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Abstract

What is the optimal number of independent observations from which a sparse Gaussian Graphical
Model can be correctly recovered? Information-theoretic arguments provide a lower bound on
the minimum number of samples necessary to perfectly identify the support of any multivariate
normal distribution as a function of model parameters. For a model defined on a sparse graph with
p nodes, a maximum degree d and minimum normalized edge strength &, this necessary number
of samples scales at least as d log p/x2. The sample complexity requirements of existing methods
for perfect graph reconstruction exhibit dependency on additional parameters that do not enter in
the lower bound. The question of whether the lower bound is tight and achievable by a polynomial
time algorithm remains open. In this paper, we constructively answer this question and propose an
algorithm, termed DICE, whose sample complexity matches the information-theoretic lower bound
up to a universal constant factor. We also propose a related algorithm SLICE that has a slightly
higher sample complexity, but can be implemented as a mixed integer quadratic program which
makes it attractive in practice. Importantly, SLICE retains a critical advantage of DICE in that its
sample complexity only depends on quantities present in the information theoretic lower bound. We
anticipate that this result will stimulate future search of computationally efficient sample-optimal
algorithms.

Keywords: Gaussian graphical model, information theoretic bound, sample-optimal learning, slice,
dice

1. Introduction

Gaussian Graphical Models (GGMs) are powerful modelling tools for representing statistical de-
pendencies between variables in the form of undirected graphs that are widely used throughout a
large number of fields, including neuroscience Huang et al. (2010); Varoquaux et al. (2010), gene
regulatory networks Basso et al. (2005); Menéndez et al. (2010) and protein interactions Friedman
(2004); Jones et al. (2012). The popularity of GGMs in applications can be explained by the fact that
multivariate Normal distribution approximately describes physical variables represented by sums
of independent factors and has maximum entropy among all continuous-variable distributions with
unbounded support and a given mean and covariance. Moreover, the sparsity pattern of the graph
underlying the GGM provides interpretable structural information on the conditional dependencies
between variables through the so-called separation property of Markov Random Fields (MRFs).

© 2020 A.Y. Lokhov.
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In this paper, we study the inverse problem of learning a sparse GGM from a small number
of observations. Consider a multivariate Normal distribution defined on a graph G = (V, £) with
|V| = p and bounded maximum degree d:

P(x) = da(?)exp —%Z@u(fvi — ) = Y Oiilwi — ) — ) | (D)

(2m) i€y (i,5)€E

where p; denotes the mean of the variable x; and © is the precision matrix whose support is
determined by the sparsity pattern of the graph G. GGMs have a special property that © is equal
to the inverse of the covariance matrix ¥, meaning that [Y~!];; = 0 for all (i,5) ¢ £. In our
reconstruction problem, the data is given as a collection of n independent samples {x%};cy indexed
by k = 1,...,n and drawn from the distribution (1). We are interested in finding tractable algorithms
that with high probability output an accurate estimate G of the graph G, i.e. IP(G =g)>1-—{fora
given confidence § > 0.

The minimum number of samples n* required for perfect sparse graph reconstruction is bounded
by an information-theoretic (IT) lower bound in Wang et al. (2010) that reads

log (P74 —1 2 (log (7) — 1
n* > max & ( 42 2) , ( dg (d) ) p ) (2)
K K K
log <1 + 1—&) T I+(d-Dw
where the parameter x denotes the minimum normalized edge strength and is defined as
@‘ .
K = min [©4] 3)

()€€ \/©:iOj;

Notice that the IT lower bound (2) depends solely on three parameters of the problem: dimension
p, maximum degree d, and minimum edge strength x. A weak logarithmic dependence on p indicates
that it might be possible to reconstruct G in the high-dimensional regime, and the inverse square
dependence on & is natural because it becomes more difficult to distinguish an edge of low strength
from its absence as k — 0. It remained unknown if the bound (2) is tight, i.e., if there exists a
sample-optimal algorithm that does not depend on additional parameters and achieves this bound.

Numerous algorithms have been suggested to reconstruct sparse GGMs; a non-exhaustive list
includes Meinshausen and Biithlmann (2006); Yuan and Lin (2007); Cai et al. (2011); Anandkumar
et al. (2012); Cai et al. (2016); Johnson et al. (2012); Wang et al. (2016). However, the sample
complexity analysis of previously proposed methods reveals that none of them is converse to the IT
bound (2). For most algorithms, the required number of samples depends on additional parameters
of the problem that are not present in (2), often due to the assumptions made in the analysis. The
regression-type approach of Meinshausen and Biithlmann (2006) for estimating the neighborhood
of each vertex based on LASSO Tibshirani (1996) requires certain incoherence properties of the
precision matrix, reminiscent of the compressed sensing problem. A variant of the incoherence
condition is assumed in the analysis Ravikumar et al. (2009) of the ¢; regularized log-likelihood
estimator, commonly known as GRAPH LASSO Yuan and Lin (2007); d’ Aspremont et al. (2008).
The proof for ¢1-based estimators CLIME Cai et al. (2011) and ACLIME Cai et al. (2016) require
that the eigenvalues of the precision matrix are bounded. Other methods such as the conditional
covariance thresholding algorithm Anandkumar et al. (2012) was analyzed only for the class of
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so-called walk-summable models. The analysis of non-convex optimization based methods Johnson
et al. (2012) and Wang et al. (2016) require bounded eigenvalues of © matrix.

