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Abstract

In many natural average-case problems, there are or there are believed to be critical values
in the parameter space where the structure of the space of solutions changes in a funda-
mental way. These phase transitions are often believed to coincide with drastic changes in
the computational complexity of the associated problem.

In this work, we study the circuit complexity of inference in the broadcast tree model,
which has important applications in phylogenetic reconstruction and close connections to
community detection. We establish a number of qualitative connections between phase
transitions and circuit complexity in this model. Specifically we show that there is a TC0

circuit that competes with the Bayes optimal predictor in some range of parameters above
the Kesten-Stigum bound. We also show that there is a 16 label broadcast tree model
beneath the Kesten-Stigum bound in which it is possible to accurately guess the label
of the root, but beating random guessing is NC1-hard on average. The key to locating
phase transitions is often to study some intrinsic notions of complexity associated with
belief propagation – e.g. where do linear statistics fail, or when is the posterior sensitive to
noise? Ours is the first work to study the complexity of belief propagation in a way that is
grounded in circuit complexity.

Keywords: Belief propagation, circuit complexity, phase transitions, Kesten-Stigum bound

1. Introduction

1.1. Background

In many basic problems in high-dimensional statistics and machine learning, there appear
to be fundamental gaps between the performance of the information-theoretically best es-
timator and the best estimator that can be computed in polynomial time. These are called
computational vs. statistical tradeoffs. Recently, there has been an effort to study these gaps
in a systematic fashion, in particular by forging reductions between some of these problems.
For example, finding sparse directions with large variance in the spiked covariance model
turns out to be at least as hard as finding small planted cliques, see e.g. Berthet and Rigollet
(2013); Ma and Wu (2015); Brennan et al. (2018). However, these reductions leave much
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Phase Transitions

to be desired as there are relatively few examples where reductions are known that map
natural distributions on one problem to natural distributions on another.

In this paper, we will explore other popular methodologies for predicting where average-
case problems become hard, which come from statistical physics and revolve around a
powerful algorithm called belief propagation. Our key example originates from the following
special case of community detection in the stochastic block model. We start with a fixed
partition of n nodes into q (almost) equal sized communities. The probability of connecting
any pair of nodes with an edge is kqθ/n+ k(1− θ)/n if they belong to the same community
and otherwise is k(1− θ)/n, where edges in the graph are sampled independently. It is easy
to see that the average degree in this graph is k and that θ is a measure of the strength of
the communities.

The goal is, given a graph sampled from this model, to find a q-partition of its nodes
whose parts have non-trivial correlation (i.e. better than random) with the true communi-
ties. A striking prediction from statistical physics (Decelle et al., 2011) is that the problem
is efficiently solvable when kθ2 > 1 while the information theory threshold for the problem
is different for large values of q. By now the existence of efficient algorithms when kθ2 > 1
has been established (Mossel et al., 2015; Massoulié, 2014; Mossel et al., 2018; Bordenave
et al., 2015; Abbe and Sandon, 2015) as well as the fact that for q > 5, the information
theory threshold is strictly below this bound (Abbe and Sandon, 2015; Banks et al., 2016).

The threshold of kθ2 > 1 is called the Kesten-Stigum bound and will play an important
role in our paper. It is believed that for some problems, like the block model, the structure of
the space of solutions changes in a fundamental way beneath the Kesten-Stigum bound, and
this is the basis for the predictions about computational hardness. Fundamentally, these
predictions of computational difficulty all revolve around studying the behavior of belief
propagation. In what follows we will explain some of the intuition behind belief propagation
along with how computational versus statistical phase transitions are predicted. See also
Mézard and Montanari (2006); Krz̧aka la et al. (2007).

The way to think about belief propagation in the stochastic block model is to start with
a local view around a node. With high probability, its neighborhood will be tree-like. In
fact, we can model it (along with which community each node belongs to) as a Markov
process on a tree. This model is called the broadcast tree model. We start with a complete
k-regular tree of height d < logk(n)/2 (or alternatively we generate a random tree of height d
in which the number of children of each node is a Poisson random variable with expectation
k). The root is assigned one of the q possible labels at random. Next we propagate labels
from the root to the leaves by, at each step, assigning a child the same label as its parent
with probability θ and otherwise assigning it a uniformly random label. At the end, we are
given the labels of the leaves and the goal is to use this information to guess the label of the
root. We want our guess to be correct with some advantage over random guessing, and we
want the advantage to be bounded away from zero independently of d. Belief propagation
is an iterative algorithm that provably computes the posterior distribution on the label of
the root given the labels of the leaves. So when belief propagation fails at guessing the
label of the root with some nonzero advantage that is independent of d, it is because the
problem is information-theoretically impossible. Belief propagation is based on the idea
that conditioned on the label of some node, the labels of its neighbors are independent.
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This is exactly true on a tree and approximately true in a sparse random graph with few
short cycles.

The key to using belief propagation to locate phase transitions is that it has its
own intrinsic notions of complexity.

In the broadcast tree model, the Kesten-Stigum bound is the threshold kθ2 > 1. (The
Kesten-Stigum bound in the stochastic block model is usually stated in terms of a and b but
they are actually the same, which can be seen by relating a, b, θ and k). It turns out that
the Kesten-Stigum bound coincides with where linear statistics stop working. In fact, in
the seminal work of Kesten and Stigum (Kesten and Stigum, 1967, 1966), they showed that
it is possible to guess the label of the root (and beat random guessing) just by tallying the
number of labels of each type among the leaves. Moreover, it is not too hard to deduce from
their results (Mossel and Peres, 2003) that below the Kesten-Stigum bound, this method
fails. Perhaps surprisingly, it is still possible to guess the label of the root and beat random
guessing beneath the Kesten-Stigum bound when q ≥ 5. However, this requires to use
higher-order information about which labels appear where in the tree (Mossel, 2001; Sly,
2009a,b).

Alternatively, the Kesten-Stigum bound can be thought of through the lens of robust-
ness. Suppose we inject random noise at the leaves. In particular, suppose we overwrite
the label of each leaf to a random value with probability η. Then above the Kesten-Stigum
bound, reconstructing the root in the face of noise is still possible, but beneath the Kesten-
Stigum bound it is information-theoretically impossible (Janson and Mossel, 2004). Thus
the Kesten-Stigum bound is the location in parameter space where the typical posterior
distribution on the label of the root becomes highly sensitive to noise.

Fundamentally, each of these methodologies represents a way to extract information
from belief propagation about where the posterior distribution on the label of the root
becomes highly complex. The notion of complexity is expressed in many different ways –
for example, the failure of linear statistics, lack of robustness, or (in the physics language)
stability of the trivial fixed point. In this paper, we take an approach that is grounded
in computational complexity for studying the posterior distribution in the broadcast tree
model. (Alternatively, we take a circuit complexity approach to studying the complexity of
the problem that belief propagation is actually solving).

We establish some tantalizing parallels between phase transitions (in the tradi-
tional meaning of the phrase, where it refers to changes in the structure of the
solution space) and phase transitions in the circuit complexity of the inference
problem.

1.2. Our Results

In this paper, we study the circuit complexity of various tasks performed by belief prop-
agation on the broadcast tree model. We will be interested in four main problems: (1)
detection, where the goal is to guess the label of the root, given leaves generated at ran-
dom, with probability 1/q+ ε with ε > 0 independent of the depth (2) inference, where the
goal is to compete with the Bayes optimal predictor asymptotically in an average-case sense
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over samples from the model (3) computing the posterior, which is the analogous question
for worst-case inputs on the labels of the leaves. And finally we study (4) the complexity of
the forward problem of generating samples from the model. These tasks can all naturally be
solved in NC1 the class of logarithmic depth circuits with AND, OR and NOT gates with
constant fanin. However it will turn out that in some cases (conjecturally) weaker classes
with constant depth will suffice and in others logarithmic depth is inherently necessary.

The next major circuit complexity class below NC1 is TC0, the class of constant depth
circuits made from NOT and majority gates. One can build a circuit in NC1 that determines
whether or not the majority of its inputs are 1 by counting the number of 1s in its inputs,
so TC0 ⊆ NC1, while these classes are believed but not proven to be distinct. It is well
known that for the broadcast tree model on two labels – also called the Ising model on
trees – beneath the Kesten-Stigum bound detection is information-theoretically impossible.
What this means is that taking the majority vote of the labels of the leaves solves the
detection problem whenever it is information-theoretically possible to do so. However it
is also well-known that majority vote is suboptimal in how often it guesses the label of
the root correctly. In other words, the majority vote attains an asymptotic accuracy that
is greater than 1/2 but less than the asymptotic accuracy attained by belief propagation.
Intuitively, this is because there is more information about the label of the root contained
not just in the number of labels of each type but also in the structure of where in the tree
they are relative to each other. We prove that there are more complex circuits, but still
ones in TC0, that can solve the inference problem:

Theorem 1 (informal, see Theorem 15) There is a constant C > 1 so that if kθ2 > C
then the inference problem in the Ising model (q = 2) on trees can be solved in TC0.

Our approach is based on Mossel et al. (2014) that shows belief propagation (suitably
above the Kesten-Stigum bound) is robust to label noise. This allows to construct a TC0

circuit by using majority on the leaves of subtrees to get noisy estimates of their roots. We
then bootstrap these estimates to get an asymptotically optimal estimate of the label of the
overall root. It is conjectured that belief propagation works with noisy labels all the way
down to the Kesten-Stigum bound (i.e. kθ2 > 1) in which case we could improve the above
theorem analogously.

As we discussed earlier, belief propagation works even in a worst-case sense and computes
the true posterior. We show that the worst-case problem is much harder and is NC1-
complete:

Theorem 2 (informal, see Theorem 14) There are constants θ and k for which com-
puting the posterior in the Ising model on trees is NC1-complete.

However there is something unsatisfying about a circuit complexity lower bound that
applies to the problem of computing the posterior distribution on the label of the root for
a worst-case configuration of labels on the leaves. The broadcast tree model is a generative
model, and the properties of belief propagation that are used to locate phase transitions are
really average-case properties – or rather, properties about the posterior distribution on the
label of the root, for a typical realization of the labels of the leaves. Now we come to what
we believe to be our most significant result. We study the average-case circuit complexity
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of guessing the label of the root in a broadcast tree model whose parameters are beneath
the Kesten-Stigum bound. We prove:

Theorem 3 (informal, see Theorem 47) There is a 16 label broadcast tree model where
it is possible to guess the label of the root with probability ≥ 0.999 but where detection is
NC1-complete.

For a general Markov process on a k-regular tree with a transmission matrix M , i.e.
one in which a child of a vertex with label i has label j with probability Mj,i, the Kesten-
Stigum bound is k(λ2(M))2 > 1 where λ2(M) is the second largest eigenvalue of M . In
our construction, the transmission matrix has a second eigenvalue equal to zero and thus
no matter how large k is, we are operating below the Kesten-Stigum bound. (Equivalently,
no matter how large k is, linear statistics are not enough to guess the label of the root with
positive advantage over random guessing). More broadly, we conjecture that the detection
problem is NC1-complete anywhere beneath the Kesten-Stigum bound, which is consistent
with the fractal way that information is stored in such settings (Mossel, 2001), but we are
only able to prove it for this particular 16 label broadcast tree model.

