y for all 1 ≤ i ≤ b.

The second clause in the claim follows from |µ(Bj) − µ(Aj)| ≤ 1
100y and the assumption that

the columns are perfectly sorted.

Claim Let vtest be the test vector we construct when running the 1D pivoting algorithm on A
with parameters r = 2I and t = y. Let s′1, . . . , s

′
k be as defined in the pivoting algorithm. Let

s1, . . . , sk be there denoised versions. With at least 1− 1
n20 probability

V (s1 · vtest, . . . , sk · vtest) ≥ 0.1bc

(
1

1600yl2l0.5

)2

Proof We analyze the step of the algorithm when we construct the columns c′i. Let di, d′i be the vec-
tors analogous to ci, c′i except for the matrixB. First we analyze the vectors dh1 , . . . , dhb , d

′
h1
, . . . , d′hb .

Note that by the fourth property in Lemma 23, for any 1 ≤ i ≤ b, the entries d(π
−1(1))

h1
, . . . , d

(π−1(c))
h1

are all less than the entries d(π
−1(k−c+1))

h1
, . . . , d

(π−1(k))
h1

by at least

2I

800ll0.5+2

1
y

r
≥ 1

800yl2l0.5

This implies that ∣∣∣∣∣∣∣∣ 1√
b
(d′h1 + · · ·+ d′hb)

∣∣∣∣∣∣∣∣2 ≥ bc( 1

1600yl2l0.5

)2

Note that ci = di + v where v is a vector whose entries are independently drawn from a sub-
Gaussian distribution with mean 0 and sub-Gaussian parameter 1√

r
. Let C be the matrix with

columns ci, i ∈ S and C ′ be the matrix with columns c′i, i ∈ S. Define D,D′ similarly. Note

C ′ = D′ + V

where V is drawn from the following distribution

• Construct V0, a k × |S| matrix with entries drawn independently and at random from the a
sub-Gaussian distribution with mean 0 and sub-Gaussian parameter 1√

r

• For each column of V0, subtract the mean of the entries in that column from each entry.
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With all but negligible probability (see Rudelson and Vershynin (2010)), the largest singular value
of V0 is at most

10l

√
k

r

(
1 +

√
|S|
k

)
≤ 10l

√
k

r

(
1 +

√
1000y

c

)
≤ 500l

√
k

r

Note that (V − V0) is a rank-1 matrix and it’s largest singular value is at most the largest singular
value of V0. Therefore, with all but negligible probability, the largest singular value of V is at most

1000l
√

k
r .

By Claim D, with all but negligible probability h1, . . . , hb ∈ S. Also if we let u be the vector
with 1√

b
in entries indexed by h1, . . . , hb and 0 everywhere else we get that with all but negligible

probability

||C ′u||2 ≥ ||D′u||2 − ||V u||2 ≥
√
bc

(
1

1600yl2l0.5

)
− 1000l

√
k

r

However, note that
√
bc

(
1

1600yl2l0.5

)
≥ 108l

√
k

r
(4)

since r = 2I , 2Ib ≥ ze ≥ x
600l2

by the fourth clause of Lemma 23, and cx
y2
≥ kl10

4l0.5 by as-
sumption. Thus, we know that with all but negligible probability, the vector v that we obtain in the
pivoting algorithm satisfies

||C ′v||2 ≥ ||C ′u||2 ≥ 0.9
√
bc

(
1

1600yl2l0.5

)
Thus, with all but negligible probability

||D′v||2 ≥ ||C ′v||2 − ||V v||2 ≥ 0.8
√
bc

(
1

1600yl2l0.5

)
and therefore

||D′vtest||2 ≥ 0.4
√
bc

(
1

1600yl2l0.5

)
Since the rows of D′ are exactly s1, . . . , sk and the mean of the entries in each column is 0, the
above immediately implies the desired conclusion

Proof [Proof of Lemma 26] Now we will complete the proof of Lemma 26. Note that regardless of
the pivot, we have

|s′ib · vtest − s′ia · vtest| ≤
20l√
r

for all 1 ≤ a, b ≤ m.

Next, with at least 1− 1
n20 probability, for all i ∈ {1, 2, . . . , k},

|s′i · vtest − si · vtest| ≤
10l√
r
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which implies

|sib · vtest − sia · vtest| ≤
40l√
r

Thus

V (si1 · vtest, . . . , sim · vtest) ≤
1600l2m

r
≤ 1600kl2

r
(5)

Next note

V (s1 · vtest, . . . , sk · vtest)− V (si1 · vtest, . . . , sim · vtest)

=

k∑
j=1

((
sj −

s1 + · · ·+ sk
k

)
· vtest

)2

−
m∑
a=1

((
sia −

si1 + · · ·+ sim
m

)
· vtest

)2

=
∑

1≤j≤k
j /∈{i1,...,im}

((
sj −

s1 + · · ·+ sk
k

)
· vtest

)2

+m

((
s1 + · · ·+ sk

k
− si1 + · · ·+ sim

m

)
· vtest

)2

≤
∑

1≤j≤k
j /∈{i1,...,im}

∥∥∥∥sj − s1 + · · ·+ sk
k

∥∥∥∥2 +m

∥∥∥∥s1 + · · ·+ sk
k

− si1 + · · ·+ sim
m

∥∥∥∥2

=V (s1, . . . , sk)− V (si1 , . . . , sim) ≤ 1

r
(V (r1, . . . , rk)− V (ri1 , . . . , rim))

Next by Claim D and (5), we have with at least 1− 1
n20 probability

V (s1 · vtest, . . . , sk · vtest)− V (si1 · vtest, . . . , sim · vtest)

≥ 0.1bc

(
1

1600yl2l0.5

)2

− 1600kl2

r
≥ 0.05bc

(
1

1600yl2l0.5

)2

where the last step follows from (4) in the proof of Claim D. Also, by Lemma 16 and the assumption
that the (c, x, y)-difference is detectable we deduce

cx

y2
≥ V (r1, . . . , rk)

32ll0.5+2

Combining everything, we have

V (r1, . . . , rk)− V (ri1 , . . . , rim) ≥ rbc 1

108y2l4l0.5
≥ xc

600l2
1

108y2l4l0.5
≥ V (r1, . . . , rk)

l10l0.5

which immediately rearranges into the desired.

We need one more simple observation about the behavior of the pivoting algorithm before we can
complete the analysis of the 1D MULTISCALE SORT algorithm. Claim Let M ∈ Permn×n and let
r1, . . . , rk be a subset of its rows. Let A be the matrix with rows r′1, . . . , r

′
k, obtained by adding

entrywise noise to r1, . . . , rk. After running one iteration of the 1D pivoting algorithm on A, say
the remaining rows are r′j1 , . . . , r

′
jd

. With probability at least 1− 1
n10 over the random noise, for any

indices 1 ≤ a < b ≤ d,
||rja − rjb ||1 ≤ 100

√
nl
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Proof Consider running the pivoting algorithm with parameters r = n and t = 1. In this case we
have v = 1 and the matrix N we construct for the pivoting step is simply a k × 1 column vector
containing the mean of the entries in each row. Regardless of the pivot row, say rp, all rows ri
satisfying |µ(r′i)− µ(r′p)| ≥ 10l√

n
will be added to either the upper or lower set. This means for any

indices 1 ≤ a < b ≤ d,

|µ(r′ja)− µ(r′jb)| ≤
20l√
n

Note |µ(r′i)−µ(ri)| ≤ 10l√
n

for all iwith at least 1− 1
n10 probability and |µ(ri)−µ(rj)| = 1

n ||ri−rj ||1
(since M ∈ Permn×n). Combining these with the above we get the desired inequality.

