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Abstract
We consider a variation of the multi-armed bandit problem, introduced by Avner et al. (2012),
in which the forecaster is allowed to choose one arm to explore and one arm to exploit at every
round. The loss of the exploited arm is blindly suffered by the forecaster, while the loss of the
explored arm is observed without being suffered. The goal of the learner is to minimize the regret.
We derive a new algorithm using regularization by Tsallis entropy to achieve best of both worlds
guarantees. In the adversarial setting we show that the algorithm achieves the minimax optimal
O(
√
KT ) regret bound, slightly improving on the result of Avner et al.. In the stochastic regime

the algorithm achieves a time-independent regret bound, significantly improving on the result of
Avner et al.. The algorithm also achieves the same time-independent regret bound in the more
general stochastically constrained adversarial regime introduced by Wei and Luo (2018).
Keywords: Multi-armed Bandits, Decoupling Exploration and Exploitation in Multi-armed Ban-
dits, Tsallis Entropy

1. Introduction

The multi-armed bandit problem is a central and most basic framework for studying the exploration-
exploitation trade-off (Thompson, 1933; Robbins, 1952; Lai and Robbins, 1985; Auer et al., 2002a,b;
Slivkins, 2019; Lattimore and Svepesvári, 2020). In the multi-armed bandit game a player repeat-
edly chooses actions (also called arms) from a set of K actions and observes and suffers the loss of
the selected action. This can be contrasted with the full information setting, where after selecting an
action the player observes losses of all actions, not just the selected one (Cesa-Bianchi and Lugosi,
2006). The losses may be generated adversarially or stochastically, depending on problem setup.
The goal of the learner is to find an action selection strategy minimizing the regret, which is the
difference between the cumulative loss of the player and of the best fixed action in hindsight.

We focus on a variation of the multi-armed bandit problem introduced by Avner et al. (2012),
in which at each round the learner is allowed to choose one action to play blindly and one action
to observe without suffering its loss. The two actions are allowed, but not required to be different.
Thus, exploration is decoupled from exploitation. Practical settings having this structure are full
information problems with restricted data access, where in principle the loss of any action could be
accessed, but each observation, including the one of the selected action, is associated with a cost
and the player can only afford one observation per round.

The decoupled setting takes an important place in the space of online learning problems. On
the one hand, it is a bridge between full information and bandit setups. In particular, as we discuss
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below, in the adversarial regime the problem is as hard as a bandit problem, but in the stochas-
tic regime the regret scaling is time-independent, as in full information problems. Seldin et al.
(2014) expand this bridge further by introducing multi-armed bandits with paid observations, where
a learner can make an arbitrary number of observations at corresponding costs, which provides a
continuous interpolation between full information and bandits. On the other hand, the decoupled
setting is a bridge between exploration-exploitation and pure exploration problems (Even-Dar et al.,
2006; Mannor and Tsitsiklis, 2004; Bubeck et al., 2011). In particular, one could think about apply-
ing an algorithm developed for best-arm identification for selecting the exploration arm, although
this is not an optimal strategy for the decoupled setting.

Avner et al. (2012) have shown that in the adversarial regime there is a lower bound of Ω(
√
KT )

for the regret in the decoupled setting. Thus, in the worst case the adversary can make the regret
as large as in the standard multi-armed bandits. However, they have also shown that in some situa-
tions, in particular when one arm dominates all other arms, the regret can be reduced. More specif-
ically, they have proposed an EXP3-style algorithm with the same exploitation strategy as EXP3,
but modified exploration strategy, which achieves an O(

√
KT lnK) regret bound in the worst case

adversarial regime and an improved O(
√
T lnK) regret bound in an adversarial regime with one

dominating arm. A similar improvement in dependence on the number of arms was also shown by
Seldin et al. (2014) for bandits with paid observations. Avner et al. have also analyzed their algo-
rithm in the stochastic setting, showing that in a configuration with a single best arm (which would
thus be dominating) the regret grows as O(

√
T lnK). However, the analysis required a different

tuning of the learning rate for the stochastic setting than for the adversarial one and, therefore, prior
knowledge of the regime was essential. The stochastic regret bound was also highly suboptimal,
since a simple approach of playing Follow the Leader for exploitation and uniform distribution for
exploration leads to a time-independent expected regret bound of O(

∑
i:∆i>0

K
∆i

) in the stochastic
setting.

Traditionally algorithms for multi-armed bandits and their variations, including the algorithm
of Avner et al., were relying on prior knowledge of the nature of the environment, but following the
work of Bubeck and Slivkins (2012) there has been a growing interest in algorithms that perform
well in both settings without this knowledge (Seldin and Slivkins, 2014; Auer and Chiang, 2016;
Seldin and Lugosi, 2017; Wei and Luo, 2018). Zimmert and Seldin (2019) have eventually used
Tsallis entropy regularizer with power 1

2 to derive an algorithm that achieves the optimal regret
bounds for multi-armed bandits in both settings with no prior knowledge of the regime. (Interest-
ingly, the same kind of regularizer has been earlier used by Audibert and Bubeck (2009) to achieve
the optimal regret bound for adversarial bandits.) We follow this line of work and propose an al-
gorithm for multi-armed bandits with decoupled exploration and exploitation that achieves refined
regret guarantees in both adversarial and stochastic regimes and requires no prior knowledge of the
regime. Specifically, we make the following contributions:

• We propose a new algorithm for decoupled exploration and exploitation in multi-armed ban-
dits based on Follow the Regularized Leader framework with regularization by Tsallis en-
tropy.

• We show that in the adversarial regime the algorithm achieves O(
√
KT ) regret upper bound,

improving by a multiplicative factor of
√

lnK on the worst-case upper bound of Avner et al.
and matching their worst-case lower bound within constants.
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• We show that the same algorithm achieves a time independentO(maxi:∆i>0
K
∆i

) regret bound
in the stochastic regime, considerably improving on the result of Avner et al.. (The result
holds under a technical assumption that the best arm is unique.)

• The same regret bound is achieved in a more general stochastically constrained adversarial
regime introduced by Wei and Luo (2018) (also under the assumption on uniqueness of the
best arm).

• The algorithm requires no prior knowledge of the nature of the environment.

• Interestingly, the results are achieved with Tsallis entropy regularizer with power α = 2
3 ,

whereas the optimal power for standard multi-armed bandits is α = 1
2 . In our analysis the

power α = 1
2 does not achieve time-independent stochastic regret bounds in the decoupled

setting and, therefore, inferior to α = 2
3 .

The assumption on uniqueness of the best arm in the stochastic and stochastically constrained ad-
versarial regimes underlies the prior work of Zimmert and Seldin (2019). We conjecture that it can
be eliminated.

The paper is structured in the following way. In Section 3 we introduce the Follow the Reg-
ularized Leader framework and the approach used to decouple exploration and exploitation. The
algorithm and main results are presented in Section 4 and their proofs can be found in Section 5.
We conclude with a discussion in Section 6.

