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Abstract
We study the performance of stochastic gradient descent (SGD) on smooth and strongly-convex
finite-sum optimization problems. In contrast to the majority of existing theoretical works, which
assume that individual functions are sampled with replacement, we focus here on popular but
poorly-understood heuristics, which involve going over random permutations of the individual
functions. This setting has been investigated in several recent works, but the optimal error rates
remain unclear. In this paper, we provide lower bounds on the expected optimization error with
these heuristics (using SGD with any constant step size), which elucidate their advantages and
disadvantages. In particular, we prove that after k passes over n individual functions, if the
functions are re-shuffled after every pass, the best possible optimization error for SGD is at least
Ω
(
1/(nk)2 + 1/nk3

)
, which partially corresponds to recently derived upper bounds. Moreover,

if the functions are only shuffled once, then the lower bound increases to Ω(1/nk2). Since there
are strictly smaller upper bounds for repeated reshuffling, this proves an inherent performance gap
between SGD with single shuffling and repeated shuffling. As a more minor contribution, we also
provide a non-asymptotic Ω(1/k2) lower bound (independent of n) for the incremental gradient
method, when no random shuffling takes place. Finally, we provide an indication that our lower
bounds are tight, by proving matching upper bounds for univariate quadratic functions.

1. Introduction

We consider variants of stochastic gradient descent (SGD) for solving unconstrained finite-sum
problems of the form

min
x∈X

F (x) =
1

n

n∑
i=1

fi(x) , (1)

where X is some Euclidean space Rd (or more generally some real Hilbert space), F is a strongly
convex function, and each individual function fi is smooth (with Lipschitz gradients) and Lipschitz
on a bounded domain. Such problems are extremely common in machine learning applications,
which often boil down to minimizing the average loss over n data points with respect to a class of
predictors parameterized by a vector x. When n is large, perhaps the most common approach to
solve such problems is via stochastic gradient descent, which initializes at some point in X and in-
volves iterations of the form x′ := x−η∇fi(x), where η is a step size parameter and i ∈ {1, . . . , n}.
The majority of existing theoretical works assume that each i is sampled independently across iter-
ations (also known as with-replacement sampling). For example, if it is chosen independently and
uniformly at random from {1, . . . , n}, then Ei[∇fi(x)|x] = ∇F (x), so the algorithm can be seen
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as a noisy version of exact gradient descent on F (with iterations of the form x′ := x− η∇F (x)),
which greatly facilitates its analysis.

However, this straightforward sampling approach suffers from practical drawbacks, such as
requiring truly random data access and hence longer runtime. In practice, it is quite common to use
without-replacement sampling heuristics, which utilize the individual functions in some random or
even deterministic order (see for example Bottou (2009, 2012); Nedić and Bertsekas (2001); Recht
and Ré (2012); Shalev-Shwartz and Zhang (2013); Bertsekas and Scientific (2015); Feng et al.
(2012)). Moreover, to get sufficiently high accuracy, it is common to perform several passes over
the data, where each pass either uses the same order as the previous one, or some new random order.
The different algorithmic variants we study in this paper are presented as Algorithms 1 to 4 below.
We assume that all algorithms take as input the functions f1, . . . , fn, a step size parameter η > 0
(which remains constant throughout the iterations), and an initialization point x0. The algorithms
then perform k passes (which we will also refer to as epochs) over the individual functions, but
differ in their sampling strategies:

• Algorithm 1 (SGD with random reshuffling) chooses a new permutation of the functions at
the beginning of every epoch, and processes the individual functions in that order.

• Algorithm 2 (SGD with single shuffling) uses the same random permutation for all k epochs.

• Algorithm 3 (usually referred to as the incremental gradient method, see Bertsekas and Sci-
entific (2015)) performs k passes over the individual functions, each in the same fixed order
(which we will assume without loss of generality to be the canonical order f1, . . . , fn)

In contrast, Algorithm 4 presents SGD using with-replacement sampling, where each iteration an
individual function is chosen uniformly and independently. To facilitate our analysis, we let xt in
the pseudocode denote the iterate at the end of epoch t.

Algorithm 1 SGD with Random Reshuffling
x := x0

for t = 1, . . . , k do
Sample a permutation σ(1), . . . , σ(n)
of {1, . . . , n} uniformly at random
for j = 1, . . . , n do
x := x− η∇fσ(j)(x)

end for
xt := x

end for

Algorithm 2 SGD with Single Shuffling
x := x0

Sample a permutation σ(1), . . . , σ(n) of
{1, . . . , n} uniformly at random
for t = 1, . . . , k do

for j = 1, . . . , n do
x := x− η∇fσ(j)(x)

end for
xt := x

end for
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Algorithm 3 Incremental Gradient Method
x := x0

for t = 1, . . . , k do
for j = 1, . . . , n do
x := x− η∇fj(x)

end for
xt := x

end for

Algorithm 4 SGD with Replacement
x := x0

for t = 1, . . . , k do
for j = 1, . . . , n do

Sample i ∈ {1, . . . , n} uniformly
x := x− η∇fi(x)

end for
xt := x

end for

Random Reshuffling Single Shuffling Incremental With

Replacement

Upper 1/k2 [1] 1/k2 [2] 1/k2 [2] 1/nk

Bound 1/n (for k = 1) [3] 1/n (for k = 1) [3]

1/(nk)2 + 1/k3 [4] 1/nk2 (for 1d quad.)

1/nk2 [5]

1/(nk)2 + 1/nk3 (for 1d quad.)

Lower 1/n (for k = 1) [4] 1/nk2 1/k2 ([2], asymptotic) 1/nk

Bound 1/(nk)2 + 1/nk3 1/k2 (non-asymptotic)

[1] Gürbüzbalaban et al. (2015b).
[2] Gürbüzbalaban et al. (2015a).
[3] Shamir (2016).
[4] HaoChen and Sra (2018).
[5] Jain et al. (2019).

Table 1: Upper and lower bounds on the expected optimization error E[F (xk) − infx F (x)] for
constant-step-size SGD with various sampling strategies, after k passes over n individual
functions, in terms of n, k. Boldface letters refer to new results in this paper. We note that
the upper bound of [4] additionally requires that the Hessian of each fi is Lipschitz, and
the upper bounds of [4] and [5] require k to be larger than a problem-dependent parameter
(depending for example on the condition number). Also, the upper bound of [3] requires
functions which are generalized linear functions. Our lower bounds apply under all such
assumptions. As to our upper bounds, note that they apply only to univariate quadratic
functions. Finally, we note that the upper bound of [5] is actually not on the optimization
error for xk, but rather on a certain averaging of several iterates – see Remark 4 for a
further discussion.
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These without-replacement sampling heuristics are often easier and faster to implement in prac-
tice. In addition, when using random permutations, they often exhibit faster error decay than with-
replacement SGD Bottou (2009). A common intuitive explanation for this phenomenon is that ran-
dom permutations force the algorithm to touch each individual function exactly once during each
epoch, whereas with-replacement makes the algorithm touch each function once only in expecta-
tion. However, theoretically analyzing these sampling heuristics has proven to be very challenging,
since the individual iterations are no longer statistically independent.

In the past few years, some progress has been made in this front, and we summarize the known
results on the expected optimization error (or at least what these results imply1), as well as our
new results, in Table 1. First, we note that for SGD with replacement, classical results imply an
optimization error of O(1/nk) after nk stochastic iterations, and this is known to be tight (see for
example Nemirovski et al. (2009)). For SGD with random reshuffling, better bounds have been
shown in recent years, generally implying that when the number of epochs k is sufficiently large,
such sampling schemes are better than with-replacement sampling, with optimization error decaying
as 1/k2 rather than 1/k. However, the optimal dependencies on n, k and other problem-dependent
parameters remain unclear (HaoChen and Sra (2018) show that for k = 1, one cannot hope to
achieve worst-case error smaller than Ω(1/n), but for k > 1 not much is known). Some other recent
theoretical works on SGD with random reshuffling (but under somewhat different settings) include
Recht and Ré (2012); Ying et al. (2018). For the incremental gradient method, an O(1/k2) upper
bound was shown in Gürbüzbalaban et al. (2015a), as well as a matching asymptotic lower bound
in terms of k. For SGD with single shuffling, we are actually not aware of a rigorous theoretical
analysis. Thus, we only have the O(1/k2) upper bound trivially implied by the analysis for the
incremental gradient method, and for k = 1, the O(1/n) upper bound implied by the analysis for
random reshuffling (since in that case there is no distinction between single shuffling and random
reshuffling). Indeed, for single shuffling, even different epochs are not statistically independent,
which makes the analysis particularly challenging.

In this paper, we focus on providing bounds on the expected optimization error of SGD with
these sampling heuristics, which complement the existing upper bounds and provide further insights
on the advantages and disadvantages of each. We focus on constant-step size SGD, as it simplifies
our analysis, and existing upper bounds in the literature are derived in the same setting. Our contri-
butions are as follows:

• For SGD with random reshuffling, we provide in Sec. 3 a lower bound of Ω(1/(nk)2 +
1/nk3). Interestingly, it seems to combine the “best” behaviors of previous upper bounds:
It behaves as 1/n for a small constant number k of passes (which is optimal as discussed
above), interpolating to O(1/(nk)2) when k is large enough, and contains a term decaying
cubically with k. Moreover, the proof construction applies already for univariate quadratics.

• For SGD with a single shuffling, we provide in Sec. 4 a lower bound of Ω(1/nk2). Although
we are not aware of a previous upper bound to compare to, this lower bound already proves
an inherent performance gap compared to random reshuffling: Indeed, in the latter case there
is an upper bound of O(1/(nk)2 + 1/k3), which is smaller than the Ω(1/nk2) lower bound

1. For example, some of these papers focus on bounding E[‖xk − x∗‖2] where x∗ is the minimum of F (·), rather than
the expected optimization error E[F (xk)−F (x∗)]. However, for strongly convex and smooth functions, ‖xk−x∗‖2
and F (xk) − F (x∗) are the same up to the strong convexity and smoothness parameters, see for example Nesterov
(2018).
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for single shuffling when k is sufficiently large. This implies that the added computational
effort of repeatedly reshuffling the functions can provably pay off in terms of the optimization
error.

• For the incremental gradient method, we provide in Sec. 5 an Ω(1/k2) lower bound. We
note that a similar bound (at least asymptotically and for a certain n) is already implied
by (Gürbüzbalaban et al., 2015a, Theorem 3.4). Our contribution here is to present a more
explicit and non-asymptotic lower bound.

• In Sec. 6, we provide an indication that our lower bounds are tight, by proving matching
upper bounds in the specific setting of univariate quadratic functions. We conjecture that
these bounds also hold for multivariate quadratics, and perhaps even to general smooth and
strongly convex functions. This is based on our matching lower bounds, as well as the fact that
the bounds for with-replacement SGD are known to be tight already for univariate quadratics.

We note that in a very recent work (appearing after the initial publication of our work), Rajput
et al. (2020) show an upper bound of O(1/nk3 + 1/n2k2) for SGD with random reshuffling for
multivariate quadratics, as well as a Ω(1/nk2) lower bound for general convex functions. This
validates that our lower bounds are tight for quadratics in the random reshuffling case.