Although the above methods have been shown to successfully exploit sparsity and reconstruct the
underlying graph G perfectly with O(log p) samples, all of them exhibit dependence on the condition
number of the precision matrix among other quantities. In particular, the bound on the condition
number of © follows from the the most prevalent assumption in the literature, the so-called Restricted
Eigenvalues (RE) condition. Consequently, it is widely believed that the RE condition is in fact
necessary to enable model reconstruction. Notice, however, that the condition number has no impact
on the IT lower bound in (2), as stated above. Consider the following example of a simple precision
matrix:

1 KO R0
O=|krye 1 1—¢]|, (4)
Ko 1—¢€ 1

where 1 — € > kg > 0. The minimum normalized edge strength for (4) is given by k = x¢. On the
other hand, the condition number is given by %“((8)) > ¢!, This means that if we keep x( fixed
and let € — 0, the minimum number of samples n* according to the IT bound in (2) remains fixed
whereas the condition number, and hence the sample complexity of existing algorithms diverges.

Several approaches that might appear quite natural in this context surprisingly do not successfully
eliminate additional parametric dependencies in their sample complexity. For example, a natural path
is to consider conditional independence testing, since it directly exploits the so-called separation
property of graphical models. Along these lines one might attempt methods similar to the SGS and
PC algorithms found in Spirtes et al., 2001 Spirtes et al. (2000) and Kalisch et al., 2007 Kalisch and
Bithlmann (2007). However, in Van de Geer et al. (2013), which is the follow up of Kalisch and
Biihlmann (2007), the authors explicitly pointed out that conditional independence testing requires
strong faithfulness assumptions in the analysis of the PC algorithm in Kalisch and Bithlmann (2007).
The analysis of Bresler et al. (2008) that is based on neighborhood testing do not directly apply
to the current setting: first, their analysis uses properties of discrete distributions that do not hold
for Gaussians, and second, their analysis requires additional assumptions. Even in Van de Geer
et al. (2013), Maximum-Likelihood with exhaustive search requires bounds on eigenvalues of the
covariance matrix; therefore, the sample complexity depends on these eigenvalue bounds. A different
approach to utilizing conditional independence testing is based on convergence of the empirical
correlation coefficients, such as the one studied in Anandkumar et al. (2012). However methods
based on this idea do not seem to close the IT lower bound. The example below gives an intuitive
explanation why. Consider the precision matrix

1 K Kk 0

ko1 1—€¢ 0
©= kK 1—e 1 0 ©)

0 0 0 1
The correlation coefficient of variable corresponding to rows 1 and 2 conditioned on variable 4
can be computed as pyoj4 = Cov(Xy,Xp| X4) = 5V This implies that one needs

VVar(X1|Xs)Var(Xa|Xs)  /(1-r2)(2—¢)
n = O(1/e) samples to assert that there exists an edge between 1 and 2 in this approach, whereas for
€ < k the IT lower bound does not depend on .
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Does that mean that the IT lower bound (2) is loose, and the bounded condition number of the
precision matrix is indeed a necessary condition for the recovery of sparse GGMs? In this paper, we
answer this question constructively, and propose a multi-stage algorithm, named Degree-constrained
Inverse Covariance Estimator (DICE). Without any assumptions, we show that DICE reconstructs
the graph G perfectly with high probability 1 — ¢ using 2d + 1%2dlog p + ¢ log (%) samples, i.e.
achieves the IT lower bound (2). A discrepancy with compared to the IT bound exists in a subtle
case such where d and « are interdependent quantities that scale together such that lim x = 0 and
lim d(k) = oo; however, this discrepancy dissapears in the regime d = O(1), which is the setting
considered here. Therefore, in this regime, DICE closes the gap to the IT bound, and shows that (2) is
tight. The worst-case computational complexity of DICE is primarily driven by the iterative support
testing step, based on comparison of two neighborhoods, and reads O(p??*1), i.e. exponential for
dense graphs, but polynomial with respect to p in the setting of sparse graphs where d = O(1); this
result shows that at least for bounded degree graphs, the IT bound on sample complexity can be
achieved with a polynomial-time algorithm.

We also propose a related algorithm termed Sparse Least-squares Inverse Covariance Estimator
(SLICE) which uses a subset of the phases used in DICE. Unlike DICE this simpler algorithm allows
implementation as a mixed integer quadratic program (MIQP), enabling the use of modern mixed
integer solvers that can be very efficient in practice. As a price for the enhanced computational

efficiency, the sample complexity of SLICE is d + ;3.73 log <4p :H ) , i.e., roughly a factor 1/x2 higher

than the IT lower bound (and the sample complexity of DICE). However the sample complexity is
still only dependent on the parameters present in the IT lower bound, thus avoiding dependence on
additional assumptions such as restricted eigenvalues.

The paper is organized as follows: In Section 2 we introduce our algorithm DICE and its sub-
routines, and provide main results of our study. Section 3 introduces SLICE and states the theorem
regarding its sample complexity. Rigorous mathematical guarantees on the sample performance of
our algorithms are given in Section A, while Section C contains proofs of technical lemmas. We
conclude with Section 4 where we discuss some perspectives and open problems.

2. DICE: Reconstructing Gaussian Graphical Models with Information
Theoretically optimal number of samples

In this section we provide details of DICE. The three constituent steps are (i) cardinality constrained
regression to obtain an estimate of the conditional variance for each variable, (ii) an iterative support
testing method to find a size d neighborhood that contains the right support, and (iii) a clean up phase
to eliminate the non-edges in the set found in (ii). For simplicity of notation, we assume that the
distribution in consideration has zero mean. All results easily generalize to the non-zero mean case,
as stated below.