Barrington famously showed that the word problem over nonsolvable groups is NC1-
complete (Barrington, 1989). This leads to a natural average-case NC1-complete problem
via telescopically multiplying by random group elements. We construct a model where the
labels of the children can be multiplied to get the labels of the parents. While we can solve
detection by multiplying group elements in some way, what is less obvious is how to show
that any circuit for detection can be used to solve the word problem. The key idea is we can
define an alternative but equivalent generation procedure that starts by labelling the root
implicitly as the product of many group elements, and as we follow the process down the
levels of the tree, the product simplifies and involves fewer elements until at the leaves it is
a random function of a single group element. In this way, the generative process expresses
the label of the root as a random function of the labels of the leaves, as opposed to the
other way around. This is our most challenging result and perhaps the most surprising.

Finally, we study the circuit complexity of some of the remaining tasks associated with
the broadcast tree model to complete the picture. First, it is natural to wonder if weaker
circuit models can ever solve the detection problem. We show an unconditional lower bound
against AC0, the class of constant depth circuits made of AND, OR, and NOT gates:

Theorem 4 (informal, see Theorem 13) For any −1 < θ < 1, there is no AC0 circuit
for solving the detection problem in the Ising model on trees.

The proof is based on the observation that the generative process for the broadcast tree
model can itself be thought of as a series of random projections — a variant of a classic
tool for proving circuit lower bounds (Furst et al., 1984b). The main difference is that we
do not get to choose the parameters of the projection ourselves, it is dictated by the model
and only sets a constant fraction of the inputs as we go up one level of the tree.

Despite the fact that AC0 circuits do not solve even the most basic type of inference
problem in any interesting range of parameters, it turns out that, somewhat surprisingly,
they can solve the forward problem of generation.
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Theorem 5 (informal, see Theorem 21) For any θ = a/2b where a and b are integers,
given uniformly random bits as input, there is an AC0 circuit for sampling from the Ising
model on trees.

Thus the broadcast tree model on two labels is an interesting example where there is a
wide discrepancy between the depth needed for generation vs. inference. This is reminiscent
of the work of Babai (Babai, 1987) and Boppana and Lagarias (Boppana and Lagarias, 1987)
who show that, while AC0 cannot compute parity on the uniform distribution, there is a
depth one circuit whose outputs depend on two bits each that samples from a distribution
whose first n bits are uniform and whose last bit is their parity. It also has a resemblance
to Kearns and Valiant (1994), which shows that certain efficiently computable functions
cannot be learned efficiently if standard cryptographic assumptions are true.

1.3. More Related Work

We note that while our depth lower bounds results apply to a natural inference problem, the
results proving logarithmic lower bounds are conditional (on the fact that NC1 6= TC0).
This should be compared to the unconditional lower bounds for deep nets (Telgarsky, 2016)
and to worst case (H̊astad, 1987) and average case (H̊astad et al., 2017) lower bounds in
circuit complexity. In fact, part of the motivation for our work comes from Mossel (2019)
which suggested that the broadcast model is a particularly natural data generative model
that has provable reconstruction algorithms and for which one can prove rigorously that
depth is needed for inference. The reconstruction algorithms of the broadcast process are
often referred to as phylogenetic reconstruction algorithms. Polynomial time algorithms for
reconstructing phylogenies were established in Erdös et al. (1999a,b) and phase transitions
related to the Kesten-Stigum bound in the model were established in Mossel (2003, 2004b)
and follow up work. The paper Mossel (2019) does not prove depth lower bounds in the
sense of the current paper. Rather, it shows that for an interval of values of θ, in a semi-
supervised broadcast setting, algorithms that can only access low moments of the labelled
data are unable to classify better than random, while there exist algorithms that use high
moments and are able to label accurately. In a different recent work Jain et al. (2019), it
was shown that message passing algorithms that use only bounded memory of bits per node,
do not achieve the Kesten-Stigum Bound even for the Ising Model (q = 2). This proves a
conjecture from Evans et al. (2000). However, these results do not have an implications for
the circuit complexity of the problem.

There is also a close connection between the types of problems we study here and the
coin problem in pseudorandomness (Brody and Verbin, 2010), which asks: Suppose we are
given a coin which is promised to have bias either 1/2+δ or 1/2−δ along with n independent
tosses and our goal is to guess which way the coin is biased and to guess correctly with
(say) probability at least 2/3. What is the smallest δ for which a given computational
model (e.g. AC0 (Shaltiel and Viola, 2010; Aaronson, 2009; Limaye et al., 2019), width w
ROBPs (Brody and Verbin, 2010)) can succeed? In fact we can think of this as a broadcast
problem on a n-ary depth one tree with two labels where the label of the root represents
whether the coin has positive or negative bias.

With an unrestricted computational model, the majority function is optimal. And thus
the coin problem is interesting in models that cannot compute the majority function and in
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turn leads to bounds on the fourier coefficients of the functions that they can compute and
is a key ingredient in various PRGs. In the broadcast tree model, the labels of the leaves
are no longer independent conditioned on the root but rather have a hierarchical structure
to the strength of their dependencies. As it turns out, in light of our results, this problem
can be much harder. We show that it is NC1-complete for a particular broadcast problem
on 16 labels. Optimistically, and in analogy with the coin problem, we could ask: Could
proving unconditional lower bounds against TC0 for the broadcast tree problem lead to
non-trivial PRGs?

2. Preliminaries

2.1. The broadcast tree model

In this paper we consider the classical tree broadcast model on regular trees and binary
labels. Throughout we will use the following notation. We write Tk(d) for the d-level k-ary
tree. We will identify such a tree Tk(d) with a subset of N∗, the set of finite strings of natural
numbers, with the property that if v ∈ T then any prefix of v is also in T . In this way, the
root of the tree is naturally identified with the empty string, which we will denote by ρ.
We will write uv for the concatenation of the strings u and v, and Lr(u) for the rth-level
descendants of u; that is, Lr(u) = {uv ∈ T : |v| = r}. Also, we will write C(u) ⊂ N for
the indices of u’s children relative to itself. That is, i ∈ C(u) if and only if ui ∈ L1(u). We
write Lr for Lr(ρ) and par(v) for the parent of node v.

Definition 6 (Broadcast process on a tree) Given a parameter θ ∈ [−1, 1] and a k-ary
tree of d level Tk(d), the broadcast process on T is a two-state Markov process {σu : u ∈ T}
defined as follows: let σρ be 1 or 0 with probability 1

2 . Then, for each u such that σu is
defined, independently for every v ∈ L1(u) let σv = σu with probability θ + (1 − θ)/2 and
σv = 1− σu otherwise.

In other words, in the broadcast model, the root is randomly assigned a label in {0, 1},
and then each other vertex is assigned its parent’s label with probability θ and an indepen-
dent uniformly chosen label with probability 1− θ. Of course, this is equivalent to keeping
the bit with probability 1/2 + θ/2 and flipping it to the opposite value with probability
1/2− θ/2.

This broadcast process has been extensively studied in probability, where the major
question is whether the labels of vertices far from the root of the tree give any information
on the label of the root (Kesten and Stigum, 1966; Bleher et al., 1995). See also Evans
et al. (2000); Mossel (2004a); Mézard and Montanari (2006). A similar question was studied
in various communities including bio-informatics (Felsenstein, 2004) and AI (Pearl, 1988)
from an algorithmic perspective, where the goal is to estimate (the posterior) of the root
given the labels of vertices far from the root. It is well known that Belief Propagation is an
exact linear time algorithm for computing the posterior.

We will mainly be focusing on the asymptotic behavior of the broadcast model as d
increases with all other parameters held constant, and we will commonly set n = kd. We
will be discussing the circuit complexity of multiple tasks associated with the broadcast
model on the tree. To simplify notation we write X(r) for the vector of labels at level r:
X(r) := (σv : |v| = r).
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The most important task associated with the model is inference of the root given X(d).
As mentioned earlier, Belief propagation is used for this task. The output of Belief propa-
gation is a posterior distribution P[X(0) = ·|X(d) = x]. For a fixed d and k the posterior is
always bounded away from 0 and 1. Indeed if k is even, the posterior can often assign equal
probability to the two root values. Rounding the posterior allows to determine the more
likely root value. The probabilistic nature of the inference problem, leads to a number of
complexity formulations. First, in the worst-case formulation, we are looking for circuits
that estimate the root correctly whenever the posterior is far enough from (1/2, 1/2). In
terms of average case, there is a natural distribution over the inputs, i.e, the distribution
given by the broadcast process. It is thus natural to formulate an average case version of the
problem where the inputs are drawn from the broadcast distribution and the objective is to
estimate the root correctly with almost the same probability that BP does. Finally, in the
average case setup we may settle for less, i.e., inferring the root correctly with probability
bounded away from 1/2. The formal definitions of the 3 problems follow.

Definition 7 We say that a series of functions fd : {0, 1}Ld → {0, 1} are posterior func-
tions if

P[X(0) = fd(x)|X(d) = x] ≥ P[X(0) = BP(x)|X(d) = x]− δd
for every d and every x ∈ {0, 1}Ld, where BP(x) := argmaxa∈{0,1} P [X(0) = a|Xd = x]
is the optimal Bayes posterior, i.e., the one obtained by applying Belief Propagation and
rounding, and δd → 0 as d→∞.

Definition 8 We say that a series of functions fd : {0, 1}Ld → {0, 1} are inference func-
tions if

P[fd(X
(d)) = X(0)] ≥ P[BP(X(d)) = X(0)]− δd,

where δd → 0 as d→∞

Thus a function is an inference function if it finds the most likely root with (almost) the
same overall probability as Belief Propagation does.

Definition 9 We say that a series of functions fd : {0, 1}Ld → {0, 1} are detection func-
tions if there exists δ > 0 and d0 such that for all d ≥ d0,

P[fd(X
(d)) = X(0)] ≥ 1/2 + δ

In other words, a series of detection functions determines the root’s label with accuracy
1/2 + Ω(1), a series of inference functions determines the root’s label with an accuracy
within o(1) of the best possible, and a series of posterior functions determines the root’s
label with an accuracy within o(1) of the best possible conditioned on any possible value
of X(d). Clearly posterior functions are also inference functions. When the reconstruction
problem is unsolvable, there are no detection functions. If it is solvable, then inference
functions are also detection functions.

In addition to inference problem, we are also interested in the generation problem, in
other words, what is the computation complexity of generating X(d) given access to random
bits. We address the generation question in appendix A.
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2.2. Circuit Classes

Here we give the formal definitions for the circuit classes that we will be interested in:

Definition 10 The circuit class AC0 is the class of constant depth circuits with a polyno-
mial number of AND, OR, and NOT gates, where the AND and OR gates can have arbitrary
fan-in.

Definition 11 The circuit class NC1 is the class of circuits with depth logarithmic in the
number of inputs and a polynomial number of AND, OR, and NOT gates, where the AND
and OR gates have fan-in two.

We remark that in the broadcast tree model, the depth of the tree is logarithmic in the
number of leaves, and each vertex has a constant number of children. This suggests that
the posterior distribution on the root should be computable in NC1, and we prove that this
is the case in Theorem 14. It is well-known that there are explicit functions (such as the
parity function) for which we can prove lower bounds against AC0 (Furst et al., 1984b).