2. Preliminaries

We let bold-face letters denote vectors. A twice-differentiable function f on Rd is λ-strongly con-
vex, if its Hessian satisfies ∇2F (x) � λI for all x. f is quadratic if it is of the form f(x) =
x′>Ax + b>x + c for some matrix A, vector b and scalar c.

We consider finite-sum optimization problems as in Eq. (1), and our lower bound constructions
hold under the following conditions (for some positive parameters G,λ):

Assumption 1 F (x) is a quadratic finite-sum function of the form 1
n

∑n
i=1 fi(x) for some n > 1,

which is λ-strongly convex. Each fi is convex and quadratic and of the form fi(x) = ax2 + bx,
has λ-Lipschitz gradients, and moreover, is G-Lipschitz for any x such that ‖x − x∗‖ ≤ 1 where
x∗ = arg minF (x). Also, the algorithm is initialized at some x0 for which ‖x0 − x∗‖ ≤ 1.

Before continuing, we make a few remarks about the setting and our results:

Remark 1 (Constant Condition Number) In the above assumption, λ plays a double role as both
the gradient Lipschitz and strong convexity parameter. This entails that the condition number (de-
fined as the quotient of the two) is constant, hence our lower bounds stem from inherent limitations
of each sampling method and not from the constructions being ill-conditioned. We leave the problem
of deriving lower bounds for general condition numbers to future work.

Remark 2 (Unconstrained Optimization) For simplicity, in this paper we consider unconstrained
SGD, where the iterates are not explicitly constrained to lie in some subset of the domain. However,
we note that existing upper bounds for SGD on strongly convex functions often assume an explicit
projection on such a subset, in order to ensure that the gradients remain bounded. That being said,
it is not difficult to verify that all our constructions – which have a very simple structure – are
such that the iterates remain in a region with bounded gradients (with probability 1, at least for
reasonably small step sizes), in which case projections will not significantly affect the results.
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Remark 3 (Distance from Optimum) In Assumption 1, we fix the initial distance from the op-
timum to be at most 1, rather than keeping it as a variable parameter. Besides simplifying the
constructions, we note that existing SGD upper bounds for strongly convex functions often do not
explicitly depend on the initial distance (both for with-replacement SGD and with random reshuf-
fling, see for example Nemirovski et al. (2009); Rakhlin et al. (2012); Jain et al. (2019)). Thus, it
makes sense to study lower bounds in which the initial distance is fixed to be some constant.

Remark 4 (Applicability of the Lower Bounds) We emphasize that in our lower bounds, we fo-
cus on (a) SGD with constant step size, and (b) the expected performance of the iterate xk after
exactly k epochs. Thus, they do not formally cover step sizes which change across iterations, the
performance of other iterates, or the performance of some average of the iterates. However, it
is not clear that these are truly necessary to achieve optimal error bounds in our setting (indeed,
many existing analyses do not require them), and we conjecture that our lower bounds cannot be
substantially improved even with non-constant step sizes and iterate averaging schemes.

3. SGD with Random Reshuffling

We begin by discussing SGD with random reshuffling, where at the beginning of every epoch we
choose a new random order for processing the individual functions (Algorithm 1). Our main result
is the following:

Theorem 5 For any k ≥ 1, n > 1, and positive G,λ such that G ≥ 6λ, there exists a function F
on R and an initialization point x0 satisfying Assumption 1, such that for any step size η > 0,

E
[
F (xk)− inf

x
F (x)

]
≥ c ·min

{
λ ,

G2

λ

(
1

(nk)2
+

1

nk3

)}
,

where c > 0 is a universal constant.

We remark that the λ term seems unavoidable (at least in the univariate setting), as it is a trivial
lower bound that holds by Assumption 1 for most points in the domain2. However, for nk large,
this lower bound is

Ω

(
G2

λ

(
1

(nk)2
+

1

nk3

))
.

It is useful to compare this bound to the existing optimal bound for SGD with replacement, which
is

Θ

(
G2

λnk

)
(see for example Rakhlin et al. (2012)). First, we note that the G2/λ factor is the same in both
of them. The dependence on n, k though is different: For k = 1 or constant k, our lower bound
is Ω(1/n), similar to the with-replacement case, but as k increases, it decreases cubically (rather
than linearly) with k. This indicates that even for small k, random reshuffling is superior to with-
replacement sampling, which agrees with empirical observations. For k very large (k > n), a phase
transition occurs and the bound becomes 1/(nk)2 – that is, scaling down quadratically with the total

2. e.g. for small enough c and when considering a uniform distribution over all points in the domain.
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number of individual stochastic iterations. That being said, it should be emphasized that k > n is
often an unrealistic regime, especially in large-scale problems where n is a huge number.

The proof of Thm. 5 appears in Appendix A.1. It is based on a set of very simple constructions,
where F (x) = λ

2x
2, and the individual functions are all of the form fi(x) = aix

2 + bix for
appropriate ai, bi. This allows us to write down the iterates x1, x2, . . . at the end of each epoch in
closed form. The analysis then carefully tracks the decay of E[x2t ] after each epoch, showing that
it cannot decay to 0 too rapidly, hence implying a lower bound on E[F (xk)] after k epochs. The
main challenge is that unlike SGD with replacement, here the stochastic iterations in each epoch are
not independent, so computing these expectations is not easy. To make it tractable, we identify two
distinct sources contributing to the error in each epoch: A “bias” term, which captures the fact that
the stochastic gradients at each epoch are statistically correlated, hence for a given iterate x during
the algorithm’s run, E[∇fσ(j)(x)|x] 6= ∇F (x) (unlike the with-replacement case where equality
holds), and a “variance” term, which captures the inherent noise in the stochastic sampling process.
For different parameter regimes, we use different constructions and focus on either the bias or the
variance component (which when studied in isolation are more tractable), and then combine the
various bounds into the final lower bound appearing in Thm. 5.

We finish with the following remark about a possible extension of the lower bound:

Remark 6 (Convex Functions) By allowing λ to decay to 0 at a rate governed by k (as well as
the remaining problem parameters), we may consider the setting of convex functions which are not
necessarily strongly convex (since that for large enough k, there exists no c > 0 such that λ ≥ c).
In such a regime, Thm. 5 seems to suggest a lower bound (in terms of n, k) of

Ω

(
G

√
1

(nk)2
+

1

nk3

)
= Ω

(
G

(
1√
nk3

+
1

nk

))
,

since in this scenario we can set λ arbitrarily small, and in particular as G
√

1/(nk)2 + 1/nk3

so as to maximize the lower bound in Thm. 5. In contrast, Jain et al. (2019) shows a O(1/
√
nk)

upper bound in this setting for SGD with random reshuffling, and a similar upper bound hold for
SGD with replacement. A similar argument can also be applied to the other lower bounds in our
paper, extending them from the strongly convex to the convex case. However, we emphasize that
some caution is needed, since our lower bounds do not quantify a dependence on the radius of the
domain, which is usually explicit in bounds for this setting. We leave the task of proving a lower
bound in the general convex case to future work.

4. SGD with a Single Shuffling

We now turn to the case of SGD where a single random order over the individual functions is
chosen at the beginning, and the algorithm then cycles over the individual functions using that order
(Algorithm 2). Our main result here is the following:

Theorem 7 For any k ≥ 1, n > 1, and positive G,λ such that G ≥ 6λ, there exists a function F
on R and an initialization point x0 satisfying Assumption 1, such that for any step size η > 0,

E
[
F (xk)− inf

x
F (x)

]
≥ c ·min

{
λ ,

G2

λnk2

}
,

where c > 0 is a universal constant.
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The proof appears in Appendix A.2. In the single shuffling case, we are not aware of a previously
known upper bound to compare to (except the O(1/k2) bound for the incremental gradient method
below, which trivially applies also to SGD with single shuffling). However, the lower bound already
implies an interesting separation between single shuffling and random reshuffling: In the former
case, Ω(1/nk2) is the best we can hope to achieve, whereas in the latter case, we have seen upper
bounds which are strictly better when k is sufficiently large (i.e., O(1/(nk)2)). To the best of
our knowledge, this is the first formal separation between these two shuffling schemes for SGD:
It implies that the added computational effort of repeatedly reshuffling the functions can provably
pay off in terms of the optimization error. It would be quite interesting to understand whether
this separation might also occur for smaller values of k as well, which is definitely true if our
Ω(1/(nk)2 + 1/nk3) lower bound for random reshuffling is tight. It would also be interesting to
derive a good upper bound for SGD with single shuffling, which is a common heuristic (indeed, we
prove such a bound in Sec. 6, but only for univariate quadratics).

5. Incremental Gradient Method

Next, we turn to discuss the incremental gradient method, where the individual functions are cycled
over in a fixed deterministic order. We note that for this algorithm, an Ω(1/k2) lower bound was
already proven in Gürbüzbalaban et al. (2015a), but in an asymptotic form, and only for n = 2. Our
contribution here is to provide an explicit, non-asymptotic bound:

Theorem 8 For any k ≥ 1, n > 1, and positive G,λ such that G ≥ 6λ, there exists a function
F on R and an initialization point x0 satisfying Assumption 1, such that if we run the incremental
gradient method for k epochs with any step size η > 0, then

F (xk)− inf
x
F (x) ≥ c ·min

{
λ ,

G2

λk2

}
where c > 0 is a universal constant.

The proof (which follows a strategy broadly similar to Thm. 5) appears in Appendix A.3. Com-
paring this theorem with our other lower bounds and the associated upper bounds, it is clear that
there is a high price to pay (in a worst-case sense) for using a fixed, non-random order, as the
bound does not improve at all with more individual functions n. Indeed, recalling that the bound for
with-replacement SGD is O(G2/λnk), it follows that incremental gradient method can beat with-
replacement SGD only when G2

λk2
≤ G2

λnk , or k ≥ n. For large-scale problems where n is big, this is
often an unrealistically large value of k.

6. Tight Upper Bounds for One-Dimensional Quadratics

As discussed in the introduction, for SGD with random reshuffling and single shuffling, there is
a gap between the lower bounds we present here, and known upper bounds in the literature. In
this section, we provide an indication that our lower bounds are tight, by proving matching upper
bounds (up to log factors) for the setting of univariate quadratic functions3. Although this is a

3. I.e., x 7→ ax2 + bx. Note that for simplicity, we assume no constant term c as in ax2 + bx+ c, as it plays no role in
the optimization process.
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special case, we note that the standard Θ(1/nk) bounds for SGD with replacement on strongly
convex functions are known to be tight already for univariate quadratics. This leads us to conjecture
that even for without-replacement sampling schemes, the optimal rates for univariate quadratics are
also the optimal rates for general strongly convex functions.

Before stating our upper bounds, we make the following assumption on the target functions fi:

Assumption 2 F (x) = 1
n

∑n
i=1 fi(x) is λ-strongly convex. Moreover, each fi(x) = ai

2 x
2 − bix is

convex, has L-Lipschitz gradients, and satisfies |f ′i(x∗)| ≤ G where x∗ = arg minx F (x).