2.1. Phase 1: Estimating conditional variances

The first step of the algorithm obtains an estimate of the conditional variance of each variable : € V
where the conditioning is for all neighbors of ¢. For each i € V our estimate ©;; of ©;; is given by

1 , . )
A = nmun Ll(ﬁlv E)a s.t. ||/31”0 < da (6)
Oii  Bierr-!
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where
2

Li(B;, S Z of+ > Byl | (7

"= jAi

the {y-norm counts the number of non-zero components, and 3 denotes the empirical covariance
matrix whose components are given by ¥;; = 1 31 F k !

Since the ¢y constraint in (6) is equivalent to searchlng over all possible $3; with support given by
some A C [p] with |A| = d, the optimization in (6) can be re-written as

AL = min min LZ-(B, 53) ®)

O, AC[p]\i : [Al=d  BeRr—1:Supp(B)CA

Since we will be restricting ourselves to the case when 2d + 1 < n, each d x d submatrix of S has
full rank, and the inner minimization in (8) can be explicitly resolved to get

Bia = =345 4. 9)

The corresponding optimal value is given by

* S \— b)

Li (A> E) (BzAa ) =X — EZAEAAZAZ (2 [2(1}4)(“4)} 1 (:) Var(Xi|XA)a (10)
where (a) is obtained by using the matrix inversion lemma. We obtain (b) from the standard
expression for conditional variance of X; conditioned on X 4 in multivariate gaussians, explainig
the name of this subsection. Notice that in the limit of large number of samples when ¥ = ¥, the
empirical value L} (B;, X) is equal to the conditional variance of the model:

Li(B;,X) = Var(X;|Xp,) VB; C [p]\ {i}. (1D

2.2. Phase 2: Iterative Support Testing

In this phase, all candidate neighborhoods are passed through a testing criterion. This phase
constitutes the main part of the algorithm DICE. We describe the testing criterion in detail and give
intuitive rationale behind it.

Fix i € V and consider a candidate neighborhood B; C V \ {i} with |B;| = d. The goal is to
obtain a B such that B; C By, where B; denotes the true neighborhood of i. The candidate B is
tested by using a set of adversarial neighborhoods By C V' \ {{z} U B1} with | Bo| = d. The testing
criterion is based on the regression coefficients Bl BBy = 21_31 By, B1 B )y B1Bs,i a8 in (9), where we
use the notation B; By = By U Bs for simplicity. The candidate B; is deemed to have PASSED the
testing criterion if for all adversarial neighborhoods Bs we have

N A /éii K
maxkii ;= |Biilq | — < —=. 12
jEBy 1] ‘B@]| @j]’ 2 ( )

1. All results in this paper directly generalize to the case of non-zero mean by replacing the 3 above by the unbiased
covariance estimator given by 3i; = —1 S°0_ (af — z;) (2} — z;), where 7, = 2 307 af
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The quantities #;; can be considered as estimated normalized edge strengths. The testing criterion
relies on the fact that when the number of samples is sufficient (which we formalize later in
Section 2.4), the quantities ;; are accurate empirical estimates of the true normalized edge strengths

given by ki; = |B:;5i| = \/%' The intuitive logic behind the testing criterion in (12) can be

explained by considering the following two cases:

e Case 1: The candidate B in consideration is such that B; C By, where B; denotes the true
neighborhood of i. In this case, for every adversary Bo, and assuming that the estimates
Bi Bi1 B, are accurate enough, for each j € B> the estimates &;; should be close to the true
value kj; = 0, i.e., A < k/2 for all j € By and By would pass the test in (12).

e Case 2: There exists j € B; \ Bi: In this case the set By has missed a neigbor j € B;. Here,
any adversary By such that B; C B; U By will make B fail the testing criterion. This is again
because, for j € B; \ Bj, the quantity kij is expected to be close to its true value x;; > k, i.€.,
kij > /2 and hence B; would FAIL the test in (12).

2.3. Phase 3: Eliminate non-edges

Once a set By is obtained in Phase 2 such that |B1| = d and B; C By, this clean-up phase consists
of appending any B to By, computing the estimated normalized couplings #;; for all j € B; and
declaring any j € By such that &;; < x/2 as a non-edge. The success of this step also relies on
the accuracy of the estimates &;;. The intuitive description of the algorithm and its performance is
formalized in the next subsection.

2.4. Formal description of the algorithm and main result

In this subsection, we state our main result regarding the sample complexity of DICE, which is
formally presented in Algorithm 1.

The following is the main result of the paper which proves that the algorithm DICE achieves the
information theoretic lower bound in (2) up to a universal constant.

Theorem 1 (Converse to IT bound) Given 6 > 0, the probability of perfect graph reconstruction
using DICE is lower bounded as

P(G=6)>1-34, (13)
provided that the number of samples satisfies

192 64 4d
n>2d+ —dlogp+ — log () . (14)
K K )

2.5. Proof of Theorem 1

As described intuitively above, the success of DICE relies on the fact that the estimates ~;; in (12)
are accurate. This fact is established in the following two propositions.

