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Abstract

We investigate the meaning of efficient learnability from several different perspectives. The purpose
is to give new insights into central problems in computational learning theory (CoLT). Specifically,
we discuss the following two questions related to efficient PAC learnability.

First, we investigate the gap between PAC learnability for polynomial-size circuits and weak
cryptographic primitives taking auxiliary-input. Applebaum et al. (2008) observed that such a
weak primitive is enough to show the hardness of PAC learning. However, the opposite direction
is still unknown. In this paper, we introduce the following two notions: (1) a variant model of
PAC learning whose hardness corresponds to auxiliary-input one-way functions; (2) a variant of
a hitting set generator corresponding to the hardness of PAC learning. The equivalence gives a
clearer insight into the gap between the hardness of learning and weak cryptographic primitives.

Second, we discuss why proving efficient learnability is difficult. This question is natural
because few classes are known to be polynomially learnable at present. In this paper, we formulate
a task of determining efficient learnability as a meta-PAC learning problem and show that our
meta-PAC learning is exactly as hard as PAC learning. Our result insists on one possibility: a
hard-to-learn instance itself yields the hardness of proving efficient learnability.

Our technical contribution is to give (1) a general framework for translating the hardness of
PAC learning into auxiliary-input primitives, and (2) a new formulation to discuss the hardness
of determining efficient learnability. Our work yields new important frontiers related to CoLT,
including investigation of the learning hierarchy.
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1. Introduction

Intuitively, learning simple concepts is easy, but learning complicated concepts seems to take much
more time. Then which concepts can we learn efficiently from experience? This question is one of
the central concerns in computational learning theory (CoLT). Since Valiant (1984) introduced the
PAC (probabilistically approximately correct) learning model to capture the notion of computation-
ally efficient learning, many researchers have sought answers to this question.

One desirable goal in CoLT is to find general knowledge of efficient learnability and provide
reasonable concept classes which are easily learnable but expressive enough to capture many laws
hidden in the real-world. To this end, several methods to construct efficient learners have been
developed: for example, Occam’s razor (Blumer et al., 1987), and boosting (Schapire, 1990; Fre-
und, 1995). Another approach is to acquire knowledge of hard-to-learn concepts to know where
the difficulty of learning arises. Such intractability of efficient learners has been shown by apply-
ing assumptions and techniques in other fields: computational complexity (Pitt and Valiant, 1988),
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cryptography (Kearns and Valiant, 1994; Kharitonov, 1993), and as a relatively new line of work,
the hardness of refuting CSPs (Daniely, 2016; Daniely and Shalev-Shwartz, 2016).

However, the above methods are not sufficient to understand the essence of efficient learning.
Firstly, almost all of the relationships between CoLT and other fields have a gap. For a well-known
example, the existence of one-way functions in cryptography implies the hardness of PAC learn-
ing (Valiant, 1984), but showing the opposite direction is still a big open problem in theoretical
computer science. In other words, we do not know which part is essential to get the hardness of
learning. Secondly, as mentioned by Servedio and Tan (2017), few concept classes are known to be
efficiently PAC learnable by the known methods at present: only O(1)-degree polynomial thresh-
old functions (Blumer et al., 1989) and O(1)-degree F2-polynomials (Helmbold et al., 1992). For
further development in CoLT, we must conquer this problematic situation somehow.

In this paper, we look into the above current situation more closely. First, we investigate the gap
between CoLT and cryptography. Applebaum et al. (2008) observed that weak cryptographic primi-
tives taking auxiliary-input are enough to show the hardness of learning. However, this relationship
also has an implicit gap. We give a clearer insight into this gap by giving the correspondence be-
tween the hardness of learning and auxiliary-input primitives. Second, we review research in CoLT
from a meta-perspective and consider why proving efficient learnability is so hard. To this end, we
give a new formulation of proving efficient learnability and analyze the computational hardness.

2. Our Results

To overview our results, we specify a learning model and learnability. In this paper, we discuss PAC
learning with any efficiently computable hypothesis.

We define a concept class € as any subset of Boolean functions, and assume each element,
called a target function, has a polynomial-size representation for the input size. Let %, be the subset
of € restricted to the input size n.

Definition 1 (Valiant 1984, PAC learning) A concept class € is (polynomially) PAC learnable'
with m := m(n) samples and an advantage v := ~y(n) where m,y~ < poly(n) if there exists
a probabilistic polynomial-time algorithm L, called a PAC learner, satisfying that for any n € N,
f € %, and target distribution D on {0,1}",

PrL((z1, f(21)), - (@m, [ (2m)), %) = f(27)] 2 1/2 4.

where examples x1, ...,z € {0,1}" and a challenge x* € {0, 1}" are selected according to the
target distribution D.

We simply say that € is PAC learnable if there exist m,y~1 < poly(n) such that € is PAC
learnable with m samples and an advantage .

We also say that a concept class ¢ is non-uniformly PAC learnable if there exists a family of
polynomial-size (possibly randomized) circuits which PAC learns .

In this paper, we mainly consider polynomial-size circuits as a concept class. By a simple
padding argument (formally, Lemma 20), we can assume w.l.o.g. that the size is restricted to n?,
that is, ¥ = SIZE[n?] := {C : {0,1}" — {0,1}| n € N, C' is a circuit of size at most n?}.

1. Strictly speaking, we adopt the weak prediction model introduced by Pitt and Warmuth (1990). The polynomial
learnability in their model is equivalent to the polynomial learnability in the usual PAC learning model by Valiant
(1984), which follows from the result by Haussler et al. (1988) and the boosting technique by Schapire (1990).
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2.1. Learning Model Corresponding to Auxiliary-Input One-Way Functions

To see the motivation of our work, let us mention further backgrounds. The first relationship be-
tween CoLT and cryptography was given by Valiant (1984). They showed that the existence of
a one-way function (OWF) yields the hardness of learning polynomial-size circuits. An OWF is
the fundamental primitive for modern cryptography (Impagliazzo and Luby, 1989), which is easily
computed but hard to invert. Blum et al. (1994) made the first attempt to get the opposite direction,
from the hardness of learning to OWFs. They proposed a variant of PAC learning whose hardness
corresponds to OWFs. However, the gap between usual PAC learnability and OWFs remains open.

In the sequent work by Applebaum et al. (2008), they pointed out that a weaker cryptographic
primitive, auxiliary-input one-way functions (AIOWFs), are indeed enough to show the hardness of
PAC learning. An AIOWF, first introduced by Ostrovsky and Wigderson (1993), is weaker than an
OWEF in the following sense. An AIOWF is defined as a set of efficiently computable functions and
regarded as secure if at least one of them is hard-to-invert for each adversary (instead of one specific
hard-to-invert function for any adversary). The formal definition is the following.

Definition 2 (Auxiliary-input functions) A (polynomial-time computable) auxiliary-input function
(AIF) is a family F = {f. : {0,1}"z) — {0, 1}5(‘Z|)}Z€{071}*, where n(|z|) and £(|z]) are
polynomially-related to |z|, which satisfies that there exists a polynomial-time evaluation algorithm
F such that for any z € {0,1}* and z € {0,1}*D, F(z, z) outputs f.(x).

We may write n(|z|) and £(]z|) as n and ¢, respectively, when the dependence of |z| is obvious.

Definition 3 (Ostrovsky and Wigderson 1993, Auxiliary-input one-way functions) AnAIF {f, :
{0,1}™ — {0, 1}€}Z€{071}* is an auxiliary-input one-way function (AIOWF) if for any polynomial-
time probabilistic algorithm A, there exists a non-empty set Z4 C {0,1}* such that for every
2z € Za, f,is hard to invert by A, that is,

Pr[A(z, £:(Un)) € £ (f2(Un))] < negl(|2),

where negl(|z|) is a negligible function satisfying negl(|z|) < |z|~¢ for any ¢ € N and sufficiently
large |z|.

Since AIOWFs are weaker than OWFs, the gap to the hardness of learning is expected to become
smaller. Therefore, it is a natural attempt to construct AIOWFs from the hardness of PAC learning.
Unfortunately, the limitation of the common proof technique (i.e., an oracle separation) for this
attempt has been found by Xiao (2009a). In the Ph.D. thesis by Xiao (2009b), another learning
problem, CircLearn, was proposed, whose hardness implies the existence of AIOWFs. However, it
is also open whether the hardness of CircLearn is equivalent to AIOWFs. Then what is the notion in
CoLT corresponding to such weak cryptographic primitives?

Our first result is to find the learning model, PAC learning with a target sampling circuit (TSC),
whose learnability is equivalent to the existence of AIOWFs. The requirement of our model is
weaker than the usual PAC learning model in the following sense. First, a target function is selected
according to a certain efficiently samplable distribution, and the learner does not need to learn all
target functions. Second, the learner is given the distribution on target functions as the polynomial-
size circuit generating a target function. The formal definition is the following. We say that a
concept class is s(n)-represented if each target function has a binary representation of length s(n)
for the input size n.
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Definition 4 (PAC learning with a target sampling circuit) An s(n)-represented concept class
@ is (weakly) PAC learnable with a target sampling circuit (TSC), m samples, and an advantage
v if there exists a probabilistic polynomial-time algorithm L satisfying that for any n € N, circuit
C :{0,1}" — {0,1}*") of size s(n)?, and target distribution D on {0,1}",

PI‘[L(C, (th(xl))? RS ($m7f(xm))7x*) = f(x*)] = 1/2 +7,

where x1,. .., Ty, 2" are selected according to D and the target function is f := C(s), where s is
a random seed uniformly selected from {0,1}".

We say that € is (weakly) PAC learnable with a TSC if there exist m,~y~* < poly(n) such that
% is PAC learnable with a TSC, m samples, and an advantage .

By a simple padding argument, we can replace the upper bound s(n)? of the size of a TSC with
s(n)¢ for any ¢ > 1 without changing the learnability (formally, Lemma 19).
Now we state the first main theorem.

Theorem 5 (AIOWF < Hardness of PAC learning with a TSC) There exist AIOWFs iff the class
of polynomial-size circuits (specifically, S\IZE[n?]) is not weakly PAC learnable with a TSC.

Note that we can restrict the target class to SIZE[n?] without changing the learnability, which is
also shown by a simple padding argument (formally, Lemma 19).

As a corollary, we can observe the following phenomenon: for PAC learning polynomial-size
circuits with a TSC, query access to the target function (that is, membership query) does not help
the learner at all>. For usual PAC learning, such a result was shown by Angluin and Kharitonov
(1995) under the assumption that an OWF exists. Interestingly, our result holds unconditionally.

Corollary 6 The class of polynomial-size circuits is not weakly PAC learnable with a TSC iff the
same class is not weakly PAC learnable with a TSC and membership queries.

