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Abstract
Constrained maximization of non-decreasing utility functions with submodularity-like properties is
at the core of several AI and ML applications including viral marketing, pool-based active learning,
adaptive feature selection, and sensor deployment. In this work, we develop adaptive policies for
maximizing such functions when both the utility function and item costs may be stochastic.

First, we study maximization of an adaptive weak submodular function which is submodular
in an approximate and probabilistic sense, subject to a stochastic fractional knapsack constraint,
which requires total expected item cost to be within a given capacity. We present the β-GREEDY
policy for this problem; our approximation guarantee for it recovers many known greedy maximiza-
tion guarantees as special cases. Next, we study maximization of an adaptive submodular function,
which is submodular in a probabilistic sense, subject to a stochastic knapsack constraint, which
requires the total item cost to be within a given capacity with probability one. We present the MIX
policy for this problem; our approximation guarantee for it is the first known approximation guar-
antee for maximizing a non-linear utility function subject to a stochastic knapsack constraint. Using
alternative parameterizations of MIX, we also derive the first known approximation guarantees for
maximizing an adaptive submodular function subject to a deterministic knapsack constraint.

Our guarantees are powered by an innovative differential analysis technique which models the
β-GREEDY policy using a continuous-time stochastic reward process of a particle whose reward is
related to the optimal utility through a differential inequality. The solution to this inequality yields
our β-GREEDY guarantee. We combine differential analysis with a variety of other ideas to derive
our MIX guarantees.

1. Introduction

Constrained maximization of non-decreasing utility functions with submodularity-like properties is
at the core of several AI and ML applications. Submodularity is a property of diminishing returns
which states that the increment in utility obtained by adding an item to an itemset decreases as
this itemset is expanded through the addition of other items. In applications such as viral marketing,
active learning, and sensor deployment, the utility function is stochastic and is submodular in a prob-
abilistic sense. Golovin and Krause (2011) introduced the family of adaptive submodular functions
for modeling such settings.1 In other applications such as sparse regression and dictionary selection,
the utility function is deterministic and submodular in an approximate sense. Das and Kempe (2018)
introduced the concept of submodularity ratio for characterizing such weak submodular functions.
Fujii and Sakaue (2019) generalized this concept for utility functions that are stochastic and are
submodular in a sense that is both approximate and probabilistic. They introduced the concept of
adaptive submodularity ratio for characterizing such adaptive weak submodular functions.

1. As is standard in literature, in this paper, an ‘adaptive function’ denotes a function that is stochastic.
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We study maximization of these functions under stochastic item costs. Concretely, we have
a ground set of items E; each e ∈ E is endowed with a random state S(e) as well as a random
cost C(e) where S and C are distributed according to known priors P and Q respectively.2 The
realizations of S(e) and C(e) can be observed once item e is selected. An adaptive policy selects
items based on states and costs of items selected in previous iterations, in order to maximize the
expected utility of selected itemset subject to a constraint on the total cost. In the stochastic frac-
tional knapsack problem, the total expected cost conditional on any realization of item states needs
to be within a given capacity B. We study this problem for the adaptive weak submodular function
family which includes all other function families mentioned above as special cases. In the stochastic
knapsack problem, total cost is required to be within the given capacity B with probability (w.p.) 1.
Deterministic knapsack is a special case of stochastic knapsack with deterministic item costs. We
study stochastic and deterministic knapsack problems for the adaptive submodular function family
which includes submodular functions as a special case.

Our formulation encapsulates a wide range of practical applications, a few of which are illus-
trated next. a) Viral marketing: Consider a marketing campaign where we adaptively select users
in a social network and ‘influence’ them by offering them a free trial. Users who are influenced
may also influence others through a stochastic network diffusion process. Our objective, namely,
the expected number of people in the network who are eventually influenced can be modeled as an
adaptive monotone submodular function (Golovin and Krause, 2011; Sun et al., 2018). The cost of
selecting a user could represent the duration of free trial required in order for the user to begin influ-
encing neighbors; this may be stochastic and known only distributionally in advance. b) Pool-based
active learning: Given a set of unlabeled examples, consider the problem of adaptively selecting
a small subset for labeling s.t. their labels imply the labels of all other examples. Our objective,
namely, the expected total ‘shrinkage’ in version space (the set of classifiers consistent with labeled
examples), can be modeled as an adaptive monotone submodular function (Golovin and Krause,
2011; Chen and Krause, 2013; Cuong et al., 2013, 2014). Cost could represent effort required for
labeling an example; this may be stochastic and known only distributionally in advance. c) Adap-
tive feature selection for sparse regression: A learner has access to a response vector and a prior
distribution over a set of features, where uncertainty in features is due to measurement noise. The
learner can adaptively query features in order to observe them accurately. Our objectively, namely,
the squared multiple correlation or the R2 fit, can be modeled as an adaptive weak submodular
function when the measurement noise is independent across features (Fujii and Sakaue, 2019). The
cost of querying a feature may be stochastic and known only distributionally in advance.

1.1. Our Contributions

1) Adaptive Weak Submodular Function + Stochastic Fractional Knapsack: We present the
β-GREEDY policy for stochastic fractional knapsack. When the utility function f is adaptive weak
submodular, we prove that β-GREEDY achieves an approximation guarantee of 1 − e−αβ . Here,
α ∈ [0, 1] is the adaptive submodularity ratio which measures the degree to which f is submodular
and β ∈ [0, 1] is the approximation factor of the greedy step, which ensures that β-GREEDY is
robust to approximate greedy selection and achieves a provably-good guarantee even when access
to various quantities (such as priors P and Q) is only approximate.