For the single shuffling case we have the following theorem:

Theorem 9 Let F (x) := λ
2x

2−bx = 1
n

∑n
i=1 fi(x), where fi(x) = 1

2aix
2−bix satisfy Assumption

2, and assume that Lλ ≤
nk

log(n0.5k)
. Then single shuffling SGD with a fixed step size of η =

log(n0.5k)
λnk

satisfies4

E
[
F (xk)− inf

x
F (x)

]
≤ Õ

(
λ

nk2
(x0 − x∗)2 +

G2L2

λ3nk2

)
,

where the expectation is taken over drawing a permutation σ : [n]→ [n] uniformly at random, and
the big O tilde notation hides a universal constant and factors poly-logarithmic in n and k.

For SGD with random reshuffling, we present the following theorem:

Theorem 10 Let F (x) := λ
2x

2 − bx = 1
n

∑n
i=1 fi(x), where fi(x) = 1

2aix
2 − bix satisfy As-

sumption 2, and assume that L
λ ≤

k
2 log(nk) . Then random shuffling SGD with a fixed step size of

η = log(nk)
λnk satisfies5

E
[
F (xk)− inf

x
F (x)

]
≤ Õ

(
λ

n2k2
(x0 − x∗)2 +

G2L2

λ3

(
1

n2k2
+

1

nk3

))
,

where the expectation is taken over drawing k permutations σi : [n] → [n] uniformly at random,
and the big O tilde notation hides a universal constant and factors poly-logarithmic in n and k.

The formal proofs appear in Appendix A.
It is easy to verify that these upper bounds match our lower bounds in Theorems 5 and 7 in

terms of the dependence on n, k. Moreover, our requirement of k ≥ Ω̃(κ) (recall that κ := L/λ)
for random reshuffling is also made in HaoChen and Sra (2018). As to the other parameters, it is
important to note that our lower bound constructions (which also utilize univariate quadratics) are in
a regime where both L/λ and x0 − x∗ are constants, and they match the upper bounds in this case.
In particular, Thm. 9 then reduces to Õ

(
λ
nk2

+ G2

λnk2

)
, which is Õ( G2

λnk2
) under the assumption

G ≥ 6λ which we make in the lower bound. Similarly, Thm. 10 reduces to

Õ
(

λ

n2k2
+
G2

λ

(
1

n2k2
+

1

nk3

))
= Õ

(
G2

λ

(
1

n2k2
+

1

nk3

))
4. Letting κ := L/λ denote the condition number, the second term in the right hand side can equivalently be written as

G2κ2

λnk3
.

5. Similarly to the above footnote, the second term in the right hand side can equivalently be written as
G2κ2

λ

(
1

n2k2
+ 1

nk3

)
.
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if G ≥ 6λ. We leave the problem of getting matching upper and lower bounds in all parameter
regimes of G,L, λ to future work.

While the assumption of univariate quadratics is restrictive, our main purpose here is to indi-
cate the potential tightness of our lower bounds, and elucidate how without-replacement sampling
can lead to faster convergence in a simple setting. Our proof is based on evaluating a closed-form
expression for the iterate at the k-th epoch, splitting deteministic and stochastic terms, and then care-
fully bounding the stochastic terms using a Hoeffding-Serfling type inequality and the deterministic
term using the AM-GM inequality.

We conjecture that our upper bounds can be generalized to general quadratic functions, and
perhaps even to general smooth and strongly convex functions. The main technical barrier is that
our proof crucially uses the commutativity of the scalar-valued ai’s. Once we deal with matrices, we
essentially require (a special case of) a matrix-valued arithmetic-geometric mean inequality studied
in Recht and Ré (2012) (See Eq. (20) for the part of the proof where we require this inequality).
Unfortunately, as of today this conjectured inequality is not known to hold except in extremely
special cases.
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Rémi Bardenet, Odalric-Ambrym Maillard, et al. Concentration inequalities for sampling without
replacement. Bernoulli, 21(3):1361–1385, 2015.

Dimitri P Bertsekas and Athena Scientific. Convex optimization algorithms. Athena Scientific
Belmont, 2015.

L. Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. In Proceed-
ings of the symposium on learning and data science, Paris, 2009.

L. Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade. Springer,
2012.
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Appendix A. Proofs

A.1. Proof of Thm. 5

For simplicity, we will prove the theorem assuming the number of components n in our func-
tion is an even number. This is without loss of generality, since if n > 1 is odd, let Fn−1(x) =
1

n−1
∑n−1

i=1 fi(x) be the function achieving the lower bound using an even number n− 1 of compo-

nents, and define F (x) = 1
n

(∑n−1
i=1 fi(x) + fn(x)

)
where fn(x) := 0. F () has the same Lipschitz

parameter G as Fn−1(), and a strong convexity parameter λ smaller than that of Fn−1() by a n
n+1

factor which is always in [34 , 1]. Moreover, it is easy to see that for a fixed step size, the distribution
of the iterates after k epochs is the same over F () and Fn−1(), since SGD does not move on any
iteration where fn is chosen. Therefore, the lower bound on Fn−1 translates to a lower bound on
F () up to a small factor which can be absorbed into the numerical constants. Thus, in what follows,
we will assume that n is even and that G ≥ 4λ, whereas in the theorem statement we make the
slightly stronger assumption G ≥ 6λ so that the reduction described above will be valid.

The proof of the theorem is based on the following three propositions, each using a somewhat
different construction and analysis:

Proposition 11 For any even n and any positive G,λ such that G ≥ 2λ, there exists a function F
on R satisfying Assumption 1, such that for any step size η > 0,

E
[
F (xk)− inf

x
F (x)

]
≥ c ·min

{
λ ,

G2

λnk3

}
11
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where c > 0 is a universal constant.

Proposition 12 Suppose that k ≥ n and that n is even. For any positive G,λ such that G ≥ 2λ,
there exists a function F on R satisfying Assumption 1, such that for any step size η ≥ 1

100λn2 ,

E
[
F (xk)− inf

x
F (x)

]
≥ c · G2

λ(nk)2

where c > 0 is a numerical constant.

Proposition 13 Suppose k > 1 and that n is even. For any positive G,λ such that G ≥ 4λ, there
exists a function F on R satisfying Assumption 1, such that for any step size η ≤ 1

100λn2 ,

E
[
F (xk)− inf

x
F (x)

]
≥ c ·min

{
λ ,

G2

λ(nk)2

}
where c > 0 is a numerical constant.

The proof of each proposition appears below, but let us first show how combining these implies
our theorem. We consider two cases:

• If k ≤ n, then 1
nk3
≥ 1

(nk)2
, so by Proposition 11,

E
[
F (xk)− inf

x
F (x)

]
≥ c ·min

{
λ ,

G2

λnk3

}
≥ c ·min

{
λ ,

G2

2λ

(
1

(nk)2
+

1

nk3

)}
.

• If k ≥ n (which implies k > 1 since n is even), we have 1
nk3
≤ 1

(nk)2
, and by combining

Proposition 12 and Proposition 13 (which together cover any positive step size),

E
[
F (xk)− inf

x
F (x)

]
≥ c ·min

{
λ ,

G2

λ(nk)2

}
≥ c ·min

{
λ ,

G2

2λ

(
1

(nk)2
+

1

nk3

)}

Thus, in any case we get E [F (xk)− infx F (x)] ≥ c · min
{
λ , G2

2λ

(
1

(nk)2
+ 1

nk3

)}
, from which

the result follows.

A.1.1. PROOF OF PROPOSITION 11

We will need the following key technical lemma, whose proof (which is rather long and technical)
appears in Appendix B:

Lemma 14 Let σ0, . . . , σn−1 (for even n) be a random permutation of (1, 1, . . . , 1,−1,−1. . . . ,−1)
(where both 1 and −1 appear exactly n/2 times). Then there is a numerical constant c > 0, such
that for any α > 0,

E

(n−1∑
i=0

σi(1− α)i

)2
 ≥ c ·min

{
1 +

1

α
, n3α2

}

12
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Let G,λ, n be fixed (assuming G ≥ 2λ and n is even). We will use the following function:

F (x) =
1

n

n∑
i=1

fi(x) =
λ

2
x2 ,

where infx F (x) = 0, and

fi(x) =

{
λ
2x

2 + G
2 x i ≤ n

2
λ
2x

2 − G
2 x i > n

2

. (2)

Also, we assume that the algorithm is initialized at x0 = 1. On this function, we have that during
any single epoch, we perform n iterations of the form

xnew = (1− ηλ)xold +
ηG

2
σi,

where σ0, . . . , σn−1 are a random permutation of n
2 1’s and n

2 −1’s. Repeatedly applying this
inequality, we get that after n iterations, the relationship between the first and last iterates in the
epoch satisfy

xt+1 = (1− ηλ)nxt +
ηG

2

n−1∑
i=0

σi(1− ηλ)n−i−1

= (1− ηλ)nxt +
ηG

2

n−1∑
i=0

σi(1− ηλ)i . (3)

(in the last equality, we used the fact that σ1, . . . , σn are exchangeable). Using this and the fact that
E[σi] = 0, we get that

E[x2t+1] = (1− ηλ)2nE[x2t ] +

(
ηG

2

)2

· βn,η,λ , (4)

where

βn,η,λ := E

(n−1∑
i=0

σi(1− λη)n−i−1

)2
 = E

(n−1∑
i=0

σi(1− λη)i

)2
 . (5)

Note that if λη ≥ 1, then by Lemma 14, βn,η,λ ≥ c for some positive constant c, and we get that

E[x2t+1] ≥
(
ηG

2

)2

· c ≥
(
G

2λ

)2

· c

for all t, and therefore E[F (xk)] = λ
2E[x2k] ≥ cG

2

8λ ≥ c G2

8λnk3
, so the proposition we wish to prove

holds. Thus, we will assume from now on that λη < 1.
With this assumption, repeatedly applying Eq. (4) and recalling that x0 = 1, we have

E[x2k] ≥ (1− ηλ)2nk +

(
ηG

2

)2

· βn,η,λ
k−1∑
t=0

(1− ηλ)2nt

= (1− ηλ)2nk +

(
ηG

2

)2

· βn,η,λ ·
1− (1− ηλ)2nk

1− (1− ηλ)2n
. (6)

We now consider a few cases (recalling that the case ηλ ≥ 1 was already treated earlier):

13
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• If ηλ ≤ 1
2nk , then we have

E[x2k] ≥ (1− ηλ)2nk ≥
(

1− 1

2nk

)2nk

≥ 1

4

for all n, k.

• If ηλ ∈
(

1
2nk ,

1
2n

)
then by Bernoulli’s inequality, we have 1 ≥ (1− ηλ)2n ≥ 1− 2nηλ > 0,

and therefore, by Eq. (6)

E[x2k] ≥
η2G2βn,η,λ(1− (1− 1/2nk)2nk)

4(1− (1− 2nηλ))
≥

ηG2βn,η,λ(1− exp(−1))

8λn
.

Plugging in Lemma 14 and simplifying a bit, this is at least

cηG2

λn
·min

{
1

ηλ
, n3(ηλ)2

}
=

cηG2

λn
· n3(ηλ)2 = cη3λn2G2

for some numerical constant c > 0. Using the assumption that ηλ ≥ 1
2nk (which implies

η ≥ 1
2λnk ), this is at least

c

8
· G2

λ2nk3
.