2.2. Auxiliary-Input Primitive Corresponding to Hardness of PAC Learning

Now one crucial question arises. What is the equivalent primitive to the hardness of usual PAC
learning? Indeed, our proof technique for Theorem 5 gives a reversible method to translate the
hardness of learning into auxiliary-input primitives (we will see it in Section 4). By applying this
method to the usual PAC learning model, we have some auxiliary-input primitives corresponding to
the hardness of PAC learning, which is a variant of a hitting-set generator.

A hitting set generator (HSG), first introduced by Andreev et al. (1998), is a weaker notion of a
pseudorandom generator (PRG) in cryptography. Note that the existence of PRGs is equivalent to
the existence of OWFs (Hastad et al., 1999).

Definition 7 (Andreev et al. 1998, Hitting set generators) An algorithm G : {0,1}" — {0, 1}¢™")
is a hitting set generator (HSG) (for BPP with largeness 1/2) if for any polynomial-time probabilis-
tic algorithm A, the generator G hits the language recognized by A, that is, there exist infinitely
many n’s such that A satisfies either

dzr € {0,1}" s.t. Pr[A(G(z)) =1]>2/3 or Pr Pr[A(y) =1] > 2/3| <1/2.
A y~{0,1}¢(m) | A

2. In the membership query model, the learner is given examples and a challenge one by one, and the membership query
oracle is also available only before the learner gets the challenge.
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We call the above function {(n) the stretch of G.

The original aim of HSGs is to develop a general derandomization method (e.g., Goldreich
et al., 2011). To characterize the PAC learnability, we need several modifications of HSGs. In the
following, we first weaken the condition of HSGs. At this point, the existence of the weakened HSG
becomes weaker than the hardness of PAC learning. As far as we know, this is the first generator
weaker than the hardness of PAC learning. Secondly, we add two conditions to the weakened HSG.
Then the existence of such HSGs will exactly coincide with the hardness of PAC learnability.

WEAKENING STEP

For the derandomization, usually, an exponential-stretch HSG is necessary (i.e., it stretches the
input of length n to a pseudorandom string of length 2" for some ¢ > (). For polynomial learn-
ability, however, polynomial-stretch is sufficient as cryptographic primitives. In addition, we allow
auxiliary-input as in the previous section. These relaxations lead to the following definition.

Definition 8 (Auxiliary-input hitting set generators) AnAIFG = {G, : {0,1}" — {0,1}¢™} . (0,1}
is an auxiliary-input hitting set generator (AIHSG) if £(n) > n and for any polynomial-time prob-
abilistic algorithms A, there exists a non-empty set Z 4 C {0, 1}* such that for every z € Z 4, G,

hits the language recognized by of A, that is, A satisfies either

3z € {0,1}* s.1. Pr[A(z, G.(x)) = 1] > 2/3 or Pr Pr[A(z,y) = 1] > 2/3| < 1/2.
A y~{0,1}4(n(1=D) | A

We call the above function £(-) in n(|z|) the stretch of G.

Indeed, it is not so difficult to see that if we regard auxiliary-input of AIHSG as input, then the
resulting generator becomes a secure HSG. However, the stretch (i.e., how long the hidden input is
stretched) decreases drastically because the input length is stretched from n(|z|) to |z| + n(|z]).

STRENGTHENING STEP

First, we need hitting set generators with arbitrary polynomial stretch. In the case of PRGs, we can
easily construct any polynomial stretch PRG from any PRG even if the original stretch is n + 1. In
the case of AIHSGs, however, such construction is quite non-trivial. Second, we need the following
condition on locality: each bit of the output is locally computable from the input and a small part of
auxiliary-input, and the way to compute does not depend on the values of input and auxiliary-input.
Formally, our auxiliary-input primitive is defined as follows.

Definition 9 (Auxiliary-input local HSGs) A family of AIF G = {G" },en is an auxiliary-input
local HSG (AILHSG) if G satisfies the following two conditions:

e (arbitrary polynomial stretch) for any 7, GT = {G;}ze{o,l}* is an AIHSG with the stretch
n(|z))"

e (locally computable) there exists a non-adaptive polynomial-time oracle machine localG’
such that local G* (T, |z|, i, x) returns the i-th bit of GT(x) and the positions of queries deter-
mined by T,|z|, i (not depending on input x and auxiliary-input z).
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Then the above AILHSG corresponds to the hardness of the standard PAC learning.

Theorem 10 (Hardness of PAC learning < AILHSG) The class of polynomial-size circuits (specif-
ically, SIZE[n?)) is not PAC learnable iff there exists an AILHSG.

Although our assumption on locality looks somewhat unusual, the above generator exactly cor-
responds to usual PAC learnability, and this unusuality seems to essentially bring the gap between
learning and cryptographic primitives. Nevertheless, a natural question is what a candidate for the
AILHSG is. In this paper, we also give the explicit generator which is complete in the sense that it
must be an AILHSG if there exists some (possibly different) AILHSG.

Theorem 11 (Complete AILHSG) There exists an explicit generator {UCT },¢cn satisfying that
{UCT }en is an AILHSG iff there exists an AILHSG.

2.3. Determining Polynomial PAC Learnability: Meta-PAC Learning

Now we move on to the second topic of this paper: why is proving efficient learnability so difficult?
To give one possible answer to this question, we make a hypothesis and argue the validity.

Our observation is the following: to prove learnability for a certain concept class, we must
determine at least whether the concept class is polynomially learnable or not. We hypothesize that
such a task of determining learnable classes and not-learnable classes is indeed computationally
difficult. In the following, we focus on how to check the validity of this hypothesis.

Our idea is to formulate determining the polynomial learnability of a given concept class as
a computational problem and analyze the computational complexity. However, we cannot get a
straightforward formulation for such a computational task due to the following reasons. First,
a concept class does not have a reasonable binary representation in general. Second, more cru-
cially, polynomial learnability concerns with the asymptotic behavior when sufficiently abundant
polynomial-size resources (i.e., samples and running-time) are available. Thus, we need to reflect
the notion of “sufficiently abundant but polynomial-size resources” in our formulation.

To resolve the first problem, we focus on an evaluation function for a concept class. Usually, a
concept class which we are interested in has an efficiently computable evaluation rule: for example,
from input = and a simple disjunctive normal form formula ¢, we can easily evaluate the value of
¢(x) . Therefore, we regard a polynomial-size evaluation circuit for a concept class as the definition
of the concept class. Since Boolean circuits have binary encoding, this formulation enables us to
encode concept classes and define a language composed of concept classes.

We define a language Learnable representing efficiently learnable classes as Definition 12. In-
formally, the third condition in the definition captures the notion of “PAC learnable”, where we
adopt another formulation of PAC learnability given by Vadhan (2017). Since a usual PAC learner
in Definition 1 must work for all (uncountably infinite) target distributions, it is not trivial to verify
the learnability by polynomial-size witness, particularly, whether the given learner satisfies the re-
quirement of learning. On the other hand, our formulation can directly connect the complexity of
determining learnability with the polynomial hierarchy (PH).

Definition 12 (Learnable, ,,,) For any polynomial T := 7(n) and m := m(n), we define a language
Learnable; ,,, as a collection of circuits C' satisfying that:

e C computes an evaluation function E : {0,1}*() x {0,1}" — {0, 1} for some n € N,
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e the size of C is at most T(n),

e there exists a circuit® L € SIZE[n?] which learns the concept class determined by C with m
samples in the following sense: for any x1, ...,z € {0,1}", L satisfies that

— (soundness) for any u € {0,1}*™ | L(z1, ..., zpm, E(u,z1), ..., E(u,zy)) = 0;
— (completeness) Pry, 1 q013[L(T1,. .., T, b1, b) = 1] > 1/2.

Then the language Learnable; ,,, characterize PAC learnability in the following sense.

Theorem 13 Let € be a concept class whose evaluation function is computed by a circuit C,, :
{0,135 x {0,1}" — {0,1} of size T(n), that is, €, = {f(x) := Cp(u,z) : u € {0,1}*™}. The
class € is non-uniformly PAC learnable iff for sufficiently large c, C,, € Learnable ,,c for each n.

In addition, Learnable; ,, is contained in the polynomial hierarchy. This is immediately derived
from the definition of Learnable, ,, and the fact that BPP C Y8 N I} by Lautemann (1983). The
formal proofs of Theorems 13 and 14 will be given in Appendix C.

Theorem 14 For any polynomials T and m, Learnable;,, € Eg. Moreover, if P = BPP, then
indeed Learnable, ,,, € L.

By Theorem 13, if we can efficiently recognize Learnable, ,,c for sufficiently large c, then we can
also efficiently determine the learnability of concept classes evaluated by 7(n)-size circuits. In the
opposite direction, if we can efficiently determine the learnability of such concept classes, then we
can also efficiently recognize Learnable, ,,c for sufficiently large c because Learnable, e corresponds
to the set of learnable classes for sufficiently large c. Therefore, determining the learnability of con-
cept classes evaluated by 7(n)-size circuits corresponds to recognizing Learnable; e for sufficiently
large c. This observation is central to resolve the second problem for the formulation. In addition,
for sufficiently large ¢, the polynomial 7(n) does not affect the asymptotic complexity (formally,
Theorem 29). Therefore, w.l.o.g., we can fix 7 as 7(n) = n?. These arguments lead to the fol-
lowing formulation of the hardness of determining polynomial PAC learnability. We name the task
meta-PAC learning.

Definition 15 (Meta-PAC learning is hard) We say that meta-PAC learning is hard if there exists
infinitely many c € N satisfying that Learnable,2 ,,c ¢ P.

The third result is the equivalence between the hardness of meta-PAC learning and the hardness
of non-uniform PAC learning for polynomial-sized circuits. This result insists that a hard-to-learn
class itself yields the hardness of determining which concept classes are indeed hard-to-learn.

Theorem 16 (Meta-PAC learning is as hard as learning) Meta-PAC learning is hard iff polynomial-
size circuits are not non-uniformly PAC learnable.

2.4. Related work

We list the related work and briefly mention the differences to our work.

3. In fact, any exponent factor of the bound on the size of L will not change the asymptotic complexity of Learnable
(formally, the proof of Theorem 13 in Appendix C.1).
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PAC LEARNING WITH A TARGET SAMPLING CIRCUIT

As described in Section 2.1, Xiao (2009b) introduced the learning problem called CircLearn, which
is similar to our learning model. In CircLearn, a learner is given a circuit generating a sample (i.e., a
pair of input and the label) instead of a target function. Thus, the learner is given more information,
including the way to generate examples. This additional information makes the hardness assumption
stronger than the hardness of learning with a TSC, equivalently, the existence of AIOWFs.