2. For any given item e ∈ E, C(e) is independent of S and other item costs.
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Significance: Our β-GREEDY guarantee recovers many known guarantees for greedy maxi-
mization as special cases. Previous guarantees for maximization of weak and adaptive weak sub-
modular functions (Das and Kempe, 2018; Khanna et al., 2017; Bian et al., 2017; Fujii and Sakaue,
2019) were derived under a cardinality constraint which is the case of all item costs equal to 1. Das
and Kempe (2018) proved an approximation guarantee of 1−e−α for the GREEDY policy with exact
greedy selection (β = 1) for cardinality constrained maximization of a weak submodular function
with submodularity ratio α. Fujii and Sakaue (2019) generalized this guarantee (with β = 1) for
adaptive weak submodular functions. Golovin and Krause (2011) proved an approximation guar-
antee of 1 − e−β for β-GREEDY under a fractional knapsack constraint with deterministic item
costs and an adaptive submodular function; the latter is equivalent to an adaptive weak submodular
function with α = 1 (Fujii and Sakaue, 2019). These guarantees generalize the classic 1 − 1/e
approximation guarantee of Nemhauser et al. (1978) for cardinality constrained maximization of
submodular functions. Our β-GREEDY guarantee generalizes (Das and Kempe, 2018; Fujii and
Sakaue, 2019; Golovin and Krause, 2011; Nemhauser et al., 1978) by simultaneously handling 1)
item costs that are stochastic, 2) adaptive weak submodular utility function characterized by adaptive
submodularity ratio α ∈ (0, 1], and 3) approximate greedy selection characterized by β ∈ (0, 1].
2) Adaptive Submodular Function + Stochastic Knapsack: We present the MIX policy for
stochastic knapsack which is a probabilistic mix of two greedy policies. When the utility function f
is adaptive submodular, we prove that MIX achieves an approximation guarantee of 1

6

(
1− e−β/4

)
.

Significance: Previous guarantees for stochastic knapsack problem were derived under the as-
sumption that the utility function is linear (Dean et al., 2008; Bhalgat et al., 2011; Bhalgat, 2011;
Halman et al., 2014; Gupta et al., 2011; Li and Yuan, 2013; Ma, 2014). Under the linearity as-
sumption, utility f(A) of an itemset A is the sum of item-wise utilities

∑
e∈A f(e) where the utility

f(e) of item e is unrelated to the composition of itemset A. This assumption breaks down when the
utility function is submodular or adaptive submodular. Our work presents the first guarantees for
stochastic knapsack under non-linear utility functions.
3) Adaptive Submodular Function + Deterministic Knapsack: The MIX policy is parameterized
by two hyper-parameters. We present two alternative parameterizations of MIX than the one used
in 2) and derive two new guarantees for adaptive submodular maximization under deterministic
knapsack. The first of these is a 1

2

(
1− e−β/2

)
approximation guarantee, which (for the special case

of deterministic knapsack) improves over the 1
6

(
1− e−β/4

)
approximation guarantee in 2). The

second is a β
1+β

(
1− e−β

)
approximation guarantee which improves over the first when β ≥ 0.377.

Significance: A variety of guarantees exist for maximizing a submodular function under a
deterministic knapsack constraint (Khuller et al., 1999; Sviridenko, 2004; Leskovec et al., 2007;
Sviridenko et al., 2015; Yoshida, 2019; Calinescu et al., 2011; Cuong and Xu, 2016; Kawase et al.,
2019). We develop the first guarantees for maximizing an adaptive submodular function under a
deterministic knapsack constraint. Our β

1+β

(
1− e−β

)
guarantee generalizes a 1

2(1−1/e) guarantee
due to Leskovec et al. (2007) for deterministic submodular functions (with β = 1).
4) Differential Analysis: One of the central contributions of this paper is an innovative differential
analysis technique which lies at the heart of all our approximation guarantees. In this technique, we
model the execution of β-GREEDY through a continuous-time stochastic reward process involving a
particle which traverses the positive x-axis and continuously collects reward at a stochastic rate. We
relate the particle’s reward to β-GREEDY and optimal utilities through a differential inequality. This
inequality can be solved through standard Laplace transform machinery for differential equations
resulting in our β-GREEDY guarantee. We combine differential analysis with other ideas to derive
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our MIX guarantees. In particular, we use differential analysis in conjunction with the idea of
truncated costs introduced by Dean et al. (2008) and the idea of policy emulation to derive our MIX

guarantee for stochastic knapsack.

1.2. Applications

β-GREEDY and MIX policies enable provably-good sequential decision making in a wide variety
of applications. Examples of applications where β-GREEDY guarantee holds include all of the
following. Examples of applications where MIX guarantees hold include applications below that
are characterized by adaptive submodularity or submodularity.

Bipartite influence maximization and adaptive feature selection (Fujii and Sakaue, 2019) are
some applications characterized by adaptive weak submodularity. Sparse regression, dictionary se-
lection (Das and Kempe, 2018), Bayesian A-optimality in experimental design, and maximization
of LPs with combinatorial constraints (Bian et al., 2017) are some applications characterized by
weak submodularity. Viral marketing, sensor deployment, active learning (Asadpour et al., 2008;
Golovin and Krause, 2011; Bai et al., 2006; Chen and Krause, 2013; Cuong et al., 2013, 2014; Fujii
and Kashima, 2016; Golovin et al., 2010; González-Banos, 2001; Krause and Golovin, 2014; Krause
et al., 2008; Sun et al., 2018), active detection (Chen et al., 2014), maximizing value of informa-
tion (Krause and Guestrin, 2007; Chen et al., 2015), preference elicitation, face detection (Gabillon
et al., 2014), active planning (Hollinger et al., 2013), touch based localization Javdani et al. (2013),
database query discovery (Shen et al., 2014), community sensing (Singla and Krause, 2013), and
sequential Bayesian search Wen et al. (2013) are some applications characterized by adaptive sub-
modularity. Influence maximization in social networks (Kempe et al., 2003; Leskovec et al., 2007),
information gain maximization in graphical models (Krause and Guestrin, 2005), multi-document
summarization (Lin and Bilmes, 2011), and image collection summarization (Tschiatschek et al.,
2014) are some applications characterized by submodularity.

2. Preliminaries

Adaptive Stochastic Optimization: Let E denote the ground set of items. Each e ∈ E is endowed
with a random state S(e) ∈ O. The state-relation S which maps each item to its state is distributed
according to a known prior P . Utility function F : 2E × OE → R maps each (itemset, state-
relation) pair to a utility value. For a given A ⊆ E, F (A,S) is a random variable (r.v.) which is
fixed when realization of S is given. Item states need not be mutually independent. Each e ∈ E
is endowed with a random cost C(e) ∈ R>0. The cost-vector C which maps each item to its cost
is distributed according to a known prior Q. S and C are independent and item costs are mutually
independent. For ease of exposition, we will assume P and Q are discrete distributions.

