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Abstract
The Combinatorial Multi-Armed Bandit problem is a sequential decision-making problem in which
an agent selects a set of arms at each round, observes feedback for each of these arms and aims
to maximize a known reward function of the arms it chose. While previous work proved regret
upper bounds in this setting for general reward functions, only a few works provided matching
lower bounds, all for specific reward functions. In this work, we prove regret lower bounds for
combinatorial bandits that hold under mild assumptions for all smooth reward functions. We derive
both problem-dependent and problem-independent bounds and show that the recently proposed Gini-
weighted smoothness parameter (Merlis and Mannor, 2019) also determines the lower bounds for
monotone reward functions. Notably, this implies that our lower bounds are tight up to log-factors.
Keywords: Combinatorial Multi-Armed Bandits, Lower Bounds, Gini-Weighted Smoothness

1. Introduction

Combinatorial Multi-Armed Bandits (CMABs) are a well-known extension of Multi-Armed Bandits
(MABs) (Robbins, 1952), where instead of choosing a single arm at each round, the agent selects a set
of arms. It then observes noisy feedback for each arm in this set (‘semi-bandit feedback’) and aims
to maximize a known reward function of the selected arms and their parameters. More specifically, it
aims to minimize its regret, which is the expected cumulative difference between the reward of the
best action and the reward of the agent’s actions. The applications of this framework are numerous
and vary between reward functions; the most common one is the linear reward function (Kveton
et al., 2015c), which can be applied for problems such as spectrum allocation, shortest paths, routing
problems and more (Gai et al., 2012). Another common application is the Probabilistic Maximum
Coverage (PMC) problem (Merlis and Mannor, 2019), which is closely related to problems such as
influence maximization and ranked recommendations.

Due to its usefulness, many previous works analyze regret upper bounds for different variants of
this setting. While some works focus on specific reward functions, others derive bounds that hold for
general reward functions. In these cases, the bounds usually depend on some measure of smoothness
of the reward, for example, its global Lipschitz constant, or its Gini-weighted smoothness. The latter
is a more refined smoothness criterion, recently suggested in (Merlis and Mannor, 2019), that takes
into account the interaction between the local gradients of the reward and concentration properties of
the arms. On the other hand, there are almost no works on matching lower bounds; to the best of our
knowledge, all existing lower bounds for CMABs were derived for specific reward functions – either
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the linear one or the PMC problem. Notably, there is no characterization of lower bounds for general
reward functions, and it is unclear whether existing upper bounds are tight.

The gain from general lower bounds is threefold: (i) When the bounds are loose, understanding
which quantities affect the lower bounds allows devising tighter algorithms; (ii) When the bounds are
tight, the instances on which the bounds were derived can help to determine under which additional
assumptions the lower bounds do not hold. Such assumptions might allow us to derive improved
upper bounds; (iii) When we can control some parameters of the problem, e.g., the number of arms
in an action, their effect on the lower bound can help us tune them for each application.

In this work, we derive problem-dependent (Theorem 1) and problem-independent (Theorem
2) lower bounds that hold for general reward functions under mild assumptions. The problem-
dependent bound shows that for any ‘good’ bandit strategy, there exists a CMAB instance such
that the asymptotic regret must be larger than a certain logarithmic rate. The problem-independent
bound shows that for any strategy and any large enough horizon T , there exists a horizon-dependent
instance with a

√
T regret. To derive these bounds, we define a family of action sets for CMAB

problems, which we call I-disjoint. There, a subset of arms I appear in all actions and independent
of other actions, while the rest of the arms appear in a single action. We then prove that for I-disjoint
problems, both bounds depend on a new modified Gini-smoothness measure; specifically, they
reproduce existing lower bounds for both the linear reward function and the PMC problem. If the
reward function is also monotone, as in most practical applications, we derive an additional bound
that depends on the Gini-smoothness of the reward and matches the upper bound of (Merlis and
Mannor, 2019) up to logarithmic factors (Proposition 4). Thus, our results demonstrate that without
any additional assumptions, the bounds are tight for almost any reward function.

2. Related Work

The general framework of combinatorial bandits with semi-bandit feedback was first presented in
(Chen et al., 2013). Since then, it has had many extensions, e.g., for the case of probabilistically-
triggered arms, where the set of arms in an action might be random (Chen et al., 2016a; Wang and
Chen, 2017), and for reward functions that depend on the arm distribution (Chen et al., 2016b).
Moreover, many previous works focus on specific instances of this problem, e.g., linear reward
functions (Kveton et al., 2015c; Combes et al., 2015; Degenne and Perchet, 2016), cascading bandits
(Kveton et al., 2015a,b) and more. Recently, Merlis and Mannor (2019) presented BC-UCB, a
Bernstein-based UCB algorithm with regret bounds that depend on a new smoothness measure,
which they call the Gini-weighted smoothness. Specifically, they show that by combining the reward
nonlinearity with the local behavior of the confidence intervals, the dependency of previous regret
bounds in the maximal action size can be removed. In this work, we show that for monotone
reward functions, the Gini-smoothness also characterizes the lower bounds for CMAB problems and
therefore prove that this upper bound is tight. In addition, while all previously stated papers assume
that the reward function is monotone, a few papers also support non-monotone reward functions
(Wang and Chen, 2018; Hüyük and Tekin, 2019). We also present lowers bounds for this scenario.

Although there has been extensive work on regret upper bounds for CMABs, there are almost no
results on lower bounds for this setting. Kveton et al. (2015c) derived lower bounds for the linear
reward function with general arm distributions, and when arms are also independent, lower bounds
can be found in (Degenne and Perchet, 2016; Combes et al., 2015). Also, Kveton et al. (2015a)
derived lower bounds for cascading bandits and Merlis and Mannor (2019) derived bounds for the
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Table 1: Upper (UB) and lower (LB) bounds of different CMAB problems for arbitrary action sets. Dep./Ind.
are problem-dependent and problem-independent bounds, and the notations follow Section 3. γ∞ is the global
Lipschitz constant of a reward function, and for the Gini-smoothness γg, it holds that γg≤

√
Kγ∞ (Merlis

and Mannor, 2019). ∆min is the minimal gap.

CMAB problem Type Previous UB Previous LB Theorem 1 or 2 Proposition 4

General reward functions
Dep. O

(
γ2∞mK lnT

∆min

)†
None Ω

(
maxµ,I

γ̃2g(µ;I)m lnT

∆minKI

)
NA

Ind. None None Ω

(
maxµ,I

√
γ̃2g(µ;I)mT

KI

)
NA

Monotone reward functions
Dep. O

(
γ2gm ln2K lnT

∆min

)‡
None Ω

(
maxµ,I

γ̃2g(µ;I)m lnT

∆minKI

)
Ω̃

(
γ2gm lnT

∆min

)
Ind. O

(
γg lnK

√
mT

)‡
None Ω

(
maxµ,I

√
γ̃2g(µ;I)mT

KI

)
Ω̃
(
γg
√
mT

)
Linear reward function

r(S;µ) =
∑
i∈S

µi

Dep. O
(
mK lnT

∆min

)§
Ω
(
mK lnT

∆min

)§
Ω
(
mK lnT

∆min

)
Ω
(

mK lnT
(lnK)∆min

)
Ind. O

(√
mKT

)§
Ω
(√

mKT
)§

Ω
(√

mKT
)

Ω

(√
mKT
lnK

)
PMC problem

r(S;µ)=

M∑
i=1

1−
∏
j∈S

(1− µij)


Dep. O

(
mM ln2K lnT

∆min

)‡
Ω
(
mM lnT

∆min

)‡
Ω
(
mM lnT

∆min

)
Ω
(

mM lnT
(lnK)2∆min

)
Ind. O

(
lnK
√
mMT

)‡
Ω
(√

mMT
)‡

Ω
(√

mMT
)

Ω
(√

mMT
lnK

)
†(Wang and Chen, 2018), requires independent arms. ‡(Merlis and Mannor, 2019) §(Kveton et al., 2015c)

PMC problem. Nevertheless, and to the best of our knowledge, there are no lower bounds for general
reward functions. A comparison of our bounds to previous related bounds can be found in Table 1.

In contrast to the CMAB problem, the lower bounds for MABs are well characterized. In their
seminal work, Lai and Robbins (1985) presented the first general problem-dependent lower bound for
MABs, which was later extended by Burnetas and Katehakis (1996). In terms of problem-independent
bounds, Auer et al. (2002) derived an Ω(

√
KT ) lower bound for K-armed bandit problems with time

horizon T , whose constants were later improved by Cesa-Bianchi and Lugosi (2006). Also, Mannor
and Tsitsiklis (2004) proved problem-independent lower bounds with both linear and logarithmic
regimes. Recently, Garivier et al. (2018) presented a general tool that allows deriving various lower
bounds for MABs. We adapt this tool for the CMAB problem to derive our new regret bounds.

3. Preliminaries and Notations

We start with some notations. Let [n] = {1, . . . , n}, and for any vector x ∈ Rn and set I ⊂ [n],
denote by xI , a sub-vector of x that contains only elements from I . We denote the Kullback-Leibler
(KL) divergence between two distributions ν, ν ′ by DKL(ν, ν ′), and the KL divergence between two
Bernoulli random variables with expectations p, q by kl(p, q). For any vector x∈Rn, let xs be a
permutation such that xs1≤ . . .≤xsn, and define the increasing permutation of vector x∈Rn w.r.t. a
set I as px,I =[xsIc , xI ]∈Rn; namely, the beginning of the vector px,I contains a sorted permutation
of the elements of x in Ic = [n]/I , and its end contains the elements of x in I . Finally, for any set I
of bounded size |I| ≤ K, we denote by KI =K − |I| the size of the complementary set w.r.t. K.