Our model is also regarded as the restricted case of the learning model introduced by Blum
et al. (1994), where the learner can be constructed for fixed distributions on target functions and
examples. Since their hardness assumption corresponds to the existence of OWFs, the gap between
their model and our model with a TSC represents the gap between OWFs and AIOWFs.

META-PAC LEARNING

To the best of our knowledge, our meta-PAC learning problem is the first formulation of determining
polynomial PAC learnability. However, there are several related work which has the same purpose of
determining some notions related to learnability: for example, deciding VC dimension (Schaefer,
1999), and the several consistency problems proposed by Ko and Tzeng (1991). However, their
formulations do not capture the notion of polynomially PAC learning. Indeed, the complexity of
their problems is exactly characterized by the polynomial hierarchy (that is, deciding VC dimension
is X:5-complete and the consistency problems are ¥0-complete). These facts show the differences
from our meta-PAC learning because PAC learnability is not characterized by such classes at present.

A similar problem in computational complexity is the minimum circuit-size problem (MCSP,
e.g., Kabanets and Cai, 2000). MCSP informally asks whether the given language, equivalently a
truth-table of a boolean function, is recognized by small size circuits. There are several differences
from our meta-PAC learning, which arise from the difference between settings of computing and
learning; for example, the term ‘efficient’ represents exponentially different running-time because a
truth-table of Boolean function has exponential-size representation in general.

3. Discussion and Future Direction

We introduced three notions corresponding to the efficient learnability and extended the meaning
of the learnability into auxiliary-input primitives and the complexity of meta-PAC learning. Before
giving the proofs, we present further benefits of our results.

3.1. PAC Learning and Auxiliary-Input Primitives

Theorems 5 and 10 give the first equivalence relationship between learning theory and auxiliary-
input primitives (that is, weak cryptography), which bring new clearer insights into the implicit
gap between the notions in each field. For example, by Theorem 5, we can see that the difference
between the hardness of PAC learning and the existence of AIOWFs comes from the average-case
hardness of a target function and a TSC in learning theory. Note that, only by previous knowledge
including some gap, we could not mention such a difference explicitly.

Another benefit is to make sophisticated techniques in cryptography available even in learning
theory, and vice versa. For example, Corollary 6 is essentially proven by the construction of pseu-
dorandom functions from PRGs in cryptography (Goldreich et al., 1986). At present, proving such
a result seems to be difficult by only techniques in learning theory. In addition, let us stress that the
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opposite direction is also quite useful, that is, learning theory to cryptography. There are several
intermediate learning models between our PAC learning model with a TSC and the learning model
by Blum et al. (1994). By considering the hardness of each model, we can divide the gap between
learning and cryptography in the current theory into several stages.

This idea leads to the notion “Learning Hierarchy (LH),” which divides the gap between NP ¢
BPP in complexity theory and the existence of OWFs in cryptography in fine-grained manner. This
notion provides a method to analyze such a gap (that is, Pessiland, named by Impagliazzo, 1995)
more closely from the perspective of learning theory. The details of LH will be given in Appendix D.
Indeed, our results play the crucial roles in LH: Theorem 10 connects complexity theory with learn-
ing theory smoothly; Theorem 5 shows that LH indeed includes the previous notion (i.e., AIOWFs)
of weak cryptography. As the first future direction, we require further investigation of LH.

3.2. PAC Learning and Meta-PAC Learning

The main contribution of Theorem 16 is to show the possibility that a hard-to-learn class itself
can be a curse of the hardness of proving efficient learnability. Although our proof is quite sim-
ple and follows from only fundamental knowledge in complexity theory (as seen in Section 4 and
Appendix C), to the best of our knowledge, no one has not insisted on this possibility. Therefore,
our result casts new critical doubt on CoLT: the notion of hard-to-learn can be much harder to han-
dle than we expected. Fortunately, our hardness result holds only in the worst-case and the PAC
learning model, and our formulation of meta-PAC learning is much severer than the usually desired
task of proving efficient learnability. Therefore, as the second future direction, we require further
analysis of the complexity of determining polynomial learnability in other settings.

4. Proof Techniques and Sketches

We give proof techniques and sketches of Theorems 5, 10, and 16. For complete arguments and
proofs, see Appendices A, B, and C, respectively.

First, we give a general framework to translate the hardness of learning into auxiliary-input
primitives, which consists of the following two steps. Theorems 5 and 10 are shown by applying
this framework.

STEP 1: FROM THE HARDNESS OF PAC LEARNING TO RRHS-REFUTING THE DUAL-CLASS

The first step was originally introduced by Vadhan (2017). They showed that the hardness of PAC
learning % is equivalent to the hardness of random right-hand-side (RRHS)-refuting the dual-class
C*.

RRHS-refuting a dual-class is a task of distinguishing satisfiable instances from RRHS-instances.
An algorithm, called a refuter, is given a sample set (x1,b1), ..., (Zm, bm), and (1) if there exists a
function f € ¥ satisfying the sample, that is, f(x;) = b; for any 7, then the refuter must output 0
(soundness), and (2) if the labels by, . . . , b,, (i.e., right-hand-side) are selected at uniformly random,
then the refuter must output 1 with high probability (completeness). For the formal definition, see
Definition 21. Indeed, the equivalence between learning and refutation is shown by standard tech-
niques including Yao’s next bit generator (Yao, 1982) and holds even in our setting where a TSC is
available. In other words, the hardness of PAC learning with a TSC is equivalent to the hardness of
RRHS-refuting the dual-class with a TSC.
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The above transformation is not enough to get secure auxiliary-input primitives. For contra-
position, it is enough to construct an adversary for auxiliary-input primitives from the refuter. In
general, we can regard auxiliary-input as a description of primitives, which corresponds to a target
function in learning. When an adversary tries to break auxiliary-input primitives, a description of a
target function (i.e., auxiliary-input) is known, but the input is hidden. On the other hand, when an
algorithm tries to RRHS-refute the dual-class, a description of a target function is hidden, and the
input is known as an example. In other words, the roles of input and target functions are exchanged.

STEP 2: TRANSFORMATION VIA UNIVERSAL CIRCUITS

The key tool for the second step is universal circuits. A universal circuit UC' is a polynomial-
size circuit evaluating the value of a polynomial-size circuit, that is, UC(C,z) = C(z) for any
polynomial-size circuit C' and input « (formally, Fact 1 in Appendix A). Since the circuit evaluation
problem is contained in P, we can generate universal circuits by a polynomial-time Turing machine.

Now we translate the hardness of RRHS-refutation into auxiliary-input primitives. First, we
construct a base circuit which generates the labels for each learning setting. For example, in the
case of usual RRHS-refutation, the base circuit is C'(x;) o - - - o C(x,,) where C'is a polynomial-
size circuit computing a target function and x;’s are examples. Second, we replace all calculations
in the base circuit with universal circuits such as UC(C,z1) o --- o UC(C, x,,). At this stage,
the description of circuits can be regarded as input. Thus, there is no longer a distinction between
circuits and input. Finally, we divide all input into the known part and the hidden part for the
learner and construct a generator by regarding the known (resp. hidden) part as auxiliary-input
(resp. input). In the case of usual RRHS-refutation, the resulting generator is Gy,o...oz,, (C) =
UC(C,z1)0---oUC(C,xy). Note that the roles of input and target functions were switched in
the above process.

As a simple observation of RRHS-refutation, labels in a satisfiable instance correspond to the
output of the above generator. On the other hand, labels in an RRHS-instance correspond to a
random string. Therefore, the task of distinguishing these two instances corresponds to the task of
distinguishing the output of the above generator from truly random strings. Thus, the hardness of
RRHS-refutation yields a kind of pseudorandomness using auxiliary-input.

4.1. AIOWFs and PAC Learning with a TSC: Proof Sketch of Theorem 5
FROM THE HARDNESS OF PAC LEARNING WITH A TSC ToO AIOWFs

First, we show the hardness of RRHS-refuting polynomial-size circuits with a TSC by Yao’s next bit
generator, as in the previous work by Vadhan (2017). In this model, remember that a target function
is chosen by the given TSC.

Second, we construct the auxiliary-input primitive. The resulting generator G has two stages
composed of universal circuits. At the first stage, G*° computes the description of a target function
from the description of a given TSC and the random seed, then transmits the description of the target
function to the second stage. At the second stage, G evaluates the labels from the target function
and given examples.

We regard the known information (that is, a description of a TSC and examples) as auxiliary-
input and the hidden information (that is, a random seed for sampling a target function) as input
to GT. In a satisfiable instance, notice that the input is selected uniformly at random. Therefore,
RRHS-refutation with a TSC corresponds to the task of distinguishing the following two cases: (1) a
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string generated by GT* where the input is selected at random; (2) a truly random string. Therefore,
the hardness of RRHS-refutation implies that G is an auxiliary-input version of a pseudorandom
generator, whose existence is equivalent to the existence of an AIOWF (Goldreich et al., 1986).

Indeed, some technical flaws remain: for example, we must fix the length of input to G in
the above beforehand. Since the input to GT* corresponds to a seed for selecting a target function,
this fixing yields the restriction on the seed size of a TSC. This flaw will be resolved by a padding
argument. For the complete proof, see Claim 2 in Appendix A.3, where the theorem will be proved
by contraposition and the argument will proceed along the reverse direction: (1) breaking GT°; (2)
RRHS-refuting with a TSC; (3) PAC learning with a TSC.

FrROM AIOWFS TO THE HARDNESS OF PAC LEARNING WITH A TSC

The proof mainly follows the proof of the hardness of the usual PAC learning based on AIOWFs
by Applebaum et al. (2008) (originally proposed by Valiant, 1984). We use another cryptographic
primitive, auxiliary-input pseudorandom functions (AIPRFs), which exist iff AIOWFs exist. As
mentioned in the previous work, the hardness of PAC learning is implied immediately by the def-
inition of AIPRFs. The difference in our case is only the part of generating a circuit for sampling
pseudorandom functions. However, constructing a circuit sampling an AIPRF is not difficult be-
cause the index of an AIPREF is selected uniformly at random.

Note that the above argument holds even if we allow the learner to access to membership query.
This fact derives Corollary 6 immediately. For the details, see Claim 1 in Appendix A.3.

4.2. PAC Learning and AILHSGs: Proof Sketch of Theorem 10
FROM THE HARDNESS OF PAC LEARNING TO AILHSGS

First, we translate the hardness of learning into the hardness of RRHS-refuting (Vadhan, 2017).
Second, we construct the auxiliary-input primitive composed of universal circuits. As seen in the
Step 2 in Section 4, the auxiliary-input is examples and the input is a description of a target function.
Note that the stretch of the generator corresponds to the number of samples for RRHS-refutation.