A policy is singly adaptive if it selects items based on states of items selected in previous itera-
tions. A policy is doubly adaptive if it selects items based on both states and costs of items selected
in previous iterations. A truncated policy πt is derived from a doubly adaptive policy πd and is
parameterized by a budget; πt executes πd until its total cost exceeds the budget at which point πt
discards the last item selected and terminates immediately. Let SP , DP and T P denote the set of
singly adaptive, doubly adaptive and truncated policies respectively.
Problem Formulation: For an r.v. X , let supp(X) denote the support of X . Let A(π) denote the
set of items selected (and not discarded) by policy π. Define the stochastic function f : 2E → R≥0

s.t. ∀A ⊆ E, f(A) = F (A,S). For A ⊆ E, let C(A) ,
∑

e∈AC(e) denote the total cost of
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A. Define the r.v.s f(π) , f(A(π)) and C(π) , C(A(π)). The integral and fractional stochastic
knapsack problems are stated formally in (I) and (F) respectively.

max
π∈T P

E[f(π)] subject to Pr[C(π) ≤ B] = 1 (I)

max
π∈DP

E[f(π)] subject to E[C(π)|S = φ] ≤ B, ∀φ ∈ supp(S) (F)

Note that (I) is defined over truncated policies. This is standard practice in stochastic knapsack
literature since an optimal doubly adaptive policy which is feasible for (I) can be arbitrarily worse
than an optimal truncated policy which is feasible for (I). Also note the use of conditional expecta-
tion in (F). This serves two purposes. From a theoretical perspective, our analysis of (F) acts as a
key building block for our analysis of (I). From a practical perspective, it enforces a useful fairness
condition in budget allocation which states that budget for certain states cannot be increased at the
expense of others in order to maximize expected utility.
Adaptive Functions: For E1 ⊆ E and e ∈ E \ E1, let the r.v. ∆fE1(e) , f(E1 ∪ {e}) −
f(E1) denote the marginal utility of e w.r.t. E1. Analogously, for E2 ⊆ E, define ∆fE1(E2) ,
f(E1 ∪ E2) − f(E1). A subrealization ϕ is a relation which maps each item in a subset of E
to a state; this subset is denoted by dom(ϕ). ‘ϕ ⊆ S’ denotes the event that ϕ is consistent
with S, i.e., ∀e ∈ dom(ϕ) : S(e) = ϕ(e). Define the set of subrealizations S , {ϕ|Pr[ϕ ⊆
S] > 0}. Given a subrealization ϕ and e ∈ E \ dom(ϕ), let the conditional r.v. ∆f(e|ϕ) ,
[∆fdom(ϕ)(e)|ϕ ⊆ S] denote the marginal utility of e w.r.t. ϕ. Analogously, for E2 ⊆ E, define
∆f(E1|ϕ) , [∆fdom(ϕ)(E2)|ϕ ⊆ S]. For subrealizations ϕ1, ϕ2, we write ϕ1 ⊆ ϕ2 to denote the
following: ‘dom(ϕ1) ⊆ dom(ϕ2) and ∀e ∈ dom(ϕ1) : ϕ1(e) = ϕ2(e)’.

Definition 1 (Golovin and Krause (2011)) Function f is adaptive submodular if it satisfies (1),
(2), and (3).

E[f(∅)] = 0 (1)

∀ϕ ∈ S,∀e ∈ E \ dom(ϕ) : E[∆f(e|ϕ)] ≥ 0 (2)

∀ϕ2 ∈ S, ∀ϕ1 ⊆ ϕ2, ∀e ∈ E \ dom(ϕ2) : E[∆f(e|ϕ1)] ≥ E[∆f(e|ϕ2)] (3)

Let the conditional r.v. ∆f(π|ϕ) , ∆f(A(π)|ϕ) denote the marginal utility of A(π) w.r.t. ϕ.

Definition 2 (Fujii and Sakaue (2019)) Function f is adaptive weak submodular with adaptive
submodularity ratio α ∈ [0, 1] if it satisfies (1), (2) and (4).

∀ϕ ∈ S,∀π ∈ SP : αE[∆f(π|ϕ)] ≤
∑

e∈E\dom(ϕ)

Pr[e ∈ A(π)|ϕ ⊆ S]E[∆f(e|ϕ)] (4)

Fujii and Sakaue (2019) showed that (4) holds with α = 1 if and only if f is adaptive submodular.
Adaptive functions are stochastic generalizations of their deterministic counterparts. In particular,
we can model deterministic utility and cost functions by letting P andQ be degenerate distributions
over support of size one.

3. β-GREEDY Policy

The β-GREEDY policy is illustrated in Algorithm 1. It is a singly adaptive policy whose candidate
eϕ during the current iteration is the item which maximizes the ratio of expected marginal utility
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over expected cost, conditional on the current subrealization ϕ. This candidate selection step which
is implemented by the arg max function in Algorithm 1 can be β-approximate. In order to simplify
our analysis, we require the arg max function to be deterministic: i.e., its output eϕ is unique given
its input ϕ. If its residual capacity (current value of b) is insufficient, it uses randomized rounding
to either select eϕ or terminate. The rounding probability is s.t. the expected cost of β-GREEDY

equals its budget (initial value of b), conditional on any realization of S. Initializing b← B ensures
that β-GREEDY is a feasible policy for instance F . Theorem 3 states our approximation guarantee
for β-GREEDY which we prove in Section 3.1.