Definition 12 A linear threshold function f : {0, 1}m → {0, 1} takes the form f(x) =
sgn(wTx − θ) where w ∈ Rm and θ ∈ R. The circuit class TC0 is the class of constant
depth circuits with a polynomial number of linear threshold function gates with unbounded
fan-in.

The class TC0 is contained in NC1 and can compute any symmetric function of its
inputs. In many ways, TC0 represents the frontier in circuit complexity. Impagliazzo,
Paturi and Saks (Impagliazzo et al., 1997) showed that depth d TC0 circuits with m inputs

need at leastm1+c−d wires to compute the parity function for some constant c > 0. Chen and
Tell (Chen and Tell, 2019) showed that bootstrapping TC0 lower bounds just beyond this
would yield super-polynomial lower bounds. Miles and Viola (Miles and Viola, 2015) gave
a candidate pseudorandom function computable in TC0 which helps explain the difficulty
in proving lower bounds against TC0.

3. Lower bounds against AC0 for detection

We show that there is no AC0 circuit that solves the detection problem for any non-trivial
choice of parameters. In order to prove this, we are going to define a series of random
projections that preserve the probability distribution of X(d) but reduce any circuit in AC0

to a constant with high probability. For the most part, the proof that these projections
reduce the circuit to a constant will be a fairly standard argument using the switching
lemma (Furst et al., 1984a; Yao, 1985; Hastad, 1986). However, due to the nature of the
X(d′), each projection will only fix a constant fraction of the variables, which will force us
to apply Θ(log n) successive projections every time we wish to reduce the circuit depth by
one. Also, we use random projections as defined in Rossman et al. (2015) instead of the
more generic random restrictions to reflect the fact that multiple vertices at each layer are
affected by each vertex in the layer above. The key observation is that we can preserve
the probability distribution of X(d) by setting each vertex’s label to its parent’s label with
probability θ and a random value otherwise. We prove:
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Theorem 13 Let −1 < θ < 1 and f : {0, 1}Ld → {0, 1} be computed by an AC0 circuit.
Then there exists δ > 0 such that P[f(X(d)) = X(0)] = 1/2 +O(n−δ)

We defer the proof to Appendix B. As usual, the key idea is to prove that f can be
approximated by a small DNF, although here the input to f comes from the broadcast
tree model.

4. NC1-completeness of posterior functions

In appendices D and E we will prove that

Theorem 14 For all θ and k and in the Ising tree model, there are posterior functions in
NC1. Moreover there are θ and k for which all posterior functions in the Ising model are
NC1-hard to compute.

Interestingly, the proof that the posterior is in NC1 uses a random construction. The proof
of the completeness is a reduction from NC1 circuits to broadcast processes where each
vertex in the broadcast process correspond to a variable or a gate in the circuit.

5. A TC0 circuit for inference

The previous result implies that if TC0 6= NC1 then no TC0 circuit can compute a posterior
function in the Ising tree model. However we can still hope that TC0 circuits attempting to
determine X(0) can perform well in the average case and can compute an inference function.

Theorem 15 There exists C ′ > 0 such that if kθ2 > C ′ then there exists a function f for
which LinearizedBP run on f is an inference function for the Ising model on trees.

We prove this in Appendix C

6. NC1 hardness of detection with many labels

So far, we have been assuming that there are only two labels that could be assigned to a
vertex. However, we could instead have q labels for arbitrary q. That leads to the following
definition

Definition 16 (Generalized broadcast process on a tree) Given parameters q > 0
and a q×q matrix M with nonnegative entries and columns that add up to 1, the generalized
broadcast process on T is a q-state Markov process {σ?u : u ∈ T} defined as follows: let σ?ρ
be drawn uniformly at random from {1, · · · , q}. Then, for each u such that σ?u is defined,
independently for every v ∈ L1(u) let σ?v = i with probability Mi,σ?u for each i.

In other words, in the generalized broadcast model, the root is randomly assigned a label
in {1, · · · , q}, and then each other vertex is assigned a label with a probability distribution
corresponding to the column of M indexed by its parent’s label. Note that the previous
case is simply the instance of this where q = 2 and M = θI + 1−θ

2 J , where J is the matrix
with all entries equal to 1. There is an important difference between the case when there
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are just two labels and when there are more. It turns out there are many natural cases
where it is possible to detect the label of the root, but not by taking the majority vote of
the labels of the leaves. The function computed by Belief Propagation is generally more
complicated and the main result of this section is to show that this manifests as a phase
transition in the circuit complexity of solving detection. When there are many labels, we
will show that the problem becomes NC1 hard.

First, we need a problem that is NC1-hard in the average case. In a celebrated result,
Barrington showed that deciding whether the word problem (i.e. if a given word is the
identity or not) over a finite nonsolvable group is NC1-complete (Barrington, 1989). In
order to avoid causing ambiguity by multiplying group elements in an unclear order, we
give the following clarification of what our product notation means.

Definition 17 Given elements of a group a1, a2, ... and positive integers m ≤ m′, we define
the product

∏m′

i=m ai as having earlier elements to the left of later ones. For instance,∏3
i=1 ai = a1 · a2 · a3.

With this definition, we can state the hardness result of the word problem on the alternating
group A5 as follows.

Proposition 18 (Barrington, 1989) For every c ∈ A5 such that c 6= 1, determining
whether a product of elements of A5,

∏m
i=1 σi is c or the identity given that it is one of

them is NC1-complete.

Conveniently, this problem has a simple worst-case to average-case reduction:

Theorem 19 Let fr : Ar5 → A5 be a family of functions. Suppose there exists ε > 0
independent of r such that when Σ1, · · · ,Σr are independently drawn from A5 according to
the uniform distribution,

P[fr(Σ1, · · · ,Σr) =
r∏
i=1

Σi] ≥ 1/60 + ε

If TC0 6= NC1 then there is no TC0 circuit that computes f .

Proof For the sake of contradiction, we will assume that there is a TC0 circuit that
computes f . Let hn : {0, 1}n → {0, 1} be an NC1-complete family of functions. Consider
the following randomized algorithm attempting to compute hn(x). First, generate a random
c ∈ A5\{1}. Next, the completeness of hn implies there there exists r polynomial in n and
σ ∈ Ar5 such that

∏r
i=1 σi = c if hn(x) = 1 and

∏r
i=1 σi = 1 if hn(x) = 0 (note that σ

depends on c and x and the computation of σ is in NC0). Now randomly select bi ∈ A5 for
each 1 ≤ i ≤ r. Next compute

f(σ1b1, b
−1
1 σ2b2, b

−1
2 σ3b3, · · · , b−1

r−1σrbr).

If it is equal to br, conclude that hn(x) = 0, if it is cbr then conclude that hn(x) = 1, and
output nothing otherwise. No matter what the value of σ is, the probability distribution of
(σ1b1, b

−1
1 σ2b2, · · · , b−1

r−1σrbr) is the uniform distribution on Ar5. Hence we have that

P[f(σ1b1, · · · , b−1
r−1σrbr) = σ1σ2, · · · , σrbr] ≥ 1/60 + ε

11
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Thus, this algorithm computes hn(x) correctly with a probability of at least 1/60 + ε.
Furthermore, c is independent of (σ1b1, · · · , b−1

r−1σrbr), and thus of what f will return if
it computes the product incorrectly. So, this algorithm computes hn(x) incorrectly with
a probability of at most 1/60. Thus if we repeat this process a large polynomial number
of times and take the majority vote, we can compute hn(x) correctly with probability at
least 1 − o(2−n). Thus there must be some choices of our random variables for which this
computes hn(x) correctly for every x. This whole procedure can be carried out by a TC0

circuit, so TC0=NC1.

Now that we have a problem that is NC1-hard in the average case, we need a way to
reduce this to the problem of determining the label of the root for some choice of parameters.
In order to do that, we consider the following instance of the generalized broadcast process
on a tree. There is one label for every ordered pair (σ, σ′) ∈ A2

5, and k = 60000. Given a
vertex with a parent with label (σ, σ′), we select a random b ∈ A5. Then, we set its label
to (b, b−1σ) with probability 2/3 and (b, b−1σ′) with probability 1/3. In other words, each
child of a vertex is assigned a random ordered pair that multiplies to σ with probability 2/3
and a random ordered pair that multiplies to σ′ with probability 1/3. For the rest of this
section, we will assume that σ? was generated by the generalized broadcast process with
these parameters.

Note that it is straightforward to implement this process with an NC1 circuit because the
tree has logarithmic depth. Moreover, we argue that detection is information-theoretically
possible. The key idea is for any d′, if we can determine the labels of the vertices at depth
d′ so that each label is correct (independently) with probability 0.99 then for any vertex
at depth d′ − 1 we can determine its label with probability at least 0.99. We do this by
taking the two most common products of the elements among its children’s suspected labels
and by a Chernoff bound it is easy to see that this procedure succeeds with probabiity at
least 0.99. Furthermore because the subtrees of each vertex at depth d′− 1 are disjoint, the
probability our guess is correct is independent. Now we can continue this process until we
reach the root. This type of recursive reconstruction arguments are by now standard, see
e.g. Mossel and Peres (2003)

Next we will give an alternative procedure, called ProductTreeConstructionAl-
gorithm, for sampling from the generalized broadcast tree model. The intuition behind
it is as follows: Instead of writing the label of the root explicitly as a pair of elements in
A5 we will express it as a pair of sequences of products of elements in A5. As we traverse
the tree from top to bottom the label of each intermediate node will be a pair of shorter
and shorter sequences of products. In fact, they will essentially be subsequences of the
sequences at the root. Now we need the precise way we do this to be faithful to the original
sampling procedure in the sense that we assign a label whose product is equal to the first
permutation in its parent’s label with probability 2/3, and otherwise its product is equal to
the second one. Moreover the pair of permutations should be chosen uniformly at random
subject to this constraint. We accomplish this through conjugating by random elements
in a careful way. Ultimately, at the leaves, we are left with sequences that are only three
elements long, which we can multiply out, and we have embedded the word problem for A5

equivalently as the problem of guessing the label of the root. The details of this algorithm
and the theorem’s proof are in appendix G.
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Appendix A. Difficulty of generation

In this paper, we are mostly concerned with depth lower (and upper) bounds for estimating
X(0) given X(d). However, we also study the generation problem, i.e., the complexity of
generating X(d) given a sequence of random bits as an input. More formally:

Definition 20 We say that a series of functions fd : {0, 1}m(d) → {0, 1}Ld are generation
functions if under the uniform distribution over the inputs, it holds that fd(x) has the
distribution X(d) for all d. We call such functions (δd)

∞
d=1-approximate-generation functions

if the total variation distance between the distribution of fd(x) and X(d) is bounded by δd
for all d

Despite the fact that the tree has logarithmic depth, it turns out that generation can
be accomplished in AC0 easily.

Theorem 21 If θ is a dyadic number: θ = a/2b for some integers a and b, then there
exists generation functions in AC0. Moreover, for all θ, and any constant c > 0, there
exists 2−n

c
–approximate-generation functions in AC0.