We can show that the above generator is indeed an AILHSG as follows. It is not difficult to see
that completeness and soundness of a refuter correspond to conditions for an adversary breaking a
HSG. Therefore, the hardness of RRHS-refutation yields the requirement of HSGs in Definition 8.
The condition on arbitrary polynomial stretch in Definition 9 is derived from the assumption that
any polynomial-size samples (which correspond to the stretch) are not enough for RRHS-refutation
(equivalently, PAC learning) by polynomial-time algorithms. The condition on locality also holds
because each bit of the generator can be computed only from input (that is, a target function) and a
part of auxiliary-input (that is, one example). For the details, see the proof (1=-2) of Theorem 24 in
Appendix B.3.

FroM AILHSGS TO THE HARDNESS OF PAC LEARNING

Note that the above framework to construct an auxiliary-input primitive is reversible. Thus, if we
have the corresponding auxiliary-input primitive, then we can also show the hardness of learning.
Assume that there exists an AILHSG G with the oracle machine localG’. Remember that for
any polynomial stretch n”, localG can compute each i-th bit of the output from input x and partial
information z() of auxiliary-input z. Since localG is a polynomial-time oracle machine, |z(i)| <

11
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poly(|z|). Now we consider the generator UCZQomoz’ . () =UC(x,2}) 00 UC(x, 2l ), which
was given from the hardness of PAC learning. Inforrr;lally, if each auxiliary-input z; exactly contains
the information of z(*) and the description of localG, then UC™ corresponds to the AILHSG G.
Therefore, UC™ contains any AILHSG as a special case. By applying the above framework in
reverse order, we have the hardness of PAC learning.

The formal proof will be given in Theorem 24 (2=-3 and 3=-1) in Appendix B.3. As the first
step of the proof (that is, 2=-3), we show that the above generator {UCT }, ¢y is an AILHSG by
assuming that the existence of a (general) AILHSG. This argument also gives candidates for the
complete AILHSG in Theorem 11. However, the above argument is not enough for complete proof
because the generator depends on the size of another AILHSG in the assumption. In other words, we
cannot fix the complete generator beforehand. To resolve this problem, we again apply the padding
argument for PAC learning (formally, see Appendix B.3).

4.3. Meta-PAC Learning: Proof Sketch of Theorem 16

In this section, we consider the non-uniform model as a standard computational model. To prove
the equivalence between PAC learning and meta-PAC learning, we do not need the above frame-
work anymore. Instead, we have a quite simple and intuitive proof. For simplicity, we omit the
argument about the upper bound 7(n) on the size of evaluation circuits. For the formal proof, see
Appendix C.3, where we indeed show slightly stronger results than Theorem 16.

FrOM PAC LEARNING TO META-PAC LEARNING

This direction is trivial from Theorem 13. Assume that all polynomial-size circuits are PAC learn-
able. Notice that if a concept class is evaluated by a 7(n)-size circuit, then the class consists only
of 7(n)-size circuits. Therefore, for sufficiently large c, Learnable, ;) ,c exactly corresponds to the
set of 7(n)-size circuits. We can easily verify whether the size of a given circuit is at most 7(n) by
a polynomial-time Turing machine.

FrROM META-PAC LEARNING TO PAC LEARNING

We show that if PAC learning polynomial-size circuits is hard, then meta-PAC learning is also hard.
For contradiction, assume that PAC learning polynomial-size circuits is hard, but meta-PAC learning
is not hard.

By the assumption, there exist a polynomial-time Turing machine (a meta-PAC learner) deter-
mining PAC learnability and a circuit C evaluating a hard-to-learn concept class. Then we can
construct a polynomial-time Turing machine A for solving the circuit-SAT problem. For any given
circuit C’, the algorithm A constructs a new concept class ¢ evaluated by C”(uy o ug,z) :=
C(u1,2) A C'(uz) and feeds C” to the meta-PAC learner. Note that the input to C’ is regarded
as a part of the representation of target functions.

If the given C” is unsatisfiable, then the concept class € consists only of the constant function
0, which is trivially PAC learnable. On the other hand, if the given C” is satisfiable, then 4 contains
the original concept class evaluated by C. Therefore, 4" must be hard-to-learn, and the meta-PAC
learner can distinguish these two cases in polynomial-time. Thus, A can solve the circuit-SAT
problem efficiently, which yields P = NP.

As a well-known fact, if P = NP, then we can construct an efficient PAC learning algorithm for
polynomial-size circuits (Blumer et al., 1987). This contradicts the hardness of PAC learning.

12
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Appendix A. AIOWFs and PAC Learnability with a TSC

A.l. Preliminaries and Formal Definitions

For a distribution D, we write x < D for a sampling = according to D. For a finite set .S, we also
abuse the notation < S to denote the uniform sampling from S. For any n € N, let U,, be a
uniform distribution over {0, 1}". For any n € N, we define a set [n] C N by [n] = {1,...,n}.

In this paper, we define the size of circuits as the total number of all gates, that is, input-
gates, output-gates, {V, A, —}-gates. Note that this definition does not change the learnability for
polynomial-size circuits defined by not taking input-gates and output-gates into account as the size.
In addition, we can assure that any circuits of size S has a binary representation of length e(S).

For any function s : N — N, let SIZE[s(n)] be a complexity class of s(n)-size circuits, that is,

SIZE[s(n)] := {C : {0,1}"" — {0,1} | n € N, C'is a circuit of size is at most s(n)}.

For any circuit C' : {0,1}" — {0,1}* and i € [{], let C; : {0,1}"* — {0, 1}’ be the partial
circuit computing i-th bit of C, that is, C'(z) = Cy(z) o - - - o Cy(x) for each z € {0,1}".

A.1.1. UNIVERSAL CIRCUIT AND CIRCUIT TRANSLATOR

We fix a proper encoding for Boolean circuits. For any circuit C, we use (C) to explicitly denote
the binary encoding of C'. Otherwise, we may abuse the same notation C' for the encoding.

For convenience, we assume the following: (1) every binary string u € {0, 1}* represents some
circuit C,,, which is done by assigning invalid encodings u to the trivial circuit Cy, () = 0; (2)
zero-padding is available, specifically, the minimum valid encoding v for any circuit C' ends with 1,
and we regard u o 0* is also valid encoding of the circuit C'. For any s € N, let e(s) = O(slog s)
be the size of minimum encoding for s-size circuits satisfying the above assumptions.

The following language C-Eval is known as a P-complete problem.

C-Eval = {(C,x) : C'is an n-input circuit and = € {0, 1}" satisfying C(z) = 1} .
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In addition, the class P is equivalent to the class recognized by uniformly generated polynomial-size
circuits (see the textbook by Arora and Barak, 2009). These results lead to the following facts.

Fact 1 (Universal circuits) There exists a polynomial-size circuit family UC = {UCn } nen sat-
isfying that for any u, z € {0, 1}

Cu(x)  (if u represents an n-input circuit Cy, and |x| = n)

UCN((u,z)) = {

0 (otherwise),

where N = |(u, z)|. Moreover, UC'is uniformly generated, that is, there exists a polynomial-time
Turing machine UC M such that (UCy) <+ UCM (1Y) for any N € N.

Fact 2 (Circuit translator) There exists a polynomial-time Turing machine C'I' such that for the
input (M, 1™) where M is a description of a T'(n)-time Turing machine and n € N, CT outputs
(C) € {0,136 where C is an n-input circuit of size s(n) = O(T(n)logT(n)) satisfying
C(z) = M(z) for any x € {0,1}". We call the above CT a circuit translator.

In the second argument of C'T', we may use the notation 11" %" to denote the length of binary
encoding for a k-tuple of binary strings (z1, ..., x) where x; € {0,1}" for each i € [k].
We also define a size-bounded universal circuit

UCt ™ = {Ucs™ : {0,130 % {0,1}" = {0, 1} }nen

by
UC((u,z)) (ifu=(C)andC € SIZE[s(n)])

0 (otherwise).

UCs™ (u, z) = {
Note that, by the standard construction of universal circuits (Arora and Barak, 2009),
(the size of UC™) = O(s(n) 4 (s(n) —n)?).
In addition, SIZE[s(n)] is evaluated by UC*(™) as
SIZE[s(n)], = {C(:c) = UCS™ (u,z) : u € {0, 1}6(5("))} for eachn € N.
Therefore, we fix UC*(™ for the evaluation function for SIZE[s(n)].

A.1.2. OTHER AUXILIARY-INPUT PRIMITIVES

We introduce other auxiliary-input primitives whose existence is equivalent to the existence of
AIOWFs.

Definition 17 (Auxiliary-input pseudorandom generators: AIPRGs) AnAIF {G. : {0,1}"2) —
{0, 1}5("(|Z|))}Ze{0,1}* is an auxiliary-input pseudorandom generator (AIPRG) if {(n) > n and for
any polynomial-time probabilistic algorithm A, there exists a non-empty set Z 4 C {0, 1}* such that
forevery z € Z 4,

[PrA(z, G=(Un)) = 1] — PrlA(z, Uy(ay) = 1]| < negl([2]).
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Definition 18 (Auxiliary-input pseudorandom functions: AIPRFs) An AIF {F, : {0,1}5(2) x
{0,1}7(=) - Jo, 1}}.eqo,1y+ is an auxiliary-input pseudorandom function (AIPRF) if for any
polynomial-time probabilistic oracle machine A’, there exists a non-empty set Z 4 C {0, 1}* such
that for every z € Z 4,

fz(uv') — _ (b\z\() —
A,zE—rUS[A (z) =1] AE’;I"Zl[A (z) = 1]| < negl(|z]),

where ¢ : {0, 1YU=D) — 10,1} denotes a truly random function.

Fact 3 (Goldreich et al. 1986; Hastad et al. 1999) The existence of AIOWFs, AIPRGs, and AIPRFs
is equivalent.

A.2. Padding Argument

Lemma 19 For any c1,co > 1, SIZE[n'] is weakly PAC learnable with a TSC of size e(n*)2 iff
SIZE[n?] is weakly PAC learnable with TSC of size e(n?)>.

Proof We consider only the case where c1,co > 2. In the other case, we can show the lemma in
the same way.

Assume that SIZE[n?] is weakly PAC learnable with m(n) samples and a TSC of size e(n?)? by
the learner L. It is enough to construct a PAC learner L’ for SIZE[n“] with a TSC of size e(n )2
by using L. Let n be the size of example for L', and (< e(n)“?) be the seed length of the given
TSC C.