2. In particular, Theorem 1 is valid for a number of samples n. > 222 (dlog p + log(1/4)).
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Phase 1: Estimatimating conditional variances
fori €V do
\ Estimate (:)ii by solving (6)
end
Phase 2: Iterative support testing
fori € Vdo
for By C V\ {i} s.t. |B1| =ddo
PASSED < YES
for Bo C V\ {B1U{i}}s.t. |B2] =ddo
Compute Bz B, B, following (9)
Estimate &;; following (12)
if max;eB, f%ij > /4,/2 then
‘ PASSED < NO

break
end

end

if PASSED = YES then
Bi +— B

break

end
end

end
Phase 3: Eliminate non-edges
fori € Vdo
Choose any By C V\ {B; U {i}}s.t. |[Ba| =d
for j € Bi do
| Compute #;; following (12)
end
Bz<—{]EBl|,‘%U>%}
end
return B; fori € V
Algorithm 1: DICE(p, d, k)

Proposition 2 (Accuracy of ©i;) Givene > 0, the diagonal entries reconstructed by (6) satisfies

Oy ~ Oy
<O, <
14+e~ "~ 1-¢

VieV, (15)

with probability at least 1 — §1 provided that the number of samples satisfies

8 8 2d
€ € 01

Proposition 3 (Accuracy of Bij) Given € > 0, the regression coefficients Bij satisfy

Oy

@..
<e /L, VieA VACV\i st B;CA, |Al=2d, (17)

51] - 9” )
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with probability at least 1 — 9, provided that the number of samples satisfies

8 4 2d
n > 2d+ —dlogp+ - log <> . (18)
€ € 2

The quantities Bz‘j are computed as in (9).

We show that Propositions 2 and 3 (proved in the Appendix) are sufficient to prove Theorem 1.
Proof [Proof of Theorem 1] By using € = x/4 and 6; = d2 = §/2 in Proposition 2 and Proposition 3,
we get using the union bound and the lower bound on the number of samples n in (14), that the
statements in (15) and (17) hold with probability at least 1 — §. The proof proceeds by examining all
three phases of DICE.

Phase 1: Using ¢ = /4 and (15) in Proposition 2, we have that
2 (a) 4 —K é“ @jj 4+ kK (b) L.
5 <4/ <4/ = <14/ <2, VijeV, 19
3 44Kk~ @ijii_ 4—kK b J 19

where (a) and (b) follow by using k < 1.
Phase 2: To analyze the performance of this phase, we consider the two cases alluded to in
Section 2 for each candidate neighborhood B in the outer loop of phase 2 in DICE.

Case 1: By C B;. Since ©;; = 0, for any Bj in the inner for loop, we get using Proposition 3 that
forall j € By

. @ ..
1Bis] < g @—” since ©;; = 0. (20)

2

. N 0, K K
"fij:wij|\/é7;<z><2:§- 2n

Therefore for the candidate By, the inner loop in DICE will terminate with PASSED = YES.

Combining with (19), we get

Case 2: B, ¢_ B;. 1Inthis case, there exists j € B; \ Bj. Consider the case when in the inner loop
we have By such that B; C By U Bs. Then j € By and j ¢ B;. Repeating the previous calculation

we have
N ~ éu K 2 K
/@ij:\ﬁij|,h—>(m——)xf:—. (22)
0j; 4 3 2

Therefore for the candidate By, the inner loop in DICE will terminate with PASSED = NO.

Phase 3: By appending to By, any By € V\{{i} UB;} with | Ba| = d, and using the computations
in (21) and (22), we get that for all j € By,

"%ij > IQ/Q if je B, (23)
Rij <K/2 if j ¢ B, (24)
and the proof is complete. |
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3. SLICE: Reconstructing Gaussian Graphical Models with near optimal number of
samples using Mixed Integer Quadratic Programming

In this section we state the details of the SLICE algorithm. SLICE trades-off some optimality with
respect to sample complexity for better computational complexity and enable implementation using
a mixed integer quadratic programming formulation. With the rapid progress in mixed integer
programming technology, this offers a significant advantage over the exhaustive search required for
DICE in terms of practical efficiency. The algorithm SLICE simply utilizes the Phase 1 (Section 2.1)
of DICE followed by a variation of the product and threshold procedure in Phase 3 (Section 2.3)
of DICE in order to eliminate non-edges and estimate the exact support. By skipping the iterative
neighborhood testing in Phase 2 (Section 2.2), SLICE improves upon the computational efficiency of
DICE, theoretically by a factor of p? and more significantly in practice since it can be implemented as
a mixed integer linear program, but with a penalty of an additional % factor in the required number
of samples. The various phases of SLICE are described in the following sections.

3.1. Phase 1: Least Squares with /y-constraint

The first step of the algorithm is identical to that of DICE, but the purpose is different. While for
DICE, the only purpose was to estimate the conditional variances, SLICE requires the estimates of
the regression coefficients:

A~

B; = argmin  L;(0;, ), s.t. ||Billo < d, (25)
Bi€RP—1

where L;(5;, f)) is defined in (7).

3.2. Phase 2: Estimate the support

Once the estimates B@ have been obtained for all 7 € 1, we estimate the edge-set £ through the
following thresholding procedure

é:{(i,j)erv;\/|Bijx3ji|>/</2}. (26)

The estimated graph is then declared as G = (V, ).

3.3. Implementation as a mixed integer quadratic program

Phase 1 of the SLICE algorithm has a computational complexity of O(p®*+1) since it is equivalent to
an exhaustive search over all possible size d neighborhood of each vertex ¢ € V. The second step
can be implemented with a much lower computational complexity of O(pd) leading to an overall
complexity of O(p?+1).

However when d is not small enough, performing an exhaustive search can be prohibitively
expensive. Instead, the problem can be reformulated as a Mixed Integer Quadratic Program (MIQP),
which in practice is significantly faster, especially when using modern mixed integer solvers such as
CPLEX or GUROBI. In the context of compressive sensing and sparse regression, the use of MIQP
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has been explored in Bertsimas et al. (2016) to solve a ¢ constrained quadratic objective. We present
one such formulation:

min 87 858 + 258 + Sii (27a)
Bi€RP~1
S.t. SijL < ﬁij < SijU, Vi #1 (27b)
> sy =d, (27¢)
J#i
Sij € {0,1}, Vj #i. (27d)

In the above L and U denote known or estimated upper and lower bounds on the regression variables.
For a more detailed discussion on obtaining these bounds, and formulations that avoid them, we refer
the reader to Bertsimas et al. (2016).