We work under the combinatorial multi-armed bandit setting with semi-bandit feedback. Denote
the number of arms (‘base arms’) by m, and let S ⊂ 2[m] be the set of possible actions (‘super
arms’), that is, the set that contains all valid combinations of base arms that the agent can choose.
The number of base arms in each action S ∈ S is bounded by |S| ≤ K, and w.l.o.g., assume
that |S| = K. At the beginning of each round t, the arms generate an observation vector X(t) =

3



TIGHT LOWER BOUNDS FOR COMBINATORIAL MULTI-ARMED BANDITS

(
X

(t)
1 , . . . , X

(t)
m

)
∈ [0, 1]m, sampled from a fixed distribution independently of other rounds. Then,

the agent chooses an action St ∈ S and observes feedback X(t)
S ,

{(
i,X

(t)
i

)
,∀i ∈ St

}
. Denote

the means of base arms by E
[
X(t)

]
=µ= (µ1, . . . , µm). The goal of the agent is to maximize a

known reward function r(S;µ), without knowing µ. Specifically, the agent aims to minimize its
regret R(T ) =

∑T
t=1(r(S∗;µ)− r(St;µ)) ,

∑T
t=1 ∆St , where S∗ ∈ arg maxS∈S r(S;µ) is an

optimal action1 and ∆St = r(S∗;µ)− r(St;µ) is the suboptimality gap of St. To prove the lower
bounds, we require a mild assumption on the reward function, which we call index invariance:

Definition 1 A reward function r(S;µ) : S × [0, 1]m → R is called differentiable if for any S ∈ S ,
it is differentiable in µ ∈ [0, 1]m.

Definition 2 A differentiable reward function r(S;µ) : S × [0, 1]m → R is called smooth index
invariant if for any S ∈ S, it only depends on the arms in S, i.e., r(S;µ) = r(µS).

When the function is index invariant, and with a slight abuse of notations, we also write r(µ),
with µ ∈ RK , to represent the mean of arms µS for |S| = K. This assumption helps avoiding cases
in which specific arms behave inherently different than other arms, such that the problem becomes
much easier. For example, for the biased linear function r(S;µ) =

∑
i∈S(µi +mi) and for any

µ ∈ [0, 1]m, the optimal action is S∗ = arg maxS∈S
∑

i∈S i, regardless of the arm means; therefore,
both the upper and lower bounds for this reward function trivially equal zero. In contrast, the lower
bound for the linear function are nonzero (see Table 1); thus, without the index-invariance, the lower
bounds cannot be characterized solely by the gradient of reward function w.r.t. µ, in contrast to
the existing upper bounds. To the best of our knowledge, this assumption holds for all practical
applications for CMABs. We also believe that our analysis will hold for reward functions that depend
on the order of arms inside an action. However, we leave this extension for future work. Besides this
assumption, we later move our focus to monotone reward functions, which are defined as follows:

Definition 3 A differential reward function r(S;µ) : S × [0, 1]m → R is called monotone if for
any S ∈ S, any µ ∈ [0, 1]m and any i ∈ [m], it holds that∇ir(S;µ) ≥ 0.

We remark that in most previous work, the upper bounds only hold for monotone functions, which
include most of the practical application, e.g., the linear and PMC problems. We end this part
of the preliminaries with an important inequality that was derived for MABs and will enable us
to derive our new bounds for CMABs. Let [m] be a set of arms, where each arm a ∈ [m] is
characterized by a distribution νa over RK , and denote ν = {νa}a∈[m].

2 Assume that at each round,
when playing at, a sample Yt is drawn independently at random from νat . Let ψ be a strategy that
chooses an arm according to the history and internal i.i.d randomization Ut ∈ [0, 1]. Namely, if
Ht = (U0, Y1, U1, . . . , Ut, Yt), then at+1 = ψt(Ht). Also, let Nψ,a(T ) be the number of times an
arm a was played under strategy ψ up to time T . Under these notations, the following holds:

Lemma 4 (Garivier et al. 2018) For all bandit problems ν, ν ′, for all σ(HT )-measurable random
variables Z with values in [0, 1],

m∑
a=1

Eν [Nψ,a(T )]DKL(νa, ν
′
a) ≥ kl

(
Eν [Z],Eν′ [Z]

)
, (1)

1. Previous work on regret upper bounds also allows approximate maximization of r. We focus on the best achievable
performance, so we assume we can efficiently maximize r.

2. Garivier et al. (2018) assume that νa are distributions over R, but the exact same proof holds for distributions over RK .
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(a) Hoeffding confidence bounds (b) Bernstein confidence bounds (c) Bernstein confidence bounds

Figure 1: Red arrows: confidence intervals on the function parameter (x-axis confidence), due to either
Hoeffding or Bernstein inequalities; the latter is tighter near the edges. Blue zone: the resulting confidence
intervals on the reward function in the bold curve (y-axis confidence). In Figures 1(a),1(b), these intervals are
derived using the global Lipschitz constant of the reward γ∞, i.e., CI(r(µ̂)).γ∞

∑
i CI(µ̂i). In Figure 1(c),

we present the real confidence interval on the reward, that is much tighter than the bound due to γ∞. This is
since the bound is tight where the gradient is large, which is around the edge of the domain, but loose in other
areas, where the gradient is small.

where kl(p, q) = p ln p
q + (1− p) ln 1−p

1−q .

In the combinatorial case we use similar notations and denote the action counts by Nψ,S(T ).

3.1. Smoothness Measures

We now present the smoothness measures for smooth index-invariant reward functions that govern
our lower bounds. The measures are defined for arm parameters µ∈RK and a set I⊂ [m] as follows:

1. L2 Gini-weighted smoothness

γ2
g,2(µ; I) ,

KI∑
i=1

pµ,Ii (1− pµ,Ii )∇ir
(
pµ,I

)2
=
∑
i/∈I

µi(1− µi)∇ir(µ)
2 (2)

2. L1 Gini-weighted smoothness

γ2
g,1(µ; I) ,

(
KI∑
i=1

√
pµ,Ii (1− pµ,Ii )∇ir

(
pµ,I

))2

=

(∑
i/∈I

√
µi(1− µi)∇ir(µ)

)2

(3)

3. Modified Gini-weighted smoothness

γ̃2
g(µ; I) =

KI∑
i=1

pµ,Ii (1− pµ,Ii )∇ir
(
pµ,I

)2
+ 2

KI∑
i=1

KI∑
j=i+1

pµ,Ii (1− pµ,Ij )∇ir
(
pµ,I

)
∇jr

(
pµ,I

)
(4)

Notice that the last equality in Equations (2),(3) is due to the index-invariance assumption. Specif-
ically, the assumption implies that ∇ir(µ) only depends on µi and the set of values {µi}mi=1. For
smooth index-invariant reward functions, γ2

g,2(µ; I) is an extension of the Gini-smoothness, as
defined in (Merlis and Mannor, 2019). In particular, their smoothness parameter is defined as
γg = maxI,µ γg,2(µ; I) = maxµ γg,2(µ; ∅). A motivation to this smoothness criterion is presented
in Figure 1. Notably, the performance of any algorithm strongly depends on the uncertainty in the
reward of actions. However, algorithms only have access to uncertainty in arm parameters, and arm
uncertainty must be translated into reward uncertainty. The figure illustrates that doing so using the
global Lipschitz constant might lead to loose bounds. Intuitively, if the gradients are small, even
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wide confidence intervals do not cause high uncertainty in the reward. Similarly, narrow confidence
intervals do not lead to high reward uncertainty even where the gradients are large. Thus, Merlis
and Mannor (2019) suggested weighting the gradients according to the confidence intervals of the
arms. Specifically, their algorithm (BC-UCB) relies on Empirical-Bernstein concentration-bounds
(Audibert et al., 2009), that depend on the variance of the arms and are proportional to

√
µi(1− µi)

for Bernoulli arms. Similarly weighting the gradients leads to the Gini-smoothness measures.
In the following sections, we prove lower bounds for the CMAB problem that depend on γ̃2

g (µ; I).
While complex at first glance, γ̃2

g (µ; I) is actually closely related to the other smoothness measures.
Notably, observe that the only difference between γ̃2

g (µ; I) and γ2
g,1(µ; I) is a small modification

to the second (cross) term of (4). In Proposition 3, we indeed prove that γ̃2
g (µ; I) ≥ Ω̃(γ2

g,1(µ; I)).
When the function is monotone, we later prove that γg,1(µ; I) can also be related to γg,2(µ; ∅), which
leads to tight lower bounds, up to logarithmic factors.

4. Problem-Dependent Lower Bounds

In this section, we prove a problem-dependent lower bound. Specifically, we show that there exist a
CMAB instance, such that the asymptotic regret of any consistent strategy on this instance is lower
bounded by a logarithmic term that depends on γ̃g(µ; I) and the minimal gap ∆ = minS∈S,∆S>0 ∆S .
Consistent strategy is defined as follows:

Definition 5 A bandit strategy ψ is called consistent if for any CMAB problem, any S ∈ S such that
∆S > 0 and any 0 < α ≤ 1, it holds that E[Nψ,S(T )] = o(Tα).