2. Problem Setting and Notation

We consider a repeated game withK arms. At each round t = 1, 2, . . . of the game the environment
picks a loss vector `t ∈ [0, 1]K and the learner picks an action At to exploit and an action Bt to
explore. The two actions are allowed to be different, but may also be identical. Then the learner
blindly suffers `t,At and observes `t,Bt without suffering its loss.

In the oblivious adversarial setting, the environment chooses `t arbitrarily prior to the beginning
of the game.

In the stochastic setting the losses are drawn from distributions with fixed means, i.e., for all i
we have E [`t,i] = µi independently of t.

We also consider a more general stochastically constrained adversarial setting (Wei and Luo,
2018; Zimmert and Seldin, 2019). In this setting the losses are drawn from distributions with fixed
gaps, while the baseline means are allowed to fluctuate, i.e., for all i, j we have E [`t,i − `t,j ] =
∆i,j independently of t. The stochastic setting is a special case of the stochastically constrained
adversary with ∆i,j = µi − µj . All results in the paper are presented for stochastically constrained
adversaries and extend to stochastic environments as a special case.

We measure the performance of an algorithm in terms of pseudo-regret:

RT := E

[
T∑
t=1

`t,At

]
−min

i
E

[
T∑
t=1

`t,i

]
= E

[
T∑
t=1

(
`t,At − `t,i∗T

)]
,

where i∗T = arg mini E
[∑T

t=1 `t,i

]
is the best action in hindsight. In the oblivious adversarial

regime the losses are independent of the player’s actions and the pseudo-regret coincides with the
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notion of expected regret (Bubeck and Cesa-Bianchi, 2012), defined as

RT := E

[
T∑
t=1

`t,At −min
i

T∑
t=1

`t,i

]
.

In the stochastically constrained adversarial setting we let i∗ = arg mini ∆i,1 denote an optimal
arm (we can take any arm j as the second argument of ∆i,j in the definition of i∗). Then we have
i∗T = i∗ for all T . We define ∆i = ∆i,i∗ to be the gaps to the best arm and rewrite the pseudo-regret
in the stochastically constrained adversarial setting as

RT =

T∑
t=1

∑
i 6=i∗

E [pt,i] ∆i, (1)

where pt,i is the probability that arm i is played at round t.

3. Decoupling Exploration and Exploitation in Follow the Regularized Leader
Framework

The algorithm that we present is based on follow the regularized leader (FTRL) framework (Shalev-
Shwartz, 2012). Following Zimmert and Seldin (2019), we use the regularizer

Ψt(w) = − 1

ηt

∑
i

wαi − αwi
α(1− α)

, (2)

which is a slight modification of the negative Tsallis entropy with power α defined by Hα(w) :=
1

1−α(1−
∑

iw
α
i ) (Tsallis, 1988). We focus on α ∈ (0, 1), but one of the interesting properties of the

above regularizer is that in the limits α→ 0 and α→ 1 it recovers the log-barrier and the negative
entropy regularizers, respectively (Zimmert and Seldin, 2019). In particular, the EXP3 algorithm
with losses (Auer et al., 2002b; Bubeck and Cesa-Bianchi, 2012) can be seen as a limit case of
FTRL with regularization by Tsallis entropy with α → 1. As we are in the bandit setting and only
observe one element of the loss vector at each round, we construct an unbiased estimate ˜̀

t of the
loss vector `t by using importance-weighted sampling

∀t ∈ [T ], i ∈ [K], ˜̀
t,i =

`t,i1(Bt = i)

qt,i
,

where qt is the distribution for sampling the exploratory action Bt and 1 is the indicator function.
We define the Decoupled-Tsallis-INF algorithm for an arbitrary exploration distribution qt in

Algorithm 1.
In order to analyse the algorithm, we decompose the pseudo-regret into a stability and penalty

components (Lattimore and Svepesvári, 2020; Zimmert and Seldin, 2019),

RT = E

[
T∑
t=1

`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
︸ ︷︷ ︸

stability

+E

[
T∑
t=1

Φt(−L̃t−1)− Φt(−L̃t)− `t,i∗T

]
︸ ︷︷ ︸

penalty

, (3)
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Algorithm 1: Decoupled-Tsallis-INF
Input : Learning rates η1 ≥ η2 ≥ · · · > 0.
Initialize: L̃0 = 0K
for t = 1, 2, . . . do

pt = arg minp∈∆K−1

{〈
p, L̃t−1

〉
− 1

ηt

∑K
i=1

pαi −αpi
α(1−α)

}
Construct exploration distribution qt (see Lemma 2)
Sample At according to pt, play it and suffer `t,At .
Sample Bt according to qt and observe `t,Bt .

∀ i ∈ [K] : ˜̀
t,i =

`t,i1{Bt=i}
qt,i

=

{
`t,i
qt,i
, if Bt = i,

0, otherwise.
∀ i ∈ [K] : L̃t(i) = L̃t−1(i) + ˜̀

t,i.
end

where i∗T is the best action in hindsight, and the potential function is defined by

Φt(−L) = max
w∈∆K−1

{
〈w,−L〉+

1

ηt

K∑
i=1

wαi − αwi
α(1− α)

}
.

In order to achieve a tight bound on the pseudo-regret, one has to derive tight bounds on the
stability and penalty. Recall that L̃t is an unbiased estimate of Lt and observe that the penalty term
does not depend on the query distribution qt. The stability term of the regret of Algorithm 1 satisfies
the following lemma.

Lemma 1 For any α ∈ (0, 1) and any positive learning rate value, the stability term of the regret
of Decoupled-Tsallis-INF with an arbitrary exploration distribution qt satisfies:

E

[
T∑
t=1

`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤

T∑
t=1

E

[
K∑
i=1

ηt
2

(pt,i)
2−α

qt,i

]
.

A proof of the lemma is provided in Appendix B.2. We can see that the bound depends on the
choice of exploration distribution qt, and that picking qt = pt recovers the bound for the stability
term of the regret of Tsallis-INF for multi-armed bandits (Zimmert and Seldin, 2019). In the decou-
pled case we have the freedom of picking qt 6= pt, so we select the distribution qt which minimizes
the bound on the stability term in Lemma 1.

Lemma 2 The right hand side of the bound in Lemma 1 is minimized by the distribution qt defined
by

∀t ∈ [T ], i ∈ [K], qt,i =
(pt,i)

1−α/2∑K
j=1(pt,j)1−α/2

.

We provide a proof of this Lemma in Appendix C. In the previous section, we have mentioned
that in the limit of α→ 1 Tsallis-INF converges to the EXP3 algorithm. By taking α = 1 in Lemma
2 we recover the exploration distribution used by Avner et al. (2012): qt,i =

√
pt,i∑K

j=1
√
pt,j

.
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4. Main Results

In the rest of the paper we analyse Decoupled-Tsallis-INF with exploration distribution qt defined in
Lemma 2. The first theorem bounds the regret of Decoupled-Tsallis-INF in the adversarial regime.