Proof Assume first that θ and therefore (θ±1)/2 are dyadic. This means that there exists
a function g : {0, 1}s → {0, 1} of a bounded number of bits such that P[g = 1] = (θ + 1)/2.
We apply a copy of g independently for each vertex of the tree thus obtaining a collection
of independent random variables (Yv). So, if we set Y ′(0) to be a uniformly random bit and
then define X ′v =

∏
w∈path(ρ,v) Yw, then the probability distribution of X ′ is identical to the

probability distribution of X. Furthermore, for each v, there are at most d elements of Y
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that effect the value of X ′v. That means that there are only 2d+1 ≤ 2n possible values of

X(0) and the elements of Y that effect X
′(d)
i . As such, we only need O(n) gates to have an

AND for every possible combination of values of X(0) and these Yv, at which point we can
OR together all of the ones for values that result in X ′v = 1. Doing this for every v merely
multiplies the number of gates by n, and this clearly has constant depth. This proves the
first part of the theorem.

The second part of the theorem is similar, except we now approximate coin tosses of
bias (θ+ 1)/2. It is easy to see that an approximation to error 2−n

c
is achievable in AC0 in

constant depth and size polynomial in n. This is done by generating a polynomial number
of unbiased bits Z1, . . . , Znc+dlog2(2n)e and considering them as the binary expansion of a
number in [0, 1]. We then declare the bias-coin toss to be 1 if the resulting number is bigger
than (1+θ)/2 and 0 otherwise. The threshold computation

∑
Zi > (1+θ)/2 can be carried

out by an OR of AND gates.

Remark 22 If we consider a computational model where the inputs have bias θ instead of
1/2, then the proof above provides generation functions in AC0.

Now that we have established that AC0 circuits are capable of drawing strings from the
correct probability distribution, the logical next question is whether or not NC0 circuits
can do the same. As it turns out, they generally cannot. The key issue is that each bit
output by an NC0 circuit is affected by a constant number of input bits.

Theorem 23 Let fn : {0, 1}mn → {0, 1}Ld be a series of functions that can be computed
by an NC0 circuit. Also, let W1, · · · ,Wmn be independently generated random variables
and X ′ = fn(W ). If 0 < θ < 1 then∑

x∈{0,1}Ld

min
(
P[X(d) = x],P[X ′ = x]

)
= O

(
e−
√
n
)

It turns out to be much easier to prove the simpler result that NC0 fails when it is
given uniformly random bits as input, just because some pairs of bits in the output of the
broadcast tree model have weak but non-zero correlations.

If the random bits are each set to 1 with probability 1/2, then this means that the
probability that any pair of outputs take on any two values must be an integer multiple
of 2−2c where c is the largest number of input bits affecting a single output bit. However,
some of the elements of X(d) have correlations that are less than 2−2c, so this cannot get
the probability distribution right. More formally, we have the following.

Lemma 24 Let f : {0, 1}m → {0, 1}n be a function that can be computed by an NC0

circuit, W1, · · · ,Wm be independent random variables that are set to 1 with probability 1/2
and 0 with probability 1/2, and X ′ = f(W ). If 0 < θ < 1 then

dTV (X ′, X(d)) = Ω(1).
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Proof There must exist a constant c such that each output of f is affected by at most c
of its inputs. Now, let d′ be the smallest positive integer such that θ2d′ ≤ 2−2c. For any
n ≥ kd′ ,

P[X
(d)

1d
= X

(d)

1d−d′kd′
] = 1/2 + θ2d′/2

However, P[X ′
1d

= X ′
1d−d′kd′

] must be an integer multiple of 2−2c. So, it must be the case
that

|P[X
(d)

1d
= X

(d)

1d−d′kd′
]− P[X ′1d = X ′

1d−d′kd′
]| ≥ θ2d′/2

The desired conclusion follows.

This lemma is somewhat unsatisfying in that it leaves open the possibility that the
generation process might be doable in NC0 if we are given access to independent bits with
any desired given biases. We study this case next.

To prove lower bounds against NC0 in this more general setup, we will still use the
property that each bit output by the NC0 circuit is affected by a constant number of input
bits. Also, each input bit could effect anywhere from 1 output bit to all of them. That
means that if we divide the interval [1, n] into a sufficiently large collection of subintervals,
there must be at least one, [a, b], such that less than half of the outputs of the circuit are
affected by an input that affects a number of outputs in that range. Then, we can find a set
of Ω(n/a) outputs that only have dependencies as a result of inputs that affect more than
b outputs. That allows us to show that for any fixed assignment of values to those inputs
the overlap between the probability distributions of X(d) and the output of the circuit is
very small. Then, we can add together these overlaps for every assignment of values to
those variables and show that it is still small because there are at most Ω(n/b) inputs that
affect that many outputs. Our first step towards proving this will be to show that any NC0

circuit with a large number of outputs has a large subset of its outputs that are independent
conditioned on the values of a relatively small number of inputs. More formally, we have:

Lemma 25 Let fn : {0, 1}mn → {0, 1}n be a series of functions that can be computed by an
NC0 circuit, and c be the maximum number of inputs that any output is affected by. Also,
let W1, · · · ,Wmn be independently generated random variables and X ′ = fn(W ). Next, let
n ≥ b0 ≥ b1 ≥ b2 ≥ · · · ≥ b2c ≥ 1. For any given n, there exists 0 < i ≤ 2c, S ⊆ {1, · · · , n}
and T ⊆ {1, · · · ,m} such that |S| ≥ n

2cbi
, |T | ≤ cn/bi−1, and {X ′j : j ∈ S} are independent

conditioned on any fixed value of {Wj : j ∈ T}.

Proof Choose an n, refer to mn as m, and for each j, let sj be the number of bits in the
output of fn that are affected by the value of Wj . Also, assume without loss of generality
that s1 ≥ s2 ≥ · · · ≥ sm. Next, for each 0 ≤ i ≤ 2c, let ji be the smallest positive integer
such that sji ≤ bi, or m+ 1 if sj > bi for all j. Now, observe that

2c∑
i=1

ji−1∑
j=ji−1

sj =

j2c−1∑
j=j0

sj ≤
m∑
j=1

sj ≤ cn

So, there must exist i such that
∑ji−1

j=ji−1
sj ≤ n/2. That means that there are at least n/2

elements of X that are not affected by Wj for any ji−1 ≤ j < ji. For any such element of
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X, there are at most c(bi − 1) other elements of X that are affected by any of the elements
of Wji ,Wji+1, · · · ,Wm that affect it. So, we can find at least n/2cbi elements of X such
that for all ji−1 ≤ j ≤ ji − 1, Wj does not affect any of them, and for all j ≥ ji, at most
one of these elements is affected by Wj . Also, ji−1 ≤ cn/bi−1 + 1. So, that leaves at most
cn/bi−1 elements of W that affect more than one of these elements of X.

That establishes that the output of any such NC0 circuit contains a large number of
elements that are independent conditioned on the values of a relatively small number of in-
puts. Ultimately, we will want to show that the probability distribution of the corresponding
elements of X(d) must have negligible overlap with the probability distribution of these out-
puts. In order to do this, we will need to establish that the probability distribution of any
large subset of the elements of X(d) has very low overlap with the probability distribution
of any set of independent random variables. The main idea behind that argument is that
elements of X(d) corresponding to nearby leaves are correlated. So, any two independent
random variables corresponding to nearby leaves must either be excessively biased towards
one label or have too low a probability of being equal to each other. As such, we state the
following result:

Lemma 26 For any fixed values of 0 < θ < 1 and k > 1, there exist constants c1, c2 > 0
such that the following holds. Let S ⊆ Ld, and let X ′i ∈ {0, 1} be a random variable for each
i ∈ Ld such that {X ′i : i ∈ S} are independent. Then∑

x∈{0,1}S
min

(
P
[
X

(d)
i = xi for i ∈ S

]
,P
[
X ′i = xi for i ∈ S

])
≤ 2e−c1|S|

1+c2/nc2

Proof First, let d′ = blogk(|S|/6)c. Next, let δ = θd−d
′
/4 and d′′ = d′ − d− log(4)/ log θe.

We will break up our analysis into two cases.
First consider the case where E[X ′i] ≥ 1/2 + δ for at least 1/3 of the i in S or E[X ′i] ≤

1/2−δ for at least 1/3 of the i in S. Assume without loss of generality that E[X ′i] ≥ 1/2+δ
for at least 1/3 of the i in S. In this case, let S′ = {i ∈ S : E[X ′i] ≥ 1/2 + δ}. Next, let
S′′ be a maximal subset of S such that par(d−d′′)(i) 6= par(d−d′′)(i′) for all distinct i, i′ ∈ S′′.
Clearly, there are at most kd−d

′′
elements of S′ that have any given ancestor in Ld′′ , so

|S′′| ≥ |S′|/kd−d′′ ≥ |S|/3kd−d′′ . Also, E[X ′i] ≥ 1/2 + δ for every i ∈ S′′. However, for any
x ∈ {0, 1}Ld′′ and any i ∈ S′′, it must be the case that

E[X
(d)
i |X

(d′′) = x] ≤ 1/2 + θd−d
′′
/2

≤ 1/2 + θd−d
′
/8 = 1/2 + δ/2

Also, these elements of X(d) are independent conditioned on any value of X(d′′) because
S′′ does not contain the indices of any pair of vertices with a common ancestor closer than
X(d′′). So, by a Chernoff bound,

P

[
1

|S′′|
∑
i∈S′′

X
(d)
i ≥ 1/2 + 3δ/4

]
≤ e−δ2|S′′|/96
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On the flip side,

P

[
1

|S′′|
∑
i∈S′′

X ′i ≤ 1/2 + 3δ/4

]
≤ e−δ2|S′′|/64

So, the overlap between the probability distributions of X ′ and X(d) is at most 2e−δ
2|S′′|/96.

Now, observe that

δ2|S′′| ≥ θ2(d−d′)|S|/48kd−d
′′

≥ θ2(d−d′)|S|/48kd−d
′
k1+log(4)/ log θ

≥ θ2[|S|/6n]1−2 logk θ|S|/48k2+log(4)/ log θ

=
θ2

48 · 61−2 logk θk2+log(4)/ log θ
· |S|

2−2 logk θ

n1−2 logk θ

So, the overlap between the probability distributions of X ′ and X(d) is at most

2e
− θ2

4608·61−2 logk θk2+log(4)/ log θ
· |S|

2−2 logk θ

n1−2 logk θ

Now we consider the remaining case when 1/2 − δ ≤ E[X ′i] ≤ 1/2 + δ for at least
1/3 of the i in S. In this case, let S′ = {i ∈ S : 1/2 − δ ≤ E[X ′i] ≤ 1/2 + δ}. We
know that |S′| ≥ |S|/3 ≥ 2kd

′
. So, there must be at least (|S′| − kd′)/kd−d′ ≥ |S|/6kd−d′

values of j ∈ Ld′ such that more than one of the elements of Ld−d′(j) are in S′. Now,
pick i, i′ ∈ Ld−d′(j) ∩ S′ for each such j, and let S′′ be the set of all such pairs (i, i′). For
any such i, i′, we know that X ′i is independent of X ′i′ , so P[X ′i = X ′i′ ] ≤ 1/2 + 2δ2. Also,

P[X
(d)
i = X

(d)
i′ ] ≥ 1/2 + θ2d−2d′/2 = 1/2 + 8δ2, and this probability is independent of the

labels of any leaves not descended from par(d−d′)(i). So, by a Chernoff bound,

P[|{(i, i′) ∈ S′′ : X(d)
i = X

(d)
i′ }|/|S

′′| ≤ 1/2 + 5δ2] ≤ e−9δ4|S′′|/4

and
P[|{(i, i′) ∈ S′′ : X ′i = X ′i′}|/|S′′| ≥ 1/2 + 5δ2] ≤ e−9δ4|S′′|/6

So, the overlap between the probability distributions of X ′ and X(d) is at most 2e−9δ4|S′′|/6.
Now, observe that

9δ4|S′′|/6 ≥ δ4|S|/4kd−d′

= θ4(d−d′)|S|/1024kd−d
′

≥ θ4

1024k
· |S|(|S|/6n)1−4 logk θ

Thus, the overlap between the probability distributions is at most 2e−
θ4

1024k
·|S|(|S|/6n)1−4 logk θ .