Now we are ready to complete the analysis of our algorithm when the columns are sorted.
Proof [Proof of Theorem 24] Let E = nl10

5l0.5 . Consider the dyadic decomposition of τ into
τ0, τ1, . . . , τl. By Lemma 18, it suffices to show that our algorithm will not create any (a, b, x, y)-
errors with b ≥ y and abx

y2
≥ E

ll0.5
at any level in the dyadic decomposition.

First we claim that the pivoting algorithm will not make any errors (i.e. any rows added to the
lower set are among the d smallest rows and any rows added to the upper set are among the k − d
largest) as long as for any parameters r, t and rows si, s′i, the corresponding test vector vtest satisfies

|s′i · vtest − si · vtest| <
5l√
r

Assume that the block we are considering consists of the rows r1, . . . , rk and λ is a permutation on
{1, 2, . . . , k} such that s′λ(1) · vtest ≤ · · · ≤ s′λ(k) · vtest. Say that the pivot index is d. If some row

r′i is added to the lower set, we must have s′i · vtest ≤ s′λ(d+1) · vtest − 10l√
r
. If this is an “error”, then

there must be some row r′j among r′λ(d+1), . . . , r
′
λ(k) that should be in the lower set. However since

vtest has all non-negative coordinates and s′λ(1) · vtest ≤ · · · ≤ s′λ(k) · vtest, we must have

s′i · vtest ≤ s′λ(d+1) · vtest −
10l√
r
≤ s′j · vtest −

10l√
r

sj · vtest ≤ si · vtest

which cannot happen unless |s′i · vtest− si · vtest| ≥ 5l√
r

or |s′j · vtest− sj · vtest| ≥ 5l√
r
. We can use the

same argument to deal with the case when some row is added to the upper set. However, for fixed
vtest and index i, with all but negligible probability, |s′i · vtest − si · vtest| < 5l√

r
. Union bounding, we

conclude that the probability our pivoting algorithm makes an error is negligible. Note that here we
use the fact that we resample the random noise after constructing vtest.

Now assume for the sake of contradiction that an (a, b, x, y)-error with abx
y2
≥ E

ll0.5
and b ≥ y

occurs at level i in the dyadic decomposition with i minimal. This means that there exist dyadic
blocks Dl−i,j1 , . . . , Dl−i,ja such that for any 1 ≤ c ≤ a, R(Mτi+1 , Dl−i,jc) contains a (b, x, y)
error. Now fix an index c with 1 ≤ c ≤ a. Say the set of rows in R(Mτi , Dl−i,jc) is u1, . . . , u n

2i
.

After i phases of the full row sorting algorithm, say the matrix we are working with is M ′λi . The
rows in R(Mλi , Dl−i,jc) are exactly u1, . . . , u n

2i
up to some permutation. In the i + 1st phase of

the full row sorting algorithm, we run the block sorting algorithm on the block R(M ′λi , Dl−i,jc).
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The output of the block sorting algorithm determines the sets of rows in R(Mτi+1 , Dl−i−1,2jc) and
R(Mτi+1 , Dl−i−1,2jc+1). Since we showed that with high probability, the pivoting algorithm will
not make any errors, the only way for there to be a (b, x, y)-error is when we arbitrarily split the re-
maining rows after running ll

0.51
iterations of the pivoting algorithm. Say the (b, x, y) error consists

of the rows s1, . . . , sb, t1, . . . , tb. Let s′1, . . . , s
′
b, t
′
1, . . . , t

′
b denote the respective rows with noise

added. Note that V (u1, . . . , u n

2i
) ≤ n2 so if the hypotheses of Lemma 26 are satisfied each time we

run the pivoting algorithm, then with at least 1− 1
n9 probability

V (s1, . . . , sb, t1, . . . , tb) ≤
(

1− 1

l10l0.5

)ll0.51
V (u1, . . . , u n

2i
) < 1

Otherwise, there must be at least ll
0.5

steps when we run the pivoting algorithm and the set of
remaining rows does not contain a (c′, x′, y′)-detectable difference for any c′, x′, y′. Note that
s1, . . . , sb, t1, . . . , tb form a (b, x, y)-difference and must be among the remaining rows. If kt is
the number of remaining rows after t iterations of the pivoting algorithm, kt ≤ n

2i
for all t. Also

a ≤ 2i and abx
y2
≥ E

ll0.5
implies

bx

y2
≥ kt

E

nll0.5
≥ ktl9·10

4l0.5

Claim D implies that after the first iteration of the pivoting algorithm, there cannot be any (c′, x′, y′)-
differences with x′

y′ >
√
nl2. Therefore, the only way for the hypotheses of Lemma 26 to fail is for

there to be a (c′, x′, y′)-difference with c′ < y′ and c′x′

y′2
≥ ll0.5 bx

y2
.

Note that there are at most l3 possible triples (c′, x′, y′). Applying the above argument on each of
the dyadic blocksDi,j1 , . . . , Di,ja , we get that for some (c′, x′, y′) there are at least a

l3
dyadic blocks

Di,jc , 1 ≤ c ≤ a such that R(Mτi , Di,jc) contains a (c′, x′, y′)-difference. We construct a permu-
tation γ on {1, 2, . . . n} as follows: start with τi and then for each of the (c′, x′, y′)-differences,
“flip” the two sets of c′ rows to create a (c′, x′, y′) error. Note that the first i levels of the dyadic
decomposition of γ agree with the dyadic decomposition of τ i.e. (γ0, . . . , γi) = (τ0, . . . , τi). Also
Mγ contains an

(
a
l3
, c′, x′, y′

)
-error at level i. Note

ac′x′

l3y′2
≥ abx

y2
ll

0.5−3

Since c′ < y′, we can iteratively apply Claim C.1, similar to the method at the end of Sec-
tion C.1, to find an (a′′, b′′, x′′, y′′)-error with a′′b′′x′′

y′′2
≥ E

ll
0.5 and b′′ ≥ y′′ at some level i′ < i,

contradicting the minimality of i.

Appendix E. 2D Multiscale Sort Analysis

We now analyze our 2D MULTISCALE SORT algorithm when the columns may not be perfectly
sorted. Throughout this section, when we say pivoting algorithm, we are referring to the 2D PIV-
OTING ALGORITHM. Our main theorem is stated below.
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Theorem 27 Assume we observe a matrix M ′η,γ = Mη,γ + E where M ∈ BISOn×n and E is
drawn from the error distribution. When we run the 2D MULTISCALE SORT on M ′η,γ , then with at
least 1− 1

n10 probability, the final result will be a matrix M ′π,σ such that

||Mπ,id −M ||22 ≤ n
7
6
+o(1)

||Mid,σ −M ||22 ≤ n
7
6
+o(1)

Remark 28 The precise bounds that we will show are

||Mπ,id −M ||22 ≤ n
7
6
+105 log logn√

logn

and similar for ||Mid,σ −M ||22.

At a high level, we will show that if when sorting the rows, our algorithm makes an (a, b, x, y)-
error, then there must be an (a′, b′, x′, y′)-error in the column permutation that either has signifi-
cantly larger size or has almost the same size and x′ >> x. This will then allow us to conclude that
at each iteration, our algorithm makes “progress” and eventually corrects all relevant (a, b, x, y)-
errors.

Definition 29 Say we run our 2D pivoting algorithm on a matrix containing the noisy rows r′1, . . . , r
′
2c

such that their non-noisy versions satisfy r1 < · · · < r2c and (r1, . . . , rc) and (rc+1, . . . , r2c) form
a (c, x, y)-difference. We say that the algorithm resolves the difference if either all of (r1, . . . , rc)
are added to the lower set or all of (rc+1, . . . , r2c) are added to the upper set.