Theorem 3 In the adversarial regime, for any α ∈ (0, 1) the pseudo-regret of Decoupled-Tsallis-
INF with learning rate ηt = 2K1/2−α

√
t

and with qt given by Lemma 2 satisfies:

RT ≤
(

2 +
1

2α(1− α)

)√
KT + 1.

We provide a proof of the theorem in Section 5.1. Avner et al. (2012) have derived a regret
lower bound of Ω(

√
KT ) for the adversarial regime, which means that our algorithm is minimax

optimal within constants. For comparison, the algorithm proposed by Avner et al. is suboptimal by a
multiplicative factor of

√
logK. In the next theorem we bound the regret of Decoupled-Tsallis-INF

in the stochastically constrained adversarial setting.

Theorem 4 In the stochastically constrained adversarial regime with a unique best action i∗, the
pseudo-regret of Decoupled-Tsallis-INF with α ∈ (0, 2/3], ηt = 2K1/2−α

√
t

, and with qt given by
Lemma 2 satisfies

RT ≤ O

∑
i 6=i∗

T∑
t=T0+1

∆
α
α−1

i

√
K

t
− 1

2(α−1)

+

√
K

∆min

 ,

where T0 = maxi 6=i∗

⌈
D
(

8
∆i

)2
⌉

for D ≥ 1. For α > 1/2 the bound is independent of the time

horizon T . For α ∈ (1/2, 2/3] the pseudo-regret satisfies,

RT ≤
∑
i 6=i∗

(
C(α)

√
KD

2α−1
2α−2

∆i

)
+

68
√
KD

∆min
+ 13
√
K,

where

C(α) =
2− 2α

2α− 1

 1

2α(1− α)
+

((
1− (1−α)

4

)− 2−α
1−α

+ 1

)
2−1+α/2

+ 2


1

1−α (
α

α
1−α − α

1
1−α
)

8
2α−1
α−1 .

A proof of the theorem is given in Section 5.2. The assumption on uniqueness of the best
arm is a technical detail required in the analysis. The same assumption was used by Zimmert and
Seldin (2019) in the analysis of Tsallis-INF. We conjecture that the assumption can be eliminated.
The function C(α) is well-defined on the interval (1/2, 2/3], and numerical evaluation shows that
it is monotonically decreasing on the interval and minimized by α = 2/3, for which we have
C(2/3) ≤ 20. Furthermore, for D > 1 the term D

2α−1
2α−2 is minimized by α = 2/3, since 2α−1

2α−2
decreases for α ∈ (1/2, 2/3]. It is possible to derive a similar pseudo-regret bound for α ∈ [2/3, 1),
however, for α > 2/3 the dependency on K scales with K

2α−1
α and the dependency on D with
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D1−1/α. Both of these terms are increasing for α ∈ [2/3, 1), and thus minimized by α = 2/3.
Working in the α ∈ [2/3, 1) interval does not improve the dependency on neither t nor ∆. Thus,
the bound is optimized by α = 2/3.

The following corollary combines adversarial and stochastically constrained adversarial analysis
(and stochastic regime as a special case of the latter).

Corollary 5 For α = 2/3, ηt = 2K1/2−α
√
t

= 2K−1/6
√
t

, qt given by Lemma 2, and D ≥ 1, the regret
of Decoupled-Tsallis-INF satisfies

RT ≤ 5
√
KT + 1

in the adversarial regime and

RT ≤
∑
i 6=i∗

20

∆i

√
K√
D

+
68
√
KD

∆min
+ 13
√
K (4)

in the stochastically constrained adversarial regime with a unique best arm i∗. The two regret
bounds hold simultaneously and with no need in prior knowledge of the regime. The bound in
Equation (4) is minimized by D = max

{
20
68

∑
i 6=i∗

∆min
∆i

, 1
}

, which gives

RT ≤ 8

√
K

∆min
max


√

85
∑
i 6=i∗

1

∆i
,

17√
∆min

+ 13
√
K.

The corollary is a direct application of Theorem 3 and the second part of Theorem 4. By the
corollary, the regret of Decoupled-Tsallis-INF in the stochastically constrained adversarial regime

is RT = O
(√

K
∆min

∑
i 6=i∗

1
∆i

)
. Since

∑
i 6=i∗

1
∆i
≤ K

∆min
, we always have RT = O

(
K

∆min

)
.

However, if the delays are highly unbalanced, so that
∑

i 6=i∗
1

∆i
= O

(
1

∆min

)
, the regret bound can

improve to O
( √

K
∆min

)
.

Mourtada and Gaı̈ffas (2019) have shown that in the full information stochastic case the regret
lower bound is Ω

(
logK

∆

)
, assuming all the suboptimality gaps are equal, i.e., ∆i = ∆ for all i 6= i∗.

Since the decoupled setting is harder than the full information setting, the same lower bound applies
to our case and there is a gap of K

logK between the upper and the lower bound in the case of identical
suboptimality gaps. We conjecture that both the upper and the lower bound can be improved and
that the actual regret scaling in the stochastically constrained adversarial regime should be of order∑

i 6=i∗
1

∆i
. Improvement of the upper and lower bounds is left for future work.

We note that unlike in the multi-armed bandit case, where α = 1/2 is the optimal value both
for the adversarial and the stochastically constrained adversarial regime, in the decoupled case there
is a trade-off between the optimal values of α in the two regimes. However, the price of switching
from the optimal α = 1/2 to α = 2/3 in the former is a minor multiplicative factor of 5

4 , whereas
in the latter choosing α = 2/3 eliminates the dependency of the regret on the time horizon and
simultaneously provides a better dependency on K.
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5. Proofs of the Theorems

Using the decomposition of the regret presented in Equation (3), we present bounds for the stability
and penalty terms. We take advantage of the decoupling to refine the bound of Zimmert and Seldin
(2019) on the stability term. The penalty term does not depend on the exploration distribution and,
therefore, we reuse the bound derived by Zimmert and Seldin.

Lemma 6 For any α ∈ (0, 1) and any positive learning rate, the stability term of the regret bound
of Decoupled-Tsallis-INF with exploration distribution qt given by Lemma 2 satisfies:

1.

E

[
T∑
t=1

`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤

T∑
t=1

ηt
2
Kα.

2. If further ηt ≤ 1
4 , then for any fixed j:

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ ηt

2

(
Kα/2 + c(α) + 1

)∑
i 6=j

E [pt,i]
1−α/2 ,

where c(α) =
(

1− (1−α)
4

)− 2−α
1−α .

We present a proof of the lemma in Appendix B.2. Note that for α ∈ (0, 1), we have c(α) ∈ [1, 2].

Lemma 7 For any α ∈ (0, 1) and non-increasing positive learning rate sequence ηt, the penalty
term of the regret bound of Decoupled-Tsallis-INF satisfies:

1.

E

[
T∑
t=1

Φt(−L̃t−1)− Φt(−L̃t)− `t,i∗T

]
≤ (K1−α − 1)(1− T−α)

(1− α)αηT
+ 1.