To prove the lower bounds, we focus on a subset of CMAB problems which we call I-disjoint.

Definition 6 For a given subset I⊂ [m], a CMAB problem is called I-disjoint if all arms i∈I are
mutually independent of all arms i /∈I and also S1∩S2 =I for any S1 6=S2∈S .

Since |S| ≤ K, we implicitly assume that |I| ≤ K and denote the effective maximal action size
by KI = K − |I|. In I-disjoint CMAB problems, the base arms i ∈ I appear in all actions and
are mutually independent of the other arms. The rest of the arms can only appear in one action.
This notion of CMAB problems actually extends the action sets from previous work – for the linear
reward function, Kveton et al. (2015c) divided the arms into m

K disjoint groups, which is equivalent
to I=∅. In contrast, in the CMAB instance on which the PMC lower bounds were derived, only a
single arm per item varied between actions (Merlis and Mannor, 2019). If there are M items, this
is equivalent to I=[K −M ]. We show that choosing the ‘worst-case’ set I naturally results with
tighter lower bounds. We start by deriving general problem-dependent lower bound, using Lemma 4:

Lemma 7 Let r be a smooth index invariant reward function with |S| = K for all S ∈ S. Also,
let ν be the action distribution of an I-disjoint CMAB problem such that there exists an arm i /∈ I
in S∗ with Pr

{
X

(t)
i = µi

}
< 1 and ∇ir(S∗;µ) 6= 0. Then, for all consistent strategies ψ and all

suboptimal actions S,

lim inf
T→∞

Eν [Nψ,S(T )]

lnT
≥ 1

DKL(νS , νS∗)
.

Specifically, it holds that

lim inf
T→∞

Eν [R(T )]

lnT
≥

∑
S:∆S>0

∆S

DKL(νS , νS∗)
.
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The proof is in Appendix A, and partially follows Theorem 1 of (Garivier et al., 2018), with some
adjustments due to the nonlinearity of the reward function. Although this lemma gives a general
lower bound for I-disjoint CMAB problems, it has no clear dependence on any smoothness measure
of the reward. To derive lower bounds that directly depend on such measures, we carefully design
the arm distributions νS , νS∗ and analyze both ∆S and DKL(νS , νS∗) for these distributions. We do
so in the following theorem, which results with the desired lower bound:

Theorem 1 Let r be a smooth index invariant reward function. For any µ ∈ [0, 1]K and any small
enough ∆ > 0, there exists an instance of an I-disjoint bandit problem ν with minimal gap ∆ and
E[νS∗ ] = µ, such that the expected regret of any consistent algorithm is bounded by

lim inf
T→∞

Eν [R(t)]

lnT
≥ max

I

(m− 2K)γ̃2
g(µ; I)

8KI∆
, DB∗(∆;µ)

Before proving the theorem, we start with a short discussion on the tightness of the results and
the relation to existing upper bounds. One interesting case is when pµ,Ii = p0 for all i ∈ [KI ].
Due to the index invariance, the gradient components are also equal, which results with γ̃2

g (µ; I) =

KI
2p0(1 − p0)∇ir

(
pµ,I

)2. This choice allows us to easily reproduce the existing lower bounds
and leads to the bounds stated in Table 1. Specifically, for the linear reward function, we achieve
the bound by choosing I= ∅ and p0 = 1

2 ; for the PMC problem, we choose the subset I such that
it contains all arms except for a single (first) element from each vector µi =

(
1
2 , 0, . . . , 0

)
, i.e.,

KI = M and p0 = 1
2 . We remark that though choosing KI = K is seemingly optimal, this is not

always the case. A notable example for this issue is the reward function r(S;µ) = 1− e−
∑
i∈S µ

2
i .

For this instance, optimizing over p0 leads to a bound of γ̃2
g (µ; I)/KI = Ω

(
1/
√
KI

)
, and the

optimal choice is KI = O(1). In this example it also holds that γg = O(1), and, therefore, this
bound is tight.

We note that this bound only requires the smooth index invariance assumption and holds for non-
monotone reward functions. When the reward is also monotone, observe that γ̃2

g (µ; I) ≥ γ2
g,2(µ; I).

Choosing I = ∅ and maximizing over µ leads to a lower bound of Ω
(
mγ2

g lnT

∆K

)
, which differs from

the upper bound of (Merlis and Mannor, 2019) by a factor of K. We later prove that when the reward
is monotone, a stronger lower bound can be derived, such that it matches the upper bound up to
logarithmic factors.

Next, we present the proof of Theorem 1 which is composed of three parts. We first present a
carefully designed parametric arm distributions, that allow controlling the suboptimality gap while
retaining low KL-divergence. We then bound both the gap and the KL-divergence in terms of the
parameters of the distributions and apply Lemma 7 using these bounds. We conclude the proof by
optimizing the resulting lower bound over the distribution parameters.
Proof
STEP 1: Fixing a parametric family of CMAB instances.
Denote by I∗, the maximizer of I in DB∗(∆;µ), and for brevity, let p = pµ,I

∗
and KI = KI

∗ =
K − |I∗|. Note that this also implies that 0 ≤ p1 ≤ · · · ≤ pKI ≤ 1. In addition, due to the form of
the lower bound, we can deduce that p1 > 0 and pKI < 1, since otherwise, we can move arms with
means 0 and 1 into I∗ and strictly increase DB∗(∆;µ). For now, we also assume that no two arms
have the same mean, i.e., 0 < p1 < · · · < pKI < 1, and will return to this assumption later in the
proof. Without loss of generality, we also assume that KI > 0 and there exists i ∈ [KI ] such that
∇ir(p) 6=0 since otherwise, DB∗(∆;µ)=0 and trivially holds. Similarly, we assume that m>2K.
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Table 2: The probability distributions ν and ν∗ of arms
outside I∗, with parameters 0<p1<p2<. . .<pKI

<
1 and ε ∈ RKI . Arms in I∗ have mean µI∗ and are
independent of the rest of the arms.

Observation vector Probability of Probability of

X(t)=
(
X

(t)
1 , · · · , X(t)

KI

)
X(t) in ν∗ X(t) in ν

(1, 1, · · · , 1, 1) p1 p1 − ε1
(0, 1, · · · , 1, 1) p2 − p1 p2 − p1 − ε2

· · · · · · · · ·
(0, 0, · · · , 0, 1) pKI − pKI−1 pKI − pKI−1 − εKI

(0, 0, · · · , 0, 0) 1− pKI 1− pKI +
∑KI
i=j εj

We fix the CMAB problem to be I∗-
disjoint, and choose the action set S to be
the maximal action set with action sizes K,
i.e., |S| =

⌊
m−|I∗|
K−|I∗|

⌋
≥ m−K

KI
. Denote the

arm distribution in this problem by ν, and
fix the distribution of the common arms
i ∈ I∗ to any distribution with expectation
E[νI∗ ] = µI∗ , as long as they are mutually
independent of the rest of the arms. For a
single action, we set the distribution to be
ν∗ with mean µν

∗
, µ, and for the rest of

the actions, we fix it to distribution ν with
mean µν . Both distributions are stated in Table 2. The distribution ν depends on ε ∈ RKI , that
will be determined later such that ν is strictly suboptimal, and we denote its suboptimality gap by
∆ε = r

(
µν
∗)− r(µν). We remark that for 0<p1<. . .<pKI <1, there exists bε,0 such that ν is a

valid probability distribution for all ‖ε‖∞ ≤ bε,0. We enforce this condition later in the proof.
Note that for all i /∈ I∗, the arms are Bernoulli random variables with mean µi /∈ {0, 1}, and

therefore Pr
{
X

(t)
i = pi

}
= 0. Also, since the gradient is not zero for some i /∈ I∗, the conditions

of Lemma 7 hold, and we can bound the regret by

lim inf
T→∞

Eν [R(T )]

lnT
≥
|S|−1∑
i=1

∆ε

DKL(ν, ν∗)
≥ m− 2K

KI

∆ε

DKL(ν, ν∗)
. (5)

STEP 2: Deriving lower bounds that depend on the distribution parameters ε.
Next, we bound both DKL(ν, ν∗) and ∆ε in terms of ε.

Lemma 8 Let p , pµ,I ∈ RK such that 0 < p1 < · · · < pKI < 1 and define p0 = 0. Also, let
ν, ν∗ be the distributions stated in Table 2. Then, there exists a constant bε,1 > 0 such that for any
ε ∈ RKI with ‖ε‖∞ ≤ bε,1, it holds that

DKL(ν, ν∗) ≤ 2εTBKL(p)ε , (6)

where BKL(p) = D(p) + 1
1−pKI

11T , D(p) ∈ RKI×KI is a diagonal matrix whose elements are

Dii(p) = 1
pi−pi−1

and 1 ∈ RKI is a vector of ones.