So, the desired conclusion holds with

c1 = min

(
θ2

4608 · 61−2 logk θk2+log(4)/ log θ
,

θ4

1024k · 61−4 logk θ

)
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and c2 = 1− 4 logk θ.

So, at this point we have established that any NC0 circuit with independent random
inputs must have a large set of outputs that are independent conditioned on any assignment
of values to a relatively small set of inputs. Also, we know that the overlap between the
probability distribution of the outputs conditioned on an assignment of value to these inputs
and the probability distribution of X(d) must be small. Now, we just need to add up the
overlaps for every possible assignment of values to these inputs in order to bound the overall
overlap between the probability distribution of X(d) and the probability distribution of the
circuit’s output.

We are now ready to prove Theorem 23:
Proof First, let c be the maximum number of inputs that any output of f is ever affected
by. Next, for each integer 0 ≤ i ≤ 2c, let bi = eln(n)(2c−i)/2c . There must exist 0 < i ≤ 2c,
S ⊆  Ld and T ⊆ {1, · · · ,mn} such that |S| ≥ n

2cbi
, |T | ≤ cn/bi−1, and {X ′j : j ∈ S}

are independent conditioned on any fixed value of {Wj : j ∈ T}. Now, choose c1 and c2

satisfying the conditions of the previous lemma. Then, for every w ∈ {0, 1}|T |, let Ew be
the event that the elements of W with indices in T take on the values given by w. Observe
that ∑

x∈{0,1}Ld

min
(
P[X(d) = x],P[X ′ = x]

)
≤

∑
x∈{0,1}Ld

∑
w∈{0,1}|T |

min
(
P[X(d) = x],P[X ′ = x,Ew]

)
≤

∑
w∈{0,1}|T |

∑
x∈{0,1}Ld

min
(
P[X(d) = x],P[X ′ = x|Ew]

)
≤

∑
w∈{0,1}|T |

2e−c1|S|
1+c2/nc2

= 2|T |+1e−c1|S|
1+c2/nc2

≤ 2cn/bi−1+1e−c1n/(2cbi)
c2

= 2eln(2)cn/bi−1−c1n/(2cbi)c2

Also, bc2i = o(bi−1). So, there exists n0 such that for all n ≥ n0 and all integers
0 < i ≤ 2c, we have that ln(2)cn/bi−1 ≤ c1n/(2cbi)

c2/2.That means that for all n ≥ n0,∑
x∈{0,1}Ld

min
(
P[X(d) = x],P[X ′ = x]

)
≤ 2e−c1n/(2cbi)

c2/2

≤ 2e−c1n/(2cb1)c2/2
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ln(b1) = ln(n)1−1/2c = o(ln(n)), so∑
x∈{0,1}Ld

min
(
P[X(d) = x],P[X ′ = x]

)
= O

(
e−
√
n
)

as desired.

Appendix B. Random restrictions in the broadcast tree model

Here we prove Theorem 13. The usual approach to proving lower bounds against AC0 is
through random restrictions where for every input xi we leave it unset with probability p
and otherwise we set it to zero with probability 1−p

2 and set it to one with the remaining

probability 1−p
2 . The main insight is that if the parameters are chosen appropriately, with

high probability the AC0 circuit becomes much simpler (while the parity function remains
a parity on fewer inputs). The key to our lower bound is an alternative but equivalent way
to generate samples from the broadcast tree model. We will need the following definitions:

Definition 27 Let d′ > 0. Let φd′ : {0, 1}Ld′−1 × {0, 1, ∗}Ld′ → {0, 1}Ld′ be the function
such that for all x ∈ {0, 1}Ld′−1 , r ∈ {0, 1, ∗}Ld′ and v ∈ Ld′, we have that

(φd′(x, r))v =

{
rv for rv ∈ {0, 1}
xpar(v) for ri = ∗,

For the tree broadcast process the natural distribution for r is given by independent
copies of the following distribution:

Definition 28 For any 0 ≤ θ < 1, let Rθ be the probability distribution over {0, 1, ∗} such
that a variable drawn from Rθ will be 0 with probability (1−θ)/2, 1 with probability (1−θ)/2
, and ’*’ with probability θ.

Replacing θ with −θ is equivalent to inverting all entries of σ at odd depths, so we can
assume without loss of generality that θ ≥ 0.

Definition 29 Let d′ > 0. Let Φd′ : {0, 1}Ld′−1 → {0, 1}Ld′ be the random function such
that for all x ∈ {0, 1}Ld′−1 and v ∈ Ld′, we let Φd′(x) = φd′(x, r), where r is drawn from

R
Ld′
θ

One can easily check that for all k, θ, and d′ and all x ∈ {0, 1}Ld′−1 and x′ ∈ {0, 1}Ld′ ,
if we have r ∼ RLd′θ then

P[Φ(x) = x′] = P[φ(x, r) = x′] = P[X(d′) = x′|X(d′−1) = x].

For any x ∈ {0, 1}, the probability distribution of Φd ◦ Φd−1 · · · ◦ Φ1(x) is identical to
the probability distribution of X(d) given that X(0) = x. So as in classical applications of
the switching lemma, we want to show that for any f ∈ AC0, f ◦ Φd ◦ Φd−1 · · · ◦ Φ1 is a
constant function with high probability. The first step towards doing that will be to prove
that applying a logarithmic number of these projections to an AC0 circuit is enough to
reduce the fan-in of all gates in its bottom layer to a constant with high probability. For
that, we will need the following.
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Lemma 30 Let m, d′, h, and c be positive integers. Also, let f : {0, 1}Ld′ → {0, 1}
be a function such that there are only m inputs that ever affect its value. Next, let f ′ =
f ◦ Φd′ ◦ Φd′−1 ◦ · · · ◦ Φd′−h+1 With probability at least 1 − (mθh)c, there are fewer than c
inputs that affect the value of f ′.

Proof Each time we compose the function with Φi, each of its inputs is independently set
to a constant with probability 1− θ, and then some of the inputs might be set to the same
variable. If f ′ depends on c or more inputs, then there must be a set of c of the inputs of f
that affect it such that none of these inputs get set to a constant or set to the same variable
by any of the projections. There are at most mc sets of c inputs of f that affect its value,
and for any such set, the probability that none of them get set to a constant or merged is
at most θch. The desired conclusion follows.

Corollary 31 Let b and h′ be positive constants, d′ > h′ ln(n) be a positive integer, and
f : {0, 1}Ld′ → {0, 1} be a function that takes an AND or OR of some subset of its inputs
and their negations. Also, let f ′ = f ◦Φd′ ◦Φd′−1 ◦ · · · ◦Φd′−dh′ ln(n)e+1. With probability at

least 1 − O(n−b), f ′ is an AND or OR of −b/h′ ln θ + 1 or fewer inputs and negations of
inputs.

Proof First of all, observe that if f takes an AND/OR of more than 2b ln(n) variables,
one of the projections will set one of its inputs to the value that reduces the function to
a constant with probability 1 − o(n−b). Otherwise, the desired conclusion follows by the
lemma and the fact that a projection of an AND or OR must still be an AND or OR.

Now that we know that applying a logarithmic number of projections to the circuit will
reduce the fan-in of all gates in the bottom layer to a constant with high probability, our
next step is to prove that one more projection is enough to reduce all gates on the second
layer to decision trees of logarithmic depth. In order to do that, we will need to prove that
the projection of one of these gates can be represented by a decision tree of height O(log(n))
with probability 1− nΩ(1). In other words, we need:

Lemma 32 Let w be a positive constant. There exists a constant h > 0 such that if p > 0
is a function of n and f is a w-DNF on {0, 1}Ld′ then f ◦ Φd′ can be represented as a
decision tree of height at most h ln(p) with probability 1−O(1/p).

Proof We proceed by induction on w. If w = 0, then every w-DNF is a constant function,
and is thus expressible as a decision tree of height 0. Now, assume this result holds for w−1.
If f is a w-DNF with more than (1−θ

2 )−w ln(p) clauses that do not share any variables, then
with probability 1−O(1/p), the projection sets at least one of these clauses to 1, with the
result that f becomes a constant function. Otherwise, there exists a set of at most

w ·
(

1− θ
2

)−w
ln(p)

variables such that at least one of these variables appears in every clause. As such, any
assignment of values to these variables would reduce f to a (w− 1)-DNF. By the induction
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hypothesis, there exists a constant h′ such that composing any resulting (w− 1)-DNF with
Φd′ yields a decision tree of height at most h′ ln(p) with probability at least

1−O(p−1−ln(2)w·( 1−θ
2

)−w)

That means that all assignments of values to these variables reduce f ◦Φd′ to a decision tree
of depth h′ ln(p) with probability at least 1−O(1/p). Therefore, f ◦Φd′ can be represented
as a decision tree of depth [

w ·
(

1− θ
2

)−w
+ h′

]
ln(p)

with probability 1−O(1/p). This completes the proof.

At this point, we know that applying a logarithmic number of projections is enough to
reduce every gate on the second level of an AC0 circuit to a decision tree of logarithmic
depth with high probability. Any such decision tree can be computed by a polynomial size
AND of ORs and by a polynomial size OR of ANDs. So, we can replace it by whichever
allows us to reduce the circuit depth by 1. We are applying Ω(log(n)) projections in total, so
if the circuit has depth b we can divide the projections into b serieses of Ω(log(n)) projections
each. That is enough to reduce the entire circuit to a decision tree of logarithmic depth
with a logarithmic number of projections left over. In fact, we can prove that with high
probability, the depth of the decision tree is low enough that it must be unaffected by the
values of most of the variables. Then, we can show that the remaining projections set all of
the variables that the output does depend on to constants with high probability. As such,
we can prove:

Lemma 33 Let f : {0, 1}Ld → {0, 1} be in AC0. Then there exists δ > 0 such that
f ◦ Φd · · · ◦ Φ1 is a constant function with probability 1−O(n−δ).

Proof First, let f (0) = f and f (i+1) = f (i) ◦Φd−i for each i. Also, let b be the depth of f ,
and δ1 > 0 be a constant. We claim that f (bid/bc) can be expressed as a polynomial-sized
circuit of depth b− i with probability 1−O(n−δ1) for each 0 ≤ i < b− 1, and prove this by
induction on i. This is clearly true for i = 0. For i > 0, if f (b(i−1)d/bc) can be expressed as a
polynomial-sized circuit of depth b− i+1, then by corollary 1 there exists a constant ci such
that f (bid/bc−1) can be expressed as a polynomial-sized circuit of depth b − i + 1 in which
every gate at the bottom level has fanin at most ci with probability 1−O(n−δ1). Then by
lemma 32, composing this with Φd−bid/bc+1 allows us to replace all gates two levels from

the bottom with decision trees of depth O(ln(n)) with probability 1−O(n−δ1). Every such
decision tree can be converted to a DNF or CNF of size polynomial in n, so we can apply
this transformation to all such gates in order to switch the order of the ORs and ANDs,
thus allowing us to reduce the depth of the circuit by 1. Thus, f (bid/bc) can be expressed as
a polynomial-sized circuit of depth b− i with probability 1−O(n−δ1), as desired.