2. Furthermore, if ηt = 2β√
t

for some β > 0, then the penalty further satisfies:

E

[
T∑
t=1

Φt(−L̃t−1)− Φt(−L̃t)− `t,i∗T

]
≤ 1

4α(1− α)β

∑
i 6=i∗

T∑
t=1

E[pt,i]
α

√
t

+
K1−α

2α(1− α)β
.

A proof of the lemma is provided in Appendix B.3.

5.1. Proof of Theorem 3

The proof of the theorem is based on application of the first parts of Lemmas 6 and 7.
Proof of Theorem 3 We use the first part of Lemma 6 to bound the stability term. We remind that
the learning rate is ηt = 2K1/2−α

√
t

.

E

[
T∑
t=1

`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤

T∑
t=1

ηt
2
Kα =

T∑
t=1

K1/2−α
√
t

Kα ≤ 2
√
KT.
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Similarly, we use the first part of Lemma 7 to bound the penalty term:

E

[
T∑
t=1

Φt(−L̃t−1)− Φt(−L̃t)− `t,i∗T

]
≤(K1−α − 1)(1− T−α)

α(1− α)2K1/2−α
√

1
T

+ 1

≤ 1

2α(1− α)

K1−α

K1/2−α
√

1
T

+ 1

=
1

2α(1− α)

√
KT + 1.

Summing the stability and the penalty terms finishes the proof.

5.2. Proof of Theorem 4

The following two lemmas are needed in order to take advantage of the self-bounding technique
and obtain a time-independent bound. They are proven in Appendix A.

Lemma 8 For α ∈ (0, 1), c > 0 and d ∈ (0, 1], we have

max
x∈[0,∞)

cxα − dx = c
1

1−αd
α
α−1

(
α

α
1−α − α

1
1−α
)
.

Lemma 9 Let T0 = maxi 6=i∗

⌈
D
(

8
∆i

)2
⌉

for a constant D ≥ 1. For i 6= i∗ define Si(T ) =

1

∆
− α
α−1

i

∑T
t=T0+1

1

t
− 1

2(α−1)

. The series Si(T ) converges for T → ∞ if and only if α > 1
2 . Further-

more, for α > 1
2 , we have:

lim
T→∞

Si(T ) ≤ 2− 2α

2α− 1

(
8
√
D
) 2α−1
α−1

∆i
.

With the two lemmas at hand we move on to the proof. The proof strategy is the following.
We define a time step T0 from which we can achieve a refined upper bound for the instantaneous
stability term introduced in Lemma 6. For t ≤ T0, the proof is the same as in the adversarial setting,
which gives a contribution of order O(

√
KT0) = O

(√
KD

∆min

)
.

Now, we focus on the part of the bound for t > T0. Let B be an upper bound on the regret,
RT ≤ B. In the stochastically constrained adversarial regime we can use the alternative way of
writing the regret given in equation (1) (what Zimmert and Seldin call the self-bounding property
of the regret) to obtain

RT = 2RT −
T∑
t=1

∑
i 6=i∗

E[pt,i]∆i ≤ 2B −
T∑
t=1

∑
i 6=i∗

E[pt,i]∆i.

For t > T0 we derive a refined bound for instantaneous contributions to the right hand side. By
using the second parts of Lemmas 6 and 7, for α ≤ 2/3 the instantaneous contributions to B can be

9
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bounded by
∑

i 6=i∗ CE [pt,i]
α /
√
t for some constant C. The overall instantaneous contribution to

the right hand side is then bounded by
∑

i 6=i∗
(
2CE [pt,i]

α /
√
t− E[pt,i]∆i

)
. By taking xi = E [pt,i]

and using Lemma 8 we then bound the instantaneous contributions by∑
i 6=i∗

(
2Cxαi√

t
−∆ixi

)
≤
∑
i 6=i∗

max
xi∈[0,∞)

(
2Cxαi√

t
−∆ixi

)
≤
∑
i 6=i∗

C ′∆
α
α−1

i t
1

2(α−1)

for some other constant C ′. Note that the bound is meaningful only for ∆i > 0. This is why we
need the assumption on uniqueness of the best arm. Summing the instantaneous contributions over
t from T0 to T completes the proof. The sum of the series of instantaneous contributions converges
if and only if 1

2(1−α) > 1, which means that the bound is time-independent if and only if α > 1
2 .

Proof of Theorem 4 We bound the stability and the penalty terms. Concerning the stability term,
we want to use the second part of Lemma 6 when t is large enough. We choose the threshold

T0 = maxi 6=i∗

⌈
D
(

8
∆i

)2
⌉
≥ 64 for some D ≥ 1. This choice allows us to use the second part

of Lemma 6 because for all t > T0 we have ηt = 2K1/2−α
√
t
≤ 2√

t
≤ 1

4 . We use the second part of
Lemma 6 with j = i∗ for t > T0 and the first part of Lemma 6 for t ≤ T0. We have:

stability = E

[
T∑
t=1

`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]

=

T0∑
t=1

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
+

T∑
t=T0+1

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]

≤
T0∑
t=1

K1/2−α
√
t

Kα +
T∑

t=T0+1

K1/2−α
√
t

(
Kα/2 + c(α) + 1

)∑
i 6=i∗

E [pt,i]
1−α/2


≤ 2
√
KT0 +

∑
i 6=i∗

T∑
t=T0+1

(
c(α)+1

2α/2
+ 1
)
K1/2−α/2

√
t

E [pt,i]
1−α/2 ,

where we used the inequalities
∑T0

t=1
1√
t
≤ 2
√
T0 and Kα/2 ≥ 2α/2.

To bound the penalty term, we use the second part of Lemma 7 with β = K1/2−α.

penalty ≤ 1

4α(1− α)K1/2−α

∑
i 6=i∗

T∑
t=1

E[pt,i]
α

√
t

+

√
K

2α(1− α)

≤

 Kα−1/2

4α(1− α)

∑
i 6=i∗

T∑
t=T0+1

E[pt,i]
α

√
t

+

 Kα−1/2

4α(1− α)

∑
i 6=i∗

T0∑
t=1

E[pt,i]
α

√
t

+

√
K

2α(1− α)

≤

 Kα−1/2

4α(1− α)

∑
i 6=i∗

T∑
t=T0+1

E[pt,i]
α

√
t

+

(
Kα−1/2

4α(1− α)

T0∑
t=1

K1−α
√
t

)
+

√
K

2α(1− α)

≤

 Kα−1/2

4α(1− α)

∑
i 6=i∗

T∑
t=T0+1

E[pt,i]
α

√
t

+

√
KT0

2α(1− α)
+

√
K

2α(1− α)
,

10
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where we used the inequalities
∑

i 6=i∗ E [pt,i]
α ≤ (K − 1)

(
1

K−1

)α
= (K − 1)1−α ≤ K1−α and∑T0

t=1
1√
t
≤ 2
√
T0.