Lemma 9 Let r be a smooth index invariant reward function and let p ∈ RK such that 0 < p1 ≤
· · · ≤ pKI < 1 and there exists i ∈ [KI ] with ∇ir(p) 6= 0. Also, define cj =

∑KI
i=j ∇ir(p) for all

j ∈ [KI ] and let u ∈ RKI be a vector such that cTu > 0. Then, if ε = ε0u, there exists a constant
bε,2 > 0 such that for all 0 < ε0 ≤ bε,2,

∆ε ≥
1

2
cT ε > 0 . (7)

The proofs are presented in Appendix B. Specifically, note that Dii(p) > 0, and thus BKL(p) is
positive definite, and the KL bound equals zero only for ε = 0. Also, since there exists i ∈ [KI ] such
that ∇ir(p) 6= 0, it holds that c 6= 0. When both lemmas hold, substitution into (5) yields

lim inf
T→∞

Eν [R(T )]

lnT
≥ m− 2K

KI

∆ε

DKL(ν, ν∗)
=
m− 2K

KI∆ε

∆2
ε

DKL(ν, ν∗)
≥ m− 2K

8KI∆ε

(
cT ε
)2

εTBKL(p)ε
. (8)

8
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STEP 3: Finding the worst-case CMAB instance.
We now focus on the function fI(ε; p) = εT ccT ε

εTBKL(p)ε
, which is defined for any ε 6= 0, as BKL(p) is

positive definite. BKL(p) is also invertible, and we can therefore apply the invertible transformation
ε = B

−1/2
KL (p)x, which results with the following function:

f̃I(x; p) =
xTB

−1/2
KL (p)ccTB

−1/2
KL (p)x

‖x‖22
=

(
cTB

−1/2
KL (p)x

)2

‖x‖22

(∗)
≤
‖B−1/2

KL (p)c‖22‖x‖22
‖x‖22

= cTB−1
KL(p)c ,

where (∗) is due to Cauchy-Schwarz Inequality, and equality holds for any ε0 6= 0 and x =

ε0B
−1/2
KL (p)c. Therefore, the maximal value of fI(ε; p) is fI(ε∗; p) = cTB−1

KL(p)c and can be
attained with ε∗ = ε0B

−1
KL(p)c, for any ε0 6= 0.

Motivated by the maximization property of ε∗, we now fix ε← ε∗ = ε0B
−1
KL(p)c, for 0 < ε0 ≤

bε,2 such that ‖ε∗‖∞ ≤ min{bε,0, bε,1}. For this choice, ε∗ 6= 0, since BKL(p) is invertible and
c 6= 0, and cTB−1

KL(p)c > 0 as required for Lemma 9. We explicitly calculate the lower bound in the
following lemma (see proof in Appendix B):

Lemma 10 Under the notations of Lemmas 8 and 9, for any 0<p1<. . .<pKI <1 and c 6= 0, if
ε∗ = ε0B

−1
KL(p)c, then

ε∗i = ε0(pi − pi−1)

ci − KI∑
j=1

(pj − pi−j)cj

 .

Also, if fI(ε; p)= εT ccT ε
εTBKL(p)ε

, then fI(ε∗; p)= γ̃2
g (µ; I).

An important conclusion is that under the assumptions of the lemma, γ̃2
g (µ; I) > 0, since

fI(ε
∗; p) = cTB−1

KL(p)c > 0. A more general result naturally arises from the proof of Lemma
10: for any for any µ ∈ [0, 1]K and any I ⊂ [K], it holds that γ̃2

g (µ; I) ≥ 0, as expected from
a smoothness parameter. We refer the readers to the proof of the lemma for additional details.
Substituting back into (8) and recalling that I∗ was chosen as the maximizer in DB∗µ,I(∆ε) we get

lim inf
T→∞

Eν [R(T )]

lnT
≥

(m− 2K)γ̃2
g(µ; I∗)(p)

8KI
∗∆ε

= DB∗(∆ε;µ).

We finally return to our assumption that p1 < · · · < pKI . If there are equal values in p, i.e.,
pi = pi = · · · = pi+n−1, we modify both distributions in Table 2 such that the observations of these
arms are identical, namely X(t)

i = X
(t)
i+1 = · · · = X

(t)
i+n−1. Then, we set ε∗i+1 = · · · = ε∗i+n−1 = 0.

Notice that this modification does not change the KL divergence, nor the analysis of the gap, and
therefore retains the same results. Similarly, Lemma 10 still holds by defining the function fI over
the sub-vector of ε with coordinates such that pi < pi+1. Alternatively, note that the existing analysis
naturally sets εi = 0 if pi = pi−1 (Lemma 10), so it is not surprising that this modification does not
change the results. We avoided writing the full analysis since it requires indexing the sub-vector of p
with strictly increasing values, which would make the notations much more involved.

To conclude the proof, we remark that if ∆0 > 0 is the gap for some ε0 > 0 such that Lemmas 8
and 9 hold, by tuning ε0 we can achieve any gap ∆ ≤ ∆0, and thus the previous result holds for any
small enough gap ∆.

9
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5. Problem-Independent Lower Bounds

In this section, we prove a problem-independent regret lower bound. Specifically, we prove that for
any fixed strategy and any large enough horizon T , there exists a CMAB instance such that the regret
is lower bounded by a gap-independent

√
T term. We remark that in contrast to problem-dependent

bounds, in which the instance is fixed for all strategies and time horizons, the instance for problem-
independent bounds is designed as the ‘worst-case’ problem for a specific strategy and time horizon.
Similarly to the previous section, we start by proving a general lower bound for I-disjoint CMAB
problems and then apply it with a specific distribution to derive the desired bound.

Lemma 11 Let r be a smooth index invariant reward function, and let I ⊂ [m] such that |I| ≤ K
andm > K. Also, let µ,µ∗ ∈ RK such that µI = µ∗I and ∆ = r(µ∗)−r(µ) > 0. Finally, let ν, ν∗

be two distributions with expectations µ,µ∗ ∈ RK , such that arms in I are mutually independent of
arms outside I and both distributions are identical for arms in I . Then, for any horizon T and any
strategy ψ, there exists an I-disjoint CMAB problem with arm distribution ν ′ such that νS∗ = µ∗

and its regret under strategy ψ is bounded by

Eν′ [R(T )]≥T∆

(
1− KI

m−K
−
√

1

2

TKI

m−K
DKL(ν, ν∗)

)
.

The proof is a variant of Theorem 6 of Garivier et al. (2018) and can be found in Appendix A.
With this lemma at hand, and similarly to the problem-dependent bound of Theorem 1, we can also
derive a problem-independent lower bound:

Theorem 2 Let r be a smooth index invariant reward function and assume that m ≥ 3K. Then,
for any µ∈ [0, 1]K , any T ≥T0 and for any strategy ψ , there exists an I-disjoint CMAB problem ν ′

with E[ν ′S∗ ] = µ such that its regret under strategy ψ is bounded by

Eν′ [R(T )] ≥ max
I

γ̃g(µ; I)

32

√
T (m−K)

KI
, IB∗(µ) .

We defer the proof to Appendix C. The same discussion from the previous section about the tight-
ness of the bound still holds. We start by noting that IB∗(µ) reproduces the existing lower bounds
both for the linear reward function (Kveton et al., 2015c) and the probabilistic maximum coverage
problem (Merlis and Mannor, 2019). Also, for monotone functions, we can bound γ̃2

g (µ; ∅) ≥ γ2
g

and match the problem-independent upper bound of (Merlis and Mannor, 2019) up to a
√
K factor.

This factor will be improved to a logarithmic factor in the following section.

6. Relations Between Smoothness Measures

To this point, we derived lower bounds that depend on the modified Gini-smoothness γ̃g(µ; I). In
this section, we show that at a cost of logarithmic factors, we can relate these bounds to the L1
Gini-smoothness. Moreover, for monotone reward functions, we also prove lower bounds that depend
on the L2 Gini-smoothness, and thus match the upper bounds of (Merlis and Mannor, 2019) up to
log-factors. We formally state the results in the following propositions:

Proposition 3 Let r be a smooth index invariant reward function and denote p = pµ,I for some
µ ∈ RK and I ⊂ [K]. Then,

γ̃2
g(µ; I) ≥

γ2
g,1(µ; I)

3 + ln 1
p1

+ ln 1
1−pKI

, (9)

10



TIGHT LOWER BOUNDS FOR COMBINATORIAL MULTI-ARMED BANDITS

where the r.h.s. is defined as zero if p1 = 0 or pKI = 1.

Proposition 4 Let r be a monotone smooth index invariant reward function. Then, for any µ ∈ RK ,
it holds that

max
I

γ2
g,1(µ; I)

KI
≥
γ2
g,2(µ; ∅)

1 + lnK
. (10)

Furthermore, if µmin =mini:µi>0 µi and µmax =maxi:µi<1 µi, then

max
I

γ̃2
g(µ; I)

KI
≥

γ2
g,2(µ; ∅)

(1 + lnK)
(

3 + ln 1
µmin

+ ln 1
1−µmax

) .
We emphasize that Proposition 3 does not require the monotonicity assumption. However, when

the components of the gradient can be either positive or negative, the bound might equal zero even
when the gradient is large. When the function is monotone, Proposition 4 greatly improves the naïve
choice of I = ∅ in the bounds of Theorems 1 and 2, by a factor of K, with only a logarithmic cost.
Specifically, by maximizing over µ and applying Proposition 4, we get a problem-dependent lower
bound of Ω̃

(
mγ2

g lnT/∆
)

and a problem-independent bound of Ω̃
(
γg
√
mT

)
, both match the upper

bounds of (Merlis and Mannor, 2019) up to log-factors. Thus, for monotone smooth functions, we
conclude that the L2 Gini-smoothness parameter characterizes both the upper and lower bounds.

Of the log-factors in the propositions, the more interesting one is that of
(

ln 1
µmin

+ ln 1
1−µmax

)
.