• If ηλ ∈
[

1
2n , 1

)
, then 1−(1−ηλ)2nk

1−(1−ηλ)2n is at least some numerical constant c > 0, so Eq. (6)
implies

E[x2k] ≥ c

(
ηG

2

)2

· βn,η,λ .

By Lemma 14, this is at least

c′
(
ηG

2

)2

·min

{
1 +

1

ηλ
, n3(ηλ)2

}
= c′

(
ηG

2

)2(
1 +

1

ηλ

)
≥ c′ηG2

4λ

Since η ≥ 1
2λn , this is at least

c′G2

8λ2n
≥ c′G2

8λ2nk3
.

Combining all the cases, we get overall that

E[x2k] ≥ c ·min

{
1,

G2

λ2nk3

}
for some numerical constant c > 0. Noting that E[F (xk)] = E

[
λ
2x

2
k

]
= λ

2E
[
x2k
]

and combining
with the above, the result follows.
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A.1.2. PROOF OF PROPOSITION 12

We use the same construction as in the proof of Proposition 11, where F (x) = λ
2x

2, and leading to
Eq. (6), namely

E[x2k] ≥ (1− ηλ)2nk +

(
ηG

2

)2

· βn,η,λ ·
1− (1− ηλ)2nk

1− (1− ηλ)2n
, (7)

where βn,η,λ = E
[(∑n−1

i=0 σi(1− λη)i
)2]

, σ0, . . . , σn are a random permutation of n
2 1’s and n

2

−1’s.
As in the proof of Proposition 11, we consider several regimes of ηλ. In the same manner as in

that proof, it is easy to verify that when ηλ > 1 or ηλ ≤ 1
2nk , then E[x2k] is at least a positive constant

(hence E[F (xk)] ≥ Ω(λ)) , and when ηλ ∈
[

1
2n , 1

)
, E[x2k] ≥

c′G2

2λ2n
for a numerical constant c′ > 0

(hence E[F (xk)] ≥ Ω(G2/λn)). In both these cases, the statement in our proposition follows, so it
is enough to consider the regime ηλ ∈

(
1

2nk ,
1
2n

)
.

In this regime, by Bernoulli’s inequality, we have 0 < 1−(1−ηλ)2n ≤ 1−(1−2nηλ) = 2nηλ,
so we can lower bound Eq. (7) by(

ηG

2

)2

· βn,η,λ
1− (1− ηλ)2nk

2nηλ
=

ηG2βn,η,λ(1− (1− ηλ)2nk)

8λn
.

Since we assume ηλ ≥ 1
2nk , it follows that 1 − (1 − ηλ)2nk ≥ 1 − (1 − 1/2nk)2nk ≥ c for some

positive c > 0. Plugging this and the bound for βn,η,λ from Lemma 14, the displayed equation
above is at least

cηG2

8λn
·min

{
1

ηλ
, n3(ηλ)2

}
=

cηG2

8λn
· n3(ηλ)2 =

c

8
G2λη3n2 .

Since we assume η ≥ 1
100λn2 , this is at least

c′ · G
2

λ2n4

for some numerical c′ > 0. Since we assume that k ≥ n, this is at least c′ · G2

λ2(nk)2
. Noting that

E[F (xk)] = E
[
λ
2x

2
k

]
= λ

2E
[
x2k
]

and combining with the above, the result follows.

A.1.3. PROOF OF PROPOSITION 13

To simplify some of the notation, we will prove the result for a function which is λ/2-strongly
convex (rather than λ-strongly convex), assuming G ≥ 2λ, and notice that this only affects the
universal constant c in the bound. Specifically, we use the following function:

F (x) =
1

n

n∑
i=1

fi(x) =
λ

4
x2 ,

where infx F (x) = 0, and

fi(x) =

{
λ
2x

2 + G
2 x i ≤ n

2

−G
2 x i > n

2

.

15
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Also, we assume that the algorithm is initialized at x0 = −1. On this function, we have that during
any single epoch, we perform n iterations of the form

xnew = (1− ηλσi)xold +
ηG

2
(1− 2σi),

where σ0, . . . , σn−1 are a random permutation of n
2 1’s and n

2 0’s. Repeatedly applying this equa-
tion, we get that after n iterations, the relationship between the iterates xt and xt+1 is

xt+1 = xt ·
n−1∏
i=0

(1− ηλσi) +
ηG

2

n−1∑
i=0

(1− 2σi)
n−1∏
j=i+1

(1− ηλσj) (8)

As a result, and using the fact that σ1, . . . , σn are independent of xt and in {0, 1}, we have

E[x2t+1] ≥ E

[
x2t ·

n−1∏
i=0

(1− ηλσi)2
]

+ ηG · E

xt(n−1∏
i=0

(1− ηλσi)

)n−1∑
i=0

(1− 2σi)
n−1∏
j=i+1

(1− ηλσj)


≥ (1− ηλ)2n · E[x2t ] + ηG · E[xt] · E

(n−1∏
i=0

(1− ηλσi)

)n−1∑
i=0

(1− 2σi)
n−1∏
j=i+1

(1− ηλσj)


(9)

We now wish to use Lemma 19 from Appendix C, in order to replace the products in the expression
above by sums. To that end, and in order to simplify the notation, define

A :=
n−1∏
i=0

(1−ηλσi) , Bi :=
n−1∏
j=i+1

(1−ηλσj) , Ã := 1−ηλ
n∑
i=1

σi = 1−ηλn
2

, B̃i := 1−ηλ
n∑

j=i+1

σi ,

(10)
and note that by Lemma 19,

A
n−1∑
i=0

(1− 2σi)Bi ≤

Ã± 2

(
ηλ

n−1∑
i=0

σi

)2
n−1∑

i=0

(1− 2σi)B̃i ± 2
n−1∑
i=0

ηλ n−1∑
j=i+1

σj

2 ,

(11)
where ± is taken to be either plus or minus depending on the sign of Ã and

∑n−1
i=0 (1 − 2σi)B̃i,

to make the inequality valid (we note that eventually we will show that these terms are relatively
negligible). Opening the product, and using the deterministic upper bounds

|Ã| ≤ 1 ,

(
ηλ

n−1∑
i=0

σi

)2

≤ (ηλn)2 (12)

and ∣∣∣∣∣
n−1∑
i=0

(1− 2σi)B̃i

∣∣∣∣∣ ≤ n ,
n−1∑
i=0

ηλ n−1∑
j=i+1

σj

2

≤ n(ηλn)2 ≤ 1

104n
, (13)
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(which follow from the assumption that η ≤ 1
100λn2 ), we can upper bound Eq. (11) by

Ã
n−1∑
i=0

(1− 2σi)B̃i + 2(ηλn)2 ·
(
n+

2

100n

)
+ n(ηλn)2

(∗)
≤ Ã

n−1∑
i=0

(1− 2σi)B̃i +
301

100
(ηλ)2n3 ,

where in (∗) we used the fact that n ≥ 2 and therefore n + 2
100n ≤ n + 1

100 ≤ (1 + 1
200)n.

Substituting back the definitions of Ã, B̃ and plugging back into Eq. (11), we get that

E

(n−1∏
i=0

(1− ηλσi)

)n−1∑
i=0

(1− 2σi)

n−1∏
j=i+1

(1− ηλσj)


≤
(

1− ηλn

2

)
· E

n−1∑
i=0

(1− 2σi)(1− ηλ
n∑

j=i+1

σj)

+
301

100
(ηλ)2n3

(∗)
≤ ηλn

(
−
(

1− ηλn

2

)
n+ 1

4(n− 1)
+

301

100
ηλn2

)
,

where (∗) is by Lemma 17. Using the assumptions that η ≤ 1
100λn2 (hence ηλn ≤ ηλn2 ≤ 1

100 )
and n ≥ 2, this is at most −cηλn for a numerical constant c > 0.2. Summarizing this part of the
proof, we have shown that

E

(n−1∏
i=0

(1− ηλσi)

)n−1∑
i=0

(1− 2σi)
n−1∏
j=i+1

(1− ηλσj)

 ≤ − cηλn . (14)

Next, we turn to analyze the E[xt] term in Eq. (9). By Eq. (8), and the fact that σi is independent
of xt, we have

E[xt+1] = E[xt] · E

[
n−1∏
i=0

(1− ηλσi)

]
+
ηG

2
E

n−1∑
i=0

(1− 2σi)
n−1∏
j=i+1

(1− ηλσj)

 .

Again using the notation from Eq. (10), Lemma 19, and the deterministic upper bounds in Eq. (12)
and Eq. (13), this can be written as

E[xt+1] = E[xt] · E[A] +
ηG

2
E

[
n−1∑
i=0

(1− 2σi)Bi

]

≤ E[xt] ·

E[Ã]± 2

(
ηλ

n−1∑
i=0

σi

)2
+

ηG

2
E

n−1∑
i=0

(1− 2σi)B̃i ± 2
n−1∑
i=0

ηλ n−1∑
j=i+1

σj

2
≤ E[xt] ·

((
1− ηλn

2

)
± 2(ηλn)2

)
+
ηG

2
E

[
n−1∑
i=0

(1− 2σi)B̃i ± 2n(ηλn)2

]
.

Recalling that E
[∑n−1

i=0 (1− 2σi)B̃i

]
= E

[∑n−1
i=0 (1− 2σi)(1− ηλ

∑n
j=i+1 σj)

]
and using Lemma 17,

the above is at most

E [xt] ·
(

1− ηλn
(

1

2
± 2ηλn

))
− η2λnG

2

(
n+ 1

4(n− 1)
± 2n2ηλ

)
.
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Using the assumption η ≤ 1
100λn2 and that n ≥ 2, it follows that

E[xt+1] ≤ E [xt] ·
(

1− ηλn
(

1

2
± 2

100

))
− η2λnG

2

(
3

4
± 2

100

)
≤ E[xt] ·

(
1− ηλn

(
1

2
± 2

100

))
− η2λnG

2
.

This inequality implies that if E[xt] ≤ 0, then E[xt+1] ≤ 0. Since the algorithm is initialized at
x0 = −1, it follows by induction that E[xt] ≤ 0 for all t, so the inequality above implies that

E[xt+1] ≤ E[xt] ·
(

1− ηλn

3

)
− η2λnG

2
.

Opening the recursion, and using the fact that x0 = −1, it follows that

E[xt] ≤ −
(

1− ηλn

3

)t
− η2λnG

2

t−1∑
i=0

(
1− ηλn

3

)i
= −

(
1− ηλn

3

)t
− η2λnG

2(ηλn/3)

(
1−

(
1− ηλn

3

)t)

= −
(

1− ηλn

3

)t
− 3ηG

2

(
1−

(
1− ηλn

3

)t)
.