We make two observations regarding the powers: for α ≤ 2/3 we have 1/2−α/2 ≥ α−1/2, so
for all K ≥ 2 it holds that Kα−1/2 ≤ K1/2−α/2. Furthermore, for α ≤ 2/3 we have α ≤ 1− α/2,
and for all t ∈ [T ] and i ∈ [K] we have E[pt,i] ≤ 1 and E[pt,i]

1−α/2 ≤ E[pt,i]
α. Thus, we have:

stability ≤ 2
√
KT0 +

∑
i 6=i∗

T∑
t=T0+1

(
c(α)+1

2α/2
+ 1
)
K1/2−α/2

√
t

E [pt,i]
α

and

penalty ≤

K1/2−α/2

4α(1− α)

∑
i 6=i∗

T∑
t=T0+1

E[pt,i]
α

√
t

+

√
KT0

2α(1− α)
+

√
K

2α(1− α)
.

We combine the two bounds and use the alternative way of writing the regret in the stochastically
constrained adversarial regime (the self-bounding technique) to obtain

RT = 2RT −
∑
i 6=i∗

T∑
t=1

E[pt,i]∆i

≤
∑
i 6=i∗

T∑
t=T0+1

((
1

2α(1− α)
+
c(α) + 1

2(α/2)−1
+ 2

)
K1/2−α/2
√
t

E[pt,i]
α − E[pt,i]∆i

)

+

(
1

α(1− α)
+ 4

)√
KT0 +

√
K

α(1− α)

≤
∑
i 6=i∗

T∑
t=T0+1

max
x∈[0,∞)K

((
1

2α(1− α)
+
c(α) + 1

2(α/2)−1
+ 2

)
K1/2−α/2
√
t

xα − x∆i

)

+

(
1

α(1− α)
+ 4

)√
KT0 +

√
K

α(1− α)
.

In the last step we take x = E [pt,i] and drop the constraint that pt is a probability distribution.
Using Lemma 8, for any i 6= i∗ and t > T0, we have

max
x∈[0,∞)

((
1

2α(1− α)
+
c(α) + 1

2(α/2)−1
+ 2

)
K1/2−α/2
√
t

xα − x∆i

)

≤ ∆
α
α−1

i

√
K

t
− 1

2(α−1)

(
1

2α(1− α)
+
c(α) + 1

2(α/2)−1
+ 2

) 1
1−α (

α
α

1−α − α
1

1−α
)
.

Using C̃(α) =
(

1
2α(1−α) + c(α)+1

2(α/2)−1 + 2
) 1

1−α
(
α

α
1−α − α

1
1−α
)

, we can incorporate this result
in the regret bound and deduce that:

RT ≤
∑
i 6=i∗

T∑
t=T0+1

(
C̃(α)∆

α
α−1

i

√
K

t
− 1

2(α−1)

)
+

(
1

α(1− α)
+ 4

)√
KT0 +

√
K

α(1− α)
,

11
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which gives the first statement of the lemma. Finally, we use Lemma 9 to deduce that the bound is
time-independent if and only if α > 1/2. Furthermore, by definition of T0 we have

√
T0 ≤ 8

√
D

∆min
+1.

We deduce that for α ∈ (1/2, 2/3], the pseudo-regret is upper bounded as:

RT ≤
∑
i 6=i∗

(
C̃(α)

2− 2α

2α− 1
8

2α−1
α−1

√
KD

2α−1
2α−2

∆i

)
+

(
1

α(1− α)
+ 4

)√
KT0 +

√
K

α(1− α)

≤
∑
i 6=i∗

(
C(α)

√
KD

2α−1
2α−2

∆i

)
+ 68

√
KD

∆min
+ 13
√
K,

where C(α) = C̃(α)2−2α
2α−18

2α−1
α−1 . This gives the second statement of the theorem.

6. Discussion

We have derived an algorithm for the problem of decoupled exploration and exploitation in multi-
armed bandits. We have shown that it achieves the minimax optimal O(

√
KT ) regret bound in

the adversarial regime and simultaneously a time-independent O
(√

K
∆min

∑
i 6=i∗

1
∆i

)
regret bound

in the stochastically constrained adversarial regime, where ∆min is the minimal positive gap. The
results improve on the work of Avner et al. (2012) in both regimes without requiring prior knowledge
of the regime.

We conjecture that the regret bound in the stochastically constrained adversarial regime can be
improved further and that the dependence on K

∆min
can be replaced with the refined complexity

measure
∑

i:∆i>0
1

∆i
. This research direction and derivation of matching lower bounds is left for

future work.
As we have mentioned, the decoupled setting is an important bridge between full information

and bandit problems, as well as a bridge between pure exploration and exploration-exploitation
trade-off. An interesting direction for future research would be to use our techniques to improve
results along these two directions. One possibility is to apply our regularization and exploration
technique to tighten best of both worlds guarantees for prediction with limited advice and bandits
with paid observations (Seldin et al., 2014; Thune and Seldin, 2018). Another direction is to explore
the relations with pure exploration problems. Abbasi-Yadkori et al. (2018) have shown that in the
pure exploration setting it is impossible to achieve simultaneous optimality in both adversarial and
stochastic settings. An interesting question is whether the decoupled formulation can be used to
reformulate the objective and to achieve some alternative results there.
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Jean-Yves Audibert and Sébastien Bubeck. Minimax policies for adversarial and stochastic ban-
dits. In Proceedings of the International Conference on Computational Learning Theory (COLT),
2009.

Peter Auer and Chao-Kai Chiang. An algorithm with nearly optimal pseudo-regret for both stochas-
tic and adversarial bandits. In Proceedings of the International Conference on Computational
Learning Theory (COLT), 2016.
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Jaouad Mourtada and Stéphane Gaı̈ffas. On the optimality of the hedge algorithm in the stochastic
regime. Journal of Machine Learning Research, 20, 2019.

Herbert Robbins. Some aspects of the sequential design of experiments. Bulletin of the American
Mathematical Society, 1952.

Ralph Tyrell Rockafellar. Convex analysis. Princeton University Press, 1970.

13



TSALLIS-INF FOR DECOUPLED EXPLORATION AND EXPLOITATION IN MULTI-ARMED BANDITS
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Appendix A. Proofs of Auxiliary Lemmas

Proof of Lemma 8 Let f(x) = cxα−dx. Then f ′(x) = αcxα−1−d and f ′′(x) = α(α−1)cxα−2 ≤
0. Thus, the solution of f ′(x) = 0 gives the maximum of f .

f ′(x̃) = 0⇔ αcx̃α−1 = d⇔ x̃ =

(
d

αc

) 1
α−1

.

Finally, we calculate f(x̃).

max
x∈[0,∞)

cxα − dx = f(x̃) = c

(
d

αc

) α
α−1

− d
(
d

αc

) 1
α−1

= c
1

1−αd
α
α−1

(
α

α
1−α − α

1
1−α
)
.
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Proof of Lemma 9 Consider the series Si(T ) =
∑T

t=T0+1
1

t
− 1

2(α−1)

. We first show that when

α > 1/2, the series converges and upper bound its limit. Then, we show that the series diverges
when α ≤ 1/2.