In cases where the mean values µ are exponentially close to zero or one, this factor can be of order
1/K. We suspect that this is due to a proof artefact, but leave the investigation of this factor to future
work. Nonetheless, for any practical example, this term is at most of order lnK, which leaves the
bound tight up to log-factors in the problem size. Another question that arises is whether this factor
is the result of a loose analysis in Proposition 3, and a tighter analysis might yield a better factor
(e.g., lnK). Sadly, the answer is negative. In Appendix E.1, we build an example where µi are
exponentially small and Inequality (9) does not hold without a factor of order 1/K. Therefore, to
remove this factor, DB∗(∆;µ) and IB∗(µ) also need to be improved.

Due to space limitations, we defer the full proofs to Appendix D and only provide a proof sketch
for Proposition 4:
Proof Sketch Notice that γg,1(µ;I) and γg,2(µ;I) are closely related to the L1 and L2 norms of a
vector whose components are

√
µi(i− µi)∇ir(µ). Specifically, both are norms of a vector with a

subset of these components. We utilize this connection and derive, to the best of our knowledge, a
new relation between the norms:

Lemma 12 Let A be a nonempty subset of indices A ⊂ [n]. For any vector x ∈ Rn, it holds that

max
A6=∅

1

|A|
‖xA‖21 ≥

1

1 + lnn
‖x‖22 .

This lemma gives a much stronger relation than the standard L1-L2 inequality and is of indepen-
dent interest. Specifically, the relation between the norms is logarithmic in the vector dimension,
instead of the standard relation ‖x‖1 ≥ ‖x‖2, that would have resulted in a linear term. This is due to
the ability to choose the best subset of the vector on the left-hand side. We remark that this inequality

is tight, as demonstrated in Appendix E.2. By applying Lemma 12, we get maxI
γ2
g,1(µ;I)

KI
≥ γ2

g,2(µ,∅)
1+lnK ,

and substituting in Proposition 3 concludes the proof.
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7. Summary and Future Work

In this work, we presented the first lower bounds for the CMAB problem that hold for general
reward functions, under very mild assumptions. Specifically, we proved both problem-dependent and
problem-independent lower bounds, which depend on the modified Gini-smoothness γ̃g(µ; I) and
reproduce the existing bounds for specific instances. When the reward function is also monotone,
we showed that the upper bounds of (Merlis and Mannor, 2019), which depend on the L2 Gini
smoothness of the reward function, are tight up to logarithmic factors. There are a few directions for
extending our results that we leave for future work:

Gini-smoothness and non-monotone reward functions: One question that naturally arises is
whether the L2 Gini-smoothness γg also characterizes the lower bound for non-monotone reward
function. If such dependence truly holds, a possible way to derive these bounds is by improving
γ̃g(µ; I) such that it depends on the absolute values of the gradient components. However, such
modification of the analysis is highly nontrivial, and we leave it for future work.

Lower bounds for arbitrary action sets: To derive the lower bounds, we carefully designed the
action set of the problem, such that no information is gained on one action by sampling a different one.
In practice, different actions might have overlapping arms, which can be sometimes used to achieve
better performance. For example, in the linear reward function and when the action set contains all
possible subsets of fixed size, superior regret bounds can be attained (Komiyama et al., 2015). To
the best of our knowledge, the only similar result is by (Combes et al., 2015) for the specific case
of linear rewards and independent arms. They show that the best achievable performance strongly
depends on the structure of the action set, and it is interesting to derive such lower bounds for general
reward functions and arm distributions.

Distribution-dependent lower bounds: To derive lower bounds that depend on the Gini-
smoothness, we designed a family of arm distributions, all with binary support. Similarly, to
derive the upper bounds, Merlis and Mannor (2019) bounded the variance of the arms by the variance
of Bernoulli arms. We can, therefore, conclude that Bernoulli distribution is the ‘worst-case’ distribu-
tion, under which both the upper and the lower bounds depend on the Gini-smoothness. A possible
future direction is analyzing both bounds under general distributions and deriving new smoothness
criteria that depend on the specific arm distribution, rather than the worst-case distribution.

Other variants and performance measures: In this work, we focused on regret lower bounds
for the CMAB problem with semi-bandit feedback. Other interesting problems include the case of
full-bandit feedback (Gopalan and Mannor, 2015; Rejwan and Mansour, 2020), where there is no
feedback on specific arms, but rather on the reward of the action, or using sample complexity as the
performance measure (Chen et al., 2017; Mannor and Tsitsiklis, 2004; Kaufmann et al., 2016). Both
variants have mainly been studied for the linear reward functions, and extending the existing upper
and lower bounds for general reward functions can be beneficial for many practical settings.
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Appendix A. General Lower bound for I-disjoint CMAB Problems
Lemma 7 Let r be a smooth index invariant reward function with |S| = K for all S ∈ S. Also,
let ν be the action distribution of an I-disjoint CMAB problem such that there exists an arm i /∈ I
in S∗ with Pr

{
X

(t)
i = µi

}
< 1 and ∇ir(S∗;µ) 6= 0. Then, for all consistent strategies ψ and all

suboptimal actions S,

lim inf
T→∞

Eν [Nψ,S(T )]

lnT
≥ 1

DKL(νS , νS∗)
.

Specifically, it holds that

lim inf
T→∞

Eν [R(T )]

lnT
≥

∑
S:∆S>0

∆S

DKL(νS , νS∗)
.

Proof For any arm distribution ν and any suboptimal action S, consider a modified I-disjoint problem
with arm distribution ν ′, where ν ′A = νA for all A 6= S, and thus r(A;µ′) = r(A;µ), and ν ′S is
modified such that r(S;µ′) > r(S∗;µ) and ν ′S has the same support as νS∗ . Specifically, ν ′S can
be constructed by initializing ν ′S ← νS∗ , and then modifying arm i in the direction of the gradient.
Due to the assumption, the arm is not deterministic, and there exist arm distributions with the same
support and expectations µ′i > µi and µ′i < µi. Thus, modifying it in the direction of the gradient is
valid, and since the gradient is not zero, the reward will increase. Furthermore, as the modification is
done for an arm i /∈ I , it does not affect any other action, and the new instance is still I-disjoint.

We now apply Lemma 4 with Z=Nψ,S(T )/T , while noting that DKL(νA, ν
′
A)=0 for all A 6=S:

Eν [Nψ,S(T )]DKL(νS , ν
′
S) ≥ kl

(
Eν [Nψ,S(T )]

T
,
Eν′ [Nψ,S(T )]

T

)
≥
(

1−
Eν [Nψ,S(T )]

T

)
ln

(
T

T − Eν′ [Nψ,S(T )]

)
− ln 2 . (11)

where the second inequality uses the following bound which holds for any p, q ∈ [0, 1]

kl(p, q) = p ln
1

q︸ ︷︷ ︸
≥0

+(1− p) ln
1

1− q
+ p ln p+ (1− p) ln(1− p)︸ ︷︷ ︸

≥− ln 2

≥ (1− p) ln
1

1− q
− ln 2 .

Next, as ψ is consistent and all actions A 6= S are strictly suboptimal for bandit problem ν ′, we
get that for any 0 < α ≤ 1,

0 ≤ T − Eν′ [Nψ,S(T )] =
∑
A 6=S

Eν′ [Nψ,A] = o(Tα) .

In particular, for sufficiently large T , it holds that T − Eν′Nψ,S(T )

T ≤ Tα, and therefore, for any
0 < α ≤ 1,

lim inf
T→∞

1

lnT
ln

(
T

T − Eν′Nψ,S(T )

)
≥ lim inf

T→∞

1

lnT
ln

(
T

Tα

)
= 1− α .
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Furthermore, since ψ is consistent and S is suboptimal in ν, Eν [Nψ,S(T )]/T → 0, and substituting
both inequalities into (11) yields

lim inf
T→∞

Eν [Nψ,S(T )]

lnT
≥ 1

DKL(νS , ν ′S)
.

Next, note that if DKL(νS , νS∗) =∞, the result of the lemma trivially holds. Otherwise, recall
that there exist i /∈ I in S∗ with Pr

{
X

(t)
i = µi

}
< 1 and ∇ir(S∗;µ) 6= 0, and without loss of

generality assume that∇ir(S∗;µ) > 0. By modifying only this component, we can build a sequence
of distributions ν ′n such that the following holds:

1. For all n, µ′i
n > µ∗i and µ′j

n = µ∗j for all j 6= i ∈ S∗.

2. limn→∞ µ
′
i = µ∗i .

3. limn→∞DKL(νS , ν
′
S
n) = DKL(νS , νS∗).

By the index invariance assumption, and since ∇ir(S∗;µ) > 0, for large enough n it holds that
r(S;µ′n) > r(S∗;µ), and by taking the infimum over all of these distributions we get for all
suboptimal actions

lim inf
T→∞

Eν [Nψ,S(T )]

lnT
≥ 1

DKL(νS , νS∗)
.

Similarly, if∇ir(S∗;µ) < 0, we require that µ′i
n < µ∗i , and the same arguments hold. To derive the

second part of the lemma, notice that R(T ) =
∑

S∈S ∆SEν [Nψ,S(T )], and substituting the previous
bound for all of the suboptimal actions yields the desired result.
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Lemma 11 Let r be a smooth index invariant reward function, and let I ⊂ [m] such that |I| ≤ K
andm > K. Also, let µ,µ∗ ∈ RK such that µI = µ∗I and ∆ = r(µ∗)−r(µ) > 0. Finally, let ν, ν∗

be two distributions with expectations µ,µ∗ ∈ RK , such that arms in I are mutually independent of
arms outside I and both distributions are identical for arms in I . Then, for any horizon T and any
strategy ψ, there exists an I-disjoint CMAB problem with arm distribution ν ′ such that νS∗ = µ∗

and its regret under strategy ψ is bounded by

Eν′ [R(T )]≥T∆

(
1− KI

m−K
−
√

1

2

TKI

m−K
DKL(ν, ν∗)

)
.