Plugging this and Eq. (14) into Eq. (9), we get that

E[x2t+1] ≥ (1− ηλ)2n · E[x2t ] + ηG ·

((
1− ηλn

3

)t
+

3ηG

2

(
1−

(
1− ηλn

3

)t))
· cηλn

≥ (1− 2ηλn) · E[x2t ] + cη2Gλn ·

((
1− ηλn

3

)t
+

3ηG

2

(
1−

(
1− ηλn

3

)t))
,

where in the last step we used Bernoulli’s inequality. Applying this inequality recursively and
recalling that x0 = −1, it follows that

E[x2k] ≥ (1−2ηλn)k+cη2Gλn

k−1∑
t=0

((
1− ηλn

3

)t
+

3ηG

2

(
1−

(
1− ηλn

3

)t))
·(1−2ηλn)k−1−t

(15)
We now consider two cases:

• If 2ηλn ≤ 1
2k , then Eq. (15) implies

E[x2k] ≥ (1− 2ηλn)k ≥
(

1− 1

2k

)k
≥ 1

2

for all k.

18



HOW GOOD IS SGD WITH RANDOM SHUFFLING?

• If 2ηλn ≥ 1
2k , then Eq. (15) implies

E[x2k] ≥ cη2Gλn

k−1∑
t=0

(
3ηG

2

(
1−

(
1− ηλn

3

)t))
· (1− 2ηλn)k−1−t

=
3cη3G2λn

2

k−1∑
t=0

(
1−

(
1− ηλn

3

)t)
· (1− 2ηλn)k−1−t

≥ 3cη3G2λn

2

k−1∑
t=bk/2c

(
1−

(
1− ηλn

3

)t)
· (1− 2ηλn)k−1−t

≥ 3cη3G2λn

2

k−1∑
t=bk/2c

(
1−

(
1− ηλn

3

)bk/2c)
· (1− 2ηλn)k−1−t .

Since we assume 2ηλn ≥ 1
2k , this is at least

3cη3G2λn

2

k−1∑
t=bk/2c

(
1−

(
1− 1

12k

)bk/2c)
· (1− 2ηλn)k−1−t .

Since we assume in the proposition k > 1,
(

1−
(
1− 1

2k

)bk/2c) can be verified to be at least

some positive constant c′ > 0.16. Thus, we can lower bound the above by

3cc′η3G2λn

2

k−1∑
t=bk/2c

(1− 2ηλn)k−1−t =
3cc′η3G2λn

2
·
k−1−bk/2c∑

t=0

(1− 2ηλn)t .

Since
∑r

i=0 a
i = 1−ar+1

1−a for any a ∈ (0, 1) (and moreover, 2ηλn ∈ (0, 1) by the assumption
that η ≤ 1

100λn2 ), the above equals

3cc′η3G2λn

2
· 1− (1− 2ηλn)k−bk/2c

2ηλn
≥ 3cc′η2G2

4
·

(
1−

(
1− 1

2k

)k−bk/2c)
,

where again we used the assumption 2ηλn ≥ 1
2k . It is easily verified that 1−

(
1− 1

2k

)k−bk/2c
is lower bounded by a positive constant > 0.2, so we can lower bound the above by c′′(ηG)2

for some numerical constant c′′ > 0. Recalling that this is a lower bound on E[x2k], and once
again using the assumption 2ηλn ≥ 1

2k , it follows that

E[x2k] ≥ c′′(ηG)2 ≥ c′′
(

G

4λnk

)2

.

Combining the two cases above, we get that there exist some positive numerical constant c′′′ so that

E[x2k] ≥ c′′′ ·min

{
1 ,

G2

λ2(nk)2

}
.

Noting that E[F (xk)] = E[λ4x
2
k] = λ

4E[x2k] and combining with the above, the result follows.
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A.2. Proof of Thm. 7

We will assume without loss of generality that n is even (see the argument at the beginning of the
proof of Thm. 5).

Using the same construction as in the proof of Proposition 11 (see Eq. (2)), we begin by ob-
serving that our analysis in the first epoch is identical to the random reshuffling case. Therefore, by
recursively applying the relation in Eq. (3) (which in our case makes use of the same permutation in
each epoch), we obtain the following relation between the initialization point x0 and the k-th epoch
xk

xk = (1− ηλ)nkx0 +
ηG

2

k−1∑
j=0

(1− ηλ)nj
n−1∑
i=0

σi(1− ηλ)i

= (1− ηλ)nkx0 +
ηG

2
· 1− (1− ηλ)nk

1− (1− ηλ)n

n−1∑
i=0

σi(1− ηλ)i.

From the above, the fact that E[σi] = 0, and the assumption x0 = 1 we have

E[x2k] = (1− ηλ)2nk +

(
ηG

2

)2

βn,η,λ

(
1− (1− ηλ)nk

1− (1− ηλ)n

)2

,

where βn,η,λ is as defined in Eq. (5).
The remainder of the proof now follows along a similar line as the proof of Proposition 11,

where we consider different cases based on the value of ηλ.

• If ηλ ≥ 1, then by Lemma 14, βn,η,λ is at least some positive constant c > 0, and also(
1−(1−ηλ)nk
1−(1−ηλ)n

)2
≥ 1 since it is the square of the geometric series

∑k−1
j=0(1 − ηλ)nj with the

first element being equal 1, and the other terms being positive (recall that n is even). Overall,
we get for some constant c > 0 that

E[x2k] ≥ c
(
ηG

2

)2

≥ c

4
· G

2

λ2
≥ c

4
· G2

λ2nk2
.

• If ηλ ≤ 1
nk , then

E[x2k] ≥ (1− ηλ)2nk ≥
(

1− 1

nk

)2nk

≥
(

1

4

)2

=
1

16
.

• If ηλ ∈
(

1
nk ,

1
n

)
, then by Bernoulli’s inequality we have exp(−1/k) ≥ (1 − ηλ)n ≥ 1 −

nηλ > 0, implying that

E[x2k] ≥
(
ηG

2

)2

βn,η,λ

(
1− exp(−1/k)k

1− (1− nηλ)

)2

= η2G2βn,η,λ

(
1− exp(−1)

2nηλ

)2

.

Using Lemma 14 and recalling that ηλ ≥ 1
nk , we have βn,η,λ ≥ c·min{1+1/ηλ, n3(ηλ)2} ≥

cn3η2λ2. Plugging this yields the above is at least

c′
η4G2n3λ2

n2η2λ2
= c′η2nG2,
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for some constant c′. Since ηλ ≥ 1
nk ⇐⇒ η ≥ 1

λnk , this is lower bounded by

c′
nG2

λ2n2k2
= c′

G2

λ2nk2
.

• If ηλ ∈
[
1
n , 1
)
, then recalling

(
1−(1−ηλ)nk
1−(1−ηλ)n

)2
≥ 1 as the square of the sum of a geometric

series with first element 1 and positive ratio, we have

E[x2k] ≥
(
ηG

2

)2

· βn,η,λ .

By the assumption on ηλ, we have that n3(ηλ)2 ≥ 1/ηλ, therefore from Lemma 14 the above
is at least

c

(
ηG

2

)2

·min

{
1 +

1

ηλ
, n3(ηλ)2

}
≥ c

(
ηG

2

)2

·min

{
1

ηλ
, n3(ηλ)2

}
= c

(
ηG

2

)2 1

ηλ
≥ cηG2

4λ
.

Since η ≥ 1
λn , this is at least

cG2

4λ2n
≥ cG2

4λ2nk2
.

Combining all previous cases, we have that

E[x2k] ≥ c ·min

{
1,

G2

λ2nk2

}
for some numerical constant c > 0. Noting that E[F (xk)] = E

[
λ
2x

2
k

]
= λ

2E
[
x2k
]

and combining
with the above, the result follows.

A.3. Proof of Thm. 8

We will assume without loss of generality that n is even (see the argument at the beginning of the
proof of Thm. 5).

First, we wish to argue that it is enough to consider the case where η is such that ηλ ∈ (0, 1):

• If ηλ ≥ 2, it is easy to see that the algorithm may not converge. For example, consider the
function F (x) = 1

n

∑n
i=1 fi(x) where fi(x) = λ

2x
2 for all i. Then the algorithm performs

iterations of the form xnew = (1−ηλ)xold, hence |xnew| ≥ |xold|. Assuming the initialization
x0 = 1, we have F (xk) = λ

2x
2
k ≥

λ
2x

2
0 = λ

2 , and the theorem statement holds.

• If ηλ ∈ [1, 2), consider the function F (x) = 1
n

∑n
i=1 fi(x) = λ

2x
2 where fi(x) = λ

2x
2− G

2 x

for odd i, and fi(x) = λ
2x

2 + G
2 x for even i, initializing at x0 = 1. Recalling that n is even,

it is easy to verify that

xt+1 = (1− ηλ)nxt +
Gη2λ

2

n/2−1∑
i=0

(1− ηλ)2i .
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Since x0 = 1 and all terms above are non-negative, it follows that xk ≥ 0 for all k ≥ 1.
Moreover, since η ≥ 1/λ, it follows that xk ≥ Gη2λ

2 ≥ G
2λ . Therefore, F (xk) = λ

2x
2
k ≥

G2

8λ ≥
G2

8λk2
, and the theorem statement holds.

Assuming from now on that ηλ ∈ (0, 1), we turn to our main construction. Consider the
following function on R:

F (x) =
1

n

n∑
i=1

fi(x) =
λ

2
x2 ,

where

fi(x) =

{
G
2 x i ≤ n

2

λx2 − G
2 x i > n

2

,

Also, we assume that the initialization point x0 is 1.
On this function, we have that during any single epoch, we perform n/2 iterations of the form

xnew = xold −
ηG

2
,

followed by n/2 iterations of the form

xnew = (1− ηλ)xold +
ηG

2
.

Thus, after n iterations, we get the following update for a single epoch:

xt+1 = (1− ηλ)n/2
(
xt −

ηGn

4

)
+
ηG

2

n/2−1∑
i=0

(1− ηλ)i

= (1− ηλ)n/2xt +
ηG

2

n/2−1∑
i=0

(1− ηλ)i − n

2
(1− ηλ)n/2

 . (16)

Recalling that ηλ ∈ (0, 1), we now consider two cases:

• If ηλ ∈ (1/n, 1), we have 1
2ηλ <

n
2 . Therefore,

n/2−1∑
i=0

(1− ηλ)i − n

2
(1− ηλ)n/2 =

n/2−1∑
i=0

(
(1− ηλ)i − (1− ηλ)n/2

)

≥
d1/4ηλe−1∑

i=0

(
(1− ηλ)i − (1− ηλ)n/2

)
=

d1/4ηλe−1∑
i=0

(1− ηλ)i
(

1− (1− ηλ)n/2−i
)

≥
d1/4ηλe−1∑

i=0

(1− ηλ)i
(

1− (1− ηλ)1/2ηλ−i
)
≥
d1/4ηλe−1∑

i=0

(1− ηλ)i
(

1− (1− ηλ)1/4ηλ
)
.
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Since 1/ηλ ≥ 1, and (1−1/z)z/4 ≤ exp(−1/4) for any z ≥ 1, the displayed equation above
is at least

(1− exp(−1/4))

d1/4ηλe−1∑
i=0

(1− ηλ)i = (1− exp(−1/4)) · 1− (1− ηλ)d1/4ηλe

ηλ

≥ (1− exp(−1/4)) · 1− (1− ηλ)1/4ηλ

ηλ

≥ (1− exp(−1/4))2

ηλ
.