Firstly, L’ calculates the minimum n’ € N satisfying that

n < n2 —n/ and e(n)? + 2 < e(n?)? — e(n’?).

It is easily checked that e(n°t) < e(n'?) and n’ is polynomially related to n.

Secondly, L constructs a new TSC C’ : {0,1}" — {0, l}e((”/)Q) from C by adding e(n'?) —
e(n°!) output-gates and two constant gates (i.e., 0-gate and 1-gate). Then L’ plugs the output-gates
of C' and two constant gates into the output-gates of C” to satisfy that for any seed s € {0,1}", C’
samples the circuit C'(r) with additional dummy n’ — n input-gate (by using the constant gates).
Note that C’ samples circuits of size at most n* + (n’ — n) < n'2. Therefore, we have that for any
x €{0,1}" and s € {0,1}",

UC™™ (C(s),z) = UCT (C'(s),z 00" ~™).
Notice that the size of C’” becomes at most e(n’ 2)2, which is shown as follows:
(size of C) = (size of C) + (e(n'*) — e(n!)) + 2
<e(n)® +e(n?) + 2 < e(n'*)?.

Thirdly, the learner L’ executes L w.r.t. n’ instead of n. Although L’ needs m(n’) examples to
execute L for n’, the sample size is still polynomial in n because n’ is polynomially related to n. In
the execution, L’ selects C’ as a TSC for L, and feeds m(n’) samples and a challenge of L' to L,
where L’ stretches the size of examples and the challenge from n to n’ by zero-padding.
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Finally, if L returns a prediction for the challenge, then L’ also outputs the same prediction.
Then we have that for any distribution D on {0, 1}",

Pr[L’ succeeds in learning the target C'(U,) under the distribution D]
— Pr[L succeeds in learning the target ¢’ (U,.) under the distribution D o 0" "]
>1/2+(n),

where 7 is a non-negligible advantage of L.
Therefore, L’ succeeds in learning SIZE[n“] with any TSC of size e(n° ). |

A.3. Proof of Theorem 5

First, we show the hardness of learning from the existence of auxiliary-input cryptographic primi-
tives, specifically, AIPRFs. The proof is essentially the same as the observations by Valiant (1984);
Applebaum et al. (2008). The difference is only the part of explicitly constructing the sampling
circuit for PRFs.

Claim 1 [f there exists an AIPRF {F, : {0,1}*(2) x {0,1}"(=) — {0, 1}}.eqo,1}> then there
exists ¢ > 1 such that SIZE[n€] is not weakly PAC learnable with a TSC and membership query.

Proof Let My be the probabilistic polynomial-time algorithm computing the AIPRF { F, }.c0.1}+
in polynomial-time in |z|. Since n(|z|) is polynomially related to |z|, Mf is computable in time
n(|z])¢ for some constant c.

First we show the case where a learner is not given access to membership query oracle. For
contradiction, we assume that SIZE[n°*1] is weakly PAC learnable with a TSC by the PAC learner
L using m := m(n) examples. Now we construct an adversary A for { F,}.c 0 1}~ from L.

Algorithm A

Input : z € {0,1}* and oracle access to f : {0,1}"(2) — {0,1}

select 1, ..., Ty, 2" < {0,1}" and query the values of f(x1),..., f(zm), f(z*)
C(-,-, ")  CT(Mp, 1121xs(2Dxn(2])) and hardwire z into C as C, (-, ) := C(z, -, )

if the size of C' > n°*!, then return( L)

construct a circuit €, : {0,1}* — {0,1}°®"") such that C’(u) embeds the input u to C, as
C.(u,-), and outputs (C (u, -)) with zero-padding to the length e(n°*!)

execute b <~ L(CL, (21, f(21)), - -, (Tm), f(zm)), %)

c+1)

6 if L succeeds in learning (that is, b = f(z*)), then return(1), otherwise return(0)

The circuit translator in line 2 outputs a circuit C' of size O(n®logn). We assume that |z| is
large enough to satisfy that the size of C' is smaller than n°*!. Under this assumption, A must not
output L in line 3.

For any z € {0,1}*,u € {0,1}*(2D and z € {0,1}™(?D), we have that

UCr " (Cl(u),x) = UCE ((Cu(u, ), x) = Ca(u, @) = Mp(z,u, z).

Therefore, the distribution on the function f(x) := U C;;‘CH (CL(Us), z) and the distribution on
the function f(z) := F'(z, Us, x) are statistically identical. Hence, the TSC C’, represents a random
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choice of AIPRF F,. Note that the size of C’, is at most e(n°*1)? because the task of C’, is only to
replace input-gates of (C,) with constant-gates and zero-pad the encoded circuit.

Let v be the advantage of L. If the given f (as oracle access) is a pseudorandom function, L
is executed in the valid setting where the target function is f and the example distribution is U,,.
Since f is computable by the n°*!-size circuit, f is contained in the concept class SIZE[n¢™1]. In
this case, L succeeds in learning with probability larger than 1/2 + ~(n).

On the other hand, if the given function is truly random, then L must not have any informa-
tion about f(x*) unless 2* € {z1,...,2y,}. In this case, L cannot predict f(z*) better than at
random. Since m is the polynomial, the event that z* € {x1,..., 2z} occurs only with negligible
probability. Therefore, L succeeds in learning with probability at most 1/2 + negl(n).

Since A outputs 1 iff L succeeds in learning, A breaks F, for any sufficiently large |z| with
advantage v(n(|z|)) — negl(n(|z])). Because n(|z|) is polynomially-related to |z|, the advantage is
non-negligible in |z|. This contradicts the assumption that {F } ¢ 13+ is an AIPRF.

Even if the learner L is allowed to access to membership query oracle, A can correctly answer
the query by using its membership oracle. Therefore, the same argument holds. |

By the above claim, Fact 3, and Lemma 19, if AIOWFs exist, then SIZE[nZ} is not PAC learnable
with a TSC. For the other direction, we construct an AIPRG from the hardness of learning.

Claim 2 [fSIZE[n?] is not weakly PAC learnable with a TSC, then there exists AIPRG.
Proof Define polynomially-related functions m, n and s as follows:
m :=m(|z|]) = maxm € N : e(m?) - e(e(m?)?) + (e(m?) + 1) -m < |2
ni=n(lz) = e(m(2)?), s(n) =n+1.
Then any binary string z € {0, 1}* is divided as
(1) (2) (2)

z2 =2z o---oze(m)ozl O"'OZe(m2)+lozlasta

where |2{"| = e(n?) = e(e(m?)?) for each i € [e(m)]. |2\”)| = m for each j € [e(m?) + 1], and

|21ast| = |2] — e(m*)e(e(m?)?) — (e(m?) + 1)m.
We define a two-stage generator G2 : {0,1}™ — {0, 1}*" as follows:

’I'L2 'I’L2
GTS(w) = UCH (4,2 0+ o UCH (1,200 ),

where y := UC'}f(zgl), x)o---0 UC}ZQ(Z&ZM), x).
We show that GT° = {GT5} 2e{0,1}+ is indeed an AIPRG. By contradiction, assume that GTS
is not an ATHSG. Let A be the adversary for GT°. W.1.0.g., we can assume that for any z € {0, 1}*

Pr[A(z, GT%(Un(z))) = 1] = PrlA(z, Usin(aly)) = 11 = v(m(J2])),
where 7y is a non-negligible function.

The argument proceeds as follows: first, we use the adversary A to construct an RRHS-refuter
R with a TSC whose seed length is fixed. The restriction arises because the length of input to G7*
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is fixed beforehand to n. Second, we construct a PAC learner for SIZE[n?] with a restricted TSC
by using Yao’s next-bit generator (implicitly, Yao, 1982). Essentially, the second part corresponds
to the previous work by Vadhan (2017). Finally we remove the restriction for a TSC by the simple
padding argument.

First, we construct an RRHS-refuter R from the adversary A.

Algorithm R
Input : an e(n?)2-size circuit C' : {0,1}¢"") — {0,1}¢(*), L1, Te(n2)p1 € {0,1}" and
bi, ..., be(n2)+1 € {Oa 1}

7 encode z; = (C;) for each i € [e(n?)]
B 21210110 Zg(n2) OT1 0" O T(p2) 41

9 execute A(2,b1 0+ 0bg(,2)41) and output the same value

For any n € N, consider arbitrary circuit C' : {0,1}¢"") — {0,1}¢(") of size e(n?)2, and
T1, ..., Te(n2)41 in the input to R. The algorithm R constructs auxiliary-input z for G™S to satisfy
that |z| = e(e(n?)?)e(n?) + (e(n?) + 1)n in line 8. Therefore, in the execution in line 9, we have
m(|z]) = n, n(|z]) = e(n?), and for any seed s € {0, 1}"%) to C and index i € [e(n?) + 1],

2

n2 n n2 n2
UCn (C(S), ﬂjz) = UC (|Z|)(U0 (‘Zl)(zl7 8) O-:-+0 UC’n(M)(ze(nz), 8), x@) = GZ:?(S)

m n

Thus,

— — TS _
R,fecf’)({]e(nz))[R(Cj L1y - ,xe(nz)_H, f(acl), PN ,f(xe(n2)+1)) = 1] = 1?41‘[14(2, Gz (Un(|z\))) = 1],

and
PrR(C, 21, -, T2y 1, Uy 1) = 1] = PrlA(z, Usngizpyy) = 11-
Since A breaks G for any auxiliary-input z, we have that for any z1, ...,z en2)+1 € {0, 1},
P R(C,z1,...,Te(n2)11s ooy J(@epn =1
R,f<—C(1lrJe<n2>)[ (C .z Te(n?)+1 ) fz ( 2)+1)) ]

- ];I)%I‘[R(C, Tlye-- ’xe(n2)+1’ Ue(n2)+1) = 1]
= 1?41‘[‘4('27 GzS(Unﬂzl))) = ” - 1?41'[14(27 Us(n(|z\))) = 1] > 7(”)

Now we construct Yao’s next-bit generator L from R.

Algorithm L
Input : an e(n?)2-size circuit C' : {0,1}¢") — {0,1}("*) (z1,b1) ..., (Te(n2), be(n2))> and x*
where z;, z* € {0,1}", and b; € {0, 1} for each i € [e(n?)]
10 select i < [e(n?) + 1] and ¢, ¢;, . . ., co(n2)  {0,1}"
11 execute b < R(C,Cﬂl, e T, T T, . s Le(n2)s bi,...,b;_1,c%, ¢yt Ce(nQ))

12 if b = 1 then return(c*), otherwise return(1 — c*)
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By the hybrid argument (for the detail, see Arora and Barak, 2009, Theorem 9.11), we have

g B T S Gy Ha)s ) = F) 2 12 (0} )

The advantage v(n)/e(n?) is still non-negligible for n. Therefore, L is a valid weak learner for
SIZE[n?] with a TSC whose seed length is restricted to s(n?). Finally, we remove the restriction on
the seed length by the following padding strategy, which is similar to the proof of Lemma 19.