3.4. Sample complexity of SLICE

In this subsection, we state the theoretical result regarding the sample complexity of SLICE.
Theorem 4 (Sample complexity of SLICE) Given § > 0, the probability of perfect graph recon-

struction using SLICE is lower bounded as P(Q = G) > 1 — 4, provided that the number of samples
satisfies

d+1
n>d+ 210g<4p5 ) (28)

SLICE retains a critical advantage of DICE, which is its insensitivity to parameters absent in the
IT lower bound 2. In the next subsection, we demonstrate this advantage of SLICE through some
illustrative numerical examples.

3.5. Numerical illustration of condition number independence of SLICE

In this section, we construct a very simple counterexample, consisting of a sequence of matrices
with growing condition number ’\”"” but fixed minimum normalized edge strength x. The primary
purpose of this experiment is to demonstrate that the sample complexity of existing reconstruction
algorithms are indeed sensitive to the condition number of the precision matrix ©, whereas the
sample complexity dictated by the IT lower bound in (2) as well as our proposed algorithm SLICE
shows no such dependence.

The counter example sequence inspired by (4) consists of a triangle with two weak links and one
stronger link and a collection of independent nodes. This family of GGMs is parametrized by the
following inverse covariance matrix,

1 K K 0
K 1 1—c¢ 0

GHA,E,O’ - P 1 — € 1 O ) (29)
0 0 0 Hlpaxe-3

where 1 — € is the strength of the strong link, x < 1 — € is the strength of the weak links and o2 is the
variance of the independent nodes. This family of graphs are chosen such that « in (29) corresponds

10
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to the minimum normalized edge strength in (3). Note that the maximum degree is d = 2. This
problem can be interpreted as detecting a triangle within a cloud of independent nodes, a situation
that is very plausible in practice.

The simulations are performed for matrix dimension p = 200 and n = 175 samples which
satisfies n < p. We repeat the reconstruction procedure 50 times with independent samples for
different values of 02 € {1,...,10*} while x = 0.4 and ¢ = 0.01 are fixed. The regularizer
parameters in ACLIME, LASSO and GRAPH LASSO have been optimized to yield the best possible
results for each value of o2, an advantage that cannot be availed in practice. SLICE inherently does
not have this issue. For each algorithm we compute its estimate ~12 and <14 of the normalized link

values (1,2) and (1,4),
01202 \/m
K = —_, K = —_. 30
12 @ 1 ©11044 G

We declare that an algorithm fails to reconstruct the graph whenever <15 < K14: if this condition
is satisfied, then links (1,2) or/and (1,4) are incorrectly reconstructed regardless of the thresholding
procedure. Note that this choice of reconstruction failure criterion is quite generous. It is very unlikely
that one can devise a successful thresholding procedure solely based on the criterion 412 < £14 When
k12 and /14 are close to each other. This is particularly true for several reconstructions provided by
GRAPH LASSO and ACLIME as illustrated in Figure 1, whereas the procedure appears to provide
no advantage to SLICE. Note that we compare normalized link strengths ;;, which are invariant
to rescaling of the © matrix, instead of matrix element ratios /3;; or matrix elements ©;;. Thus
reconstruction based on the latter quantities would fail for some rescaling of ©.

05412 SLICE . 05-K12 LASSO
0.4 044 ° .
0.3- 034 " . °
.
0.2-| 0.2 =
014 .7 N 0140 e A
Kig e Kig
0-4- T T T T T 04 T Lam— T T
0 01 02 03 04 05 0 01 02 03 04 05
~
19K12  GRAPH LASSO . Rip ACLIME
08 0.4
064 0.3
0.4-] 02
0.24 R 2 0.1 .
*, Ku e Kua
0= T T T T T 0-9° T T T T
0 02 04 06 08 1 0 01 02 03 04

Figure 1: Tllustration of reconstruction failure for o> = 1/1000. We show the scatter plot of reconstructed
values k12 and /14 obtained through 50 trial reconstructions. We declare that reconstruction fails
when k12 < /14 Which corresponds to points in the lower right part of the graphs (highlighted in
red). SLICE demonstrates an almost ideal behavior with 14 = 0 and 412 > /2 = 0.2. Note that
the other algorithms often yield k12 < <14 although (1,4) is not an existing edge.

Simulation results are summarized in Figure 2 where the probability of failure is plotted against
the variance o2 of the independent nodes. For o2 close to one, all four algorithms succeed with
high-probability and are able to correctly identify that there is a link (1,2) and no link between
(1,4). However for larger value of o2, the probability of failure of ACLIME, LASSO and GRAPH
LASSO is close to one while SLICE remains insensitive to changes in 2. This simple example

11
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highlights that when the sample complexity of algorithms depends on parameters not present in
the information theoretic bound, the graph reconstruction can be adversarially affected even by the
presence of additional independent nodes.

Pfailure

0.8

ACLIME =

0.6

GRAPH LASSO v

04 [ LASSO @

SLICE &

0.2 |

- e Jo

0 A
100 101 102 103 104

Figure 2: Detecting a triangle in a cloud of independent nodes. Empirical probability of failure averaged
over 50 trial reconstructions with a fixed number of samples n = 175. Optimal regularization
hyperparameters are used for all algorithms except SLICE. All algorithms except SLICE fail for
large o2 values.