That leaves us with the conclusion that f (b(b−2)id/bc) can be expressed as a polynomial-
sized circuit of depth 2 with probability 1 − O(n−δ1). Then, by another application of
corollary 1, we have that f (b(b−1)id/bc−1) can be expressed as a DNF or CNF of constant fanin
with probability 1−O(n−δ1). Then, by lemma 32, we have that there exists a constant h such
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that f (b(b−1)id/bc) can be expressed as a decision tree of depth hδ2 log2(n) with probability
1−O(n−δ2) for any δ2 > 0. Such a decision tree can only be affected by nhδ2 variables, so
by lemma 30, f (d) is a constant function with probability 1 − O(n−δ1 + n−δ2 + θd/bnhδ2).
For δ2 < − ln θ/[b(h+ 1) ln(k)] and δ ≤ min(δ1, δ2), that means that f (d) is a constant with
probability 1−O(n−δ).

Recall that for any fixed value of X(0), the probability distribution of Φd · · · ◦ Φ1(X(0))
is identical to the probability distribution of X(d). So, the probability that f(X(d)) = X(0)

is the same as the probability that f ◦ Φd · · · ◦ Φ1(X(0)) = X(0). That means that the fact
that f ◦Φd · · · ◦Φ1 is probably a constant implies that f is only accurate about half of the
time.

Now we are ready to prove Theorem 13:
Proof Let (r1, · · · , rd) be bad if f ◦Φd · · · ◦Φ1 is a constant function and good otherwise.
Then we have that

P[f(X(d)) = X(0)] = P[f ◦ Φd · · · ◦ Φ1(X(0)) = X(0)]

≤ 1/2 + P[(r1, · · · , rd) is good]/2

= 1/2 +O(n−δ)

which completes the proof.

Corollary 34 For every c > 0, there is no function in AC0 that computes whether more
than half of its inputs are 1 whenever at least n/2 + n1−c/2 of its inputs are the same.

Proof For any such c, there is a choice of 0 ≤ θ < 1 and k > 0 such that more than
n/2 + n1−c/2 of the entries in X(d) will equal X(0) with a probability of at least 2/3. So,
any such function would be capable of computing X(0) from X(d) with nontrivial accuracy.

Appendix C. A TC0 circuit for inference

Here we prove theorem 15. A natural approach to attempting to determine the root label is
to guess that the root has the same label as the majority of the leaves, which gives the right
answer with probability 1/2 + Ω(1) if θ > 1/

√
k. However, this is not an inference function.

In particular, it achieves worse error even in an average-case sense. Alternatively we could
compute an inference function using belief propagation but the naive way to encode this
as a circuit would lead to logarithmic depth. The key idea is that the function computed
by belief propagation is robust to injecting noise at the leaves. We use this idea by first
guessing that each node at depth blogk(log2(n))c has the same label as the majority of the
leaves descended from it. Then we guess the value of X(0) by computing the output of belief
propagation (on the smaller depth tree) using a look up table. We are able to prove that
this circuit is indeed a posterior function when kθ2 is sufficiently large and we conjecture
that it is for any kθ2 > 1.

More precisely we will build a TC0 circuit that encodes the following algorithm.
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LinearizedBP
Input : A function f and the values of d, k, θ, and X(d)

Output: A guess of the value of X(0)

1. Let d′ = blogk(log2(n))c.

2. For each i ∈ Ld′ , randomly select x?i ∈ {0, 1} and set

xi =


1 if

∑
j∈Ld−d′ (i)

X
(d)
j > kd−d

′
/2

0 if
∑

j∈Ld−d′ (i)
X

(d)
j < kd−d

′
/2

x?i if
∑

j∈Ld−d′ (i)
X

(d)
j = kd−d

′
/2

3. Output f(x)

First of all, note that each value of n has a unique corresponding value of d′, and each of
the xi can be computed from the inputs and a random bit by a threshold gate. kd

′ ≤ log2(n),
so there are at most n possible values of x. That means that we can use an AND gate to
check for each possible value of x and then OR together the ones for which f(x) = 1. That

means that for any fixed series of functions fd : {0, 1}kblogk(ln(n))c → {0, 1}, there is a TC0

circuit that computes LinearizedBP(d, k, θ, X(d), f) given access to log2(n) random bits.
Furthermore, we conjecture the following.

Conjecture 35 There exists a series of functions fd : {0, 1}kblogk(ln(n))c → {0, 1} such that
if X ′ = LinearizedBP (d, k, θ,X(d), fd) then

lim
n→∞

P[X ′ = X(0)]− P[BP(X(d)) = X(0)] = 0,

where BP(x) : {0, 1}Ld → {0, 1} returns the more likely posterior label of the root

BP (x) = a if P[X(0) = a|X(d) = x] > P[X(0) = 1− a|X(d) = x]

In other words, we believe that LinearizedBP can computeX(0) with optimal accuracy.
If kθ2 ≤ 1, then it is known that no algorithm can compute X(0) from X(d) with nontrivial
accuracy, so this algorithm uninterestingly attains optimal accuracy. In this section, we
will prove that there exists C > 1 such that LinearizedBP can attain optimal accuracy
whenever kθ2 > C. The case where 1 < kθ2 ≤ C remains open. The first step towards
proving that it can attain optimal accuracy for large values of kθ2 is to prove that when the
algorithm is run, x is a reasonably accurate approximation of X(d′). For that, we need the
following standard second moment lemma which we include for completeness in Appendix F
(similar lemmas were proven in previous work including Evans et al. (2000)).

Lemma 36 For any d, k, and θ such that kθ2 > 2,

P

 kd∑
i=1

X
(d)
i ≤ kd/2

∣∣∣∣∣∣X(0) = 1

 ≤ 1

θ2k − 1
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By symmetry, this also implies that P
[∑kd

i=1X
(d)
i ≥ kd/2

∣∣∣X(0) = 0
]
≤ 1

θ2k−1
. So, that

gives us a bound on P[xi 6= X
(d′)
i ] when the algorithm is run. That leaves the task of

showing that we can determine X(0) with optimal accuracy from a noisy version of X(d′).
In order to discuss the accuracy with which one can do that, we will need to define the
following.

Definition 37 Let 0 ≤ s ≤ 1/2 and d be a positive integer. Also, let X ′ ∈ {0, 1}Ld such that

for each i, X ′i is independently set equal to 1−X(d)
i with probability s and X

(d)
i otherwise.

Ps,d =
∑

x∈{0,1}Ld

max(P[X(0) = 0, X ′ = x],P[X(0) = 1, X ′ = x])

In other words, Ps,d is the maximum accuracy with which we can determine X(0) from a
noisy version of X(d) in which each bit is flipped with probability s. Mossel et al. (Mossel
et al., 2016) show the following:

Proposition 38 (Mossel et al., 2016) There exists C > 0 such that if kθ2 > C then

lim
s→1/2

inf lim
d→∞

inf Ps,d = lim
d→∞

inf P0,d

In other words, if kθ2 is sufficiently large then the maximum accuracy with which X(0) can
be determined from a highly noisy estimate of X(d′) is the same as the maximum accuracy
with which X(0) can be determined from X(d′). That allows us to prove theorem 15 as
follows.
Proof First, let C ′ = max(C, 4). First we observe that for any d, when LinearizedBP

is run, each bit xi is independently set equal to X
(d′)
i with some advantage over random

guessing and set to the opposite value otherwise. Let sd = P[xi 6= X
(d′)
i ]. Next, let fd be

the function that maximizes the probability that LinearizedBP outputs the correct label
for the root. Let q be the probability that it succeeds. Then we have

q =
∑

x′∈{0,1}Ld′
max(P[X(0) = 0, x = x′],P[X(0) = 1, x = x′]) = Psd,d′

Now, let s′ = 1
θ2k−1

. Proposition 38 shows that sd ≤ s′ for all d, and adding more noise can

never make it easier to determine X(0), so for every d, it must be the case that

P0,d′ ≥ Psd,d′ ≥ Ps′,d′

Combining that with the previous theorem shows that

lim
d′→∞

inf P0,d′ ≥ lim
d′→∞

inf Ps′,d′ ≥ lim
s→1/2

inf lim
d′→∞

inf Ps,d′ = lim
d′→∞

inf P0,d′

Also, P0,d′ is a nonincreasing function of d′, so P0,d′ converges. So,

lim
s→1/2

sup lim
d′→∞

supPs,d′ ≤ lim
d′→∞

supPs′,d′ ≤ lim
d′→∞

supP0,d′ = lim
d′→∞

P0,d′

That implies that all of these sequences converge to limd′→∞ P0,d′ , and thus that Lin-
earizedBP computes X(0) with optimal accuracy.
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Appendix D. Computing the posterior in NC1

Here we prove that there is an NC1 circuit for computing the posterior. This is the first
part of Theorem 14. Our plan is to essentially create randomized circuits that allow us to
sample from the probability distributions of vertices’ labels, and then count up how many
of the samples for the root are 1. These circuits will occasionally fail, but they will be
reasonably reliable in the following sense.

Lemma 39 For every −1 < θ < 1 and positive integer k, there exists h > 0 such that
for every d′ ≥ 0, there exists a probability distribution P d

′
F over functions from {0, 1}Ld′ →

{0, 1, ?} with the following properties:

• Every function drawn from P d
′

F can be computed by an NC circuit of depth at most
hd′.

• For every x ∈ {0, 1}Ld′ , if F ∼ P d′F then P[F (x) ∈ {0, 1}] ≥ 1− 1/2k.

• P[F (x) = 1|F (x) ∈ {0, 1}] = P[X(0) = 1|X(d′) = x]

Proof We proceed by induction on d′. For d′ = 0, we can always return the function f
such that f(0) = 0 and f(1) = 1. Now, assume that this holds for d′ − 1. Prior to defining
P d
′

F , we will define a preliminary probability distribution P d
′?

F , such that in order to draw
a function F ? from P d

′?
F , we do the following. First, draw F1, · · · , Fk independently from

P d
′−1

F . Also, independently choose δ1, · · · , δk such that for each i, δi is 1 with probability
(1− θ)/2 and 0 otherwise.

If there exists i such that Fi(x(Ld′−1(i))) 6∈ {0, 1}, then F ?(x) =′?′. Otherwise, let
x?i = Fi(x(Ld′−1(i))) for each i. Then, set F ?(x) equal to 0 if x?i xor δi = 0 for all i, set it
to 1 if x?i xor δi = 1 for all i, and set it to ′?′ otherwise.

For any fixed value of x, when F ? ∼ P d
′?