Algorithm 1 β-GREEDY policy
Initialize: b← budget, ϕ← ∅, stop← false
repeat

eϕ ← arg maxe∈E\dom(ϕ) E[∆f(e|ϕ)]/E[C(e)]

if b < E[C(eϕ)] then stop← true w.p. (1− b/E[C(e)])
if ¬stop then select eϕ; update ϕ← ϕ ∪ {(eϕ, S(eϕ))} and b← b−E[C(e)]

until dom(ϕ) = E or b ≤ 0 or stop

3.1. Analysis of β-GREEDY

Theorem 3 Let f be an adaptive weak submodular function satisfying (1), (2), and (4). Let π∗

denote an optimal doubly adaptive policy for stochastic fractional knapsack instance (F). Let σ de-
note the β-GREEDY policy initialized with budget b ← B. Then, E[f(σ)] ≥

(
1− e−αβ

)
E[f(π∗)]

where the expectations are over the distributions of S, C and internal random choices of σ and π∗.

Proof outline: Our proof strategy for Theorem 3 is as follows. We will introduce a continuous
time stochastic process which models the execution of σ using a particle which accumululates re-
ward over time at a stochastic rate. We relate the rate function of the particle to the expected utility
of σ during various stages of its execution in Lemma 5. We build on this lemma to relate the rate
function to the expected utility of π∗ using a differential inequality in Lemma 7. The solution to
this differential inequality proves Theorem 3. With the exception of two supporting lemmas (4 and
6) whose proofs are in Appendix A, the complete proof of Theorem 3 is presented below.

Complete proof: Let σ∞ denote the β-GREEDY policy initialized with budget b ← E[C(E)].
This ensures that σ∞ will terminate only after selecting all items in E. We model the execution
of σ∞ using a continuous-time stochastic reward process ν, which is also referred to as the rate
function. This process is best imagined through a particle that starts at the origin at time t = 0, and
moves along the positive x-axis at unit speed. Let C(ϕ) , C(dom(ϕ)). For x ∈ [0,E[C(E)]),
define:

θ(x) , arg max
{ϕ|ϕ is the subrealization at the start of some iteration of σ∞ s.t. E[C(ϕ)]≤x}

E[C(ϕ)] (5)

ν(x) , ∆f(eθ(x)|θ(x))/E[C(eθ(x))] (6)

θ(x) is the last subrealization observed by σ∞ before its expected cost exceeded x. Recall from
Algorithm 1 that eθ(x) is the item selected by σ∞ during the iteration at the start of which its
subrealization is θ(x). ν(x) is the rate at which the particle accumulates reward when it reaches
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position x. Both θ(x) and ν(x) are r.v.s and the latter is fixed when the former is given. Suppose ϕ
is the subrealization of σ∞ at the start of an iteration. (5) and (6) imply ∀x ∈ [E[C(ϕ)],E[C(ϕ)] +
E[C(eϕ)]), θ(x) = ϕ and E[ν(x)|θ(x) = ϕ] = E[∆f(eϕ|ϕ)]/E[C(eϕ)]. Lemma 4 follows from
the fact that arg max function in Algorithm 1 is deterministic. Its proof is in Appendix A.

Lemma 4 ∀x ∈ [0,E[C(E)]),∀ϕ ∈ supp(θ(x)), events ‘θ(x) = ϕ’ and ‘ϕ ⊆ S’ are equivalent.

Lemma 5 The rate function ν, the function θ, and the utility of σ are related as follows.

E[f(σ)] =

∫ B

0
E[ν(x)]dx (7)

∀x ∈ [0,E[C(E)]) : E[f(θ(x))] ≤
∫ x

0
E[ν(t)]dt (8)

Proof Given S = φ, the sequence of subrealizations seen by σ∞ at the start of its iterations is fixed.
Let this be ϕ1 = ∅, ϕ2, . . . , ϕ|E|. Let k be s.t. θ(B) = ϕk. During iterations i ∈ {1, . . . k − 1},
from the definition of ν in (6), the expected increment in σ’s utility is as follows:

E[∆fϕi(eϕi)|S = φ] =

∫ E[C(ϕi+1)]

E[C(ϕi)]
[ν(x)|S = φ]dx (9)

During iteration k, due to randomized rounding, the expected increment in σ’s utility is as follows:

E[f(σ)− f(ϕk)|S = φ] =
(B −E[C(ϕk)])E[∆fϕk(eϕk)|S = φ]

E[C(eϕk)]
=

∫ B

E[C(ϕk)]
[ν(x)|S = φ]dx

(10)

In (9) and (10), note that the conditional r.v. [ν(x)|S = φ] is a fixed quantity and therefore equals
the conditional expectation E[ν(x)|S = φ]. Summing these increments, we have:

E[f(σ)− f(∅)|S = φ] =

∫ B

0
E[ν(x)|S = φ]dx (11)

Deconditioning (11) and combining with (1) yields (7). From (9), we also have:

E[f(θ(x))− f(∅)|θ(x) = ϕ] =

∫ E[C(ϕ)]

0
E[ν(t)|θ(x) = ϕ]dt ≤∫ E[C(ϕ)]

0
E[ν(t)|θ(x) = ϕ]dt+

(x−E[C(ϕ)])E[∆f(eϕ|ϕ)]

E[C(eϕ)]
=

∫ x

0
E[ν(t)|θ(x) = ϕ]dt (12)

The inequality in (12) is due to (2). Deconditioning (12) and combining with (1) yields (8).

Lemma 6 is a consequence of (2). Its proof is in Appendix A.

Lemma 6 ∀ϕ ∈ S,∀π ∈ DP, ∀x ∈ [0,E[C(E)]) : E[f(π)] ≤ E[f(A(π) ∪ dom(θ(x)))]

Lemma 7 The rate function ν is related to the utility of π∗ as follows.

∀x ∈ [0, B), E[f(π∗)] ≤
∫ x

0
E[ν(t)]dt+

BE[ν(x)]

αβ
(13)
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Proof

E[f(A(π∗) ∪ dom(θ(x)))|θ(x) = ϕ] = E[f(ϕ)] + E[∆fϕ(A(π∗))]

≤ E[f(ϕ)] +

∑
e∈E\dom(ϕ) Pr[e ∈ A(π∗)|ϕ ⊆ S]E[∆fϕ(e)]

α
(14)

≤ E[f(ϕ)] +
E[∆fϕ(eϕ)]

αβE[C(eϕ)]

∑
e∈E\dom(ϕ)

Pr[e ∈ A(π∗)|ϕ ⊆ S]E[C(e)] (15)

≤ E[f(θ(x))|θ(x) = ϕ] +
E[ν(x)|θ(x) = ϕ]B

αβ
(16)

(14) follows from (4) and (15) follows from the fact that the arg max function in Algorithm 1
is β-approximate. (16) follows Lemma 4 and from the fact that π∗ is a feasible policy for (F).
Deconditioning (16) and combining it with (8) and Lemma 6 proves this lemma.