In Appendix B, we conduct additional numerical studies on synthetic and real data that show that
the use of modern MIQP solvers allows one to scale up SLICE even to relatively large problems.

4. Conclusions

In this paper, we propose the polynomial-time algorithm DICE that provably recovers the support
of sparse Gaussian graphical models with an information-theoretic optimal number of samples. On
the theoretical side, this result confirms that the incoherence properties and condition number of
the precision matrix are not necessary for the reconstruction task, and that the previously derived
information-theoretic bound Wang et al. (2010) is tight. From the algorithmic perspective, recon-
struction with the least number of samples is critical when the available data is scarce. Hence, even
though the computational time of DICE can be large, it might still represent a valuable tool in the
applications where the cost of additional data collection is larger than the cost of computations
and where we expect the condition number of the precision matrix to be large. We also propose a
simplified algorithm called SLICE with slightly higher sample complexity than DICE but with better
computational complexity and possibility of implementation as a mixed integer quadratic program,
making it attractive in practice. Importantly, like for DICE, the sample complexity of SLICE is also
independent of any spurious quantities such as the condition number of the precision matrix.

Since we have now established that learning GGMs with an information-theoretic optimal number
of samples given in (2) is achievable, the challenge for future work is to design new algorithms that
improve the computational complexity of DICE and SLICE while still keeping the sample complexity
optimal. One step in this direction has been made in a recent work Kelner et al. (2019) that shows
that it is possible to efficiently learn attractive and walk-summable subclasses of GGMs by keeping
sample complexity near-optimal. In future work, it would be interesting to see if the ideas behind
assumption-free algorithms for reconstructing discrete graphical models such as Vuffray et al. (2016);
Lokhov et al. (2018); Vuffray et al. (2019) could be extended to the case of GGMs. From a theoretical
point of view, a fundamental question remains open — what is the minimal computational complexity
of any algorithm that can achieve the information-theoretic optimal sample complexity for general
Gaussian graphical models?
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Appendix A. Proof of main results

In this section, we prove essential propositions and Theorem 4.

A.1. Proof of Proposition 2

To prove Proposition 2, we make use of the following lemma regarding the statistical fluctuations of
the various conditional variances involved in (6).

Lemma 5 (Large deviations on L (., i))) Let 0 < € < 1 be given. Then for every i €V and every
subset A C [p] \ {i} with |A| = d, we have

(1-)Li(A,%) < Li(A,2) < 1+ )L} (A, ), 31)
with probability at least 1 — 2p (pgl)e_(”_d)g/s. Here LY(.,.) is defined as in (10).

The proof of the above lemma is deferred to Appendix C. We now show that Proposition 2 follows
from Lemma 5.

Proof [Proof of Proposition 2] Fix i and consider a subset A C V \ {i} and |A| = d such that
B; C A. Since B; C A, we have that L} (A, X)) = 1/0©;;. Further, using Lemma 5 we get that

A 1
LHA D) < (1+ )LNA,S) = ;6. (32)
We consider the reformulation of (6) as given in (8). Since A is feasible for (8), we must have
1 1+e¢
- . 33
Forall A C V\ {i} with |A| = d, we have
(a)
Li(A,%) = Var (X; | X4) > Var (X; | X, ) 2 Var (X; | Xp,) = (34)

0y’
where (a) follows from the well-known property of multivariate gaussians that conditioning reduces

variance, and (b) follows from the so-called separation property of graphical models. Using Lemma 5,
this shows that

1 - 1—
— = min L} (AY) > min 1—¢e)L;(AY) > : 35
O  ACp\i: [Al=d ( ) AC[p]\i : \A\=d( M ) O )
The proof follows by combining (33) and (35). |

A.2. Proof of Proposition 3
We first state the essential technical lemmas that form the ingredients of the proof.

Lemma 6 Fixi €V and A C V{i} such that B; C A and |A| = 2d. The conditional distribution
of Bij for any j € A is given by

3|8 Oij H-1 (1
ﬁl] | YA~ N <®M ) ®ii (EAA)].J,> ) (36)

where N (.,.) denotes the normal distribution.
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Lemma7 Fixi € Vand A CV\ {i} such that B; C A and |A| = 2d. Then for any ¢ > 0 the

random variable (i;i) ~ satisfies the following inequality
i

. (n—2d+1)e2

P ([S;ﬂ >(1- e)lej]) <e TR (37)
27

These lemmas are proved in Appendix C.

Proof [Proof of Proposition 3] Define the event £ = [f)];lB} < (1- 61)_1@]‘j. We bound the
1 1 ]]

deviation of Bz’j from %Z as
. O, 0. . O, 0.
P <|Bij—®| > € @”> =P (!@‘j—@,ﬂ Zﬂ/ﬁ | E) P(E)
. O, 0. . .
+ P (,67;]'_@']" 261/@—?7 |E>]P(E)

(a)
< 20° (ey/1 — e1y/n) + ¢~ (W72HFDE/S (38)

where (a) follows by bounding the first term using Lemma 6 and the definition of E, and bounding
the second term by the probability of the event E using Lemma 7. Setting €; = 2¢, we get

P (!Bz’j - g”\ > € 2”) < 20° (ev/1 — 2ey/n) + o~ (n—2d+1)e*/2

2 6—62(1—26)71/2

< +
T V21 e/1 — 26/

(%) e~ (En/1) |~ (n-2d+1)¢2/2

—(n—2d+1)€?/2

e

< 267(n72d+1)e2/4

where (a) follows by using e < 1/4 and n > 6% Using the union bound, we have that for all ¢ € V
and all A C V \ i such that B; C A and |A| = 2d,

A O;; O, p—1\ _._ 2
P LY < 1) < 9pd (n—2d+1)e*/4 5 39
( /sz 0| = € C“)”> = 4P 2 € > 02, (39)
where the last inequality follows from the assumption on n given in (18). |

A.3. Proof of Theorem 4

We prove Theorem 4 through the results below that provide guarantees for each step of the SLICE
estimator.