The first key result is stated below. Claim We have a matrix Mη,γ and its noisy version M ′η,γ . Con-
sider running the block sorting algorithm on M ′η,γ on all dyadic blocks of size n

2i
for some i. Note

that this involves many iterations of running the 2D pivoting algorithm on various blocks.

Assume that with non-negligible probability, there exist disjoint blocksB1, . . . , Ba of sizes k1, . . . , ka
respectively and parameters (c, x, y) such that for each block B1, . . . , Ba, the 2D pivoting algo-
rithm failed to resolve some (c, x, y)-strongly detectable difference when run on it. Also assume
acx
y2
≥ n

7
6 l10

4l0.5 . Then one of the following must hold

• ||Mη,γ −Mη,id||22 ≥ acx
y2
l5000l

0.5

• There exists some i′ such that in the column permutation γ, there exists an (a′, b′, x′, y′)-error
at level i′ with

a′b′x′

y′
≥ 1

1020l30
acx

y2

x′ ≥ l4900l0.5x

Remark 30 To simplify the explanation, throughout the proof we will assume that the blocksB1, . . . , Ba
and (c, x, y)-strongly detectable differences within each block are fixed ahead of time. Following the
exact same method (and noting that we only run the pivoting algorithm polynomially many times),
we can prove that the statement holds simultaneously for all blocks on which we run the 2D pivoting
algorithm and all (c, x, y)-strongly detectable differences.
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The proof consists of several steps. First we will “regularize” the structure of the (c, x, y) differences
in each block. We will then analyze the possible failure modes of the pivoting algorithm and show
that if the differences are not resolved with high probability then the column permutation γ must
have certain structural properties. Finally, we will use these structural properties to show that the
conditions of Claim E are satisfied.

E.1. Regularization Step

First if for at least a2 of the blocks, B1, . . . , Ba we have

||R(Mη,γ , Bi)−R(Mη,id, Bi)||22 ≥
cx

y2
l7000l

0.5

then we immediately deduce

||Mη,γ −Mη,id||22 ≥
a

2
· cx
y2
l7000l

0.5 ≥ acx

y2
l6900l

0.5

Otherwise, for at least a2 of the blocks (WLOG B1, . . . , Ba
2

)

||R(Mη,γ , Bi)−R(Mη,id, Bi)||22 <
cx

y2
l7000l

0.5
(6)

For each of these blocks, apply the marking and highlighting described in Claim 23 on the (c, x, y)-
detectable difference. There are at most l2 distinct possible values for the parameters (I, z) so at
least a

2l2
of the blocks (WLOG B1, . . . , B a

2l2
), share the same parameters I, z. Set

r =
2Ix

y2n
1
6 l2000l0.5

Now we will first modify the marking and highlighting scheme. First, for each i ∈ [ a
2l2

] and each
marked dyadic cluster DI,j in R(Mη,id, Bi), mark the corresponding submatrix R(Mη,id, Bi, DI,j)
ofMη,id. For each 0 ≤ g ≤ n

r −1 and index i ∈ [ a
2l2

], letWg,i be the number of marked submatrices
in R(Mη,id, Bi, Inr,g).

Let W be a parameter that will be chosen later. For each index i, let Ci,W be the number of
indices g ∈ {0, 1, . . . , nr − 1} such that Wg,i ≥ W . For each g, i, if Wg,i < W , unmark all
submatrices in R(Mη,id, Bi, Inr,g). Otherwise, arbitrarily choose W of the marked submatrices in
R(Mη,id, Bi, Inr,g) to keep marked and unmark the rest. Claim There exists a choice ofW such that
W is a power of 2 and for at least a

4l3
of the indices i ∈ [ a

2l2
],

zWCi,W ≥
x

104l3

Proof For each index i ∈ [ a
2l2

] let ei be the number of marked dyadic clusters in the original
marking. Since

W0,i + · · ·+Wn
r
−1,i = ei
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we can use the standard argument about dividing into scales and find some parameter W (i) that is
a power of 2 such that W (i)Ci,W (i) ≥ ei

2l . Over all i ∈ [ a
2l2

], there must be some parameter W such
that W = W (i) for at least a

4l3
distinct values of i. For these indices we have

zWCi,W ≥
zei
2l
≥ x

104l3

WLOG for all i ∈ {1, 2, . . . , a
4l3
}, the statement of the above claim is satisfied. Restrict i to this

set from now on. We will now find a subset G ⊂ {0, 1, . . . , nr − 1} such that for all g ∈ G, the
interval Inr,g contains many marked submatrices. Claim There exists a subsetG ⊂ {0, 1, . . . , nr −1}
and a parameter h such that h is a power of 2 and the following properties hold

• h|G|Wz ≥ ax
(10l)8

• For each g ∈ G, the submatrix R(Mη,id, B1 ∪ · · · ∪ B a
4l3
, Inr,g) must contain at least hW

marked submatrices. Note each submatrix R(Mη,id, Bi, Inr,g) either contains 0 or W marked
submatrices.

Proof For each element g ∈ {0, 1, . . . , nr − 1}, let Hg be the number of marked submatrices in

R(Mη,id, B1 ∪ · · · ∪B a
4l3
, Inr,g)

Let DH be the number of indices g ∈ {0, 1, . . . , nr − 1} such that Hg ≥ H . Using a standard
argument, there exists some parameter H that is a power of 2 such that

H ·DH ≥
H0 + · · ·+Hn

r
−1

2l
=
W (C1,W + · · ·+ C a

4l3
,W )

2l

Let h = H
W and G be the set of all g ∈ {0, 1, . . . , nr − 1} such that Hg ≥ H .

h|G|Wz = hDHWz = HDHz ≥
zW (C1,W + · · ·+ C a

4l3
,W )

2l
≥ 1

2l
· a

4l3
· x

104l3
≥ ax

(10l)8

The second condition is clear by the way we defined h and G.

Now for some i ∈ [ a
4l3

], g ∈ G, we can unmark all submatrices in R(Mη,id, Bi, Inr,g) so that for
each g ∈ G, the submatrixR(Mη,id, B1∪· · ·∪B a

4l3
, Inr,g) contains exactly hW marked submatrices.

To summarize the properties of the final marking scheme

• Each marked submatrix R(Mη,id, Bi, DI,j) contains exactly z highlighted columns with re-
spect to the (c, x, y)-difference in R(Mη,id, Bi) (note we simply unhighlight some columns
within each submatrix to ensure that exactly z columns are highlighted).

• For each i ∈ [ a
4l3

], g ∈ {0, 1, . . . , nr − 1}, the submatrix R(Mη,id, Bi, Inr,g) contains either 0
or W marked submatrices

• For each g ∈ G, the submatrix R(Mη,id, B1 ∪ · · · ∪B a
4l3
, Inr,g) contains exactly hW marked

submatrices

• h|G|Wz ≥ ax
(10l)8
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E.2. 2D Pivoting Algorithm Analysis

For i ∈ [ a
4l3

] let Zi be the number of marked submatrices in R(Mη,id, Bi,
⋃
g∈G Inr,g). Let Y be the

set of i such that Zi ≥ l3

a h|G|W .
Now we consider the behavior of the pivoting algorithm when run on a block R(M ′η,γ , Bi) for

each i ∈ Y . To simplify notation, we will fix i = 1 (assume 1 ∈ Y as clearly Y is nonempty)
and let k = k1 be the size of the block B1. Say R(Mη,id, B1) consists of rows r1, . . . , rk such that
r1 < · · · < rk and (r1, . . . , rc) and (rk−c+1, . . . , rk) form a (c, x, y)-strongly detectable difference.
Recall the following conditions for a (c, x, y) difference to be strongly detectable.