F , the values of the x?i are independent. As
such,

P[F ?(x) = 0] =

k∏
i=1

[(
1 + θ

2

)
P[x?i = 0] +

(
1− θ

2

)
P[x?i = 1]

]
and

P[F ?(x) = 1] =

k∏
i=1

[(
1 + θ

2

)
P[x?i = 1] +

(
1− θ

2

)
P[x?i = 0]

]
By the requirement that P[Fi(x) ∈ {0, 1}] ≥ 1−1/2k, the x? are all assigned values in {0, 1}
with probability at least 1/2, which also implies that

P[F ?(x) ∈ {0, 1}] ≥ [(1− θ2)/4]k/2

By the induction hypothesis,

P[x?i = 1|x?i 6=′?′, X(d′) = x] = P[X
(1)
i = 1|(X(i−1)kd′−1+1, · · · , Xikd′ ) = (x(i−1)kd′−1+1, · · · , xikd′ )]

This implies that

P[F ?(x) = 1|F ?(X(d′)) ∈ {0, 1}] = P[X(0) = 1|X(d′) = x]
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Furthermore, F ?(x) can be computed from the values output by the Fi by an NC circuit of
some constant depth.

So, P d
′?

F has all of the properties that we want, except that its functions return ′?′ with
excessively high probability. So, in order to draw a function from P d

′
F , we simply draw

d[(1 − θ2)/4]−k/2 ln(2k)e independent functions from P d
′?

F . Then, we compute them all on
the input we are given, and return the first output in {0, 1}, if any. This leaves the relative
probability of returning 0 and 1 unchanged, reduces the probability of returning ′?′ to 1/2k
or less, and only increases the circuit depth by a constant. So, P d

′
F has all of the desired

properties.

That means that we have randomized NC1 circuits that can essentially draw a sample
from the probability distribution of X(0) given that X(d) = x, with the complication that
they occasionally fail to return a value in {0, 1}. So, if we use a large number of them,
we can count up how many of them return 1 and how many return 0 in order to estimate
P[X(0) = 1|X(d) = x]. With enough of these circuits, this estimate will be within δ/2 of
the true probability at least 1− o(2−n) of the times, which means that there must be some
choice of the randomness for which it is always right. That allows us to prove:

Proposition 40 For every k and θ and in the Ising tree model, there is a posterior function
that can be computed by an NC1 circuit.

Proof Consider independently drawing F1, · · · , Fn4 from P dF . Also, consider any x ∈
{0, 1}n such that P[X(0) = 1|X(d) = x] > 1/2 + 1/n. For each i, it is the case that
P[Fi(x) ∈ {0, 1}] ≥ 1/2 and P[Fi(x) = 1|Fi(x) ∈ {0, 1}] ≥ 1/2 + 1/n. So, there will be
more i for which Fi(x) = 1 than i for which Fi(x) = 0 with probability 1 − o(2−n). That
in turn implies that this holds for every such x with probability 1 − o(1). By the same
logic, there will be more i for which Fi(x) = 0 than i for which Fi(x) = 1 for every x such
that P[X(0) = 1|X(d) = x] < 1/2 − 1/n with probability 1 − o(1). That means that there
must exist a specific choice of F1, · · · , Fn4 for which both of these properties hold. These
functions can each be computed by an NC1 circuit, and a logarithmic additional depth is
sufficient to determine whether more of them output 1 or 0. Thus, the function that returns
1 if more of them output 1 than 0 and 0 otherwise is an NC1 posterior function.

Appendix E. Gadgets in the broadcast tree model

Here we prove that being able to compute the posterior allows us to implement any NC1

circuit. This is the second part of Theorem 14. Our plan is to encode the circuit as a tree
where each vertex corresponds to an input or gate. The probability that the vertex’s label is
1 given the values of its leaves will be at least .95 if the corresponding input or gate outputs
1 and at most .05 if the corresponding input or gate outputs 0. Our first step towards doing
this is to prove that with appropriate parameters, each vertex will encode the same value
as the majority of its children. More formally, we have the following.
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Lemma 41 Let θ = 9
10 and k = 6. Next, choose x ∈ {0, 1}Ld such that there are at least

4 choices of i such that P[X
(1)
i = 1|X(d)(Ld−1(i)) = x(Ld−1‘(i))] ≥ .95. Then P[X(0) =

1|X(d) = x] ≥ 19
20 .

Proof First of all, for each i, let pi = P[X
(1)
i = 1|X(d)(Ld−1(i)) = x(Ld−1(i))]. Given these

values of θ and k, it must be the case that

P[X(0) = 1|X(d) = x] =

∏6
i=1

(
19
20pi + 1

20(1− pi)
)

∏6
i=1

(
19
20pi + 1

20(1− pi)
)

+
∏6
i=1

(
1
20pi + 19

20(1− pi)
)

≥

(
(19

20)2 + ( 1
20)2

)4
· ( 1

20)2(
(19

20)2 + ( 1
20)2

)4
· ( 1

20)2 +
(

19
20 ·

1
20 + 1

20 ·
19
20

)4
· (19

20)2

>
19

20

That lets us make a vertex encode the majority of the values encoded by 3 other vertices,
which in turn allows us to make it encode an AND or OR of two other vertices by setting
the third to a constant. That allows us to prove the following.

Proposition 42 Let θ = 9
10 and k = 6 and consider the Ising tree model. For every NC

circuit of depth d, there exists a way to define x ∈ {0, 1}Ld so that xi is set to 0, 1, an input
to the circuit, or the negation of the input to the circuit, such that for every choice of inputs
to the circuit, P[X(0) = 1|X(d) = x] is at least 19

20 if the circuit outputs 1 on this input, and
at most 1

20 if the circuit outputs 0 on this input.

Proof We proceed by induction on d. This is clearly true for d = 0. Now, assume
that it holds for d − 1, and consider a function f that is computable by an NC circuit
of depth d. There must exist functions f1 and f2 that are computable by NC circuits
of depth d − 1 such that either f = NOT (f1), f = f1 AND f2, or f = f1 OR f2. By
the induction hypothesis, for each i, j there is a way to set all of the entries in {xi′ :
i′ ∈ Ld−1(i)} equal to constants, inputs to the circuit, or negations of inputs in such a

way that P[X
(1)
i = 1|X(d)(Ld−1(i)) = x(Ld−1(i))] is always at least 19

20 if fj outputs 1

and at most 1
20 if it outputs 0. Also, P[X

(1)
i = 1|X(d)(Ld−1(i)) = (1, . . . , 1)] > 19

20 and

P[X
(1)
i = 1|X(d)(Ld−1(i)) = (0, . . . , 0)] < 1

20 by repeated application of the previous lemma.
In particular, if we set x so that

P[X
(1)
i = 1|X(d)(Ld−1(i)) = x(Ld−1(i))]

tracks f1 for i = 1, 2, f2 for i = 3, 4, and 1 for i = 5, 6 then P[X(0) = 1|X(d) = x] will track
f = f1 OR f2 by the lemma. If we have it track 0 for i = 5, 6 instead, then it will track
f = f1 AND f2 instead. That leaves the case where f = NOT (f1). In that case, we can
simply start with the assignment of value to x that we would use if f = f1 = f1 OR f1,
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and then invert every entry in x in order to switch the probability that X
(1)
i = 1 with the

probability that it is 0. So, the desired conclusion holds for d.

Remark 43 More generally, given any θ, k, δ > 0 such that limd→∞ P[X(0) = 1|X(d) =
1, 1, · · · , 1] > 1/2 + δ, determining whether P[X(0) = 1|X(d) = x] > 1/2 whenever this
probability is greater than 1/2 + δ or less than 1/2− δ is NC1-hard. This can be proven by
a variant of the above argument. In it we would argue that there exists δ′ such that if f1

and f2 are functions that can be tracked by trees of depth d′ with an accuracy of 1/2 + δ, we
can construct a tree of depth d′+ 2 that tracks f1 AND f2 with accuracy 1/2 + δ′. Then we
would argue that we can amplify the accuracy back up to 1/2 + δ by constructing a tree such
that all of its subtrees at some suitable depth are copies of that tree. That would allow us
to prove the desired result by induction on circuit depth the same way we do in the theorem
above.

Combining this with the previous theorem shows that posterior computation is NC1-
complete, as desired.

Appendix F. Deviation bounds for the broadcast tree model

Here we prove Lemma 36:
Proof First, observe that

E

∑
i∈Ld

X
(d)
i

∣∣∣∣∣∣X(0) = 1

 = kd/2 + kdθd/2

Now, for each 0 ≤ d′ ≤ d, let vd′ = V ar
[∑

i∈Ld−d′ (1d
′ )X

(d)
i

∣∣∣X(d′)

1d′
= 1
]
. Clearly, vd = 0, and

for each d′ < d, it must be the case that

vd′ = kV ar
[
X

(d′+1)

1d′+1

∣∣∣X(d′)

1d′
= 1
]
· k2d−2d′−2θ2d−2d′−2 + k · vd′+1

And hence we have

v0 =

d−1∑
d′=0

1− θ2

4
kd
′+1 · k2d−2d′−2θ2d−2d′−2

≤ 1− θ2

4

∞∑
d′=0

k2d−d′−1θ2d−2d′−2

=
1− θ2

4
k2dθ2d/[θ2k − 1]

In particular, this implies that

P

∑
i∈Ld

X
(d)
i ≤ kd/2

∣∣∣∣∣∣X(0) = 1

 ≤ Var

∑
i∈Ld

X
(d)
i

∣∣∣∣∣∣X(0) = 1

 /
E

∑
i∈Ld

X
(d)
i

∣∣∣∣∣∣X(0) = 1

− kd/2
2

=
1− θ2

θ2k − 1
≤ 1

θ2k − 1
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Appendix G. Average case NC1 hardness

Here we prove that detection is NC1-complete in the following instance of the generalized
broadcast process on a tree. There is one label for every ordered pair (σ, σ′) ∈ A2

5, and
k = 60000. Given a vertex with a parent with label (σ, σ′), we select a random b ∈ A5.
Then, we set its label to (b, b−1σ) with probability 2/3 and (b, b−1σ′) with probability
1/3. For the rest of this section, we will assume that σ? was generated by the generalized
broadcast process with these parameters. Recall that it is NC1 complete to determine the
product of a random series of elements in A5 with nontrivial accuracy. Given such a series
of elements, we can encode the problem of finding there product in an instance of the
broadcast tree model using the following algorithm.
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ProductTreeConstructionAlgorithm
Input : A positive integer d
Output: A formula for X(d) as a function of σ1, ..., σ2d+1 ∈ A5.

1. Set X
(0)

=
(∏2d

i=1 σi,
∏2d+1

i=2d+1 σi

)
.

2. for d′ = 1 to d do
for i ∈ Ld′ do

(a) There will exist a constant 0 ≤ j ≤ 2d+1 and constants b, b′, b′′ ∈ A5 such that

X
(d′−1)
par(i) =

b′ ·
j+2d−d

′+1∏
i=j+1

σi

 · b, b−1 ·

 j+2d−d
′+2∏

i=j+2d−d′+1+1

σi

 · b′′


(b) Randomly select b′′′ ∈ A5.

(c) With probability 2/3, set

X
(d′)
i =

b′ ·
j+2d−d

′∏
i=j+1

σi

 · b′′′, (b′′′)−1 ·

 j+2d−d
′+1∏

i=j+2d−d′+1

σi

 · b


Otherwise, set

X
(d′)
i =

b−1 ·

 j+3·2d−d′∏
i=j+2d−d′+1+1

σi

 · b′′′, (b′′′)−1 ·

 j+2d−d
′+2∏

i=j+3·2d−d′+1

σi

 · b′′


end

end

3. Return X
(d)

.