Proof [Theorem 3] Let G : [0, B] → R be a continuously differentiable function which satisfies
the ordinary differential equation (ODE) E[f(π∗)] = G(t) + B

αβ
dG
dt (t) and the boundary condition

F (0) = 0. The solution to this differential equation which can be derived through standard Laplace
transform based techniques is G(t) =

(
1− e−

αβt
B

)
E[f(π∗)]. Let the particle referred to until now

be P1. Let P2 be another particle which also starts at the origin at time t = 0 and moves on the
positive x-axis at unit speed. Thus, at every time instant, P1 and P2 have the same location. P2

accumulates reward at point x at rate dG
dt (t)

∣∣
t=x

. (13) and the above ODE imply that at any point
x ∈ [0, B), if the total expected reward of P1 equals the total reward of P2, then P1’s expected rate
of reward is no less than that of P2. Hence at any point x ∈ [0, B), P1 accumulates as much reward
as P2 in expectation: i.e.,

∀x ∈ [0, B) :

∫ x

0
E[ν(t)]dt ≥ G(x) =⇒

∫ B

0
E[ν(t)]dt = lim

x→B

∫ x

0
E[ν(t)]dt ≥ G(B) (17)

Theorem 3 now follows from (7) and (17).

4. MIX Policy

The MIX policy is illustrated in Algorithm 2. It is a truncated policy which is parameterized by
a probability value p` and a cost threshold λ. MIX probabilistically chooses between two other
policies, namely LIGHT and SINGLETON and executes the chosen policy. For item e, define the
truncated cost of e as the r.v. K(e) , min{C(e), B}. Item e is called light if E[K(e)] ≤ λ and
heavy otherwise. LIGHT selects light items iteratively based on the ratio of expected marginal utility
over expected truncated cost. If LIGHT reaches an iteration in which its total cost exceeds its budget
(value of b), it discards its final selection and terminates. SINGLETON selects a single item which
maximizes Pr[C(e) ≤ B]E[f(e)]. If the item’s cost exceeds B, SINGLETON discards it. Theorems
8, 13, and 14 describe how to choose the values of p` and λ in order to derive our guarantees. Setting
b← B during the initialization step of LIGHT ensures that MIX is a feasible policy for instance I.
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Algorithm 2 MIX(p`, λ) policy
Execute LIGHT with probability p` and execute SINGLETON with probability 1− p`
Policy LIGHT

Initialize: b← budget, ϕ← ∅, stop← false, L← {e|E[K(e)] ≤ λ}
repeat

select eϕ ← arg maxe∈L\dom(ϕ) E[∆f(e|ϕ)]/E[K(e)]

if C(ϕ) + C(eϕ) ≤ b then ϕ← ϕ ∪ {(eϕ, S(eϕ))}
else discard eϕ; stop← true

until dom(ϕ) = L or stop
Policy SINGLETON

select e∗ ← arg maxe∈E Pr[C(e) ≤ B]E[f(e)]
if C(e∗) > B then discard e∗

4.1. Analysis of MIX

Let π† denote an optimal truncated policy for instance I and let τ denote the MIX policy. Let τ` and
τs denote the LIGHT and SINGLETON policies respectively. Theorem 8 states the approximation
guarantee of MIX for stochastic knapsack which we prove in Section 4.1.1.

4.1.1. STOCHASTIC KNAPSACK

Theorem 8 Let f be an adaptive submodular function. Set p` = 1
2 and λ = B/6 in the MIX

policy. Then, E[f(τ)] ≥ 1
6

(
1− e−β/4

)
E[f(π†)].

Proof outline: We split the expected utility of π† into two portions: the portion contributed by
light items (R) and the remaining portion contributed by heavy items (R̄). We relate the expected
utility of τ` to R in Lemma 11; this lemma is built on several ideas, including the notion of policy
emulation which emulates a truncated policy using a singly adaptive policy, the notion of composite
policy which combines elements of greedy and optimal policies, an upper bound on the truncated
cost of π† and the doubly adaptive policy from which it is derived, and the ideas of differential
analysis introduced in Section 3.1. We relate the expected utility of τs to R̄ in Lemma 12 by
arguing that π† cannot choose too many heavy items in expectation. Combining these lemmas
yields Theorem 8. With the exception of a supporting lemma (10) which is presented in Appendix
A, the complete proof of Theorem 8 is presented below.

Complete proof: Construct a fractional stochastic knapsack instance L whose utility function is
f , whose cost function is K, whose capacity is 2B, and whose ground set of items is the subset of
light items L in Algorithm 2: i.e., items e s.t. E[K(e)] ≤ λ = B/6. Let σ̄ denote the β-GREEDY

policy applied to L and initialized with budget b ← 2B. Let σ̄∞ denote the β-GREEDY policy
applied to L and initialized with budget b ← E[K(L)]. This ensures that σ̄∞ will terminate only
after selecting all items in L. Analogous to (5) and (6), ∀x ∈ [0,E[K(L)]), define:

θ̄(x) , arg max
{ϕ|ϕ is the subrealization at the start of some iteration of σ̄∞ s.t. E[K(ϕ)]≤x}

E[K(ϕ)] (18)

ν̄(x) , ∆f(eθ̄(x)|θ̄(x))/E[K(eθ̄(x))] (19)

Lemma 9 Set λ = B/6 in the MIX policy. Then, E[f(τ`)] ≥ 1
3

∫ B/2
0 E[ν̄(x)]dx.