Now we construct a PAC learner L’ with a TSC by using L. Let n be the size of example, and
r(< e(n?)?) be the seed length of the given TSC C.

Firstly, L' calculates the minimum n’ € N satisfying e(n/?) > \/ max (r,e(n2))® + 3 + 1. Itis

casily checked that e(n/?) > max (r, e(n2)) and 7’ is polynomially related to n.

Secondly, L’ constructs anew TSC C” : {0, 1}6("/2) — {0, 1}6(”/2) from C by adding e(n'?) —r
dummy input-gates, e(n'?) — e(n?) output-gates, and two constant-gates (i.e., 0-gate and 1-gate).
Then L’ plugs the output-gates of C' and two constant-gates into the output-gates of C’ to satisfy
that on input s € ne®), " discards the suffix of s of length e(n/?) —r and samples the target C(s)
with additional dummy n’ — n input-gates (by using constant gates). In other words, we have that
forany z € {0,1}", s € {0,1}", and s’ € {0, 1}6("/2)*’",

UC™ (C(s),z) = UCT (C'(s0§'), 200" ™).
As shown in later, note that the size of C" is at most e(n'?)2.

Thirdly, the learner L' executes L w.r.t. ' instead of n. Although L’ needs e(n/?) examples to
execute L for n’, the sample size is still polynomial in n because n’ is polynomially related to n. In
the execution, L' selects C” as a TSC for L, and feeds e(n’ 2) samples and the challenge of L' to L,
where L’ stretches the size of examples and the challenge from n to n’ by zero-padding.

Finally, if L’ returns a prediction for the challenge, then L also outputs the same prediction.

If the size of C" is at most e(n?)2, then for any distribution D on {0, 1}",

%r[L’ succeeds in learning the target C'(U, ) under the distribution D]
= }zr[L succeeds in learning the target C’(Uy(,,/12) under the distribution D o 0" "]
>1/2+7(n'),

where +y is a non-negligible function.
Thus, the remaining part of the proof is to bound the size of C’. Remember that

e(n'®) —1> \/max (r,e(n2))? + 3.
By the simple calculation, we have that
e(n?)? > 2e(n’) + e(n?)? + 2.
By the condition in Definition 4, we can assume that the size of C' is at most e(n?)2. Therefore,

(size of C") = (size of C) + (e(n'?) — r) + (e(n'?) — e(n?)) + 2
<e(n?)?+ 26(71’2) +2< e(n/2)2.
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By Claim 2 and Fact 3, if SIZE[n?] is not weakly PAC learnable with a TSC, then there exists
AIOWE. Therefore, Theorem 5 holds.
Corollary 6 also immediately holds by Fact 3 and Claims 1 and 2 .

Appendix B. PAC Learnability and AILHSGs

We follow the setting in Appendix A.1. Let E = {E,, },en be a family of function E,, : {0,1}5() x
{0,1}™ — {0,1}. We say that a class € = {%,}nen is evaluated by E if 6, = {f(z) =
En(u,z) @ u € {0,1}*™} for any n € N. We also define the dual-class €* = {%*},cn by
¢r ={g9(u) := Ep(u,z) : x € {0,1}"}.

B.1. Padding Argument

Lemma 20 For any polynomial s(n) > n, SIZE[s(n)] is PAC learnable iff S\IZE[n?] is PAC learn-
able.

Proof First we assume that s(n) > n?. Then it is enough to construct a PAC learner Ly for

SIZE[s(n)] from another PAC learner L for SIZE[n?]. Assume that L needs m(n) samples for
learning, where m is a polynomial.

Let n be the size of examples for L. Firstly, L calculates the minimum value n’ € N satisfying
s(n) —n < n'2 —n/. Obviously, n’ is polynomially related to n. Secondly, L takes m(n’)
examples and executes L for n’, where L pads each example and the challenge = € {0,1}" with 0
asz 00" " € {0, 1}”'. Finally, if L’ returns a prediction for the challenge, then L also outputs the
same prediction.

Let C be a circuit of size s(n) which computes the target function for Ly and D be a target
distribution on {0, 1}"™. Then it is easily checked that Ls executes L with a valid setting where the
target function is computed by C (discarding a suffix of length n’ — n) and the target distribution
Do 0", Although the target circuit for L needs additional n’ — n input-gates (and they increase
the size of circuits in our setting), the size is bounded above by s(n) +n’ — n < n/?. Therefore, L
succeeds in learning C' with non-negligible advantage, and so does L.

Even in the case where n? > s(n) > n, we also show the lemma in the same way. |

B.2. PAC Learning and RRHS-Refutation
We formally introduce the notion of RRHS-refutation, first introduced by Vadhan (2017).

Definition 21 (RRHS-refutation) Let € be a concept class. We say a polynomial-time probabilis-
tic algorithm R, called a refuter, RRHS-refutes the dual-class €* with m := m(n) samples if for
anyn €N, f € €,, and x1,. ..,z € {0,1}", R satisfies that

1. (soundness) Prr|R(x1,...,Tm, f(x1),..., f(zm)) = 0] > 2/3;
2. (completeness) Pry._(o 1ym [Prr[R(71,. .., T, b) = 1] > 2/3] > 1/2.

We say that €* is RRHS-refutable if there exist a polynomial m and a refuter for € with m samples.
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Strictly speaking, we adopt another formulation about completeness from the original paper
by Vadhan (2017). This is because our formulation gives clearer correspondence to HSGs. The
original completeness was given as follows.

2’. (completeness) Pry._o1ym r[R(71, ..., Zm,b) = 1] > 2/3.
The equivalence between two formulations holds by Markov’s inequality as follows.

Proof (2 = 2’) Assume that there exists a refuter R which satisfies the conditions 1 and 2. As
in the usual error reduction, if we repeat the execution of I? independently and take the majority
vote, then error probability is reduced to any constant. Therefore, we can assume that for any
iy, T, € {0,1}7,

pr |P L a b =11>5/6] > 1/2.
b%{O,rl}m RI'[R(IEl, , T ) ] 5/6 /

This implies that

P R b)=1]>5/6-1/2=5/12.
b%{O,lr}m,R[ (xlv y Ly ) ]— / / /

On the other hand, by the soundness, we have that for any f € %,
PrR(1, s f(01), - flm) = 1] < 1/3,

Therefore, if we collect further (but polynomial-size) samples, repeat the execution of R by using
distinct samples, and estimate the probability that R outputs 1, then we can distinguish the above
two cases with arbitrary small constant error probability, specifically, 1/3. Thus, there exists a
refuter which satisfies the conditions 1 and 2°.

(2 <= 2’) Assume that there exists a refuter R which satisfies the conditions 1 and 2°. As seen in the
above, we can reduce the error probability to arbitrary constant by taking further (but polynomial-
size) samples. Therefore, w.l.o.g., we can assume that for any X = (x1,...,x,,) where z; €
{0,137,
P R(X,0)=0]<1/6
b<—{0,1r}m,R[ ( ) I<1/

By applying Markov’s inequality for the nonnegative random variable Y := Prg[R(X,b) = 0]
w.r.t. the random choice of b € {0, 1}, we have the condition 2 as follows:

— 0] > <3. —0l < — .
Pr |Pr{R(X,b) =0] > 1/3| <3 b(_{oliﬂm,R[R(X,b) 0] <3/6=1/2

Now we introduce two important facts about RRHS-refutation. The first fact is the equivalence
between PAC learning and RRHS-refutation.

Fact 4 (PAC learning < RRHS-refutation Vadhan 2017) For any (polynomially represented) con-
cept class €, € is PAC learnable iff € is RRHS-refutable.
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The second fact was implicitly used in the previous work.

Fact 5 (Pitt and Warmuth 1990; Vadhan 2017) Let ¢ and €' be concept classes evaluated by
{E, : {0,1}°(") x {0,1}" = {0, 1} }nen and {E}, : {0,111 x {0,1}" — {0,1}}nen, respec-
tively. Assume that for any n € N, there exist n’ € N, and polynomial-time computable functions
Frep : {0, 13" — {0, 1}") and fo, : {0,1}°) — {0,1}" satisfying that

Ep (frep(@), fea(u)) = En(u, ).
Then the following holds:
e if ¢’ is RRHS-refutable, then €* is also RRHS-refutable;

e if ¢ is RRHS-refutable, then € is also RRHS-refutable.

Now we apply Fact 5 to polynomial-size circuits. For any polynomial s, we use the notation s
to denote the polynomial such that the size of UC? is at most s'(e(s(n))) for any n € N. Then we
have the following lemma.

Lemma 22 For any polynomial s(n),
e SIZE[s(n)]* is RRHS-refutable if SIZE[s'(n)] is RRHS-refutable;

e SIZE[s(n)] is RRHS-refutable if S\ZE[s'(n)]* is RRHS-refutable.

Proof We give functions f., : {0, 1}¢¢() — {0,1}¢(() and f,, : {0,1}" — {0, 1}e(" (e(s(m)))
in Fact 5 by

fer(w) = u, and frep(x) = (Cy), where Cy(u) = UCS™ (u, ).

Note that the input size of C,, is e(s(n)) and the size is at most sT(e(s(n))) by the definition of s'.
Since UC*™ is generated in polynomial-time, f., and frep are polynomial-time computable. In
addition, these functions satisfy the conditions in Fact 5 as follows:

st(n st(n s(n
UCe(S((yz))(f'rep(x)a Jez(u)) = UCe(i(n)))((CI),u) = Cy(u) = UCn( )(u, ).

B.3. Proof of Theorems 10 and 11

First we introduce candidates for the complete AILHSG in Theorem 11, which is simply composed
of concatenated universal circuits.

Definition 23 For any polynomial s(n) and {(n), we define an AIF UCS* = {UCS* : {0,1}7(2) —
{0, l}é("(|z|))}ze{071}* where n(|z|) = maxn € N:e(s(n)) - €(n) < |z| by

UCH () = UC*(21,2) 0 -+ 0 UC* 24y, ),

where z; € {0,1}°C0) for eachi € [£(n)], z = z10- - “0Z¢(n) % ft, and zie gt € {0, 1}Izl=e(s(m)-£(n),
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Theorem 24 is our main theorem in this section. Theorem 10 is identical to the equivalence
between 1 and 2 in the following theorem.

Theorem 24 The followings are equivalent:
1. SIZE[n?] is not PAC learnable.
2. There exists an AILHSG.