1. The matrix R(Mη,id, B1) does not contain a (c′, x′, y′)-difference with c′x′

y′2
≥ ll0.5 cx

y2

2. c ≥ y

3. cx
y2
≥ kn

1
6 l10

4l0.5

4. x
y ≤
√
nl2

Let h1, . . . , hb ∈ G be the indices such that R(Mη,id, B1, Inr,hi) contains (exactly) W marked
submatrices. Note

bW = Zi ≥
l3

a
h|G|W

We will analyze the possible failure modes of the pivoting algorithm. Let S0 and S be the starter
set and preliminary set that we construct when running the pivoting algorithm on R(M ′η,γ , B1) with

parameters r = 2Ix

y2n
1
6 l2000l0.5

and t = y. Claim The following conditions must hold with all but

negligible probability

• |S0| ≤ 300t

• Let Q be the set of indices 1 ≤ f ≤ b such that hf ∈ S0. Then |Q| ≥ 0.99b.

Proof First note that as g ranges over {0, . . . , nr }, we have

∣∣µ (R(Mη,id, B1, Inr,g
)
− µ

(
R(Mη,id, B1, Inr,g−1

)∣∣ ≥ 1

50y

for at most 50y values of g. If |S0| ≥ 300t = 300y, then there must be at least 100y values of g
such that the following two conditions hold∣∣µ (R(Mη,id, B1, Inr,g

)
− µ

(
R(Mη,id, B1, Inr,g−1

)∣∣ ≤ 1

50y∣∣µ (R(M ′η,γ , B1, Inr,g]
)
− µ

(
R(M ′η,γ , B1, Inr,g−1

)∣∣ ≥ 1

30y

Since k ≥ c ≥ y and

r =
2Ix

y2n1/6l2000l0.5
≥ x

5yl2
x

y2n1/6l2000l0.5
≥ x

5yl2
kl7900l

0.5

c
> yl7000l

0.5
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we deduce that with all but negligible probability,∣∣µ (R(M ′η,γ , B1, Inr,g
)
− µ (R(Mη,γ , B1, Inr,g)

∣∣ ≤ 1

10000y
(7)

for all g ∈ {0, . . . , nr − 1}. Thus, for at least 100y distinct values of g∣∣µ (R(Mη,γ , B1, Inr,g)− µ
(
R(Mη,id, B1, Inr,g

)∣∣ ≥ 1

1000y

This implies

||R(Mη,γ , B1)−R(Mη,id, B1)||22 ≥ 100y
kr

(1000y)2
≥ k

104y

x

5yl2
x

y2n1/6l2000l0.5
≥ kx

y2
l7000l

0.5 ≥ cx

y2
l7000l

0.5

which contradicts our assumption (6) about the block B1.
Now we consider the second condition. Using the third clause of Lemma 23 and the properties of
our marking scheme, we deduce that one of the following two conditions holds for all 1 ≤ f ≤ b∣∣µ (R(Mη,id, B1, Inr,hf

)
− µ

(
R(Mη,id, B1, Inr,hf+1

)∣∣ ≥ W

20y∣∣µ (R(Mη,id, B1, Inr,hf
)
− µ

(
R(Mη,id, B1, Inr,hf−1

)∣∣ ≥ W

20y

Note we can construct a set Q′ ⊂ [b]\Q such that |Q′| ≥ b−|Q|
3 and for any f1, f2 ∈ Q′,

|hf1 − hf2 | ≥ 3. By the definition of our pivoting algorithm, for any f ∈ Q′∣∣µ (R(M ′η,γ , B1, Inr,hf
)
− µ

(
R(M ′η,γ , B1, Inr,hf+1

)∣∣ ≤ 1

30y∣∣µ (R(M ′η,γ , B1, Inr,hf
)
− µ

(
R(M ′η,γ , B1, Inr,hf−1

)∣∣ ≤ 1

30y

If |Q| ≤ 0.99b then using the above and (7), we deduce that

||R(Mη,γ , B1)−R(Mη,id, B1)||22 ≥ kr|Q′|
1

4

(
W

20y
−
(

1

30y
+

1

10000y

))2

≥ kr|Q′|
(
W

105y

)2

≥ krbW

1020y2
≥ 1

1020
· k2Ix

y4n
1
6 l2000l0.5

· l
3h|G|W
a

≥ kx

1020l2000l0.5n
1
6 y4
· zW |G|hl

3

a
≥ kx2

1020l2100l0.5n
1
6 y4
≥ x

1020n
1
6 l2100l0.5y2

· cx
y2
≥ cx

y2
l7000l

0.5

which again is a contradiction.

Note that we highlight some subset of columns of Mη,id, When we apply the permutation γ
on the columns, the highlighted columns move to new locations. Naturally this gives us a way to
highlight some subset of the columns of Mη,γ .

Definition 31 We say a permutation γ moves a column ci by at least r distance if when {1, 2, . . . n}
is divided into intervals of length r, γ−1(i) and i are in non-neighboring intervals.

38



BETTER ALGORITHMS FOR ESTIMATING SST MATRICES

Claim Assume that the starter set S0 satisfies |S0| < 300t and |Q| ≥ 0.99b where Q is the set of
indices 1 ≤ f ≤ b such that hf ∈ S0. One of the following must be true

• When applying the permutation γ to the columns of R(Mη,id, B1), for at least 0.98b indices
f ∈ Q, the following holds:

– For at least 0.99W of the marked submatrices within R(Mη,id, B1, Inr,hf ), the permu-
tation γ moves at least 0.99z highlighted columns by a distance of at least r.

• There exists a parameter w such that when running the 2D pivoting algorithm with parameter
w, with all but negligible probability

– |R| ≤ x2

y2l410

– When considering the matrix R(Mη,γ , B1), the set of columns indexed by elements of
R contains at least x

l6
highlighted columns.

Proof We will follow the same outline as the proof of Claim D. The intuition is that if the permuta-
tion γ does not move the highlighted columns too far from their original locations, then the test set
we construct is essentially the same as the one we would have constructed if the columns were fully
sorted and will contain sufficient signal to separate the rows. We break into two cases depending on
how large r is compared to x, y.

Case 1: r ≤ x2

1020l420y3

Here we claim that if the first condition is not satisfied then any w ≥ 1000y will suffice. Note
that |S| < 1000y so T = S. If the first condition does not hold, the number of highlighted columns
among R

(
Mη,id, B1,

⋃
a∈S0

Inr,a
)

that are moved by a distance less than r is at least

zWb

1010
≥ l3zh|G|W

1010a
≥ x

l6

However, these highlighted columns will all be in R =
⋃
a∈S Inr,a. Also note |R| ≤ 1000yr ≤

x2

y2l410
.

Case 2: r > x2

1020l420y3

We first set up notation. Most variables are defined similarly to in the proof of Claim D.

• Let A1, . . . , An
r

be the k × r matrices that we construct in the first step when running the 2D
pivoting algorithm on R

(
M ′η,γ , B1

)
• Let ci, c′i be the columns that we construct in Step 2 of the pivoting algorithm

• Define di, d′i analogous to ci, c′i for the de-noised matrix R (Mη,γ , B1)

• Define vi = ci − di, v′i = c′i − d′i

If there are at least 2I

106ll0.5+2
highlighted columns in Af for some 1 ≤ f ≤ n

r then

||d′f || ≥ 10−20
√

2c

(
yn

1
6 l1800l

0.5

x

)
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Next note that for all i, ||vi|| ≤ 10l
√

k
r with all but negligible probability and also ||v′i|| ≤ ||vi||.