Proof Define an I-disjoint CMAB problem with the maximal action set such that each action contains
K arms, i.e., |S| =

⌊
m−|I|
K−|I|

⌋
≥ m−K

KI
, where all actions are distributed according to νS = ν. We

denote this problem by ν. Due to the pigeonhole principle, there exists an action S∗ such that under
strategy ψ, Eν [Nψ,S∗(T )] ≤ T

|S| . Next, define a modified bandit problem ν ′ such that ν ′S = ν for all
S 6= S∗ and νS∗ = ν∗. Thus,

Eν′ [R(T )] =
∑
S 6=S∗

∆Eν′ [Nψ,S(T )] = T∆

(
1−

Eν′ [Nψ,S∗(T )]

T

)
. (12)

As we only changed S∗, for all S 6= S∗, DKL(νS , ν
′
S) = 0. Thus, by applying Lemma 4 on the

random variable Z = Nψ,S∗(T )/T and then using Pinsker’s Inequality, we get

Eν [Nψ,S∗(T )]DKL(ν, ν∗) ≥ kl

(
Eν [Nψ,S∗(T )]

T
,
Eν′ [Nψ,S∗(T )]

T

)
≥ 2

(
Eν [Nψ,S∗(T )]

T
−

Eν′ [Nψ,S∗(T )]

T

)2

.

It can be easily verified that when Eν′ [Nψ,S∗(T )]/T is either smaller or larger than Eν [Nψ,S∗(T )]/T ,
it holds that

Eν′ [Nψ,S∗(T )]

T
≤

Eν [Nψ,S∗(T )]

T
+

√
1

2
Eν [Nψ,S∗(T )]DKL(ν, ν∗) ,

Substituting Eν [Nψ,S∗(T )] ≤ T
|S| and |S| ≥ m−K

KI
into the regret bound (12) leads to the desired

result.
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Appendix B. Technical Lemmas

Lemma 8 Let p , pµ,I ∈ RK such that 0 < p1 < · · · < pKI < 1 and define p0 = 0. Also, let
ν, ν∗ be the distributions stated in Table 2. Then, there exists a constant bε,1 > 0 such that for any
ε ∈ RKI with ‖ε‖∞ ≤ bε,1, it holds that

DKL(ν, ν∗) ≤ 2εTBKL(p)ε , (6)

where BKL(p) = D(p) + 1
1−pKI

11T , D(p) ∈ RKI×KI is a diagonal matrix whose elements are

Dii(p) = 1
pi−pi−1

and 1 ∈ RKI is a vector of ones.

Proof Assume that ‖ε‖∞ ≤ bε,0, such that ν is a valid probability distribution. Since all arms i ∈ I∗
are mutually independent of all arms i /∈ I∗, we can write

DKL(ν, ν∗) = DKL(νI∗ , ν
∗
I∗)︸ ︷︷ ︸

=0

+DKL(νI∗c , ν
∗
I∗c) = DKL(νI∗c , ν

∗
I∗c)

Next, the KL-divergence between the distributions in Table 2 can be bounded by:

DKL(ν, ν∗) = p1 ln
p1

p1 − ε1
+

KI∑
j=2

(pj − pj−1) ln
pj − pj−1

pj − pj−1 − εj
+ (1− pKI

) ln
1− pKI

1− pKI
+
∑KI

j=1 εj

(∗)
≤ p1ε1

p1 − ε1
+

KI∑
j=2

(pj − pj−1)εj
pj − pj−1 − εj

−
(1− pKI

)
∑KI

j=1 εj

1− pKI
+
∑KI

j=1 εj

= ε1 +
ε21

p1 − ε1
+

KI∑
j=2

(
εj +

ε2j
pj − pj−1 − εj

)
−

KI∑
j=1

εj +

(∑KI

j=1 εj

)2

1− pKI
+
∑KI

j=1 εj

=
ε21

p1 − ε1
+

KI∑
j=2

ε2j
pj − pj−1 − εj

+

(∑KI

j=1 εj

)2

1− pKI
+
∑KI

j=1 εj

where (∗) is due to the inequality lnx ≤ x− 1. Now let

bε,1 =
1

2
min

{
p1,min

i
(pi − pi−1),

1

KI
(1− pKI ), bε,0

}
,

and for any ε ∈ RKI such that ‖ε‖∞ ≤ bε,1, it holds that

DKL(ν, ν∗) ≤ 2

 ε21
p1

+

KI∑
j=2

ε2j
pj − pj−1

+

(∑KI
j=1 εj

)2

1− pKI

 .

Writing the bound in a matrix formulation yields the desired result and concludes the proof.
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Lemma 9 Let r be a smooth index invariant reward function and let p ∈ RK such that 0 < p1 ≤
· · · ≤ pKI < 1 and there exists i ∈ [KI ] with ∇ir(p) 6= 0. Also, define cj =

∑KI
i=j ∇ir(p) for all

j ∈ [KI ] and let u ∈ RKI be a vector such that cTu > 0. Then, if ε = ε0u, there exists a constant
bε,2 > 0 such that for all 0 < ε0 ≤ bε,2,

∆ε ≥
1

2
cT ε > 0 . (7)

Proof Define aj =
∑j

i=1 ui for all j ∈ [KI ] and aj = 0 for all j > KI , which also results with

aT∇r(p) =

KI∑
j=1

j∑
i=1

ui∇jr(p) =

KI∑
j=1

uj

KI∑
i=j

∇ir(p) =

KI∑
j=1

ujcj = cTu > 0 .

Next, by the definition of the gradient,

lim
ε0→0

r(p)− r(p− ε0a)

ε0
= aT∇r(p) .

Specifically, for δ = cTu/2 > 0, there exists bε,2 > 0, such that for all 0 < ε0 ≤ bε,2,

r(p)− r(p− ε0a) ≥ ε0
(
aT∇r(p)− δ

)
=

1

2
ε0c

Tu > 0 .

We now show that the l.h.s of the inequality is equal to ∆ε. First, Under the index invariance
assumption, it holds that r(p) = r

(
µν
∗)

. Also, note that when comparing to ν∗, the mean value
of base arm i in distribution ν decreases by

∑i
j=1 εj = ε0ai, and therefore r(p− ε0a) = r(µν).

Finally, recall that ∆ε = r
(
µν
∗)− r(µν), and substituting into the last inequality yields the desired

result.

Lemma 10 Under the notations of Lemmas 8 and 9, for any 0<p1<. . .<pKI <1 and c 6= 0, if
ε∗ = ε0B

−1
KL(p)c, then

ε∗i = ε0(pi − pi−1)

ci − KI∑
j=1

(pj − pi−j)cj

 .

Also, if fI(ε; p)= εT ccT ε
εTBKL(p)ε

, then fI(ε∗; p)= γ̃2
g (µ; I).

Proof By applying the Sherman-Morrison Formula (Hager, 1989) on BKL(p), we get

B−1
KL(p) =

(
D(p) +

1

1− pKI
11T

)−1

= D−1(p)− 1

1− pKI
D−1(p)11TD−1(p)

1 + 1
1−pKI

1TD−1(p)1
.

D−1(p) is a diagonal matrix whose elements are D−1
ii (p) = 1

Dii(p)
= pi − pi−1. The elements of the

matrix D−1(p)11TD−1(p) are(
D−1(p)11TD−1(p)

)
ij

= D−1(p)iiD
−1(p)jj = (pi − pi−1)(pj − pj−1)
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and denominator can be written as

1 +
1

1− pKI
1TD−1(p)1 = 1 +

1

1− pKI

KI∑
i=1

1

Dii(p)

= 1 +
1

1− pKI

KI∑
i=1

(pi − pi−1)

= 1 +
pKI

1− pKI
=

1

1− pKI
.

where we used the fact that p0 = 0. Therefore, the elements of B−1
KL(p)c are equal to

(
B−1
KL(p)c

)
i

=
(
D−1(p)c

)
i
− 1

1− pKI

(
D−1(p)11TD−1(p)c

1 + 1
1−pKI

1TD−1(p)1

)
i

= (pi − pi−1)ci −
KI∑
j=1

(pi − pi−1)(pj − pj−1)cj

= (pi − pi−1)

ci − KI∑
j=1

(pj − pj−1)cj

 .

Recalling that ε∗ = ε0B
−1
KL(p)c concludes the first part of the lemma. For the second part of the

lemma, we directly substitute ε∗:

fI(ε
∗; p) = cTB−1

KL(p)c

=

KI∑
i=1

(pi − pi−1)ci

ci − KI∑
j=1

(pj − pj−1)cj


=

KI∑
i=1

(pi − pi−1)c2
i −

(
KI∑
i=1

ci(pi − pi−1)

)2

(13)

(∗)
=

KI∑
i=1

pi
(
c2
i − c2

i+1

)
−

(
KI∑
i=1

pi(ci − ci+1)

)2

,

where (∗) is due to the following identities and under the notations p0 = cKI+1 = 0:

KI∑
i=1

(pi − pi−1)ci =

KI∑
i=1

pi(ci − ci+1)

KI∑
i=1

(pi − pi−1)c2
i =

KI∑
i=1

pi
(
c2
i − c2

i+1

)
.