9
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Proof Conditioning on the event S = φ, suppose the sequence of subrealizations seen by σ̄∞

equals ϕ1, . . . , ϕ|L|+1 and the sequence of items selected by it equals eϕ1 , . . . , eϕ|L| . Item ei will be
included in τ` if the total cost of items e1, . . . , ei does not exceed B. Hence, we have:

[f(τ`)|S = φ] =

|L|∑
i=1

[
∆f(eϕi |ϕi)1C(ϕi)+C(eϕi )≤B

∣∣S = φ
]

=

|L|∑
i=1

[
ν̄(E[K(ϕi)])E[K(eϕi)]1C(ϕi)+C(eϕi )≤B

∣∣S = φ
]

≥
∑

i|E[K(ϕi)]≤B/2

[
ν̄(E[K(ϕi)])E[K(eϕi)]1C(ϕi)+C(eϕi )≤B

∣∣S = φ
]

=⇒

E[f(τ`)|S = φ] ≥
∑

i|E[K(ϕi)]≤B/2

E
[
ν̄(E[K(ϕi)])

∣∣S = φ
]
E[K(eϕi)] Pr[C(ϕi+1) ≤ B] (20)

≥
∑

i|E[K(ϕi)]≤B/2

E
[
ν̄(E[K(ϕi)])

∣∣S = φ
]
E[K(eϕi)](1−E[K(ϕi+1)]/B) (21)

≥
∑

i|E[K(ϕi)]≤B/2

E
[
ν̄(E[K(ϕi)])

∣∣S = φ
]
E[K(eϕi)]

(
1− 4B

6B

)
(22)

≥ 1

3

∫ B/2

0
E[ν̄(x)|S = φ]dx =⇒ E[f(τ`)] ≥

1

3

∫ B/2

0
E[ν̄(x)]dx (23)

(20) follows due to r.v.s S and C being independent. (21) follows from a modified version of
Markov’s inequality (24). Its derivation below is from Dean et al. (2008).

Pr[C(E1) ≥ B] ≤ E[min{C(E1)/B, 1}] ≤ E[
∑
e∈E1

min{C(e)/B, 1}] = E[K(E1)]/B

=⇒ ∀E1 ⊆ E, Pr[C(E1) ≤ B] ≥ 1−E[K(E1)]/B (24)

(22) holds because E[K(ϕi+1)] = E[K(ϕi)] + E[K(eϕi)] ≤ B/2 + B/6. (23) follows from the
first inequality in (17). Hence, the lemma is proved.

We will emulate π† using a singly adaptive policy π‡ as follows: π‡ selects items using the same
logic used by π† and observes the state S(e) of each selected item e; but instead of observing the cost
C(e), it samples a value from the distribution of C(e) and uses this sampled value in its execution.
By construction, for any possible value φ of S, the distribution of the conditional r.v. [A(π‡)|S = φ]
is identical to that of [A(π†)|S = φ]. Let ϑi be an r.v. which denotes the subrealization of π‡ at the
start of iteration i. For a fixed e ∈ E, let ei ← e denote the event that π‡ selected item e during
iteration i. Let i∗ denote the maximum value of i s.t. the probability of π‡ terminating in iteration i
is positive. We prove Lemma 10 in Appendix A. The idea behind this lemma is that g(e, π‡) is the
contribution of item e to the expected utility of π‡, R is the contribution due to light items, and R̄ is
the contribution due to items that are heavy.

Lemma 10 Define g(e, π‡) ,
∑i∗

i=1

∑
ϑ∈supp(ϑi) Pr[ϑi = ϑ] Pr[ei ← e|ϑi = ϑ]E[∆f(e|ϑ)].

Then, E[f(π‡)] = R+ R̄, where R ,
∑

e∈L g(e, π‡) and R̄ ,
∑

e∈E\L g(e, π‡).

10
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Lemma 11 Set λ = B/6 in the MIX policy. Then, E[f(τ`)] ≥ 1
3(1− e−β/4)R.

Proof Let π+ denote the doubly adaptive policy from which π† is derived. For an itemset E1 and
policy π, define K(E1) ,

∑
e∈E1

K(e) and K(π) , K(A(π)). By definition of truncated costs
and policies, we have K(π†) ≤ C(π†) ≤ B w.p. 1. Since π+ selects all items in π† and utmost one
more item, and since K(e) ≤ B for every item w.p. 1, (25) holds.

E[K(π‡)|S = φ] =
∑
e∈E

Pr[e ∈ A(π‡)]E[K(e)] =
∑
e∈E

Pr[e ∈ A(π†)]E[K(e)]

≤
∑
e∈E

Pr[e ∈ A(π+)]E[K(e)] = E[K(π+)|S = φ] ≤ 2B (25)

Fix x ∈ [0,E[K(L)]). We will construct two distinct composite policies θ̄ ⊕ π‡ and π‡ ⊕ θ̄
as follows. Both these policies have two stages. θ̄ ⊕ π‡, in its first stage, selects items in the same
manner as σ̄∞ until it reaches an iteration at the start of which its subrealization ϕ ∈ supp(θ(x)).
At this point, it shifts to the second stage. In this stage, it selects items in the same manner as π‡.
Every e ∈ A(π‡) will be a candidate during some iteration in the second stage; if this candidate is
already selected by θ̄ ⊕ π‡ in the first stage, there is nothing more to be done in this iteration, and
θ̄⊕ π‡ moves on to the next iteration. θ̄⊕ π‡ terminates as soon as all items in dom(θ̄(x))∪A(π‡)
are selected.