When α > 1/2, we have −1
2(α−1) > 1 so the Riemann’s series

∑∞
t=1

1

t
− 1

2(α−1)

converges. This is

an upper bound on s(T ), which converges as well. However, when we derive the upper bound on
limT→∞ s(T ), we want to take advantage of the fact that we sum for t ≥ T0 + 1. We have:

lim
T→∞

T∑
t=T0+1

1

t
− 1

2(α−1)

≤ lim
T→∞

∫ T

T0

1

t
− 1

2(α−1)

dt

= lim
T→∞

T
1+ 1

2(α−1) − T
1+ 1

2(α−1)

0

1 + 1
2(α−1)

≤ −T
1+ 1

2(α−1)

0

1 + 1
2(α−1)

,

where in the last step we use the fact that 1 + 1
2(α−1) = 2α−1

2α−2 is negative. This also implies that

as T0 ≥ D
(

8
∆min

)2
, we can upper bound T

1+ 1
2(α−1)

0 by
(
D
(

8
∆min

)2
) 2α−1

2α−2

=
(

8
√
D

∆min

) 2α−1
α−1 ≤(

8
√
D

∆i

) 2α−1
α−1 for any i 6= i∗, because 2α−1

2(α−1) ≤ 0 for α > 1/2. Incorporating this result in Si(T )

finishes this part of the proof.
For the second part of the proof, for α ≤ 1/2, we have:

T∑
t=T0+1

1

t
− 1

2(α−1)

≥
T∑

t=T0+1

1

t

≥
∫ T+1

T0+1

1

t
dt

= log(T + 1)− log(T0 + 1),

which diverges, because T0 is a constant. Thus, for any α ∈ (0, 1/2], we cannot obtain a time-
independent upper bound on Si(T ).

Appendix B. Analysis in the Follow the Regularized Leader Framework

We first introduce some tools needed to work in the Follow the Regularized Leader framework and
then derive bounds on the stability and the penalty terms.

B.1. Follow the Regularized Leader Framework and Tsallis Entropy

Follow the Regularized Leader (FTRL) has been widely used in online learning in the past few
years. We use Tsallis entropy as our regularizer, defined as
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Ψt(w) = − 1

ηt

∑
i

wαi − αwi
α(1− α)

, (5)

and its convex conjugate, defined as

Ψ∗t (y) = max
x∈RK

{〈x, y〉 −Ψt(x)} = max
x∈RK

{
〈x, y〉+

1

ηt

∑
i

wαi − αwi
α(1− α)

}
.

We let ∆K−1 denote the probability simplex overK vertices and define I∆K−1(x) =

{
0, if x ∈ ∆K−1

∞, otherwise
.

Using results from convex analysis (Rockafellar, 1970), Ψt is a convex differentiable function with
an invertible gradient (∇Ψ)−1, and we have

∇(Ψt + I∆K−1)∗(y) = argmax
x∈∆K−1

{〈x, y〉 −Ψt(x)} .

Note that∇(Ψ + I∆K−1)∗(y) ∈ ∆K−1. We define the potential function Φt as

Φt(−L) = (Ψt + I∆K−1)∗(−L) = max
w∈∆K−1

{
〈w,−L〉+

1

ηt

K∑
i=1

wαi − αwi
α(1− α)

}
.

Φt is a restriction of Ψ∗t to the probability simplex. The weights pt of the Decoupled-Tsallis-INF
algorithm fulfil:

pt = ∇Φt(−L̃t−1) = arg maxp∈∆K−1

{〈
p,−L̃t−1

〉
+

1

ηt

K∑
i=1

pαi − αpi
α(1− α)

}

= arg minp∈∆K−1

{〈
p, L̃t−1

〉
− 1

ηt

K∑
i=1

pαi − αpi
α(1− α)

}
.

Ψ∗t is the unconstrained definition of Φt. Thus there exists a Lagrange multiplier ν such that

pt = ∇Ψ∗t (−L̂t−1 + ν1K),

where we use 1K to denote a K-dimensional vector of ones. Using the fact that Ψt is a Legendre
function (Rockafellar, 1970), which implies that it is gradient inversible and ∇Ψ−1

t = ∇Ψ∗t we
deduce that:

∇Ψt(pt) = −L̂t−1 + ν1K . (6)

B.2. Analysis of the Stability term

The analysis of the stability term is based on tools developed by Zimmert and Seldin (2019). We
note that ˜̀

t,At is an unbiased estimate of `t,At and

E [`t,At ] = E
[〈
pt, ˜̀

t

〉]
. (7)

The following result is analogous to the result of Zimmert and Seldin (2019, Lemma 11). We use
1K to denote a K-dimensional vector of ones.
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Lemma 10 Let pt = ∇Φt(−L̃t−1) for L̃t = L̃t−1 + ˜̀
t, where ˜̀

t is an unbiased estimate of `t. For
any x ∈ [0,∞), the instantaneous stability of the pseudo-regret of Algorithm 1 satisfies

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ E

[
K∑
i=1

max
p̃i∈[pt,i,∇Ψ∗(∇Ψt(pt)−˜̀

t+x1K)i]

ηt
2

(˜̀
t,i − x)2(p̃i)

2−α

]
.

Proof of Lemma 10 Note that Φt(L+x1K) = Φ(L)+x since we take the argmax over a probability
distribution.

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
= E

[〈
pt, ˜̀

t

〉
+ Φt(−L̃t)− Φt(−L̃t−1)

]
= E

[〈
pt, ˜̀

t

〉
+ Φt(∇Ψt(pt)− ˜̀

t)− Φt(∇Ψt(pt))
]

= E
[〈
pt, ˜̀

t − x1K
〉

+ Φt(∇Ψt(pt)− ˜̀
t + x1K)− Φt(∇Ψt(pt))

]
≤ E

[〈
pt, ˜̀

t − x1K
〉

+ Ψ∗t (∇Ψt(pt)− ˜̀
t + x1K)−Ψ∗t (∇Ψt(pt))

]
(8)

≤ E
[
DΨ∗

t
(∇Ψt(pt)− ˜̀

t + x1K ,∇Ψt(pt))
]
,

where the first step follows by Equation (7). Then, we used the fact that −L̃t−1 + ν1K = ∇Ψt(pt)
for some constant ν using Equation (6), and the definition of Φt to add x1K . Finally, we recall that
Ψ∗t is the unrestricted version of Φt. On step 8, we recognize the Bregman divergence of Ψt, and
using Taylor’s expansion, there is some z ∈ conv(∇Ψt(pt)− ˜̀

t + x1K ,∇Ψt(pt)) such that

DΨ∗
t
(∇Ψt(pt)− ˜̀

t + x1K ,∇Ψt(pt)) =
1

2
‖˜̀t − x1K‖2∇2Ψt(z)

.