Therefore with all but negliglble probability

||d′i|| − 10l

√
k

r
≤ ||c′i|| ≤ ||d′i||+ 10l

√
k

r
(8)

Now we claim,

10−40 · 2c

(
yn

1
6 l1800l

0.5

x

)2

≥ 1010

(
10l

√
k

r

)2

(9)

The above rearranges into
2rcy2n

1
3 l3600l

0.5

x2
≥ 1052l2k

However note that

2rcy2n
1
3 l3600l

0.5

x2
≥ cn

1
3 l3600l

0.5

1020l420y
≥ cx

y2
y

x
· n

1
3 ll

0.5 ≥ 1052l2k

where we used the assumption that the (c, x, y)-difference is strongly detectable in the last step.
Let C be the number of indices f such that

||c′f || ≥ 0.9 · 10−20 ·
√

2c

(
yn

1
6 l1800l

0.5

x

)

We show that setting w to be the unique power of 2 between C and 2C suffices. By (8) and (9), to
bound C, it suffices to upper bound the number of indices 1 ≤ f ≤ n

r such that

||d′f || ≥ 0.8 · 10−20 ·
√

2c

(
yn

1
6 l1800l

0.5

x

)

Note
||d′1||2 + · · ·+ ||d′n

r
||2 ≤ 1

r
V ({r1, . . . , rk}) ≤ 32l2l

0.5 cx

ry2

where the second inequality follows from the second clause in the definition of (c, x, y)-detectable
and Lemma 16. Therefore, with all but negligible probability

C ≤
32l2l

0.5 cx
ry2(

0.8 · 10−20 ·
√

2c

(
yn

1
6 l1800l0.5

x

))2 ≤
10100x3

y4rn
1
3 l3000l0.5

Since
200x2

y2n
1
6 l1900l0.5

≥ r =
2Ix

y2n
1
6 l2000l0.5

>
x2

1020l420y3

we have
x

y2
≤
√
nl2

1

y
≤
√
nl2
(

1023

l1400l0.5n
1
6

)
=

1023n
1
3

l1400l0.5
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and thus

C ≤ x2

ry2
· 10100x

y2n
1
3 l3000l0.5

≤ x2

ry2l4000l0.5

Since, |R| = rw ≤ 2rC we deduce that |R| is within the desired range. Now we analyze whether
the set of columns indexed by R contains a sufficient number of highlighted columns.

If the first condition fails, then for at least 0.01b values of f ∈ Q, one of the submatrices

R(Mη,γ , B1, Inr,hf−1), R(Mη,γ , B1, Inr,hf ), R(Mη,γ , B1, Inr,hf+1)

must contain at least 10−3zW highlighted columns. Note,

10−3zW ≥ z

103
≥ 2I

106ll0.5+2

so with all but negligible probability, the index i ∈ {hf−1, hf , hf +1} such thatR(Mη,γ , B1, Inr,i)
contains at least 10−3zW highlighted columns will be added to T . The total number of highlighted
columns in R will be at least

1

3
· 10−3 · zW (0.01)b ≥ zWb

105
≥ l3zh|G|W

105a
≥ x

l6

(note the factor of 1
3 is because we might count some index i up to 3 times)

E.3. Completing the Proof of Claim E

We will now combine the previous two claims and the assumption that the (c, x, y)-detectable dif-
ference in B1 is not resolved by the pivoting algorithm with all but negligible probability. First,
we make a simple observation that with all but negligible probability, the pivoting algorithm never
incorrectly adds rows to the upper or lower set. Claim Say we run the pivoting algorithm with index
1 ≤ d ≤ k on a block consisting of rows r′1, . . . , r

′
k, where their non-noisy versions, r1, . . . , rk

satisfy r1 < · · · < rk. Then with all but negligible probability, only rows among r′1, . . . , r
′
d are

added to the lower set and only rows among r′d+1, . . . , r
′
k are added to the upper set.

Proof For each set of parameters r, t, w, let Rr,t,w be the test set that is constructed when running
the pivoting algorithm with parameters r, t, w. With all but negligible probability

|σ(r′i, Rr,t,w)− σ(ri, Rr,t,w)| ≤ 5l (10)

for all parameters r, t, w and 1 ≤ i ≤ k (note here we use the fact that the we re-sample the noise
after constructing the test set R). If the above is satisfied then we claim the pivoting algorithm will
not make any errors. Fix r, t, w. Let λ be a permutation on {1, 2, . . . , k} such that

σ(r′λ(1), Rr,t,w) ≤ · · · ≤ σ(r′λ(k), Rr,t,w)

Now assume for the sake of contradiction that some row r′i is incorrectly added to the lower set.
Then there must be some row r′j among r′λ(d+1), . . . , r

′
λ(k) that should actually be in the lower set.

Note since rj < ri we have

σ(r′i, Rr,t,w) ≤ σ(r′λ(d+1), Rr,t,w)− 10l ≤ σ(r′j , Rr,t,w)− 10l

σ(rj , Rr,t,w) ≤ σ(ri, Rr,t,w)
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However this contradicts (10). We conclude that with all but negligible probability, the pivoting
algorithm does not incorrectly add any rows to the upper or lower set.

Claim For each i ∈ Y , let bi = Zi
W be the number of indices g ∈ G such that R(Mη,id, Bi, Inr,g)

containsW marked submatrices. When applying the permutation γ on the columns ofR(Mη,id, Bi),
for at least 0.98bi indices 1 ≤ f ≤ bi, for at least 0.99W of the marked submatrices within
R(Mη,id, Bi, Inr,hf ), the permutation γ moves at least 0.99z highlighted columns by a distance
of at least r.
Proof Let the rows in R(Mη,id, Bi) be r1, . . . , rk such that (ri1 , . . . , ric) and (rj1 , . . . , rjc) form
a (c, x, y)-detectable difference. Let γ(ri) denote the row obtained by applying the permutaion γ
to the entries of ri. By Claim E.2 and E.2, if the desired condition does not hold then for some
parameters r, t, w, when we run the pivoting algorithm on R(M ′η,γ , Bi) we construct a test-set R
such that for i ∈ {i1, . . . , ic}, j ∈ {j1, . . . , jc}

σ(γ(ri), R)− σ(γ(rj), R) ≥ x

yl6
√
|R|
≥ 1000l

This implies that with all but negligible probability

σ(γ(r′i), R)− σ(γ(r′j), R) ≥ 900l

where γ(r′i) is the noisy version of γ(ri). In particular this implies that with all but negligible prob-
ability, either all of the rows γ(ri1), . . . , γ(ric) are added to the upper set or all of γ(rj1), . . . , γ(rjc)
are added to the lower set and the (c, x, y)-detectable difference is resolved. However, this contra-
dicts the assumption in Claim E.

We will now essentially aggregate the above result over all Bi, i ∈ Y .

Definition 32 For i ∈ Y , call an index g ∈ G Bi-important if the following conditions hold.

• There are W marked submatrices in R(Mη,id, Bi, Inr,g)

• For at least 0.99W of the marked submatrices within R(Mη,id, Bi, Inr,g), the permutation γ
moves at least 0.99z highlighted columns by a distance of at least r.