Denoting c := (1 − exp(−1/4))2 > 0.04 and plugging this lower bound on
∑n/2−1

i=0 (1 −
ηλ)i − n

2 (1− ηλ)n/2 into Eq. (16), we get that

xt+1 ≥ (1− ηλ)n/2xt +
ηG

2
· c
ηλ
,

and hence xt+1 ≥ cG
2λ . This holds for any t, and in particular xk ≥ cG

2λ , hence F (xk) =
λ
2x

2
k = c2G2

8λ ≥
c2G2

8λk2
, which satisfies the theorem statement.

• If ηλ ∈ (0, 1/n], we have

ηG

2

n/2−1∑
i=0

(1− ηλ)i − n

2
(1− ηλ)n/2

 =
ηG

2

(
1− (1− ηλ)n/2

ηλ
− n

2
(1− ηλ)n/2

)

=
G

2λ

(
1− (1− ηλ)n/2 − ηλn

2
(1− ηλ)n/2

)
=

G

2λ

(
1−

(
1 +

ηλn

2

)
(1− ηλ)n/2

)
(∗)
≥ G

2λ

(
1−

(
1 +

ηλn

2

)(
1− ηλn

2
+

(ηλn/2)2

2

))
=

G

2λ

(
1−

(
1−

(
ηλn

2

)2

+

(
1 +

ηλn

2

)
(ηλn)2

8

))

=
G(ηλn)2

2λ

(
1

4
−
(

1 +
ηλn

2

)
1

8

)
≥ G(ηλn)2

2λ

(
1

4
−
(

1 +
1

2

)
· 1

8

)
=

Gλ(ηn)2

32
,

where (∗) is by Lemma 18. Plugging this back into Eq. (16), we get

xt+1 ≥ (1− ηλ)n/2xt +
Gλ(ηn)2

32
.

Recalling that x0 = 1, this implies that xt remains positive for all t. Also, by Bernoulli’s
inequality, 1 ≥ (1 − ηλ)n/2) ≥ 1 − ηλn/2 ≥ 0. Therefore, the above displayed equation
implies that

xt+1 ≥
(

1− ηλn

2

)
xt +

Gλ(ηn)2

32
.
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Recurseively applying this inequality, and recalling that x0 = 1, it follows that

xk ≥
(

1− ηλn

2

)k
+
Gλ(ηn)2

32

k−1∑
t=0

(
1− ηλn

2

)t
=

(
1− ηλn

2

)k
+
Gλ(ηn)2

32
· 1− (1− ηλn/2)k

ηλn/2

=

(
1− ηλn

2

)k
+
Gηn

16

(
1−

(
1− ηλn

2

)k)
.

We now consider two sub-cases:

– If ηλ ∈ (0, 1/nk), the above is at least
(

1− ηλn
2

)k
≥
(
1− 1

2k

)k ≥ 1
2 for all k ≥ 1,

so we have F (xk) = λ
2x

2
k ≥

λ
8 , satisfying the theorem statement.

– If ηλ ∈ [1/nk, 1/n], we have
(

1− ηλn
2

)k
≤
(
1− 1

2k

)k ≤ exp
(
−1

2

)
, so the displayed

equation above is at least Gηn16

(
1− exp

(
−1

2

))
, which by the assumption ηλ ≥ 1

nk , is
at least 1−exp(−1/2)

16 · Gλk . Therefore,

F (xk) =
λ

2
x2k ≥

1

2
·
(

1− exp(−1/2)

16

)2

· G
2

λk2
,

which satisfies the theorem statement.

A.4. Proof of Thm. 9

We begin by assuming w.l.o.g. that b = 0. This is justified as seen by the transformation fi(x) 7→
fi(x − b/λ) which shifts each fi to the right by a distance of b/λ, and consequentially shifting the
initialization point x0 to the right by the same distance to x0 + b

λ . The derivative in the initialization
point after transforming remains the same, and a simple inductive argument shows this persists
throughout all the iterations of SGD where all the iterates are also shifted by b/λ. Additionally, this
also entails |bi| ≤ G for all i since by the gradient boundedness assumption we have |aix∗ − bi| ≤ G
for all i.

Next, we evaluate an expression for the iterate on the k-th epoch xk. First, for a selected per-
mutation σi : [n]→ [n] we have that the gradient update at iteration j in epoch i is given by

xnew =
(
1− ηaσi(j)

)
xold + ηbσi(j).

Repeatedly applying the above relation, we have that in the end of each epoch the relation between
the iterates xt and xt+1 is given by

xt+1 =

n∏
j=1

(
1− ηaσt+1(j)

)
xt + η

n∑
j=1

 n∏
i=j+1

(
1− ηaσt+1(i)

) bσt+1(j).

Letting S :=
∏n
j=1

(
1− ηaσi(j)

)
=
∏n
j=1 (1− ηaj) andXσt :=

∑n
j=1

(∏n
i=j+1

(
1− ηaσt(i)

))
bσt(j),

this can be rewritten equivalently as

xt+1 = Sxt + ηXσt+1 . (17)
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Iteratively applying the above, we have after k epochs that

xk = Skx0 + η

k∑
i=1

Si−1Xσi . (18)

Squaring and taking expectation on both sides yields

E
[
x2k
]

= E

(Skx0 + η

k∑
i=1

Si−1Xσi

)2
 ≤ 2E

S2kx20 + η2

∣∣∣∣∣
k∑
i=1

Si−1Xσi

∣∣∣∣∣
2


≤ 2S2kx20 + 2η2k
k∑
i=1

E
[
X2
σi

]
= 2S2kx20 + 2η2k2E

[
X2
σ1

]
, (19)

where the first and second inequalities are application of Jensen’s inequality on the function x 7→ x2

and the last equality is due to the fact that in single shuffling we have σi = σ1 for all i.
Since L

λ ≤
nk

log(n0.5k)
implies that ηL ≤ 1, we have 1 − ηai ∈ (0, 1] for any i ∈ {1, . . . , n}.

Using the AM-GM inequality on 1− ηa1, . . . , 1− ηan we have

n
√
S = n

√√√√ n∏
i=1

(1− ηai) ≤
1

n

n∑
i=1

(1− ηai) = 1−
η
∑n

i=1 ai
n

= 1− ηλ, (20)

implying
S ≤ (1− ηλ)n. (21)

Recall that η =
log(n0.5k)

λnk , we combine the above with Lemma 20 which together with the
inequality (1− x/y)y ≤ exp(−x) for all x, y > 0 yields that Eq. (19) is upper bounded by

2(1− ηλ)2nkx20 + 2η4n3k2G2L2 ≤ Õ
(

1

nk2
x20 +

G2L2

λ4nk2

)
,

and since E [F (xk)− F (x∗)] ≤ λ
2E[x2k], the theorem follows.

A.5. Proof of Thm. 10

Similarly to the single shuffling case, we assume w.l.o.g. that b = 0 and |bi| ≤ G for all i ∈ [n] (see
the argument in the beginning of the proof of Thm. 9 for justification). Continuing from Eq. (17),
we square and take expectation on both sides to obtain

E
[
x2t+1

]
= E

[(
Sxt + ηXσt+1

)2]
= S2E[x2t ] + 2ηSE

[
xtXσt+1

]
+ η2E

[
X2
σt+1

]
.
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Since in random reshuffling the random component at iteration t + 1, Xσt+1 , is independent of the
iterate at iteration t, xt, and by plugging Eq. (18), the above equals

E
[
x2t+1

]
= S2E[x2t ] + 2ηSE [xt]E

[
Xσt+1

]
+ η2E

[
X2
σt+1

]
= S2E[x2t ] + 2ηSE

[
Stx0 + η

t∑
i=1

Si−1Xσi

]
E
[
Xσt+1

]
+ η2E

[
X2
σt+1

]
= S2E[x2t ] + 2ηSt+1x0E

[
Xσt+1

]
+ 2η2

t∑
i=1

SiE [Xσi ]E
[
Xσt+1

]
+ η2E

[
X2
σt+1

]
= S2E[x2t ] + 2ηSt+1x0E [Xσ1 ] + 2η2

t∑
i=1

SiE [Xσ1 ]2 + η2E
[
X2
σ1

]
,

where the last equality is due to Xσi being i.i.d for all i. Recursively applying the above relation
and taking absolute value, we obtain

E
[
x2k
]

= S2kx20 + 2ηx0E [Xσ1 ]

k∑
j=1

Sk+j + 2η2E [Xσ1 ]2
k∑
j=1

S2j
j∑
i=1

Sk−i + η2E
[
X2
σ1

] k∑
j=1

S2j ,

which entails an upper bound of

E
[
x2k
]
≤ S2kx20 + 2η |x0E [Xσ1 ]|

k∑
j=1

Sk+j + 2η2E [Xσ1 ]2
k∑
j=1

S2j
j∑
i=1

Sk−i + η2E
[
X2
σ1

] k∑
j=1

S2j

≤ S2kx20 + 2ηkSk |x0| · |E [Xσ1 ]|+ 2η2k2E [Xσ1 ]2 + η2kE
[
X2
σ1

]
.

Since 2Sk |x0| · ηk |E [Xσ1 ]| ≤ S2kx20 + η2k2E [Xσ1 ]2, the above is at most

2S2kx20 + 3η2k2E [Xσ1 ]2 + η2kE
[
X2
σ1

]
,

and by virtue of Eq. (21), the inequality (1 − x/y)y ≤ exp(−x) for all x, y > 0 and Lemmas 20
and 22, we conclude

E
[
x2k
]
≤ 2S2kx20 + 48η4n2k2G2L2 + 5η4n3kG2L2 log(2n)

≤ Õ
(

1

n2k2
x20 +

G2L2

λ4n2k2
+
G2L2

λ4nk3

)
,

and since E [F (xk)− F (x∗)] ≤ λ
2E[x2k], the theorem follows.
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Appendix B. Proof of Lemma 14

Using Lemma 15 from Appendix C, we have that

E

(n−1∑
i=0

σi(1− α)i

)2
 = E

n−1∑
i=0

n−1∑
j=0

σiσj(1− α)i+j


=

n−1∑
i=0

E[σ2i ](1− α)2i +
∑

i,j∈{0,...,n−1},i 6=j

E[σiσj ](1− α)i+j

=
n−1∑
i=0

(1− α)2i − 1

n− 1

(n−1∑
i=0

(1− α)i

)2

−
n−1∑
i=0

(1− α)2i


=

(
1 +

1

n− 1

) n−1∑
i=0

(1− α)2i − 1

n− 1

(
n−1∑
i=0

(1− α)i

)2

. (22)

Using the fact that
∑r−1

i=0 s
i = 1−sr

1−s for any a 6= 1, the above can also be written as(
1 +

1

n− 1

)
1− (1− α)2n

1− (1− α)2
− (1− (1− α)n)2

(n− 1)(1− (1− α))2

=
n

n− 1
· 1− (1− α)2n

α(2− α)
− (1− (1− α)n)2

α2(n− 1)

=
n

n− 1
· 1− (1− α)n

α(2− α)
·
(

1 + (1− α)n − 2− α
nα

(1− (1− α)n)

)
=

n

n− 1
· 1− (1− α)n

α(2− α)
·
(

1− 2− α
nα

+

(
1 +

2− α
nα

)
(1− α)n

)
. (23)

We now lower bound either Eq. (22) or (equivalently) Eq. (23), on a case-by-case basis, depend-
ing on the size of α.