Proposition 8 (Optimal support contains the true support) Foreachi €V, let B; c [p] be the
support of the optimal solution in (25) and let B; C [p] be the neighbors of i. Then for any § > 0,
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the support B; satisfies B; C B; with probability greater than 1 — /2, provided that the number of
samples satisfies

32 4 d+1
n—d>4log<p > 40)
K )
Proposition 9 (Post-processing Proposition) Assume that
64 8d
n—d> . log <p>. @1)
K 0

Then with probability greater than 1 — § /2, the post processing procedure consisting of Product and
Threshold terminates with exactly the correct support.

Proof [Proof of Theorem 4] The result follows by combining Proposition 8 and Proposition 9 and
applying the union bound. |

The two propositions above can be proved by reusing Lemmas 5,6,7 in Section A.2 and the following
lemma, the proof of which is provided in Appendix C.

Lemma 10 (Multiplicative gap in noiseless optimal solutions) Fixi € }V and let B; C [p] be the
neighbors of i. Let B C [p| be any subset such that |B| = d and B; € B. Then

LY(B,%) > L}(B;, %) (1 — &%) 42)

Proof [Proof of Proposition 8] Combining Lemma 10 and Lemma 5 and using € = x2/2 we have for

any ¢ € V that the sequence of inequalities
Li(B;, %) < (1 + €)L(Bi, %) < (1+¢€)(1 - £*)Li (B, %)

1—k?)(1 o e A &
<(f£+dmwﬁn<mwﬁx

is satisfied for all { B C [p]\{i} : |B| = d, B; € B} with probability at least 1—2p(p;1)e_(”_d)“4/32.
Therefore

. 1
P (az clpl:B; ¢ BZ-) < 2p<p ] >e("d)”4/32 <5/2,

where the last inequality follows from n — d > i—% log (@%1). |

Proof [Proof of Proposition 9] Similar to the proof of Proposition 3, using Lemma 6,7 we get that
foralli € Vandall A C V\isuchthat B; C Aand |A| =d,

~ 62 @ - ]-
b ( by- 2l < @]]> < 2pd(p - )e—(n—d+l)e2/47 (43)
Using € = /4 we get
. 0;; 0. ) (@) 0
PQ%~9”22$ weBm6V>2L4@fW“”W“—1‘y 9
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where the implication (a) is obtained by using n — d > %‘21 log (%) in the premise of Proposition 9.

Using (44) for both ¢ and j we get with probability greater than least 1 — g,

2
. 0. k 10. 0.:l k [6. 0 P
B3 Bjil = Ol _x [% byl _r [ = byl % : 45
From (45), we get that for (i, j) € & the estimates satisty \/|5:;]|8j:| > 3x/4 > /2. An identical

argument can be used to show that 4/ |BZ] | |BJZ| < Kk/4 < K/2. This proves that the post-processing
step recovers the exact support.

Appendix B. Tests of SLICE scalability on synthetic and real data

In this section, we present several tests on synthetic and real data. We present examples to illustrate
that the use of modern Mixed-Integer Quadratic Programming (MIQP) solvers such as Gurobi
Gurobi Optimization (2016) allows one to run SLICE in a reasonable time even on relatively large
realistic problems. As a first test, we run SLICE on synthetic random graph instances of different
degrees (d = 3 and d = 4) and sizes (p = 10, p = 100 and p = 1000). The link strengths
ri; have been randomly generated in the ranges [0.2,0.4] for d = 3 and [0.2,0.3] for d = 4
instances. The family of regular random graphs has been chosen to eliminate potential dependencies
on the heterogeneity in the degree distributions. For implementation, we used one possible MIQP
formulation presented in the Supplementary Material, and the JuMP framework Dunning et al. (2017)
in julia for running the Gurobi solver. The running times for SLICE with n = 10* samples for each
problem instance are presented in the Table 1. Notice that the practical scaling of running times is
significantly better than what one would expect from the worst-case complexity O(p?*1) for the full
graph reconstruction.

Table 1: Comparison of running times for SLICE on various regular random graphs with
n = 10* samples: Longest MIQP Gurobi solver time and longest total running time
for reconstruction of the neighborhood of one node, and total time for learning the entire
graph.

GRAPH MAX FOR 1 NODE MAX FOR 1 NODE FULL PROBLEM

(p,d) (GUROBI) (TOTAL) (TOTAL)
(10,3) 0.01 seC 2.7 SEC 7.2 SEC
(10,4) 0.03 sEC 2.8 SEC 7.6 SEC
(100, 3) 0.03 seC 2.7 SEC 19.8 SEC
(100, 4) 0.04 SEC 2.8 SEC 21.7 SEC
(1000, 3) 15.7 SEC 19.3 SEC 18 HOURS
(1000, 4) 92.3 SEC 96 SEC 29.3 HOURS
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Figure 3: Graph learned with SLICE from Riboflavin data set. This real-world data set Biithlmann et al.
(2014) contains p = 101 variables and n = 71 samples. In the reconstruction procedure, the
maximum degree has been set to d = 6.