We deduce that:

E
[
DΨ∗

t
(∇Ψt(pt)− ˜̀

t + x1K ,∇Ψt(pt))
]

≤ E

[
max

z∈conv(∇Ψt(pt)−˜̀
t+x1K ,∇Ψt(pt))

1

2
‖˜̀t − x1K‖2∇2Ψt(z)

]

≤ E

[
K∑
i=1

max
p̃i∈[pt,i,∇Ψ∗(∇Ψt(pt)−˜̀

t+x1K)i]

ηt
2

(˜̀
t,i − x)2(p̃i)

2−α

]
,

where we used the fact that∇Ψt(pt) is in the probability simplex so Φt(∇Ψt(pt)) = Ψ∗t (∇Ψt(pt)),

and finally the fact that∇2Ψt(p) = diag
(
pα−2
i
ηt

)
i=1,...,K

.

Using the stability analysis in Lemma 10 we move on to bound the stability term. First, we
focus on bounding the stability term when the distribution to query the exploration arm is arbitrary.
Proof of Lemma 1 We start by bounding the instantaneous stability at a fixed round t. We start
from Lemma 10 with x = 0. We recall that ∇Ψ∗(∇Ψt(pt)− ˜̀

t) ≤ ∇Ψ∗(∇Ψt(pt)) = pt, because
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the losses are non-negative and∇Ψ∗t is monotonically increasing.

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ E

[
K∑
i=1

ηt
2

(˜̀
t,i)

2(pt,i)
2−α

]

= E

[
K∑
i=1

ηt
2

(`t,i)
2

qt,i
(pt,i)

2−α

]

≤ E

[
K∑
i=1

ηt
2

(pt,i)
2−α

qt,i

]
,

where we used the definition of ˜̀
t and that E [1 {Bt = i}] = qt,i. The last steps relies on the fact

that the losses are bounded in the [0, 1] interval. Finally, summing for t = 1 to T finishes the proof.

In order to derive a proof of Lemma 6, we first need to bound the weights estimators p̃ in Lemma
10. The proof follows from Zimmert and Seldin (2019, Proof of Lemma 16).

Lemma 11 Let p ∈ ∆K−1 and p̃ = ∇Ψ∗t (∇Ψt(p)− `). If ηt ≤ 1/4, then for all `i ≥ −1 it holds
that p̃2−α

i ≤ c(α)p2−α
i , where c(α) = (1− (1−α)

4 )−
2−α
1−α .

Proof of Lemma 11 ∇Ψt is the inverse of∇Ψ∗t , which gives

∇Ψt(p̃) = ∇Ψt(p)− `.

Using our lower bound on `, we deduce that in each dimension:

∇Ψt(p)i −∇Ψt(p̃)i = `i ≥ −1,

pα−1
i − 1

(1− α)ηt
−
p̃α−1
i − 1

(1− α)ηt
≤ 1,

p̃1−α
i ≤

p1−α
i

1− ηt(1− α)p1−α
i

≤
p1−α
i

1− ηt(1− α)
,

p̃2−α
i ≤

p2−α
i

(1− ηt(1− α))
2−α
1−α

.

Now we need to upper bound (1− ηt(1− α))−
2−α
1−α . This function is monotonically decreasing

in ηt for all α ∈ [0, 1]. Therefore,

(1− ηt(1− α))−
2−α
1−α ≤

(
1− (1− α)

4

)− 2−α
1−α

= c(α).

Using the above results and Lemma 2, we move on to the proof of Lemma 6. The first part of
the lemma is a direct application of Lemma 1.
Proof of Lemma 6

18
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The first statement of the Lemma Using Lemma 1 and the distribution given in Lemma 2, we
can bound the instantaneous stability at round t by:

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ E

[
K∑
i=1

ηt
2

(pt,i)
2−α

qt,i

]

= E

 K∑
i=1

ηt
2

(pt,i)
2−α

(pt,i)1−α/2

K∑
j=1

(pt,j)
1−α/2


= E

ηt
2

(
K∑
i=1

(pt,i)
1−α/2

)2
 .

We can upper bound the expectation by replacing pt with a distribution which maximizes the
expression. Because f(x) = x2 is an increasing function for x ∈ R+, this expression is maximized
when

∑K
i=1(pt,i)

1−α/2 is maximized. Since 1 − α/2 ≤ 1, the expression is maximized by the
uniform distribution, which gives

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ E

ηt
2

(
K∑
i=1

K−1+α/2

)2


≤ E
[
ηt
2

(
Kα/2

)2
]

≤ ηt
2
Kα.

Summing over t finishes the proof of the first part of the lemma.

The second statement of the Lemma We move on to the second part of the lemma. This time,
we start from Lemma 10, where we choose x = 1t [Bt = j] `t,j . The analysis depends on whether
Bt 6= j or Bt = j. In the first case, we have x = 0, and the expression is maximized by p̃i = pt,i,
because the losses are non-negative, and ∇Ψ∗t is monotonically increasing. In the second case, we
have Bt = j, which means that for i 6= j we have ˜̀

t,i − x = 0 − x ≥ −1 and we can apply

Lemma 11 and bound p̃2−α
i by c(α)p2−α

i , where c(α) =
(

1− (1−α)
4

)− 2−α
1−α . Otherwise, we have

˜̀
t,j − x ≥ 0, and using the fact that ∇Ψ∗t is monotonically increasing we deduce that p̃j = pt,j .

Combining all the cases, we have:
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E

[
K∑
i=1

max
p̃∈[pt,i,∇Ψ∗(∇Ψt(pt)−˜̀

t+x1K)i]

ηt
2

(˜̀
t,i − x)2(p̃i)

2−α

]

≤
∑
i 6=j

ηt
2
E

[
1 [Bt = i]

K∑
k=1

(˜̀
t,k)

2(pt,k)
2−α

]

+ E

1 [Bt = j]

∑
i 6=j

ηt
2

(˜̀
t,i − `t,j)2c(α)(pt,i)

2−α

+
ηt
2

(˜̀
t,j − `t,j)2(pt,j)

2−α


≤
∑
i 6=j

ηt
2
E

[
qt,i

(
`t,i
qt,i

)2 (pt,i)
2−α

qt,i

]

+ E

∑
i 6=j

ηtc(α)

2
(`t,j)

2(pt,i)
2−αqt,j

+
ηt
2

(
`t,j
qt,j
− `t,j

)2

(pt,j)
2−αqt,j

 ,
where in both inequalities the first term concerns the cases where Bt 6= j, and the second term the
case whereBt = j. In the second term, the index j is taken out of the sum as it is treated differently.
Continuing the derivation above, we have

≤
∑
i 6=j

ηt
2
E
[

(pt,i)
2−α

qt,i

]

+ E

∑
i 6=j

ηtc(α)

2
(`t,j)

2(pt,i)
2−αqt,j

+
ηt
2

1

(qt,j)2
(`t,j)

2(1− qt,j)2(pt,j)
2−αqt,j


≤
∑
i 6=j

ηt
2
E
[

(pt,i)
2−α

qt,i

]
+ E

∑
i 6=j

ηtc(α)

2
(pt,i)

2−αqt,j

+
ηt
2

(pt,j)
2−α

qt,j
(1− qt,j)2

 .
Now we consider each term separately. We can replace qt by its definition from Lemma 2, ∀i ∈
[K], qt,i =

(pt,i)
1−α/2∑K

k=1(pt,k)1−α/2
. Note that 1− α/2 ≤ 1, so

∑K
j=1(pt,j)

1−α/2 ≤ K
(

1
K

)1−α/2
= Kα/2.