B.1. The case α ≥ 1

We will show that in this case, our equations are lower bounded by a positive numerical constant,
which satisfies the lemma statement. We split this case into a few sub-cases:

• If α = 1, then Eq. (22) equals 1 + 1
n−1 −

1
n−1 = 1.

• If α ∈ (1, 2), then 2−α
nα = 2

nα −
1
n ≤

2
n −

1
n = 1

n . Using this fact, Eq. (23) can be lower
bounded as

2 · 1− (1− α)n

2(2− α)
·
(

1− 2− α
nα

)
≥ 1− (1− α)n

2− α
·
(

1− 1

n

)
≥ 1− (1− α)n

2(2− α)

(∗)
=

1− |1− α|n

2(1− |1− α|)
≥ 1− |1− α|

2(1− |1− α|)
=

1

2
,
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where in (∗) we used the facts that n is even and that since α ∈ (1, 2), we have 2 − α =
1 + 1− α = 1− |1− α|.

• If α = 2, then using the assumption that n is even, Eq. (22) reduces to

(
1 +

1

n− 1

) n−1∑
i=0

(−1)2i − 1

n− 1

(
n−1∑
i=0

(−1)i

)2

=

(
1 +

1

n− 1

)
n− 1

n− 1
· 0 ≥ n .

• If α > 2, then noting that 1 + 2−α
nα = 1− 1

n + 2
nα > 0, Eq. (23) is lower bounded as

2 · (1− α)n − 1

α(α− 2)
·
(

1− 2− α
nα

)
≥ 2 · (1− α)2 − 1

α(α− 2)
·
(

1− 2

nα
+

1

n

)
≥ 2 ·

(
1− 1

n
+

1

n

)
= 2 .

B.2. The case α ∈ [1/13n, 1)

In this case, we will show a lower bound of c/α for some positive numerical constant c, which
implies the lemma statement in this case. To show this, we first focus on the term

1− 2− α
nα

+

(
1 +

2− α
nα

)
(1− α)n , (24)

in Eq. (23), and argue that it is monotonically increasing in α. For that, it is enough to show that its
derivative with respect to α is non-negative. With some straightforward computations, the derivative
equals

(1− α)n−1
(

1− 2

α
− n− 2

α2n
+

2

αn

)
+

2

α2n
.

this can also be written as

2

α2n

(
(1− α)n−1

(
α2n

2
− αn− α2n2

2
− 1 + α

)
+ 1

)
=

2

α2n

(
1− (1− α)n−1

(
1 + α(n− 1) + α2n(n− 1)

2

))
. (25)

It is easy to verify that 1 +α(n− 1) +α2 n(n−1)
2 is the third-order Taylor expansion of the function

g(α) := (1 − α)1−n around α = 0, and moreover, it is a lower bound on the function (for α ∈
[1/13n, 1)) since the Taylor remainder term (in Lagrange form) equals g(3)(ξ)

3! α3 = (n−1)n(n+1)
3!(1−ξ)n+2 α

3

for some ξ ∈ [0, α], which is strictly positive for any α in our range. Overall, we can lower bound
Eq. (25) by

2

α2n

(
1− (1− α)n−1 · (1− α)1−n

)
= 0.

This implies that Eq. (24) is monotonically increasing.
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Using this monotonicity property, we get that Eq. (24) is minimized over the interval α ∈
[1/13n, 1) when α = 1/13n, in which case it takes the value

1−
(

26− 1

n

)
+

(
1 + 26− 1

n

)(
1− 1

13n

)n
=

(
27− 1

n

)(
1− 1

13n

)n
+

1

n
− 25

= 27

(
1− 1

13n

)n
+

1

n

(
1−

(
1− 1

13n

)n)
− 25 .

A numerical computation reveals that this expression is strictly positive (lower bounded by 7 ·10−4)
for all 2 ≤ n < 78. For n ≥ 78, noting that (1 − 1/13n)n is monotonically increasing in n, this
expression can be lower bounded by

27

(
1− 1

13n

)n
− 25 ≥ 27

(
1− 1

13 · 78

)78

− 25 > 2 · 10−7.

In any case, we get that Eq. (24) is lower bounded by some positive numerical constant c. Plugging
back into Eq. (23), and using that fact that (1− 1/13n)n is upper bounded by exp(−1/13), we can
lower bound that equation by

n

n− 1
· 1− (1− α)n

α(2− α)
· c ≥ c · 1− (1− 1/13n)n

2α
≥ c · 1− exp(−1/13)

2α
,

which equals c′/α for some numerical constant c′ > 0.

B.3. The case α ∈ (0, 1/13n)

In this case, we have n3α2 ≤ 1
α , so it is enough to prove a lower bound of c ·n3α2 in order to satisfy

the lemma statement. We analyze seperately the cases n = 2 and n > 2. If n = 2, then Eq. (23)
equals

2 · 1 ·
(

1− 2− α
2α

+

(
1 +

2− α
2α

)
(1− α)2

)
= 2

(
3

2
− 1

α
+

(
1

2
+

1

α

)
(1− α)2

)
= 2

(
2− 2α

(
1

2
+

1

α

)
+ α2

(
1

2
+

1

α

))
= α2 =

1

8
n3α2 ,

which satisfies the lower bound in the lemma statement. If n > 2, by Lemma 18, Eq. (23) equals

n

n− 1
· 1− (1− α)n

α(2− α)
·
(

1− 2− α
αn

+

(
1 +

2− α
αn

)(
1− αn+

(
n

2

)
α2 −

(
n

3

)
α3 + cα,n

))
,

where |cα,n| ≤ (αn)4/24. Simplifying a bit, this equals

n

n− 1
· 1− (1− α)n

α(2− α)
·
(

2 +

(
1 +

2− α
αn

)(
−αn+

(
n

2

)
α2 −

(
n

3

)
α3 + cα,n

))
=

n

n− 1
· 1− (1− α)n

α(2− α)
·
(

2 +

(
1− 1

n
+

2

αn

)(
−αn+

(
n

2

)
α2 −

(
n

3

)
α3 + cα,n

))
.
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Opening the inner product and collecting terms according to powers of α, this equals

n

n− 1
· 1− (1− α)n

α(2− α)
·
((
−n+ 1 +

2

n

(
n

2

))
α+((

1− 1

n

)(
n

2

)
− 2

n

(
n

3

))
α2 +

(
1− 1

n

)(
n

3

)
α3 +

(
1− 1

n
+

2

αn

)
cα,n

)
.

(26)

It is easily verified that

−n+ 1 +
2

n

(
n

2

)
= 0 ,

(
1− 1

n

)(
n

2

)
− 2

n

(
n

3

)
≥ (n− 1)2

6
,

(
1− 1

n

)(
n

3

)
≤ n3 .

Plugging this into Eq. (26), and recalling that |cα,n| ≤ (αn)4/24, we can lower bound Eq. (26) by

n

n− 1
· 1− (1− α)n

α(2− α)
·
(

(n− 1)2

6
α2 − (αn)3 −

∣∣∣∣1− 1

n
+

2

αn

∣∣∣∣ (αn)4

24

)
.

Invoking again Lemma 18, and noting that n/(n− 1) ≥ 1 and αn ∈ (0, 1/13), we can lower bound
the above by

1 · 1− (1− αn+ (αn)2/2)

α(2− α)

(
(n− 1)2

6
α2 − (αn)3 − 3

αn
· (αn)4

24

)
=

αn(1− αn/2)

α(2− α)

(
(n− 1)2

6
α2 − 9

8
(αn)3

)
≥ n

2(2− α)

(
(n− 1)2

6
α2 − 9

8
(αn)3

)
≥ n3α2

4

(
(n− 1)2

6n2
− 9

8
αn

)
=

n3α2

4

(
1

6

(
1− 1

n

)2

− 9

8
αn

)
.

Since we can assume n ≥ 4 (as n is even and the case n = 2 was treated earlier), and αn ≤ 1/13,
it can be easily verified that this is at least cn3α2 for some positive constant c > 10−3.

Appendix C. Technical Lemmas

Lemma 15 Let σ0, . . . , σn−1 be a random permutation of (1, ..., 1,−1, ...,−1) (where there are
n/2 1’s and n/2 −1’s). Then for any indices i, j,

E[σiσj ] =

{
1 if i = j

− 1
n−1 if i 6= j

.

Proof Note that each σi is uniformly distributed on {−1,+1}. Therefore, E[σ2i ] = 1, and for any
i 6= j,

E[σiσj ] =
1

2
E[σi|σj = 1]− 1

2
E[σi|σj = −1]

=
1

2
(Pr(σi = 1|σj = 1)− Pr(σi = −1|σj = 1)− Pr(σi = 1|σj = −1) + Pr(σi = −1|σj = −1))

=
1

2

(
n/2− 1

n− 1
− n/2

n− 1
− n/2

n− 1
+
n/2− 1

n− 1

)
= − 1

n− 1
.
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Lemma 16 Let σ0, . . . , σn−1 be a random permutation of (1, ..., 1, 0, ..., 0) (where there are n/2
1’s and n/2 0’s). Then for any indices i, j,

E[σiσj ] =

{
1
2 if i = j
1
4

(
1− 1

n−1

)
if i 6= j

.

Proof This follows from applying Lemma 15 on the random variables µ0, . . . , µn−1, where µi :=
1− 2σi for all i, and noting that E[µiµj ] = E[(1− 2σi)(1− 2σj)] = 4E[σiσj ]− 1 (using the fact
that each σi is uniform on {0, 1}).

Lemma 17 Under the conditions of Lemma 16, we have that

E

n−1∑
i=0

(1− 2σi)(1− ηλ
n∑

j=i+1

σj)

 = − ηλn(n+ 1)

4(n− 1)

Proof Using Lemma 16, and the fact that each σi is uniform on {0, 1}, we have

E

n−1∑
i=0

(1− 2σi)(1− ηλ
n∑

j=i+1

σj)


= E

n− 2
n−1∑
i=0

σi − ηλ
n−1∑
i=0

n∑
j=i+1

σj + 2ηλ
n−1∑
i=0

n∑
j=i+1

σiσj


= n− n− ηλ · n(n+ 1)

2
· 1

2
+ 2ηλ · n(n+ 1)

2
· 1

4

(
1− 1

n− 1

)
− ηλ · n(n+ 1)

4
+ ηλ · n(n+ 1)

4

(
1− 1

n− 1

)
= −ηλn(n+ 1)

4(n− 1)
.