3. There exists a polynomial s(n) such that {UC*™""}_y is an AILHSG.

Proof (1 = 2) For any 7 € N, we construct an AIHSG G7 = {G7}.en for each 7 € N. Define
functions m and n by

m :=m(|z]) = maxm € N: e(m?)" -m < |z|, and n := n(|z|) = e(m?).
Then m and n are polynomially related to |z| and any binary string z € {0, 1}* is divided as
Z = 2100 Zg(m2)7 © Zlast,

where |z;| = m for each i € [e(m?)7] and |zj45¢| = |2| — e(m?)7

Now we define G7 : {0,1}" — {0,1}" by

-m.

GL(x) = UCH (z,21) 0...UCE (2, Zo(ma)r)-

The above generator satisfies the conditions in Definition 8 because we can calculate the -
th bit of GZ(z) in polynomial-time in n by executing U C’,@f (x, z;), and the location of z; in z is
determined by only 7, |z| and i.

For contradiction, assume that there exists 7 such that G” is not an AIHSG, and let A be the
adversary. By Fact 4, it is enough to construct a refuter for SIZE[n?]* from A.

Now we define the refuter R for SIZE[n?]* with e(n?)7 samples as follows:

R(l’l, ey TpT, bl, ey bnq—) = A(acl 0---0 {L‘e(n2)-r, bl 0-+-0 be(n2)7').
The completeness is easily checked. For the soundness, assume that there exists y € {0, 1}6(”2)
such that UC™ (y, x;) = b; forany i € [e(n?)7]. Letz =1 0--- 0 Te(n2)r- Then m(|z]) = n and
n(|z]) = e(n?), and we have

GL(y) = UCEQ (y,x1) 00 UCQQ (Y, xe(nQ)T) =bjo---o0 be(nQ)T'

Since by o - -+ 0 be(p2)- is contained in the image of G7, the adversary A outputs 0 with probability
greater than 2/3. In this case, R also outputs 0 and satisfies the soundness.

(2 = 3) Let {G"};en be an AILHSG and localG” be the polynomial-time oracle machine in
the condition of Definition 9. Since the length of input (7, |z|,,x) is at most log 7 + log |z| +
Tlog(n(|z])) + n(|z|) < poly(n(|z|)), localG halts in polynomial-time in n := n(|z|).
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Assume that |z| is large enough to satisfy that localG” queries g(n) points where ¢ is a poly-
nomial. Since the queries are non-adaptive and determined by only 7, |z|, i, we can divide localG”
into two Turing machines Pos and M satisfying that for any (sufficiently long) string z,

Pos(r, ‘Z‘J) = (J1,--- 7jq(n))§

M(zjy, -5 20 T |2]s 6, @) = local G* (7, |2], i, ) = GT (),

where Pos and M halt in ¢(n)-time where ¢ is a polynomial.

Now we show that {U Ct(")Q’”T}TeN is an AILHSG. The conditions about locality are easily
checked as in the above proof of (1 = 2). For contradiction, we assume that there exists 7 such that
UCH™* 7 js not an AIHSG by the adversary A, and construct the adversary A" which breaks G™
by using A.

Algorithm A’
Input :z € {0,1}* and y € {0,1}"(2D"
execute C(’ . ) — CT(M, 1q(n)><log7—><log |z|><frlog(n(|z\))><n)
for ¢ := ltonfdo A
execute (77, ... 7j;(n)) <+ Pos(t,|z|,1)

hardwire the indices as C(z) = C(zji ©... 0 Zi? T |z|, 4, z), and u; = (Cj(x))
q(n

truncate/zero-pad u; to the length e(t(n)?)
end
output the same value to A(uy o -+ o upr,y)

We analyze the adversary A’. For sufficiently large |z|, the size of C' in line 13 is at most
t(n(|z]))?. In this case, each C;(x) is properly encoded to the length e(¢(n)?) in line 17.

For any auxiliary-input z to G™ and i € [n"], let u; be the binary encoding given in line 17 and
U, = U1 O - -+ O Uy be auxiliary-input in line 19. Then we have that

Izr IPi‘,r[Al(z,y) =1]> 2/3] = I?/r [li’qr[A(uz,y) =1]>2/3| >1/2.

If there exists z € {0, 1}" satisfying that GL(x) = y, then

_ T _ T
y=GL(x) = M(zj%, L 2L T |z|,1,2)0---0 M(zj{n7 .. "ng(;)’ﬂ |z|,n", x)
= Ci(x) 00 Cur(2)
= UCH™ (uy,2) 0+ - 0 UCH™® (-, 2)
= UCHM* ().
Thus, y is also contained in the image of U C’Z(Zn)2’m. Therefore, the adversary A outputs 0 with

probability greater than 2/3, and so does A’. By the above observations, A’ breaks G”, which
contradicts the assumption that {G7 }, ¢y is an AILHSG.

(3 = 1) For a polynomial 5(n), assume that {UC*("™)"" }_y is an AILHSG. We show that SIZE[s(n)]
is not RRHS-refutable.
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For contradiction, let R be the refuter for SIZE[s(n)] with n¢ samples. Now we construct an
adversary A for UC*("):"" by

A(Z’y) = R(Zla ey RneyYly aync)

where z = 21 0 - -+ 0 2,7 0 Zja4t» |2i] = e(n(|2])?), and |2145t| = |2| — € - e(n?).
For any z, if y is randomly selected, then by the soundness of R,

Pr ar[A(z,y) =1]> 2/3} =Pr [lzr[R(zl,...,znc,yl,...,ync) =1]>2/3| >1/2.
y y

On the other hand, if there exists = € {0, 1}" such that UC? (m)m (x) = y, then for each i € [n,
y; = UC(zi,x). By the completeness of R, A outputs 1 with probability greater than 2/3. Thus, A
breaks U C5("):""

Now we have that SIZE[s(n)] is not RRHS-refutable. By taking a polynomial ¢(n)(> n) satis-
fying s(n) < tf(n), we conclude that

SIZE[s(n)] is not RRHS-refutable

— SIZE[t(n)] is not RRHS-refutable (.- SIZE[s(n)] C SIZE[tT(n)])
= SIZE[t(n)]" is not RRHS-refutable (".- Lemma 22)
= SIZE[t(n)] is not PAC learnable. (" Fact 4)
By Lemma 20, SIZE[n?] is not PAC learnable. |

To show Theorem 11, the implication 2 = 3 in Theorem 24 is not sufficient because the function
s(n) in the statement 3 depends on the size of AILHSGs in the statement 2. However, this problem
is easily resolved by applying Theorem 24 twice. The existence of AILHSG implies hardness
of PAC learning SIZE[n?] (2 = 1), and the hardness implies the existence of specific generator
{U csm)n” }ren (1= 3). In this case, the function s(n) is determined depending on the size of
concept class, that is n2, thus we can fix s(n) beforehand.

Appendix C. Meta-PAC Learning is as Hard as PAC Learning

In this section, we consider the non-uniform model as a computational model. First, we formally
define RRHS-refutation in the non-uniform model as follows.

Definition 25 (RRHS-refutation: non-uniform) Let € be a concept class. We say a family of
polynomial-size circuits {Ry}nen, called a refuter, RRHS-refutes the dual-class €* with m :=
m(n) samples if foranyn € N, f € €, and x1, ...,z € {0,1}", R, satisfies that

1. (soundness) R, (x1,...,Tm, f(x1),..., f(zm)) =0;
2. (completeness) Pry ¢ 1ym [Rn(u1, ..., um,b) = 1] > 1/2.

We say that € is non-uniformly RRHS-refutable if there exist a polynomial m and a polynomial-
size refuter for €* with m samples.
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Then the following equivalence between learning and refutation also holds in the non-uniform
model. It is easily shown by combining the original proof for the uniform model with Adleman’s
trick (Adleman, 1978) to remove randomness from a refuter.

Theorem 26 (PAC learning < RRHS-refutation: non-uniform) For any (polynomially repre-
sented) concept class €, € is non-uniformly PAC learnable iff €* is non-uniformly RRHS-refutable.

C.1. Proof of Theorem 13

This theorem follows from Theorem 26 and a simple padding argument. As in the statement, let €
be a concept class evaluated by a circuit family {C), }nen, where C, : {0,135 x {0, 1} — {0,1}
is a circuit of size at most 7(n).

Assume that there exists ¢ such that C,, €lLearnable, ,c for any ¢ > ¢ and n. Then for any
n € N, there exists a circuit L,, € SIZE[n?] satisfying completeness and soundness in Definition 12
with m = n® samples. Notice that the family { L,, },en is a RRHS-refuter for ¢”* with m examples.
Therefore, by Theorem 26, ¢’ is non-uniformly PAC learnable.

For the opposite direction, assume that % is non-uniformly PAC learnable. By Theorem 26, ™
is also non-uniformly RRHS-refutable. Let {R,,},cn be the polynomial-size refuter for €* with
m samples. Note that, if each R,, is contained in SIZE[nQ], then C,, €Learnable;,,. In general,
however, we can only assure that each R,, is contained in SIZE[n?] for some a € N. We resolve this
problem by the simple padding argument.

Assume that a > 2, otherwise, R,, € SIZE[n?]. For the size of example n and the sample size
m, the length of input to the refuter is nm + m = (n + 1)m. Therefore, the size of R,, is at most
N := ((n 4+ 1)m)®. Since m and NN are polynomials in n, we can select cg € N satisfying that for
any ¢ > cg,m <nfand N < ((n 4 1)n)? — (n + 1)(n — m).

For any ¢ > cg, let R, be a refuter which takes n® samples, executes R,, by using only m
samples, and discards remaining n® — m samples. Since {R), },eny RRHS-refutes ¢*, { R}, }nen
also RRHS-refutes ¢’*. In addition, R/, can be constructed from R, and (n+1)(n®—m) additional
input-gates, thus the size of R’ is bounded above by N + (n + 1)(n¢ — m) < ((n + 1)n)? and
R!, € SIZE[n?]. This implies that C,, ELearnable, ,,c for any ¢ > co.

C.2. Proof of Theorem 14

Fix polynomials 7 and m arbitrary. The theorem follows from the definition of Learnable; ,,, and the
result by Lautemann (1983).

Let C be a circuit of size N computing an evaluation E : {0,1}*(") x {0,1}* — {0,1}. If
N > 7(n), then C' ¢Learnable, ,,,. This trivial case is easily detected in polynomial-time. Therefore,
we can assume that N < 7(n).