In the previous expression, the first term is bounded as:

∑
i 6=j

ηt
2
E
[

(pt,i)
2−α

qt,i

]
≤
∑
i 6=j

ηt
2
E

[
(pt,i)

1−α/2
K∑
k=1

(pt,k)
1−α/2

]
≤ ηt

2
Kα/2

∑
i 6=j

E
[
(pt,i)

1−α/2
]
.
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In order to bound the third term, we observe that (1− qt,j)2 ≤ 1− qt,j =
∑

i 6=j qt,i. This gives:

E
[
ηt
2

(pt,j)
2−α

qt,j
(1− qt,j)2

]
= E

[
ηt
2

(1− qt,j)2(pt,j)
1−α/2

K∑
k=1

(pt,k)
1−α/2

]

≤ E

ηt
2

∑
i 6=j

qt,i

(
K∑
k=1

(pt,k)
1−α/2

)
= E

ηt
2

∑
i 6=j

(pt,i)
1−α/2∑K

k=1(pt,k)1−α/2

(
K∑
k=1

(pt,k)
1−α/2

)
= E

ηt
2

∑
i 6=j

(pt,i)
1−α/2

 .
Finally, the second term can be bounded as:

E

∑
i 6=j

ηtc(α)

2
(pt,i)

2−αqt,j

 ≤ c(α)E

ηt
2

∑
i 6=j

(pt,i)
1−α/2

 .
The inequality relies on the fact that ∀t, i : 0 ≤ pt,i ≤ 1, so (pt,i)

2−α ≤
√

(pt,i)2−α = (pt,i)
1−α/2

and that qt,j ≤ 1.
Combining the three terms and using Jensen’s inequality finishes the proof of the lemma.

E
[
`t,At + Φt(−L̃t)− Φt(−L̃t−1)

]
≤ ηt

2

(
Kα/2 + c(α) + 1

)∑
i 6=j

E [pt,i]
1−α/2 .

B.3. Analysis of the Penalty term

The analysis of the penalty term follows from the work of Zimmert and Seldin (2019, Lemma 12),
which we cite below.

Lemma 12 (Zimmert and Seldin 2019, Lemma 12) For any α ∈ [0, 1] and any unbiased loss
estimator, the penalty term of α-TSALLIS-INF satisfies:

1. For the symmetric regularizer and a non-increasing sequence of learning rates

E

∑
i 6=i∗

(
Φt(−L̂t−1)− Φt(−L̂t)− `t,i∗T

) ≤ (K1−α − 1)(1− T−α)

(1− α)αηT
+ 1.

2. For an arbitrary regularizer, a non-increasing sequence of learning rates, and any x ∈ [1, x]

E

∑
i 6=i∗

(
Φt(−L̂t−1)− Φt(−L̂t)− `t,i∗T

)
≤ 1− T−αx

α

∑
i 6=i∗T

(
E [p1,i]

α − αE [p1,i]

η1ξi(1− α)
+

T∑
t=2

(
η−1
t − η

−1
t−1

) E [pt,i]
α − αE [pt,i]

ξi(1− α)

)
+ T 1−x.
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In our case the regularizer is symmetric and ξi = 1 for all i. Now we provide a proof of
Lemma 7.
Proof of Lemma 7 Algorithm 1 uses the TSALLIS-INF framework introduced by Zimmert and
Seldin (2019). Furthermore, by assumption the learning rate ηt is non-increasing, and we have
∀i ∈ [K], ξi = 1, which implies that the regularizer Ψt that we use is symmetric. This means that
both statements of Zimmert and Seldin (2019, Lemma 12) apply. The first statement of Lemma 7
follows directly from the first statement of Zimmert and Seldin (2019, Lemma 12).

Concerning the second statement, we consider the second statement of Zimmert and Seldin
(2019, Lemma 12) for x =∞. By assumption, we have ηt = 2β√

t
for some constant β > 0.

penalty ≤ 1

α(1− α)

∑
i 6=i∗

(
E [p1,i]

α

η1
+

T∑
t=2

(η−1
t − η

−1
t−1)E [pt,i]

α

)

=
1

α(1− α)β

∑
i 6=i∗

(
1

2
E [p1,i]

α +
T∑
t=2

1

2
(
√
t−
√
t− 1))E [pt,i]

α

)

=
1

4α(1− α)β

∑
i 6=i∗

(
2E [p1,i]

α +

T∑
t=2

(2
√
t− 2

√
t− 1))E [pt,i]

α +

T∑
t=1

E[pt,i]
α

√
t
−

T∑
t=1

E[pt,i]
α

√
t

)

=
1

4α(1− α)β

∑
i 6=i∗

(
T∑
t=1

E[pt,i]
α

√
t

+ E [p1,i]
α +

T∑
t=2

(
2
√
t− 2

√
t− 1− 1√

t

)
E [pt,i]

α

)
.

For the last two terms we use the inequality
∑

i 6=i∗ E [pt,i]
α ≤ (K − 1)

(
1

K−1

)α
= (K − 1)1−α ≤

K1−α. Continuing the derivation we then have

penalty ≤ 1

4α(1− α)β

∑
i 6=i∗

T∑
t=1

E[pt,i]
α

√
t

+

(
1 +

T∑
t=2

(
2
√
t− 2

√
t− 1− 1√

t

))
K1−α


≤ 1

4α(1− α)β

∑
i 6=i∗

T∑
t=1

E[pt,i]
α

√
t

+ 2K1−α


=

1

4α(1− α)β

∑
i 6=i∗

T∑
t=1

E[pt,i]
α

√
t

+
K1−α

2α(1− α)β
,

where we telescoped the sum, and used the fact that 2
√
T ≤ 2 +

∑T
t=1

1√
t
.

Appendix C. Choice of the Exploration Distribution

The exploration distribution qt is designed to minimize the bound on the stability term in Lemma 1.
The analysis is similar to the work of Avner et al. (2012).
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Proof of Lemma 2 We optimize qt for each round separately through a solution of the constrained
optimization problem:

min
qt

K∑
i=1

(pt,i)
2−α

qt,i

s.t.
K∑
i=1

qt,i = 1,

∀i ∈ [K], 0 ≤ qt,i ≤ 1.

The minimum is achieved by the distribution qt,i =
(pt,i)

1−α/2∑K
j=1(pt,j)1−α/2

.
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