Lemma 18 Let r be a positive integer and x ∈ [0, 1]. Then for any positive integer j < r,

(1− x)n =

j∑
i=0

(−1)i
(
r

i

)
xi + aj,x ,

where
(
r
1

)
,
(
r
2

)
etc. refer to binomial coefficients, and aj,x has the same sign as (−1)j+1 and satisfies

|aj,x| ≤
(rx)j+1

(j + 1)!
.
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Proof The proof follows by a Taylor expansion of the function g(x) = (1 − x)r around x = 0:
It is easily verified that the first j terms are

∑j
i=0(−1)i

(
r
i

)
xi. Moreover, by Taylor’s theorem, the

remainder term αj,x (in Lagrange form) is g(j+1)(ξ)
(j+1)! x

j+1 for some ξ ∈ [0, x]. Moreover, g(j+1)(ξ) =

(−1)j+1
(
r
j+1

)
(1− ξ)r−j−1, whose sign is (−1)j+1 and absolute value at most

sup
ξ∈[0,x]

(
r

j + 1

)
(1− ξ)r−j−1xj+1 ≤ rj+1

(j + 1)!
· 1 · xj+1 .

Lemma 19 Let a1, . . . , an be a sequence of elements in
[
0, 1

10n

]
. Then∣∣∣∣∣

n∏
i=1

(1− ai)−

(
1−

n∑
i=1

ai

)∣∣∣∣∣ ≤ 2

(
n∑
i=1

ai

)2

.

Proof We have
∏n
i=1(1 − ai) = exp (

∑n
i=1 log(1− ai)). By a standard Taylor expansion of

log(1− x) around x = 0, we have for any ai ∈ [0, 1/10n]

| log(1− ai) + ai| ≤
a2i

2(1− ai)2
≤ 1

2(9/10)2
a2i ≤

5

8
a2i .

In particular, this implies that ∣∣∣∣∣
n∑
i=1

log(1− ai) +
n∑
i=1

ai

∣∣∣∣∣ ≤ 5

8

n∑
i=1

a2i . (27)

Since ai ∈ [0, 1/10n], this means that∣∣∣∣∣
n∑
i=1

log(1− ai)

∣∣∣∣∣ ≤
n∑
i=1

ai +
5

8

n∑
i=1

a2i ≤
1

10
+

5

8 · 100n
<

1

9
.

Using the above two inequalities, and a Taylor expansion of exp(x) around x = 0, we have∣∣∣∣∣exp

(
n∑
i=1

log(1− ai)

)
−

(
1 +

n∑
i=1

log(1− ai)

)∣∣∣∣∣ ≤ max
ξ∈[

∑
i log(1−ai),0]

exp(ξ)

2

(
n∑
i=1

log(1− ai)

)2

≤ 1

2

(
n∑
i=1

ai +
5

8

n∑
i=1

a2i

)2

≤ 1

2

(
13

8

n∑
i=1

ai

)2

.

Combining this with Eq. (27), and using the fact that exp(
∑

i log(1 − ai)) =
∏
i(1 − ai), we get

that ∣∣∣∣∣
n∏
i=1

(1− ai)−

(
1−

n∑
i=1

ai

)∣∣∣∣∣ ≤ 5

8

n∑
i=1

a2i +
1

2

(
13

8

n∑
i=1

ai

)2

.

Simplifying, the result follows.
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Lemma 20 Let Xσ :=
∑n

j=1

(∏n
i=j+1

(
1− ηaσ(i)

))
bσ(j) where each fi(x) = ai

2 x
2 + bix satis-

fies Assumption 2,
∑n

i=1 bi = 0 and ηL ≤ 1. Then

Eσ
[
X2
σ

]
≤ 5η2n3L2G2 log(2n),

where the expectation is over sampling a permutation σ : [n]→ [n] uniformly at random.

Proof Using summation by parts on αj =
∏n
i=j+1

(
1− ηaσ(i)

)
and βj = bσ(j), we have

X2
σ =

 n∑
j=1

 n∏
i=j+1

(
1− ηaσ(i)

) bσ(j)

2

=

 n∑
j=1

bσ(j) −
n−1∑
j=1

 n∏
i=j+2

(
1− ηaσ(i)

)
−

n∏
i=j+1

(
1− ηaσ(i)

) j∑
i=1

bσ(i)

2

=

η n−1∑
j=1

aσ(j+1)

n∏
i=j+2

(
1− ηaσ(i)

) j∑
i=1

bσ(i)

2

≤

ηL n−1∑
j=1

∣∣∣∣∣
j∑
i=1

bσ(i)

∣∣∣∣∣
2

≤ η2n2L2

n−1∑
j=1

∣∣∣∣∣1j
j∑
i=1

bσ(i)

∣∣∣∣∣
2

, (28)

where the first inequality is due to 0 ≤ ai ≤ L for all i and ηL ≤ 1 which implies 1−ηaσ(i) ∈ [0, 1]
for all i. Next, without any assumptions on σ we derive a worst-case bound. Since |bi| ≤ G for all
i, we have

X2
σ ≤ η2n4G2L2. (29)

The above worst-case bound can be used to show a Õ(1/k2) upper bound on the sub-optimality
of the incremental gradient method which accords with known results (see Table 1). However, a
more careful examination of the random sum reveals that when choosing σ uniformly at random,
a concentration of measure phenomenon occurs which allows us to establish the stronger bound in
the lemma (with linear dependence rather than quadratic in n), and improve the sub-optimality. We
use the following version of the Hoeffding-Serfling inequality (Bardenet et al., 2015, Corollary 2.5),
stated here for completeness.

Theorem 21 (Hoeffding-Serfling inequality) Suppose n ≥ 2, x1, . . . , xn ∈ [a, b] with mean x̄
and σ : [n] → [n] is a permutation sampled uniformly at random. Then for all j ≤ n, for all
δ ∈ [0, 1], w.p. at least 1− δ it holds that

1

j

j∑
i=1

(
xσ(i) − x̄

)
≤ (b− a)

√
ρj log(1/δ)

2j
,

where

ρj = min

{
1− j − 1

n
,

(
1− j

n

)(
1 +

1

j

)}
.
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Since ρj ≤ 1 for all j ∈ [n] and by applying the inequality on −x1, . . . ,−xn and using the union
bound, we have w.p. at least 1− δ that∣∣∣∣∣1j

j∑
i=1

(
xσ(i) − x̄

)∣∣∣∣∣ ≤ (b− a)

√
log(2/δ)

2j
.

Using the union bound again for the n events where each of the n partial sums do not deviate, we
have

n∑
j=1

∣∣∣∣∣1j
j∑
i=1

(
xσ(i) − x̄

)∣∣∣∣∣ ≤ (b− a)

√
log(2n/δ)

2

n∑
j=1

1√
j
≤ (b− a)

√
log(2n/δ)

2

(
1 +

∫ n

2

1√
x− 1

dx

)

= (b− a)

√
log(2n/δ)

2
(2
√
n− 1− 1) ≤ 2(b− a)

√
n log(2n/δ).

Using the above to bound Eq. (28) w.h.p. we have that w.p. at least 1− δ

X2
σ ≤ η2n2L2 · 2G2n log(2n/δ) = 2η2n3G2L2 log(2n/δ).

Letting δ = 1
n , we denote the event where X2

σ ≤ 4η2n3G2L2 log(2n) as E, and we have that the
complement of E satisfies Pr

[
Ē
]
≤ 1

n and

E
[
X2
σ|E

]
≤ 4η2n3G2L2 log(2n).

Finally, from the above, the law of total expectation and Eq. (29) we have

E
[
X2
σ

]
= E

[
X2
σ|E

]
Pr [E] + E

[
X2
σ|Ē

]
Pr
[
Ē
]

≤ 4η2n3G2L2 log(2n) · 1 + η2n4G2L2 · 1

n
≤ 5η2n3G2L2 log(2n).

Lemma 22 Let Xσ :=
∑n

j=1

(∏n
i=j+1

(
1− ηaσ(i)

))
bσ(j) where each fi(x) = ai

2 x
2 + bix satis-

fies Assumption 2,
∑n

i=1 bi = 0 and ηnL ≤ 0.5. Then

|Eσ [Xσ]| ≤ 4ηnGL,

where the expectation is over sampling a permutation σ : [n]→ [n] uniformly at random.

Proof Letting Yj :=
(∏n

i=j+1

(
1− ηaσ(i)

))
bσ(j), we expand Yj to obtain

E [Yj ] = E
[
bσ(j)

]
+

n−j∑
m=1

(−η)m
(
n− j
m

)
E

 ∑
j+1≤i1,...,im≤n distinct

(
m∏
l=1

aσ(il)

)
bσ(j)


=

n−j∑
m=1

(−η)m
(
n− j
m

)
E

 ∑
j+1≤i1,...,im≤n distinct

(
m∏
l=1

aσ(il)

)
bσ(j)

 (30)
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Repeatedly using the law of total expectation, the expectation term in the right hand side above
equals

∑
t1∈[n]

E

 ∑
j+1≤i1,...,im≤n distinct

(
m∏
l=1

aσ(il)

)
bσ(j)

∣∣∣∣∣σ(i1) = t1

Pr [σ(i1) = t1]

=
1

n

∑
t1∈[n]

at1E

 ∑
j+1≤i2,...,im≤n distinct

(
m∏
l=2

aσ(il)

)
bσ(j)

∣∣∣∣∣σ(i1) = t1


=

1

n(n− 1)

∑
t1∈[n]

∑
t2∈[n]\{t1}

at1at2E

 ∑
j+1≤i3,...,im≤n distinct

(
m∏
l=3

aσ(il)

)
bσ(j)

∣∣∣∣∣σ(i1) = t1, σ(i2) = t2


= . . .

=
(n−m)!

n!

∑
t1∈[n]

∑
t2∈[n]\{t1}

. . .
∑

tm∈[n]\{t1,...,tm−1}

at1at2 . . . atmE

[
bσ(j)

∣∣∣∣∣σ(i1) = t1, . . . , σ(im) = tm

]

=
(n−m)!

n!

∑
t1∈[n]

∑
t2∈[n]\{t1}

. . .
∑

tm∈[n]\{t1,...,tm−1}

at1at2 . . . atm
1

n−m
∑

tm+1∈[n]\{t1,...,tm}

btm+1

=− (n−m)!

n!

∑
t1∈[n]

∑
t2∈[n]\{t1}

. . .
∑

tm∈[n]\{t1,...,tm−1}

at1at2 . . . atm
1

n−m
∑

tm+1∈{t1,...,tm}

btm+1 .

Recalling that |ai| ≤ L and |bi| ≤ G, the above is upper bounded in absolute value by.

(n−m)!

n!

∑
t1∈[n]

∑
t2∈[n]\{t1}

. . .
∑

tm∈[n]\{t1,...,tm−1}

Lm
1

n−m
∑

tm+1∈{t1,...,tm}

G ≤ m

n−m
LmG.

Plugging this back in Eq. (30) we obtain

|E [Yj ]| ≤
n−j∑
m=1

∣∣∣∣(−η)m
(
n− j
m

)
m

n−m
LmG

∣∣∣∣ ≤ n∑
m=1

ηm
(
n

m

)
m

n−m
LmG

=

n∑
m=1

ηm
(

n

m− 1

)
n−m+ 1

n−m
LmG ≤ 2G

∞∑
m=1

ηmnm−1Lm

≤ 2G
ηL

1− ηnL
≤ 4ηGL.

Where the last two inequalities are by the assumption ηnL ≤ 0.5 which guarantees that the sum
converges. Finally, we conclude

|E [Xσ]| ≤
n∑
j=1

|E [Yj ]| ≤ 4ηnGL.
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