π‡ ⊕ θ̄, in its first stage, selects items in the same manner as π‡ until π‡ terminates at which
point, it shifts to the second stage. In this stage, it selects items in the same manner as σ̄∞ until
it reaches an iteration at the start of which its subrealization ϕ (which contains item states from
both stages 1 and 2) satisfies: ∃ϕ′ ∈ supp(θ̄(x)) s.t. ϕ′ ⊆ ϕ. Every e ∈ θ̄(x) will be a candidate
during some iteration in the second stage; if this candidate is already selected by π‡ ⊕ θ̄ in the first
stage, there is nothing more to be done in this iteration, and π‡ ⊕ θ̄ moves on to the next iteration.
π‡ ⊕ θ̄ terminates as soon as all items in dom(θ̄(x)) ∪ A(π‡) are selected. It should be clear from
the description of these two composite policies that the itemsets selected by them are identical. We
now have,

R = E[f(π‡)]− R̄ ≤ E[f(π‡)] ≤ E[f(π‡ ⊕ θ̄)] = E[f(θ̄ ⊕ π‡)] (26)

≤ E[f(θ̄)] +
2B

β
E[ν̄(x)] ≤

∫ x

0
E[ν̄(t)]dt+

2B

β
E[ν̄(x)] (27)

The second inequality in (26) follows from (3) and its formal proof is along the same lines as that
of Lemma 6 in Appendix A. The first inequality in (27) follows from (25) along with the same
reasoning as in the proof of Lemma (7). The second inequality follows from (8). We now have
the differential inequality

∫ x
0 E[ν̄(t)]dt + 2BE[ν̄(x)]

β ≥ R. Using similar arguments as in the proof
of Theorem 3 which resulted in (17), we have the following solution to this differential inequality:∫ x

0 E[ν̄(t)]dt ≥
(
1− e−βx/2B

)
R. Letting x = B/2 in this solution and combining it with Lemma

9 proves this lemma.

Lemma 12 Set λ = B/6 in the MIX policy. Then, E[f(τs)] ≥ 1
3(1− e−β/4)R̄.
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Proof We have:∑
e∈E\L

Pr[e ∈ A(π+)]E[K(e)] ≤ 2B =⇒
∑
e∈E\L

Pr[e ∈ A(π+)] ≤ 12 (28)

 ∑
e∈E\L

Pr[e ∈ A(π†)]E[f(e)]

 ≤ ∑
e∈E\L

Pr[e ∈ A(π+)] Pr[C(e) ≤ B]E[f(e)] (29)

≤
∑
e∈E\L

Pr[e ∈ A(π+)]

(
max
e′∈E

Pr[C(e′) ≤ B]E[f(e′)]

)
≤ 12E[f(τs)]/β (30)

=⇒ E[f(τs)] ≥
β

12

 ∑
e∈E\L

Pr[e ∈ A(π†)]E[f(e)]


≥ 1

3

(
1− e−β/4

) ∑
e∈E\L

Pr[e ∈ A(π†)]E[f(e)]

 ≥ 1

3

(
1− e−β/4

)
R̄ (31)

(28) follows from the fact that for every item e that is heavy, E[K(e)] > λ = B/6. (29) follows
from the fact an item e ∈ A(π†) only if the independent events e ∈ A(π+) and C(e) ≤ B occur.
(30) follows from β-approximation of the arg max function in SINGLETON. (31) follows from the
fact that x ≥ 1− e−x. This completes the proof.

Proof [Theorem 8] Since p` = 1/2, E[f(τ)] = (E[f(τ`)]+E[f(τs)])/2. The theorem now follows
by combining this equation with Lemmas 11 and 12.

4.1.2. DETERMINISTIC KNAPSACK

Theorems 13 and 14 state two alternative approximation guarantees of MIX for deterministic knap-
sack using parameterizations that are different from the one used in Theorem 8. For deterministic
knapsack, the guarantee in Theorem 13 is an improvement over the one in Theorem 8. The guaran-
tee in Theorem 14 is an improvement over the one in Theorem 13 when β ≥ 0.377.

Theorem 13 Let f be an adaptive submodular function and let the cost function C be determinis-
tic. Set p` = 1/2 and λ = B/2 in the MIX policy. Then, E[f(τ)] ≥ 1

2

(
1− e−β/2

)
E[f(π†)].

Proof outline: The proof of this theorem follows along the same lines as that of the proof of The-
orem 8, but with several simplifications due to the fact item costs are deterministic. The complete
proof of Theorem 13 is in Appendix A.

Theorem 14 Let f be an adaptive submodular function and let item costs be deterministic. Set
p` = β

1+β and λ = B in the MIX policy. Then, E[f(τ)] ≥ β
1+β

(
1− e−β

)
E[f(π†)].

Proof outline: Taking advantage of the fact that item costs are deterministic, we first argue that
π† can be implemented as a singly adaptive policy which is feasible for F . This ensures that β-
GREEDY achieves a significant portion of the expected utility of π†. τ` selects all items selected
by β-GREEDY with the potential exception of the last item; we argue that τs compensates for this
loss to a significant extent, there by yielding Theorem 14. The complete proof of Theorem 14 is in
Appendix A.
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Appendix A. Proofs of Lemmas 4, 6, 10 and Theorems 13, 14

Proof [Lemma 4] ϕ is the subrealization of σ∞ at the start of an iteration only if ϕ ⊆ S; i.e.,
θ(x) = ϕ =⇒ ϕ ⊆ S. To prove the converse, consider any ϕ ∈ supp(θ(x)). If ϕ is the
subrealization of σ∞ at the start of an iteration, then there is a sequence of subrealizations seq(ϕ) ,
〈ϕ1 = ∅, . . . , ϕ|dom(ϕ)|+1 = ϕ〉 s.t. ϕi is the subrealization of σ∞ at the start of iteration i. Since
the candidate selection step (arg max function in Algorithm 1) is deterministic, seq(ϕ) must be
unique.

Suppose the events ϕ ⊆ S and θ(x) = ϕ′ occured for some ϕ′ 6= ϕ. Consider the largest
index k s.t. the first k subrealizations in seq(ϕ) are equal to the corresponding k subrealizations in
seq(ϕ′). Since the first subrealization in any such sequence is ∅, we have k ≥ 1. Hence, we have
ϕ,ϕ′ ⊆ S, and ∃k ≥ 1 s.t. the kth subrealizations in seq(ϕ) and seq(ϕ′) are equal, and the k + 1st

subrealizations differ. This can happen only if the output of arg max function is not unique when
ϕk is its input, which contradicts the fact that arg max is deterministic. Hence, the lemma holds.