This term can be further simplified by substituting ci =
∑KI

j=i∇jr(p) as follows:
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fI(ε
∗; p) =

KI∑
i=1

pi
(
c2
i − c2

i+1

)
−

(
KI∑
i=1

pi(ci − ci+1)

)2

=

KI∑
i=1

pi∇ir(p)2 + 2

KI∑
i=1

pi

KI∑
j=i+1

∇ir(p)∇jr(p)−
KI∑
i=1

KI∑
j=1

pipj∇ir(p)∇jr(p)

=

KI∑
i=1

pi∇ir(p)2 + 2

KI∑
i=1

pi

KI∑
j=i+1

∇ir(p)∇jr(p)

−
KI∑
i=1

p2
i∇ir(p)

2 − 2

KI∑
i=1

KI∑
j=i+1

pipj∇ir(p)∇jr(p)

=

KI∑
i=1

pi(1− pi)∇ir(p)2 + 2

KI∑
i=1

KI∑
j=i+1

pi(1− pj)∇ir(p)∇jr(p)

= γ̃2
g (µ; I) .

We remark that by Equation (13) and under the notations p0 = 0, we observe that

γ̃2
g (µ; I) =

KI∑
i=1

(pi − pi−1)c2
i −

(
KI∑
i=1

ci(pi − pi−1)

)2

.

Denoting pKI+1 = 1 and cKI+1 = 0, the modified Gini-smoothness can be perceived as the variance
of a random variable X such that for all i ∈ [KI + 1], Pr{X = ci} = pi − pi−1. This also holds
when p1 = 0 and pKI = 1, or when pi = pi+1 for some i ∈ [KI − 1]. Thus, we can conclude that
for any µ ∈ [0, 1]K and any I ⊂ [K], it holds that γ̃2

g (µ; I) ≥ 0.
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Appendix C. Proof of Problem Independent Lower Bound
Theorem 2 Let r be a smooth index invariant reward function and assume that m ≥ 3K. Then,
for any µ∈ [0, 1]K , any T ≥T0 and for any strategy ψ , there exists an I-disjoint CMAB problem ν ′

with E[ν ′S∗ ] = µ such that its regret under strategy ψ is bounded by

Eν′ [R(T )] ≥ max
I

γ̃g(µ; I)

32

√
T (m−K)

KI
, IB∗(µ) .

Proof Without loss of generality, assume that IB∗(µ) > 0, since otherwise the bound trivially holds.
As in the proof of Theorem 1, we denote p = pµ,I

∗
, where I∗ is the maximizer in IB∗(µ). We also

similarly assume that 0<p1<. . .<pKI <1 and fix the distributions ν and ν∗ according to Table 2.
Finally, we set ε∗ = ε0B

−1
KLc, with BKL(p) and c as in Lemmas 8 and 9. Recall that with ε0 small

enough, both Lemmas 8 and 9 hold. Combining both inequalities, we get

DKL(ν, ν∗) = ∆2DKL(ν, ν∗)

∆2
≤ ∆2 2ε∗TBKL(p)ε∗(

1
2c
T ε∗
)2 =

8∆2

fI(ε∗; p)
,

where fI(ε∗; p) is defined in Lemma 10. Specifically for our choice of ε∗, Lemma 10 also implies
that fI(ε∗; p) = γ̃2

g (µ; I). By Lemma 11, there exists an instance of an I-disjoint CMAB problem
with gap ∆ and optimal action E[ν ′S∗ ] = µ such that

Eν′ [R(T )] ≥ T∆

(
1− KI

m−K
−
√

1

2

TKI

m−K
DKL(ν, ν∗)

)

≥ T∆

(
1− KI

m−K
− 2∆

√
TKI

(m−K)γ̃2
g(µ; I)

)

Next, recall that there exists ∆0 such that we can achieve any gap 0 < ∆ ≤ ∆0 by tuning ε0.
Therefore, for large enough T , there exists ε0 such that ∆ =

γ̃g(µ;I)
8

√
m−K
TKI

, for which we get the
bound

Eν′ [R(T )] ≥ γ̃g(µ; I)

8

√
m−K
TKI

(
1− 1

2
− 1

4

)
=
γ̃g(µ; I)

32

√
T (m−K)

KI
.

where in the first inequality we use m ≥ 3K. For brevity, we omitted the cases where p1 = 0,
pKI = 1 or pi = pi+1 for some i ∈ [KI ], and refer the readers to the proof of Theorem 1 for the
required modifications.
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Appendix D. Relations Between the Smoothness Measures
Proposition 3 Let r be a smooth index invariant reward function and denote p = pµ,I for some
µ ∈ RK and I ⊂ [K]. Then,

γ̃2
g(µ; I) ≥

γ2
g,1(µ; I)

3 + ln 1
p1

+ ln 1
1−pKI

, (9)

where the r.h.s. is defined as zero if p1 = 0 or pKI = 1.

Proof Without loss of generality, assume that p1 > 0 and pKI < 1. Otherwise, the r.h.s. is zero,
and since γ̃g(µ; I) ≥ 0, the result trivially holds (further details on the nonnegativity of γ̃g(µ; I)
can be found at the end of the proof of Lemma 10). Similarly to Theorem 1, also assume that
p1 < · · · < pKI and define BKL, c and fI(ε; p) as in Lemmas 8, 9 and 10. As in Theorem 1, all
results can be modified to the case where different arms have the same mean, by defining ε only on
indices where pi < pi+1, or equivalently forcing εi = 0 if pi = pi+1. However, we avoid this case
for brevity. Finally, we assume that KI > 0 and ∇ir(p) 6= 0 for some i ∈ [KI ], since otherwise,
both sides of the inequality equal zero, and the bound trivially holds.

Next, we denote p0 = 0 and set εj = ε0
√
pj(1− pj) − ε0

√
pj−1(1− pj−1) for all j ∈ [KI ].

By construction
∑j

i=1 εi = ε0
√
pj(1− pj), and direct substitution yields

cT ε =

KI∑
j=1

KI∑
i=j

εj∇ir(p) =

KI∑
j=1

j∑
i=1

εi∇jr(p) = ε0

KI∑
j=1

√
pj(1− pj)∇jr(p) , (14)

and

εTBKL(p)ε = ε20

 KI∑
j=1

(√
pj(1− pj)−

√
pj−1(1− pj−1)

)2
pj − pj−1

+ pKI


= ε20

1− p1 + pKI +

KI∑
j=2

(√
pj(1− pj)−

√
pj−1(1− pj−1)

)2
pj − pj−1

 . (15)

Before we further bound this term, note that for any 0 ≤ x ≤ y ≤ 1
2 , it holds that(√

y(1− y)−
√
x(1− x)

)2
≤
(√

y(1− y)−
√
x(1− y)

)2
= (1− y)

(√
y −
√
x
)2

≤
(√
y −
√
x
)2

,

where the first inequality uses the fact that y(1− y) ≥ x(1− x) ≥ x(1− y). From symmetry, it also
holds for any x, y ∈ [0, 1

2 ]. If x ∈ [0, 1
2 ] and y ∈ [1

2 , 1], we bound(√
y(1− y)−

√
x(1− x)

)2
= y(1− y) + x(1− x)− 2

√
y(1− y)x(1− x)

≤ max{y(1− y), x(1− x)} −min{y(1− y), x(1− x)}
= |y(1− y)− x(1− x)|
= (y − x)|1− x− y|
≤ (y − x)
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If x, y ∈ [1
2 , 1], from symmetry

(√
y(1− y)−

√
x(1− x)

)2
≤
(√

1− y −
√

1− x
)2. Recall that

pj are strictly increasing, and denote the last index in which pj ≤ 1
2 by n. Applying these inequalities

on (15), we get

εTBKL(p)ε

≤ ε20

1− p1 + pKI
+

n∑
j=2

(√
pj −

√
pj−1

)2
pj − pj−1

+
pn+1 − pn
pn+1 − pn

+

KI∑
j=n+2

(√
1− pj −

√
1− pj−1

)2
pj − pj−1


≤ ε20

3 +

n∑
j=2

(√
pj −

√
pj−1

)2
pj − pj−1

+

KI∑
j=n+2

(√
1− pj −

√
1− pj−1

)2
pj − pj−1

 . (16)

Next, we bound the summands as follows:(√
pj −

√
pj−1

)2
pj − pj−1

=

(√
pj −

√
pj−1

)2
pj − pj−1

·
(√
pj +

√
pj−1

)2(√
pj +

√
pj−1

)2 =
(pj − pj−1)2

(pj − pj−1)
(√
pj +

√
pj−1

)2
≤ pj − pj−1

pj
.

Similarly, we have(√
1− pj −

√
1− pj−1

)2
pj − pj−1

=

(√
1− pj −

√
1− pj−1

)2
pj − pj−1

·
(√

1− pj +
√

1− pj−1

)2(√
1− pj +

√
1− pj−1

)2
=

(pj − pj−1)2

(pj − pj−1)
(√

1− pj +
√

1− pj−1

)2
≤ pj − pj−1

1− pj−1
.