In step 2.a we asserted that every element of X
(d′−1)

will have the formb′ ·
j+2d−d

′+1∏
i=j+1

σi

 · b, b−1 ·

 j+2d−d
′+2∏

i=j+2d−d′+1+1

σi

 · b′′


It is easy to see that this is true for X
(0)

and throughout the process, X
(d′−1)

will always
be set to an expression of this form. The key fact is:

Lemma 44 Let σ ∈ A2d+1

5 and x0 =
(∏2d

i=1 σi,
∏2d+1

i=2d+1 σi

)
. Then for every x ∈ (A2

5)n,

P
[
X(d) = x

∣∣∣X(0) = x0

]
= P

[
X

(d)
(σ) = x

]
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Thus ProductTreeConstructionAlgorithm(d) is an equivalent way to sample
from the generalized broadcast tree model that we defined earlier.
Proof We will prove by induction on d′ that the distribution of X(d′) given X(0) = x0 is

identical to the distribution of X
(d′)

(σ) for every d′. If d′ = 0, then X
(d′)

= x0, so the base
case holds. Now, assume that it holds for d′ − 1.

It is easy to check that the way we have defined step 2.c every vertex at depth d′

is assigned a label whose product is equal to the first permutation in its parent’s label
with probability 2/3 and the second permutation in its parent’s label with probability 1/3.
Moreover the pair of permutations is chosen uniformly at random subject to this constraint.

Finally each element of X
(d′)

is independent conditioned on the value of its parent. These
are exactly the key properties that defined our generalized broadcast tree model, and hence
completes the proof.

Now we are ready to prove that any algorithm for solving the detection problem for our
generalized broadcast tree model can be used to solve the word problem over A5 with some
advantage over random guessing:

Theorem 45 Let gd : (A2
5)k

d → A5 be a family of functions. Suppose there exists ε > 0
independent of d such that

P[gd(X
(d)) = X(0)] ≥ 1

|A5|2
+ ε

If TC0 6= NC1 then g is not in TC0.

Proof For the sake of contradiction we will assume that g ∈ TC0. Let Σ1, · · · ,Σ2d+1 be
chosen randomly. We can interpret ProductTreeConstructionAlgorithm(d) as out-
putting a random formula that labels the leaves of the generalized broadcast tree model. The
key point is both the depth of the tree and the number of bits of randomness that determine
the value at any leaf are both logarithmic. Thus X(d) can be computed by a TC0 circuit.
Now let g′d be the composition of gd and ProductTreeConstructionAlgorithm(d).

Because gd solves the detection problem we have that

P

g′d(Σ1, · · · ,Σ2d+1) =

 2d∏
i=1

Σi,
2d+1∏
i=2d+1

Σi

 ≥ 1

|A5|2
+ ε

where the randomness is over both the choice of the Σi’s and g′ which depends on the

generation process. For the sake of simplifying the notation, let g′d(σ) = (g
[1]
d (σ), g

[2]
d (σ)).

Now there are two cases:
In the first case suppose that g

[1]
d gets nontrivial advantage over random guessing. In

particular suppose

P

g[1]
d (Σ1, · · · ,Σ2d+1) =

2d∏
i=1

Σi

 ≥√ 1

|A5|2
+ ε
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There must exist a specific choice Σ2d+1 = σ2d+1, · · · ,Σ2d+1 = σ2d+1 and setting of the
randomness in the generation process which achieves nontrivial advantage over random
guessing. Even when we fix these values, the function is still in TC0 and hence we conclude
TC0 = NC1.

In the second case, we must have

P

g[2]
d (Σ1, · · · ,Σ2d+1) =

2d+1∏
i=2d+1

Σi

∣∣∣∣∣∣g[1]
d (Σ1, · · · ,Σ2d+1) =

2d∏
i=1

Σi

 ≥√ 1

|A5|2
+ ε

The idea is we want to use g
[2]
d to solve an NC1 hard problem, but to do so using the above

inequality we need to decide if the output of g
[1]
d is correct. Now we can once again use an

average-case reduction to reduce to the case when we know the product of the inputs to g
[1]
d

and thus check its own output.
In particular for any σ1, · · · , σ2d+1 ∈ A5 and randomly generated B1, · · · , B2d+1 , let

Σ′ = (σ1B1, B
−1
1 σ2B2, B

−1
2 σ3B3, · · · , B−1

2d+1−1
σ2d+1B2d+1)

The distribution of Σ′ is uniform on A2d+1

5 so we have

P

g[2]
d (Σ′) = B−1

2d

 2d+1∏
i=2d+1

σi

B2d+1

∣∣∣∣∣∣g[1]
d (Σ′) =

 2d∏
i=1

σi

B2d

 ≥√ 1

|A5|2
+ ε

Now we can choose σ1, · · · , σ2d such that we already know their product and we can re-
peatedly generate B1, · · · , B2d+1 until we find one for which

g
[1]
d (Σ′) =

 2d∏
i=1

σi

B2d

Now if we guess that
∏2d+1

i=2d+1 σi is equal to B2dg
[2]
d (Σ′)B−1

2d+1 we will get nontrivial advantage
over random guessing. As before there must be some choice of the randomness (in this
case the values of B1, · · · , B2d+1 and the randomness in the generation process) where
the probability of computing the product is at least average. This again implies that
TC0 = NC1.

So, this is a set of parameters for which one can determine the root’s label from the
leaves’ labels with very high accuracy in the average case. However, unless TC0=NC1,
there is no TC0 algorithm that can determine the root’s label with an accuracy that is
nontrivially higher than that attained by guessing blindly. With some more work, we could
prove that this also holds for sufficiently slight perturbations of these parameters. Next, we
show how to reduce the number of labels to 16 by using symmetry arguments and working
with conjugacy classes of permutations instead.
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G.1. Reducing the number of labels

It turns out that we will be able to exploit the symmetries in our generalized broadcast
tree model in the previous section to be able to drastically reduce the number of labels
from |A5|2 = 3600 corresponding to all pairs of even permutations to 16 corresponding to
pairs of conjugacy classes of even permutations in S5 — namely two even permutations σ
and τ are in the same conjugacy class if there is a permutation c (not necessarily even)
for which τ = c−1σc. Intuitively, knowing the conjugacy class fixes the cycle structure of a
permutation.

The main technical ingredient in this section is to show that if the the labels can be
grouped into collections in such a way that the probability that a vertex has a child in
a given collection depends only on what collection that vertex is in, then we can replace
the labels with the collections without making it easier to determine X(0) with nontrivial
accuracy. More formally, we have the following.

Lemma 46 Consider a generalized broadcast tree model with parameters q, k and M .
Suppose there is a partition S1, · · · , Sq′ of {1, · · · , q} with the following property: Let w(i) =∑

j∈Si ej for each i. Then for all 1 ≤ i, i′ ≤ q′ and j, j′ ∈ Si we have

w(i′) ·Mej = w(i′) ·Mej′

Finally let M ′ be the q′ × q′ matrix such that for each i, i′, M ′i,i′ = w(i) ·Mej for some

j ∈ Si′. If there is a TC0 detection function for the generalized broadcast process with
parameters (q′,M ′) then there is a TC0 detection function for (q,M) as well.

Proof First fix any d and let (X(0), · · · , X(d)) be vectors of labels generated by the gen-
eralized broadcast process with parameters (q,M). The labels of the generalized broadcast
process with parameters (q′,M ′) will naturally be associated with parts of the partition.
Let (X ′(0), · · · , X ′(d)) be the result of replacing each label with the part it belongs to. Also,
let (X?(0), · · · , X?(d)) be vectors of labels generated by the generalized broadcast process
with parameters (q′,M ′). We claim that the distribution of (X ′(0), · · · , X ′(d)) conditioned
on a fixed value of X ′(0) is the same as that of (X?(0), · · · , X?(d)) conditioned on the same
value for the root label. This is because by assumption, when we only care about which
part of the partition each child belongs to, it only matters what part of the partition the
parent belongs to.

Now suppose that f is a TC0 function that solves the detection problem for the general-
ized broadcast process with parameters (q′,M ′). Finally let X̂ be a random label contained
in Sf(X′(d)). Then

P[X̂ = X(0)] =

q′∑
i=1

P[X̂ = X(0)|X ′(0) = i]P[X ′(0) = i]

=

q′∑
i=1

P[f(X ′(d)) = X ′(0)|X ′(0) = i]

|Si|
· |Si|
q

=
1

q

q′∑
i=1

P[f(X?(d)) = X?(0)|X?(0) = i] =
q′

q
P[f(X?(d)) = X?(0)]
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Also note that we can compute X ′(d) from X(d) using an NC0 circuit. Putting it all together,
because f ∈ TC0, and there must be a specific way to choose a value of X̂ for each possible
value of f(X ′(d)) such that

P[X̂ = X(0)] ≥ q′

q
P[f(X?(d)) = X?(0)]

Hence there is a TC0 circuit that computes X(0) from X(d) with nontrivial advantage.

In particular, we can now reduce the number of labels in our generalized broadcast pro-
cess as follows. We will call this final model the generalized broadcast process on conjugacy
classes. There are 16 labels corresponding to the ordered pairs of conjugacy classes of even
permutations in S5. In order to assign a label to a vertex’s child, first let σ be a random ele-
ment of the vertex’s label’s first conjugacy class with probability 2/3 and a random element
of its label’s second conjugacy class with probability 1/3. Then, select random σ′, σ′′ ∈ A5

such that σ′ ·σ′′ = σ. Finally, set the child’s label equal to the pair of the conjugacy classes
of σ′ and σ′′.

Theorem 47 If there is an TC0 detection function for the generalized broadcast process
on conjugacy classes then TC0 = NC1.

Proof What we need to do is verify that partitioningA5 into conjugacy classes in S5 satisfies
the conditions in Lemma 46. First, observe that given any σ, σ in the same conjugacy class of
S5, there exists c ∈ S5 such that σ = c−1σc. So, if σ′ · σ′′ = σ then (c−1σ′c) · (c−1σ′′c) = σ.
That gives us a bijection between pairs of permutations in any given pair of conjugacy
classes with a product of σ and pairs of permutations in that pair of conjugacy classes with
a product of σ. So, if we set S1, · · · , S16 equal to the sets of pairs of permutations in each
even conjugacy class of S5 then by Lemma 46 we have that if TC0 6= NC1 there is no
TC0 detection function for this instance of the generalized broadcast process on conjugacy
classes.

Finally we show that the detection problem can be solved in NC1 where as before we
set k = 60000. First we note that one of the conjugacy classes contains only the identity, so
if a vertex’s label is (S, S′), then each of its children have a label of ({1}, S) with probability
1/90, ({1}, S′) with probability 1/180, and no other possibility of having a label with its
first entry equal to the identity’s conjugacy class. As such, if we can determine the labels
of the vertices at depth d′ with accuracy .999 then for each vertex at depth d′ − 1, we can
estimate how many children it has with label ({1}, S′′) for each conjugacy class S′′ and use
that to determine its label with accuracy at least .999. Therefore, by induction we can
determine the root’s label correctly with probability at least .999. Also, this can clearly be
done in NC1.
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