Proof [Lemma 6] Fix x. Construct a composite policy π ⊕ θ with two stages as follows. The first
stage of π⊕ θ is identical to π. Once π terminates, in shifts to the second stage. In this stage, π⊕ θ
starts executing σ∞ as if it is starting afresh: if a candidate e during a second stage iteration was
already selected by π ⊕ θ in its first stage, there is nothing more to be done in this iteration, and
π ⊕ θ moves on to the next iteration. Policy π ⊕ θ terminates as soon as it reaches a second stage
iteration where its subrealization ϕ (which includes all items selected in the two stages) satisfies:
∃ϕ′ ∈ supp(θ(x)) s.t ϕ′ ⊆ ϕ. Clearly, the set of items selected by π ⊕ θ in its first stage equals
A(π) and the set of all items selected by it equals A(π) ∪ dom(θ(x)). The expected first stage
utility equals E[f(π)]. During an iteration of the second stage, if π⊕θ selects an item, the expected
increment in utility provided by it is non-negative due to (2). Hence, the lemma is proved.
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Proof [Lemma 10] Define h(e) ,
∑i∗

i=1

∑
ϑ∈supp(ϑi) 1ei←e1ϑi=ϑ∆fdom(ϑ)(e). We now have,

f(π‡) =
∑

e∈E h(e). Taking expectations on both sides, we have:

E[f(π‡)] =
∑
e∈E

E[h(e)]

=
∑
e∈E

i∗∑
i=1

∑
ϑ∈supp(ϑi)

Pr[ϑi = ϑ] Pr[ei ← e|ϑi = ϑ]E[∆fdom(ϑ)(e)|ϑi = ϑ ∧ ei ← e]

=
∑
e∈E

i∗∑
i=1

∑
ϑ∈supp(ϑi)

Pr[ϑi = ϑ] Pr[ei ← e|ϑi = ϑ]

E[∆fdom(ϑ)(e)|ϑ ⊆ S ∧ ϑi = ϑ ∧ ei ← e] (32)

=
∑
e∈E

i∗∑
i=1

∑
ϑ∈supp(ϑi)

Pr[ϑi = ϑ] Pr[ei ← e|ϑi = ϑ]

∑
φ∈supp(S)|ϑ⊆φ

Pr[S = φ|ϑ ⊆ S ∧ ϑi = ϑ ∧ ei ← e]

E[∆fdom(ϑ)(e)|ϑ ⊆ S ∧ S = φ ∧ ϑi = ϑ ∧ ei ← e]

=
∑
e∈E

i∗∑
i=1

∑
ϑ∈supp(ϑi)

Pr[ϑi = ϑ] Pr[ei ← e|ϑi = ϑ]

∑
φ∈supp(S)|ϑ⊆φ

Pr[S = φ|ϑ ⊆ S]E[∆fdom(ϑ)(e)|S = φ] (33)

=
∑
e∈E

i∗∑
i=1

∑
ϑ∈supp(ϑi)

Pr[ϑi = ϑ] Pr[ei ← e|ϑi = ϑ]E[∆f(e|ϑ)] =
∑
e∈E

g(e, π‡)

(32) follows from the fact that the event ϑi = ϑ implies the event ϑ ⊆ S. (33) follows from the facts
that conditioned on S = φ, the r.v. ∆fdom(ϑ)(e) is fully determined, and conditioned on ϑ ⊆ S, the
events ϑi = ϑ∧ ei ← e which are fully determined by the internal random choices of π‡ along with
the cost vector C is conditionally independent of the r.v. S, the state vector.

Proof [Theorem 13] The proof of this theorem follows along the same lines as Theorem 8 with a
few key modifications. Since item costs are deterministic and I requires total cost ≤ B w.p. 1,
we can drop all items e with C(e) > B from the given instance and assume WLOG that the cost
of every item is ≤ B. This also implies that for every item, C(e) = K(e). Further, since item
costs are deterministic, during each iteration of π†, it can correctly determine if the inclusion of its
candidate will cause the knapsack to overflow without having to select the item in the first place.
In other words, π† can be implemented as a singly adaptive policy whose total cost is ≤ B w.p. 1.
Hence, π† = π+, the doubly adaptive policy from which it is derived, and they are both feasible
singly adaptive policies for instances I and F with C(π+) = K(π+) ≤ B w.p. 1.

Since λ = B/2, Pr[C(ϕi+1) ≤ B] = 1 in (20). Hence, we have E[f(τ`)] ≥
∫ B/2

0 E[ν̄(x)]dx in
(23). Combining this with the fact that C(π+) = K(π+) ≤ B w.p. 1 (i.e., replacing 2B with B in
(25)), Lemma 11 can now be tightened as E[f(τ`)] ≥ (1− e−β/2)R. We also have

∑
e∈E\L Pr[e ∈
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A(π+)] ≤ 2 in (28), which in turn yields E[f(τs)] ≥
(
1− e−β/2

)
R̄ in (31). Putting these ex-

pressions together with the facts that p` = 1/2 and E[f(τ)] = (E[f(τ`)] + E[f(τs)])/2 yields the
theorem.

Proof [Theorem 14] Recall that σ is the β-GREEDY policy applied to instance F . Also recall
from proof of Theorem 13 that π† is a feasible singly adaptive policy for F . Since f is adaptive
submodular, α = 1 and from Theorem 3, we have:

E[f(σ)] ≥ (1− e−β)E[f(π†)] (34)

Since λ = B, the set of light items in τ is E. Hence, τ` selects items in the same sequence as
σ with the exception of the final candidate er of σ. This item will always overflow the knapsack
capacity and hence will be omitted by τ` but it may be included by σ through randomized rounding.
Further, the expected utility of τs is at least β times the expected utility of any item in E. Hence:

E[f(σ)] ≤ E[f(θ(B))] + E[∆fθ(B)(eθ(B))]

= E[f(τ`)] +
∑
ϕ

Pr[θ(B) = ϕ]E[∆fϕ(eϕ)] ≤ E[f(τ`)] + max
e∈E

E[f(e)] (35)

≤ E[f(τ`)] +
E[f(τs)]

β
=

1 + β

β
(p`E[f(τ`)] + (1− p`)E[f(τs)]) =

1 + β

β
E[f(τ)] (36)

(35) follows from adaptive submodularity of f . Combining (34) and (36) yields the theorem.
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