Substitute both into (16) yields:

εTBKL(p)ε ≤ ε20

3 +

n∑
j=2

pj − pj−1

pj
+

KI∑
j=n+2

pj − pj−1

1− pj−1


(∗)
≤ ε20

(
3 +

∫ pn

p1

dx

x
+

∫ pKI

pn+1

dx

1− x

)

≤ ε20
(

3 + ln
1

p1
+ ln

1

1− pKI

)
,

where (∗) utilizes the relation between sums and integrals. Combining with (14) and substituting
back into fI(ε; p), we get

fI(ε; p) ≥

(
ε0
∑KI

j=1

√
pj(1− pj)∇jr(p)

)2

ε20

(
3 + ln 1

p1
+ ln 1

1−pKI

) =
γ2
g,1(µ; I)

3 + ln 1
p1

+ ln 1
1−pKI

The proof is concluded by applying Lemma 10 and recalling that ε∗ is the maximizer of fI(ε; p);
therefore, for any ε 6= 0, it holds that fI(ε; p) ≤ fI(ε∗; p) ≤ γ̃2

g (µ; I).
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Lemma 12 Let A be a nonempty subset of indices A ⊂ [n]. For any vector x ∈ Rn, it holds that

max
A6=∅

1

|A|
‖xA‖21 ≥

1

1 + lnn
‖x‖22 .

Proof Without loss of generality, assume that x1 ≥ x2 ≥ · · · ≥ xn ≥ 0, as reorganizing and taking
absolute values do not affect both sides of the inequality. We bound ‖x‖22 as follows:

‖x‖22 =
n∑
l=1

x2
l

(1)

≤
n∑
l=1

(
1

l

l∑
k=1

xk

)2

=
n∑
l=1

1

l

1

l

(
l∑

k=1

xk

)2


(2)

≤
n∑
l=1

1

l
max
A 6=∅

1

|A|
‖xA‖21

(3)

≤ (1 + lnn) max
A 6=∅

1

|A|
‖xA‖21

In (1) we use the fact that xi are decreasing and non-negative, and thus xi ≤ 1
i

∑i
k=1 xk. For

(2), we note that 1
l

(∑l
k=1 xk

)2
= 1
|A|‖xA‖

2
1 for A = {1, . . . , l}, and bound it by the maximum

over all possible subsets A 6= ∅. Finally, (3) uses the well-known property of the harmonic sum∑n
l=1

1
l ≤ 1 + lnn.
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Proposition 4 Let r be a monotone smooth index invariant reward function. Then, for any µ ∈ RK ,
it holds that

max
I

γ2
g,1(µ; I)

KI
≥
γ2
g,2(µ; ∅)

1 + lnK
. (10)

Furthermore, if µmin =mini:µi>0 µi and µmax =maxi:µi<1 µi, then

max
I

γ̃2
g(µ; I)

KI
≥

γ2
g,2(µ; ∅)

(1 + lnK)
(

3 + ln 1
µmin

+ ln 1
1−µmax

) .
Proof For the first inequality, note that when the function is monotone, all elements in the summation
of γg,1(µ; I) are nonnegative, and it can be thus conceived as the L1 norm of a vector whose
components are

√
µi(i− µi)∇ir(µ). Furthermore, γg,2(µ; I) can be conceived as the L2 norm

of the same vector. Specifically, both are the respective norm of a vector with a subset of these
components. Therefore, we can directly relate these two quantities using standard relations between
norms. Nonetheless, we are interested in maximizing the lower bound, which includes an additional
‘penalty’ factor on the number of components in the vector 1/KI . As a result, choosing the largest
number of elements in the sub-vector is not always optimal. Specifically, we show in Lemma 12 that
when optimizing the choice of I , the penalized L1 norm of the sub-vector can be lower bounded
by the L2 norm of the full vector, up to logarithmic factors. Applying this lemma on γg,1(µ; I) and
γg,2(µ; ∅) leads to the first inequality of the proposition.

Next, we prove the second inequality. By Proposition 3, for any set I , if p = pµ,I , it holds that

γ̃2
g (µ; I) ≥

γ2
g,1(µ; I)

3 + ln 1
p1

+ ln 1
1−pKI

.

next, we divide by KI and maximize over I , which yields

max
I

γ̃2
g (µ; I)

KI
≥ max

I

γ2
g,1(µ; I)

KI

(
3 + ln 1

p1
+ ln 1

1−pKI

) .

If the maximizer on the r.h.s. leads to p1 = 0 or pKI = 1, then the r.h.s. of the inequality equals zero
for any I ⊂ [K]. We can then choose I = i for all i ∈ [K], and thus µi(1 − µi)∇ir(µ)2 = 0 for
all i ∈ [K]. Therefore, it also holds that γ2

g,2(µ; ∅) = 0 and the required inequality trivially holds.
Otherwise, p1 > 0 and pKI < 1, and specifically, p1 > µmin and pKI < µmax. Then, it also holds
that

max
I

γ̃2
g (µ; I)

KI
≥ max

I

γ2
g,1(µ; I)

KI

(
3 + ln 1

µmin
+ ln 1

1−µmax

) ,

and applying the first result of the proposition leads to its second result.
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Appendix E. Tightness of the Relations Between the Smoothness Measures

E.1. Modified Smoothness and L1 Smoothness

In this appendix, we demonstrate the tightness of Proposition 3. Specifically, we show that there
exists a CMAB instance and exponentially small arm parameters µ such that for all I ⊂ [K], it holds

that γ̃2
g (µ; I) = O

(
γ2
g,1(µ;I)

KI

)
. This proves that the logarithmic factor in Inequality (9) cannot be

replaced with a better factor of Ω
(

1
lnK

)
.

We start by fixing µi = 2−2(K−i)−1 and choosing the CMAB instance such that∇ir(µ) = 2K−i.
Notice that the elements of µ are sorted in an increasing order; therefore, for any I , the vector pµ,I

contains all the elements of µ outside I in their original order. Thus, we can directly bound γ̃2
g (µ; I)

by:

γ̃2
g (µ; I) =

∑
i/∈I

µi(1− µi)∇ir(µ)2 + 2
∑
i/∈I

∑
j>i,j /∈I

µi(1− µj)∇ir(µ)∇jr(µ)

(1)

≤
∑
i/∈I

µi∇ir(µ)2 + 2
∑
i/∈I

∑
j>i,j /∈I

µi∇ir(µ)∇jr(µ)

(2)

≤ 2
∑
i/∈I

µi∇ir(µ)
∑

j≥i,j /∈I

∇jr(µ)

(3)

≤ 2
∑
i/∈I

2−2(K−i)−12K−i
∑
j≥i

2K−j

=
∑
i/∈I

2−(K−i)
∑
j≥i

2K−j

≤
∑
i/∈I

2−(K−i)2K−i+1

= 2(K − |I|) = 2KI

In (1) we removed the terms 1− µi, 1− µj , which increases the expression since they are smaller
then 1 and the gradients are positive. Similarly, in (2) we multiplied the first term by 2 and combined
the sums into a single term. In (3) we substituted the values of the parameters and increased the
internal sum by summing over all j ≥ i (including elements in I). Next, we lower bound γ2

g,1(µ; I):

γ2
g,1(µ; I) =

(∑
i/∈I

√
µi(1− µi)∇ir(µ)

)2
(1)

≥ 1

2

(∑
i/∈I

√
µi∇ir(µ)

)2

=
1

2

(∑
i/∈I

2−(K−i)− 1
2 2K−i

)2

=
1

4

(∑
i/∈I

1

)2

=
KI

2

4

In (1) we used the fact that for all i, 1 − µi ≥ 1
2 . Using both bounds, we conclude that for all

I ⊂ [K], it holds that

γ̃2
g (µ; I)

γ2
g,1(µ; I)

≤ 2KI
1
4KI

2 = O
(

1

KI

)
.
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Another conclusion from this example is that

maxI γ̃
2
g (µ; I)

maxI γ2
g,1(µ; I)

≤ 2K
1
4K

2
= O

(
1

K

)
.

Thus, in contrast to the relations between the L1 and L2 Gini-smoothness measure, we cannot
improve the inequality by maximizing over the set I . We end this section by remarking that in
this example, one can easily observe that p1 ≤ 2−2KI+1, and thus ln 1

p1
≈ KI . Therefore, for this

instance, Proposition 3 is tight.

E.2. L1 Smoothness and L2 Smoothness

In this appendix we prove the tightness of the relation between the L1 and L2 smoothness measures.
We do so by proving that Lemma 12 is tight up to a constant factor. Let x ∈ Rn such that
xi =

√
i−
√
i− 1. Specifically, x is positive and sorted in a decreasing order, and therefore for any

d ∈ [n] and any A such that |A| = d, the maximal value of ‖xA‖
2
1

|A| is obtained for A = [d]. Moreover,
for this specific set, it also holds that

1

|A|
‖xA‖21 =

1

d

(
d∑
i=1

xi

)2

=
1

d

(
d∑
i=1

√
i−
√
i− 1

)2

=
1

d

(√
d
)2

= 1 .

Finally, we can write the l.h.s. of the norm inequality by

max
A

1

|A|
‖xA‖21 = max

d
max
|A|=d

1

|A|
‖xA‖21 = max

d
1 = 1 .

Next, we bound the r.h.s. of the inequality by

‖xA‖22 =

n∑
i=1

(√
i−
√
i− 1

)2

=
n∑
i=1

(√
i−
√
i− 1

)2(√
i+
√
i− 1

)2(√
i+
√
i− 1

)2
=

n∑
i=1

1(√
i+
√
i− 1

)2
≥

n∑
i=1

1

4i

≥ ln(n+ 1)

4

Thus, for this example, maxA
1
|A|‖xA‖

2
1 ≤ 4

ln(n+1)‖xA‖
2
2, and Lemma 12 is tight up to a constant

factor.
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