For the illustration on real data, we use the biological data set related to the Riboflavin production
with B. subtilis. This data set contains the logarithm of the Riboflavin production rate alongside the
logarithms of normalized expression levels of 100 genes that are most responsive to the Riboflavin
production. Hybridization under different fermentation conditions lead to the acquisition of n = 71
samples, see Bithimann et al. (2014) for more details and raw data. The graph reconstructed with
SLICE and constraint d = 6 is depicted in the Figure 3. It took about 2.5 days for the algorithm
to learn this graph (with the proof of optimality of the obtained solution) in this high-dimensional
regime. Notice that again the practical running time for SLICE using MIQP technology is much lower
than the one required to search over the 10'* candidate neighborhoods of size d = 6. This example
is a perfect illustration of a trade-off between sample and algorithmic complexity in real-world
problems where the collection of samples might be very costly.

Appendix C. Proof of technical lemmas

We will need the following result from Ouellette (1981) in the proofs of the technical lemmas.

Lemma 11 (Ouellette (1981) Eq. 6.78) Let X € R¥** ~ W (V,1) be a random matrix distributed
according to the Wishart distribution with parameter V = 0 and order l > k — 1. Let Y = X!
withY ~ W=YU,1) where U = V1. Let

X11 X12 Vll V12
X = V=
[ Xo1 X2 ] [ Vor Voo ]

be any compatible block matrix representation of X and V. Consider block representations for Y,U
with the same dimensions k1, ko that satisfy k1 + ks = k. Then,

(a) The Schur complements of X11 and Y11 are distributed as

X11 — X192 X0 Xo1 ~ W(Vig — VigViy ' Var, 1 — kg)
Vi1 — Y12V, Vo1 = X1t ~ WL (VL 1) = W H(Un — UnUsy ' Ua, 1),
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(b) The random matrix Y251Y21 conditioned on X 1_11 is distributed as a matrix normal distribution
-1 -1 —1 -1 -1
Yoo Yau | Xiy' ~ N (Ugy Uz, X1y @ Uspy' ) -

Proof [Proof of Lemma 5] Fix i € V and A C [p] \ {i} with |A| = d. Then using properties of the
Wishart distribution in Lemma 11 part (a), we get that,
Sii — iiAgzzlqi:Ai ~ (Zii — D aX 4 A Xy

= Li(A D)X (46)

where x? denotes the standard Chi-squared distribution with ¢ degrees of freedom. Using the Chernoff
bound,

PO g > 146 < e D(E-318049) £ o~ (n=D/8, @7)
P(x2_,<1—¢) < e mD(=3losl-0-5) o o~(n=d)*/8, (48)

The proof is completed by using the union bound for all A C [p] \ ¢ with |[A| = d and over all i € V.
|

Proof [Proof of Lemma 6] For any i € Vand A C V \ i with B; C A and |A| = 2d, let

. . -1 1
YiayEa) = (E(iA)(z‘A)) c Yanea) = (Saayaa) - (49)

Using the block matrix decomposition for matrix inverse
W iayia) = Ouayia) — OuapOppOp(ia), where D =V\{iUA}. (50)

Since B; C A, we must have ©;p = 0. Hence the matrix W ; 4)(;4) satisfies

Ui =04, V=0, VjecA (51
From Lemma 11, part (b) we get that for all j € A,
501§ (Vi g1 [
Bij | Baa~ N 485 [ZAA} y (52)
[ 29
a Oij e
YN <@.].’®ii1 [EAH ) , (53)
% 27
where (a) follows from (51). [

Proof [Proof of Lemma 7] From (50) we get that for all j € A,
Vj; = ©j; — ©;p95pOp; < 0j5. 54

From Lemma 11, the random matrix )y AA 1s distributed according to the Wishart distribution
Y44 ~ W (244,n). Hence for any j € A,

~1
- . - )
({2“} jj> = 2jj = ZjA) 24\ j)(A\)) 2 (A
(a) -
~ (Zj5 = Bjav) Ziag) ) S\ Xn-2dt1 = GXn—ai1s 55
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where (a) follows from Lemma 11 and we can bound the constant c; from above for every j € A as

N b B . 5 Ty e Yy <o
& —( 73 T (AN F(A\G)(A\F) (A\j)j> =% T Yiita = Y5 = Y5

where (a) follows from (54). Hence,

P ([i;;]jj > (1- e)lejj> =P (X2 201 < (1 - )a;'07}) (56)
(a)
< P (Xn-2441 < (1 =) (57)
(g 67(’”,72(1*‘1’1)62/87 (58)
where (a) follows because by (56) we have aj_1®j_j1 < 1, and (b) follows from (47). |

Proof [Proof of Lemma 10] From (11) we have that

Li(B;, %) = Var(Xi|Xp,) & Var(Xi| X)) 2 657, (59)

where (a) follows from the separation property of graphical models, and (b) follows from (10).
Similarly,

L}(B,X) = Var(X;|X ). (60)
Using the law of total variance we get that
Var(X,|X;) = E [Var(XZ—|XBiUé)|XB}

+ Var (B[ X|X,,,5] 1X5)

1 1
= eV > 05X | X |- (61)
JEB;UB
Let u € B; \ B. From above, we get
Var(X;|Xp) — Var(X;|Xp,) (62)

=0;°Var [ > 0;X;| Xy
jeBiUB

@ _
> 0;7Var | Y 05X | X i)

jEBZ‘UB

0::0 -1 () 2
_ T1 wuu > ) . ]
0;; <9?u 1) > Var(Xi|Xp) 7= (63)

The inequality (a) follows from the fact that conditioning reduces variance in Gaussian and observing
that B C [p| \ {7, u}. The inequality (b) follows from (3). [
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