Note Claim E.3 can be rephrased as follows. For a block Bi, let bi = Zi
W be the number of indices

g ∈ G such thatR(Mη,id, Bi, Inr,g) containsW marked submatrices. Then for each i ∈ Y , there are
at least 0.98bi indices g′ ∈ G that are Bi-important. Claim Consider applying the permutation γ to
the columns c1, . . . , cn of Mη,id. Consider the dyadic decomposition of γ0 = id, γ1, . . . , γl = γ and
let λ = blog2

n
r c. Either there are at least 0.01W |G|z indices j ∈ [n] such that cγλ(j) is ( ch100 ,

100y
W )-

above cj or there are 0.01W |G|z indices j ∈ [n] such that cj is ( ch100 ,
100y
W )-above cγλ(j).

Proof For an index g ∈ G let ω(g) be the number of indices i ∈ Y for which g is Bi-important.
Call an index g heavy if ω(g) ≥ h

2 . Let Gh ⊂ G denote the set of heavy indices.

Note that the total number of marked submatrices among R(Mη,id,
⋃
i∈[ a

4l3
]\Y Bi,

⋃
g∈G Inr,g) is at

most h|G|W4 . On the other hand the total number of marked submatrices amongR(Mη,id,
⋃
i∈[ a

4l3
]Bi,

⋃
g∈G Inr,g)
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is exactly h|G|W . Therefore, there are at least 3h|G|W
4 marked submatrices amongR(Mη,id,

⋃
i∈Y Bi,

⋃
g∈G Inr,g).

This implies
∑

i∈Y bi ≥
3h|G|

4 . By Claim E.3,

∑
g∈G

ω(g) ≥
∑
i∈Y

0.98bi ≥
2.9h|G|

4

Note since R(Mη,id,
⋃
i∈[ a

4l3
]Bi, Inr,g) contains exactly hW marked submatrices for all g

∑
g∈G

ω(g) =
∑
g∈Gh

ω(g) +
∑

g∈G\Gh

ω(g) ≤ h

2
(|G|+ |Gh|)

In particular, we deduce |Gh| ≥ |G|10 .

Now fix an element g ∈ Gh and focus on the submatrix R(Mη,id,
⋃
i∈Y Bi, Inr,g). For each i ∈ Y ,

R(Mη,id, Bi, Inr,g) can be viewed as r
2I

disjoint ki × 2I submatrices arranged horizontally.

There are at least h
2 indices, say i1, . . . , ih

2
∈ Y such that g is Bi-important. This means that

for i ∈ {i1, . . . , ih
2
}, the matrix R(Mη,id, Bi, Inr,g) contains W marked submatrices and for at

least 0.99W of these submatrices, the permutation γ moves at least 0.99z highlighted columns by
a distance of at least r. For a given i ∈ {i1, . . . , ih

2
}, let Movi ⊂ Inr,g be the set of indices of

the highlighted columns in R(Mη,id, Bi, Inr,g) that are moved by a distance of at least r. Note
|Movi| ≥ 0.98Wz. For a set S of integers and an integer 1 ≤ j ≤ |S|, let Srank(j) be the jth

smallest element of S.

First we claim there must exist some imid ∈ {i1, . . . , ih
2
} such that the following properties hold

• Let lowi = Movrank(d0.1Wze)
i and highi = Movrank(d|Movi|−0.1Wze)

i

• For at least h
10 distinct values of i ∈ {i1, . . . , ih

2
}, we have

lowi ≤ lowimid

highi ≥ highimid

This is because there are at most h
10 values i such that lowi is among the h

10 -smallest elements of
{lowi1 , . . . , lowih

2

} and at most h
10 values i such that highi is among the h

10 -largest elements of

{highi1 , . . . ,highih
2

} (ties broken in an arbitrary but consistent manner).

Now consider the highlighted columns indexed between lowimid and highimid
(inclusive) inR(Mη,id, Bimid , Inr,g).

Let cj be such a column and since γ moves cj by at least r distance, WLOG γ−1(j) ≤ r(g − 1).
Note this also implies γ−1λ (j) ≤ r(g − 1).

Note that for each index i ∈ {i1, . . . , ih
2
} such that lowi ≤ lowimid and highi ≥ highimid

, there
are at least 0.1Wz highlighted columns in R(Mη,id, Bi, Inr,g) to the left and right of cj . This means
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there are at least 0.1W marked submatrices to the left and right of cj (both inclusive). This is
because each marked submatrix has exactly z highlighted columns.

Using the last property in Claim 23, we claim that cj , when restricted to the entries in Bi, is at
least ( c

10 ,
100y
W )-above cγ−1

λ (j). To see this restrict cj − cγ−1
λ (j) to the rows of Bi that form a (c, x, y)

difference and call this restriction v ∈ R2c. v is lower bounded entry-wise by a sum of the form
v1 + · · · + ve where e ≥ 0.05W and each vi is a vector with nonnegative entries and at least c

2
entries larger than 1

2y . This is because the permutation γ moves cj “through” 0.1W distinct marked
submatrices. Thus, cj is ( ch100 ,

100y
W )-above cγ−1

λ (j).
Next note that there are at least 0.7Wz columns cj for which we can apply the above argument.

Also there are at least |Gh| ≥ |G|10 elements g ∈ G for which we can apply the same argument. Thus
either there are 0.01W |G|z columns γ−1λ (j) such that cj is ( ch100 ,

100y
W )-above γ−1λ (j) or there are

0.01W |G|z columns cγ−1
λ (j) such that cγ−1

λ (j) is ( ch100 ,
100y
W )-above cj . From this, we immediately

get the desired condition.

Lemma 33 Say we have a matrix M ∈ Permn×n with rows r1 < · · · < rn in order. Let π be a
permutation on [n] and say its dyadic decomposition is π0 = id, π1, . . . , πl = π. Let 1 ≤ d0 ≤ l
be some index and assume that there are at least t distinct values of j ∈ [n] such that rπd0 (j) is
(x0, y0)-above rj . Then Mπ must contain an (a, b, x, y)-error at some level d < d0 with a, b, x, y
all powers of 2 such that

• x ≥ x0
2l2

• y ≤ 2y0l

• abx
y2
≥ 1

104l20
tx0
y20

Proof Let S ⊂ [n] be the set of indices j ∈ [n] such that rπd0 (j) is (x0, y0)-above rj . Consider the
sequence rj , rπ1(j), . . . , rπd0 (j). First we claim there must be an index 1 ≤ i ≤ d0 such that rπi(j)

is
(
x0
d0
, d0y0

)
-above rπi−1(j). This is because for each entry where rπd0 (j) − rj is at least 1

y0
, there

must be some index 1 ≤ i ≤ d0 such that the corresponding entry of rπi(j) − rπi−1(j) is at least
1

d0y0
. Therefore for some 1 ≤ i ≤ d0, rπi(j) − rπi−1(j) has at least x0d0 entries that are at least 1

d0y0
.

We now deduce that for some 1 ≤ i ≤ d0, there is a set S′ ⊂ [n] with |S′| ≥ t
d0

such that for

all j ∈ S′, rπi(j) is
(
x0
d0
, d0y0

)
-above rπi−1(j). For each of the 2i−1 dyadic clustersR(M,Dl−i+1,j)

for j ∈ {0, 1, . . . 2i−1 − 1}, let Sj = S′ ∩Dl−i+1,j .

Let k = n
2i

and consider j = 0. Let the elements of S0 be j1 ≤ · · · ≤ jp. R(Mπi−1 , Dl−i+1,0)
consists of the 2k rows s1 < · · · < s2k in order. We will slightly abuse notation and view πi as a
permutation on {1, 2, . . . , 2k}. We use sπi(j) to denote the row among {s1, . . . , s2k} that is moved
to location j in R(Mπi , Dl−i+1,0).