If C' € Learnable, ,,, then there must exist a learner L € SIZE[n?] with m samples. We con-
sider the description (L) as a witness and verify the following conditions in II5: for any examples
X1y, Ty € {0,1}7,

(1) forany u € {0,1}°™, L(z1,..., Zm, E(u,z1), ..., E(u,zy)) = 0;
(2) Prbh,,_ﬁm [L(l‘l, cee sy Ty bl, e ,bm) = 1] 2 1/2
The condition (1) is obviously checked in I1{. For the condition (2), if we fix a learner L and

examples 1, ..., T, then it is easily checked in BPP by estimating the accepting probability of
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L. Since BPP C X5 N 115 (Lautemann, 1983), we can replace the probabilistic part with IT5. This
concludes that Learnable, ,,, € 3£.

In the above argument, if we can replace the probabilistic part with a deterministic polynomial-
time verifier instead of Hg, then we can also verify the condition (2) in H’l’ . Therefore, P = BPP
implies Learnable, ,,, € Zg.

C.3. Proof of Theorem 16

In fact, we can show stronger statements than Theorem 16 as follows:

Lemma 27 Let 7(n) be a polynomial satisfying 7(n) > n. If SIZE[n?] is non-uniformly PAC
learnable, then Learnable, ,c € P for sufficiently large ¢ € N.

Proof Assume that SIZE[n?] is non-uniformly PAC learnable. By Theorem 20 (for the non-uniform
model) and Theorem 26, SIZE[7(n)]* is non-uniformly RRHS-refutable. Let R be the refuter with
n samples for some ¢y € N. By the same padding argument as the proof of Theorem 13, we can
also assume that R € SIZE[n?].

For a given circuit C : {0,1}5() x {0,1}* — {0, 1}, if the size of C'is at most 7(n), then any
target function is computed by a circuit of the size 7(n). Therefore, R satisfies the third condition
in Definition 12. Thus, C' € Learnable; ,,c holds for any ¢ > cj.

On the other hand, if the size of C' is larger than 7(n), then C' must not satisfy the second
condition for Learnable, () , for any c. In other words, for any ¢ > co, C' € Learnable(,) e iff
the size of C' is at most 7(n). The latter condition is easily checked in polynomial-time from the
description of C'. Therefore, Learnable; ,,c € P for any ¢ > co. |

Lemma 28 Let 7(n) be a polynomial satisfying 7(n) > n'*< for some ¢ > 0. If SIZE[n?] is not
non-uniformly PAC learnable, then Learnable, e ¢ P for any c.

Proof Let s(n) = n + /n and ¢(n) = (the size of UCS™) = O(n + v/n + n) = O(n). Assume
that n is sufficiently large to satisfy that t(n) +n + 1 < n'T¢ < 7(n).

Assume that SIZE[n?] is not non-uniformly PAC learnable. By Theorem 20 (for the non-uniform
model), SIZE[s(n)] is also not non-uniformly PAC learnable. By Definition 12, if u € Learnable; e,
then u € Learnable, ,,c+1 for any ¢ € Nand u € {0,1}*. Therefore, by Theorem 13, we have that

ucsm ¢ Learnable, e for any ¢ € N.

For contradiction, assume that there exists ¢ € N such that Learnable; ,c € P and M be the
polynomial-time algorithm for Learnable, yc.

Now we construct an algorithm A solving the circuit-SAT problem as follows: on input (C) €
{0,1}" (assume that the size of C' is at most n and the input length is £ < n), (1) A constructs
another circuit €’ : {0, 1}+(M) x {0,131 — {0,1} as C'(uo v/, z) = C(u) A UCL™ (', z)
where u € {0,1}, v’ € {0,1}°¢(™) and 2 € {0,1}", and (2) A outputs the value of =M (C").

Note that the size of C” is at most n + t(n) + 1 < 7(n). If the given C is satisfiable, then there
exists an assignment u* € {0, 1}¢ such that C'(u*) = 1. By applying the partial assignment u*, C’
boils down to UC™ . Remember that UCE™ ¢ Learnable, ,,c. Therefore, C’ ¢ Learnable; j,c, and
A(C) outputs =M (C") = 1 for any satisfiable circuit C.
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On the other hand, if C is not satisfiable, then C’(uou/,z) = (0AUC™ («/, x)) = 0. Since we
can easily RRHS-refute the dual-class {0}* (with 2 samples by calculating negation of OR of two
labels), C" € Learnable, ,,c. Therefore, A(C') outputs =M (C’) = 0 for any unsatisfiable circuit C'.

Therefore, A correctly solves the circuit-SAT problem, and P = NP. This implies SIZE[n?] is
(even uniformly) PAC learnable (Blumer et al., 1987). This contradicts the assumption. |

Lemmas 27 and 28 immediately derive Theorem 16 (by setting 7(n) = n?) and the following
theorem. Theorem 29 shows that the specific setting of 7(n) in Definition 15 does not affect the
asymptotic complexity of our meta-PAC learning problem.

Theorem 29 Let 7(n) be a polynomial satisfying T(n) > n'*< for some € > 0. Meta-PAC learning
is hard iff Learnable, e ¢ P for infinitely many c € N.

Appendix D. Learning Hierarchy between BPP vs. NP and One-Way Functions

Based on our results in Section 2, we introduce “Learning Hierarchy (LH)”, which divides the
task of constructing one-way functions based on the worst-case assumption that NP ¢ BPP into
several stages from the perspective of weak polynomial learnability for polynomial-size circuits.
This notion brings the learning theoretic approach to investigate the gap between complexity theory
and cryptography, that is, Pessiland named by Impagliazzo (1995).

LH begins with the hardness of NP-complete problem, that is, the circuit-SAT problem. First
we introduce two constraint satisfaction problems (CSPs) based on the circuit-SAT problem.

Definition 30 (CircSAT and RRHS-CircSAT) Let s(n), m(n) > n be polynomials. We define the
language (s(n), m(n))-CircSAT as follows:

(s(n), m(n))-CircSAT
= {((01, bl), e (Cm(n), bm(n))) | neNC; e SIZE[s(n)]n, b; € {O, 1},
and 3z € {0,1}" s.t. Ci(x) = b; for any i € [m(n)]}.

We also define the problem (s(n), m(n))-RRHS-CircSAT as follows. We say that a probabilistic
polynomial-time algorithm A solves (s(n), m(n))-RRHS-CircSAT if A satisfies the following prop-
erties: foranyn € N, x1,. .., Tp ) € {0,1}", and n-input circuit C € SIZE[s(n)],

1. (soundness) Pl"A[A((.’El, C(ajl))v SRR (xm(n)v C(xm(n)))) = O] > 2/3’
2. (completeness) Pry, o 1ymem) [PralA((z1,01), .- (Zm(n), bmny)) = 1] = 2/3] = 1/2.

We say that (s(n), m(n))-RRHS-CircSAT is hard if any probabilistic polynomial-time algorithm does
not solve (s(n), m(n))-RRHS-CircSAT.

Since the circuit-SAT problem is NP-complete, it is not hard to see that (s(n), m(n))-CircSAT
is also NP-complete for any s(n), m(n)(> n). We can also regard (s(n), m(n))-RRHS-CircSAT
as the CSP given by weakening the requirements of (s(n), m(n))-CircSAT. Thus, if (s(n), m(n))-
RRHS-CircSAT is hard, then (s(n), m(n))-CircSAT is also not solvable in BPP.

It is easily checked that the hardness of RRHS-CircSAT corresponds to the proposition that
UC™m") in Definition 23 is an ATHSG.
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Lemma 31 (s(n), m(n))-RRHS-CircSATis hard iff UC*(™)™ ™) is an AIHSG.

Now we state the hierarchies (LHO)-(LH3) by strengthening the worst-case assumption step by
step:

(LHO) NP ¢ BPP, that is, for any polynomials s(n), m(n)(> n), (s(n), m(n))-CircSAT¢ BPP;
(LH1) there exist s(n) and m(n) such that (s(n), m(n))-RRHS-CircSAT is hard;
(LH2) for any s(n), there exists m(n) such that (s(n), m(n))-RRHS-CircSAT is hard;

(LH3) there exists m(n) such that for any s(n), (s(n), m(n))-RRHS-CircSAT is hard.

Obviously, (LH3) = (LH2) = (LH1) = (LHO). By Lemma 31 and the proof (2<- 3) of Theo-
rem 24, (LH1)—(LH3) are also characterized by auxiliary-input primitives in Definitions 8 and 9:

(LH1) there exists an AIHSG;
(LH2) for any polynomial #(n), there exists an AIHSG with stretch ¢(n);

(LH3) there exists an AILHSG.
By Theorem 10, (LH3) corresponds to the hardness of PAC learning.
(LH3) PAC learning (polynomial-size circuits) is hard;

Now we strengthen the hardness assumption by weakening requirements of learning. We have
two directions for relaxations: (1) target functions and (2) example distributions. First, we consider
the relaxation of requirements on target functions:

(LH3-T1) PAC learning with a TSC is hard, where the learner is given black-box query access to the
TSC (instead of the description of the TSC);

(LH3-T2) PAC learning with a TSC is hard;

(LH3-T3) there exists polynomially samplable distribution D on target functions such that PAC learning
under D is hard.

Obviously, (LH3-T3) = (LH3-T2) = (LH3-T1) = (LH3). Note that Theorem 5 shows that (LH3-
T2) corresponds to the existence of AIOWFs.

(LH3-T2) An auxiliary-input one-way function exists.
Second, we consider the other relaxation of requirements on example distributions from (LH3):

(LH3-E1) PAC learning under any polynomially samplable example distribution is hard;

(LH3-E2) PAC learning with an example sampling circuit is hard, where the learner is given the descrip-
tion of the circuit sampling examples (as in Definition 4);
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(LH3-E3) there exists a polynomially samplable distribution D such that PAC learning under the exam-
ple distribution D is hard.

Obviously, (LH3-E3) = (LH3-E2) = (LH3-E1) = (LH3).

We can combine the above conditions on target functions with the conditions on example distri-
butions such as (LH3-TiEj) where ¢, j € {0, ..., 3}. Finally, the learning model in (LH3-T3E3) =
(LH4) corresponds to the learning model considered by Blum et al. (1994).

(LH4) There exist polynomially samplable distributions Dyg;, De such that PAC learning under the
target sampling distribution D;,, and the example distribution D,, is hard.

Blum et al. (1994) showed that the above (LH4) corresponds to the existence of OWFs.
(LH4) A one-way function exists.

To the best of our knowledge, all opposite (non-trivial) directions are open at present. However,
to get cryptographic primitives (LH4) from the worst-case assumption (LHO), we must collapse all
hierarchies in LH regardless of the proof techniques. Therefore, we require further investigation of
each stage and each gap between them as a crucial open problem in theoretical computer science.
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