Say that in πi, exactly m rows are swapped between (s1, . . . , sk) and (sk+1, . . . , s2k). Note that
sπi(k−m+1), . . . , sπi(k) are the rows from among (sk+1, . . . , s2k) that are moved to the first half and
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sπi(k+1), . . . , sπi(k+m) are the rows from among (s1, . . . , sk) that are moved to the second half.

Consider the following chain for each 1 ≤ f ≤ m

Cf = {πi(k − f + 1), k − f + 1, π−1i (k − f + 1), π−2i (k − f + 1) . . . }

where we continue the chain until the first time that π−ci (k−f+1) > k. Note that since we assumed
that sπi(k−m+1), . . . , sπi(k) are the rows from among (sk+1, . . . , s2k) that are moved to the first k
positions, the chain eventually terminates. Say the chain continues until π−cfi (k−f+1) so we have

π
−(cf+1)
i (k − f + 1) > k. Note that as f ranges over 1, 2, . . .m, the values π−(cf+1)

i (k − f + 1)
must exactly be the set k + 1, . . . , k +m. Thus, there are exactly m distinct chains. Also note that
for every index 1 ≤ j ≤ k, either πi(j) = j or πi(j), j occur as two consecutive terms in one of the
chains.

Consider the set of pairs P = {(πi(j1), j1), . . . , (πi(jp), jp)}. Note we must actually have 1 ≤
j1, . . . , jp ≤ k. For each chain Cf , let αf be the number of pairs from P that occur as consecutive
elements in the chain. For each integer g, let βg be the number of indices 1 ≤ f ≤ m such that
αf ≥ g. Using a standard argument, there must exist a g such that

gβg ≥
α1 + · · ·+ αm

2l

If the chainCf contains at least g pairs of consecutive elements from the set P then Claim C gives us
that sπi(k−f+1) is (x′, y′)-above s

π
−cf
i (k−f+1)

for some x′, y′ that are both powers of 2 and satisfy

x′ ≥ x1
2l

y1
n
≤ y′ ≤ 2y1

x′

y′2
≥ gx1

8ly21

where x1 = x0
d0
, y1 = y0d0.

There are only 2l2 possibilities for x′, y′ so over all βg chains containing at least g pairs from
the set P , at least d βg

2l2
e of them must share the same parameters x′, y′. This implies that the block

R(Mπi , Dl−i+1,0) contains a (c0, x
′, y′) error for some c0 such that c0 is a power of 2 and c0 ≥ βg

4l2
.

We have

c0x
′

y′2
≥ gβgx1

32l3y21
≥ (α1 + · · ·+ αm)x1

64l4y21
=
|S0|x1
64l4y21

We can repeat the above argument for all 0 ≤ j ≤ 2i − 1. Using a standard argument, must
exist some integer p such that for at least A indices 0 ≤ j ≤ 2i − 1, |Sj | ≥ p and

Ap ≥
|S0|+ · · ·+ |S2i−1|

2l
=
|S′|
2l
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For each of these A indices say j1, . . . , jA, there exists some (c0, x
′, y′) error in R(Mπi , Dl−i+1,j)

and since there are at most 4l3 possibilities for the triple (c0, x
′, y′) we can choose some (c0, x

′, y′)
that is common for at least A

4l3
of the blocks R(Mπi , Dl−i+1,j). Let a be the largest power of 2 at

most A
4l3

. Setting b = c0, x = x′, y = y′, we deduce that Mπ must contain some (a, b, x, y)-error
with

x ≥ x1
2l
≥ x0

2l2

y ≤ 2y1 ≤ 2y0l

abx

y2
≥ A

8l3
c0x
′

y′2
≥ Apx1

2 · 103l7y21
≥ |S′|

4 · 103l8
· x0
y20l

3
≥ 1

104l20
· tx0
y20

Now we are ready to complete the proof of Claim E.
Proof [Proof of Claim E] Combining Lemma 33 and Claim E.3, we get that there must exist some
index 1 ≤ d0 ≤ l such that

• 2d0 ≤ n
r

• γ contains an (a′, b′, x′, y′)-error at level d0 in its dyadic decomposition such that

– x′ ≥ ch
200l2

– y′ ≤ 200yl
W

– a′b′x′

y′2
≥ 1

104l20
· chW

3|G|z
1010y2

Note that
a′b′x′

y′2
≥ 1

104l20
· chW

3|G|z
1010y2

≥ 1

1020l30
acx

y2
W 2

so ifW ≥ l3000l0.5 then a′b′x′

y′2
≥ acx

y2
l5900l

0.5
. However, this implies that γ contains an (a′, b′, x′, y′)-

error and we get
||Mη,γ −Mη,id||22 ≥

acx

y2
l5000l

0.5

Otherwise note |G|z ≤ 2I nr . We then have

• x′ ≥ ch
200l2

≥ acx
(10l)8W |G|z ≥

acx

2I n
r
l3100l0.5

≥ acx
y2

1

n
7
6 l5100l0.5

· x ≥ l4900l0.5x

• a′b′x′

y′2
≥ 1

1020l30
acx
y2
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E.4. Completing the Analysis of the Full Algorithm

We need a few more technical tools. First we prove a slightly more precise version of Claim C.1.
Claim Let M ∈ BISOn×n be a matrix and let π be a permutation on [n]. Assume we have an
(a, b, x, y)-difference at level i in the dyadic decomposition of Mπ such that abx

y2
≥ 4nf(n) and

y > b. Then there must exist some i′ ≤ di− log2 f(n)e such that there exists an (a′, b′, x′, y′)-error
at level i′ in the dyadic decomposition of Mπ such that

• x′ ≥ x
16l2

• y′ ≤ 16yl

• a′b′x′

y′2 ≥
1

108l20
abx
y2

Proof Note it suffices to consider i ≥ log2 f(n) since a ≤ 2i. Consider the dyadic blocks at level
i0 = di− log2 f(n)e, say Dl−i0,0, . . . , Dl−i0,2i0−1. Let Xj be the largest L1 distance between two
rows of R(M,Dl−i0,j). Note X0 + · · · + X2i0−1 ≤ n. Let T ⊂ {0, 1, . . . , 2i0 − 1} be the set of
indices j such that |Xj | ≥ x

2y . We have |T | ≤ 2ny
x .

Also, the (a, b, x, y)-difference we start with can naturally be viewed as the union of a disjoint
(b, x, y)-differences. Call these selected differences. At most

2ny

x

2i

2i0
≤ 2nyf(n)

x

of the selected (b, x, y)-differences can be contained in dyadic blocks R(Mπ, Dl−i0,j) for j ∈ T .
Thus, for j ∈ {0, 1, . . . , 2i0 − 1}\T , there are at least

a− 2nyf(n)

x
≥ a

2

selected differences remaining.
Consider such a selected difference consisting of rows

(
rπ(j1), . . . , rπ(jb)

)
and

(
rπ(j′1), . . . rπ(j′b)

)
contained in R(Mπ, Dl−i0,j) where j /∈ T .

By the definition of dyadic decomposition, for all 1 ≤ f ≤ bwe have π−1i0 (π(jf )), π−1i0 (π(j′f )) ∈
Dl−i0,j . Also for any 1 ≤ f, g ≤ b, the L1 distance between rπ−1

i0
(π(jf ))

and rπ−1
i0

(π(j′g))
is at most

x
2y . We claim that this implies, either for all 1 ≤ f ≤ b, rπ(jf ) is

(
x
8 , 8y

)
-above rπ−1

i0
(π(jf ))

or for

all 1 ≤ f ≤ b, rπ−1
i0

(π(j′f ))
is
(
x
8 , 8y

)
-above rπ(j′f ).

Now we can apply Lemma 33 with t = ab
4 , x0 = x

8 , y0 = 8y to deduce that for some i′ ≤ i0
Mπ contains an (a′, b′, x′, y′)-error at level i′ such that

• x′ ≥ x
16l2

• y′ ≤ 16yl

• a′b′x′

y′2 ≥
1

108l20
abx
y2
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We are now ready to complete the proof of the main result, Theorem 27.
Proof [Proof of Theorem 27] Throughout this proof we will let πt, σt be our algorithm’s estimated
row and column permutations after t rounds of alternately sorting (running the full row sorting al-
gorithm) the rows and columns. Let T = l10 be the number of total rounds. Note πT = π, σT = σ.

First note that using the same argument as Claim D, we can ensure that with all but negligible
probability, we never create any (a, b, x, y)-errors in the row or column permutation such that
x
y ≥ 100

√
nl. Now assume that the desired claim is not true for Mπ,id (the exact same argu-

ment will work for Mid,σ). Let E = n
7
6
+105 log logn√

logn . By Lemma 18, there must exist some integer
1 ≤ i ≤ l and some (a, b, x, y)-error at level i such that

• b ≥ y

• abx
y2
≥ E

ll0.5
≥ n

7
6 l9000l

0.5

Also note that we can assume x
y ≤ 100

√
nl. Note the (a, b, x, y)-error can be viewed as a union

of a disjoint (b, x, y)-errors. Consider the blocks R(Mπ,id, Dl−i,j) with 0 ≤ j ≤ 2i − 1 that
contain (b, x, y)-errors. First we consider the case where for at least a2 of the blocks, there exists a
(b′, x′, y′)-difference such that

y′ > b′ (11)
b′x′

y′2
≥ ll0.5 bx

y2
(12)

Note there are at most l3 distinct triples (b′, x′, y′) so there must be some triple that occurs at
least a

2l3
times and this implies that Mπ,id contains an

(
a
2l3
, b′, x′, y′

)
-difference at level i in its

dyadic decomposition. We can now iteratively apply Claim E.4 (since we cannot decrease the level
i indefinitely) to deduce that Mπ,id must contain, at some level in its dyadic decomposition, an
(a′′, b′′, x′′, y′′)-error with b′′ ≥ y′′ and

a′′b′′x′′

y′′2
≥ abx

y2
l0.5l

0.5

Otherwise, we for at least a2 of the blocks that contain (b, x, y)-errors, there are no (b′, x′, y′)-
differences for b′, x′, y′ satisfying (11, 12). Fix such a block R(Mπ,id, Dl−i,j). Consider running
the full row sorting algorithm on M ′πT−1,γT−1

. Consider the ith round when we run the block sort-
ing algorithm on blocks of size n

2i
. The blocks before the ith round of sorting are the same as

R(M ′π,γT−1
, Dl−i,j) for j = {0, 1, . . . , 2i − 1}, except the rows may be permuted within each

block. For a given block R(M ′π,γT−1
, Dl−i,j), let Bt

l−i,j be the set of rows remaining after running
t rounds of the pivoting algorithm. Note that in the tth iteration of running the pivoting algorithm,
we run the pivoting algorithm on R(M ′π,γT−1

, Bt−1
l−i,j) (technically Bt

l−i,j is an unordered set, but
the order does not matter when we run the pivoting algorithm).

Let Tpivot = ll
0.51

be the number of times we run the pivoting algorithm. Since there are no
(b′, x′, y′)-differences for b′, x′, y′ satisfying (11, 12) and Tpivot = ll

0.51
is sufficiently large, there

must exist some 1 ≤ t ≤ Tpivot such that R(M ′π,γT−1
, Bt−1

l−i,j) contains a (b′, x′, y′)-difference that
satisfies
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• Either (b′, x′, y′) = (b, x, y) or b
′x′

y′2 ≥ l
l0.5 bx

y2

• The (b′, x′, y′)-difference is detectable in R(M ′π,γT−1
, Bt−1

l−i,j) but is not resolved by the tth

iteration of the pivoting algorithm

Since there are only l3 possibilities for (b′, x′, y′), among the a
2 blocks in consideration, there

is some triple (b′, x′, y′) such that the above condition holds for at least a
2l3

blocks. We now apply
Claim E to deduce that there is some “larger” error in γT−1 from the previous round of sorting the
columns. First if (b′, x′, y′) = (b, x, y) then either

||Mid,γT−1
−Mid,id||22 ≥

abx

2l3y2
l5000l

0.5

or there exists some i′ such that in the column permutation γT−1, there is an (a′′, b′′, x′′, y′′)-error
at level i′ with

a′′b′′x′′

y′′2
≥ 1

1020l30
abx

2l3y2

x′ ≥ l4900l0.5x

In the first case we can apply Lemma 18 to conclude that there exists an (a′′, b′′, x′′, y′′)-error at
some level i′ in the dyadic decomposition of γT−1 such that

a′′b′′x′′

y′′2
≥ l4000l0.5 abx

y2

If (b′, x′, y′) 6= (b, x, y) then combining Claim E.4 and Lemma 18, there must exist an (a′′, b′′, x′′, y′′)-
error at some level i′ in the column permutation γT−1 with

a′′b′′x′′

y′′2
≥ l0.9l0.5 abx

y2

Overall, we have shown that if πT contains an (a, b, x, y)-error with b ≥ y and abx
y2
≥ n

7
6 l9000l

0.5
at

some level i, there must exist one of the following

• An (a′′, b′′, x′′, y′′)-error in πT at some level i′ such that b′′ ≥ y′′ and a′′b′′x′′

y′′2 ≥ abx
y2
l0.5l

0.5

• An (a′′, b′′, x′′, y′′)-error in γT−1 at some level i′ such that b′′ ≥ y′′ and a′′b′′x′′

y′′2 ≥ abx
y2
l0.9l

0.5

• An (a′′, b′′, x′′, y′′)-error in γT−1 at some level i′ such that b′′ ≥ y′′ and both of the following
hold

– a′′b′′x′′

y′′2 ≥ 1
l200

abx
y2

– x′′ ≥ l4800l0.5x

We consider replacing a quadruple (a, b, x, y) with a quadruple (a′′, b′′, x′′, y′′) using one of the
above rules a “step” of type 1, type 2 or type 3. Note there can be at most l0.5

log l steps of type 3 in a

row since for any error with x ≥ 0.1n and abx
y2
≥ n

7
6 , we must have y ≤ n

5
12 and thus x

y ≥ 0.1n
7
12 .

However, as noted at the beginning of the algorithm, such errors occur with negligible probability.
Thus if πT contains an (a, b, x, y)-error at some level i with b ≥ y and abx

y2
≥ n

7
6 l10

4l0.5 , there must
exist one of the following
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• An (a′′′, b′′′, x′′′, y′′′) error in πT at some level i′ such that b′′′ ≥ y′′′ and a′′′b′′′x′′′

y′′′2 ≥ abx
y2
l0.5l

0.5

• An (a′′′, b′′′, x′′′, y′′′) error in πT ′ or γT ′ for T ′ ≥ T −
(
l0.5

log l + 1
)

rounds earlier such that

b′′′ ≥ y′′′ and

a′′′b′′′x′′′

y′′′2
≥
(

1

l200

) l0.5

log l

l0.5l
0.5 abx

y2
≥ l0.4l0.5 abx

y2

However we run a total of O(l10) rounds of alternately sorting the rows and columns so the above
immediately gives a contradiction since there cannot be any (a, b, x, y) errors with abx

y2
≥ n2. Thus,

our initial assumption about the existence of an a, b, x, y error in the final output was false and we
are done.
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