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Abstract
We show a simple perceptron-like algorithm to learn origin-centered halfspaces in Rn with accu-
racy 1− ε and confidence 1− δ in time

O
(
n2

ε

(
log

1

ε
+ log

1

δ

))
using

O
(
n

ε

(
log

1

ε
+ log

1

δ

))
labeled examples drawn uniformly from the unit n-sphere. This improves upon algorithms given in
Baum (1990), Long (1994) and Servedio (1999). The time and sample complexity of our algorithm
match the lower bounds given in Long (1995) up to logarithmic factors.
Keywords: Halfspace learning, perceptron, uniform distribution, n-sphere

1. Introduction

Learning halfspaces from labeled examples is one of the central challenges in machine learning.
In Blumer et al. (1989) it is shown that n-dimensional halfspaces can be learned to accuracy 1 −
ε with confidence 1 − δ in the classical PAC model, and hence for arbitrary distributions, using
O ((n/ε) log(1/ε) + (1/ε) log(1/δ)) examples. Therefore it suffices to find a halfspace consistent
with the given examples, which can be accomplished in time polynomial in n, 1/ε and 1/δ (e.g.
by linear programming). In Ehrenfeucht et al. (1989) a lower bound of Ω ((n/ε) + (1/ε) log(1/δ))
on the number of examples is derived, which also holds if the examples are drawn uniformly from
the unit sphere, see Long (1995). In this case the bound is even tight (Long (2003)). In Balcan and
Long (2013) polynomial time algorithms are constructed which achieve that bound even for any
log-concave distribution.

The classical perceptron algorithm by Rosenblatt (Rosenblatt (1958)) determines a consistent
halfspace given sufficiently many correctly classified examples (see e.g. Novikoff (1962)). Further-
more, in Baum (1990) a variant of the perceptron algorithm was provided, which learns halfspaces
in time Õ(n2/ε3) using Õ(n/ε3) examples. This was improved by Servedio (1999). The algorithm
proposed there achieves time complexity Õ(n2/ε2) with a sample size of Õ(n/ε2). The perceptron
algorithm was also shown to be able to solve linear programs in polynomial time, see Dunagan
and Vempala (2004). Table 1 summarizes related work considering halfspace learning. In the right
column uniform means uniform on the unit sphere.
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In this paper we show that the classical perceptron algorithm can be supplemented with an
adaptive learning rate such that it (ε, δ)-learns halfspaces in time O

(
n2

ε

(
log 1

ε + log 1
δ

))
using

O
(
n
ε

(
log 1

ε + log 1
δ

))
examples drawn uniformly from the unit sphere. The extremely simple al-

gorithm has nice properties, its error is monotonically decreasing, its hypothesis always has norm
one even without rebalancing and it is conservative, i.e. it updates its hypotheses only for counterex-
amples.

Table 1: Related work on (ε, δ)-learning of halfspaces.

article sample complexity time complexity distribution
Blumer et al. (1989) O

(
1
ε

(
n log 1

ε + log 1
δ

))
poly arbitrary

Ehrenfeucht et al. (1989) Ω
(
1
ε

(
n+ log 1

δ

))
– arbitrary

Haussler et al. (1994) O
(
n
ε log 1

δ

)
poly arbitrary

Baum (1990) Õ
(
n/ε3

)
Õ
(
n2/ε3

)
uniform

Long (1994) (for δ = ε) Õ(n/ε) Õ
(
n2/ε+ n3.38

)
uniform

Long (1995) Ω
(
1
ε

(
n+ log 1

δ

))
– uniform

Servedio (1999) Õ
(
n/ε2

)
Õ
(
n2/ε2

)
uniform

Long (2003) O
(
1
ε

(
n+ log 1

δ

))
– uniform

Balcan and Long (2013) O
(
1
ε

(
n+ log 1

δ

))
poly log-concave

our paper O
(
n
ε

(
log 1

ε + log 1
δ

))
O
(
n2

ε

(
log 1

ε + log 1
δ

))
uniform

We present basic definitions and notations in Section 2 and motivate the algorithm in Section 3,
where first properties and experimental results are also presented. Finally, in Section 4 we de-
rive Theorem 2 as our main result. Its proof crucially depends on Lemma 6, which provides the
conditional expectation E

[
dd∗ | β

]
, where d and d∗ are the distances of a randomly drawn coun-

terexample to the current hyperplane and the target hyperplane, respectively, assuming β is the angle
between them. In Section 5 we summarize our results and suggest some open problems.

2. Preliminaries

We study the classical problem of learning homogeneous halfspaces

fw : Rn → {−1, 1}, fw(x) = sign(〈w,x〉)
represented by a weight vector w ∈ Rn. We denote the unknown target halfspace by f∗ and its
normalized weight vector by w∗. The learner is given labeled examples of the form(

x, f∗(x)
)
∈ Rn × {−1, 1},

where each example x is drawn independently according to the uniform distribution on the unit
n-sphere

Sn−1 := {x ∈ Rn : ‖x‖ = 1}.
An example x is called positive if f∗(x) = 1 and negative otherwise. After receiving examples the
learner outputs a hypothesis w ∈ Rn. The error of w is measured by the probability of misclassify-
ing a randomly drawn example, i.e.

err(w) := P
[
f∗(x) 6= fw(x)

]
,
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where x is drawn uniformly from Sn−1. By rotational symmetry it is easy to see that the error of a
hypothesis w is determined by the angle ^(w∗,w) between w∗ and w, i.e.

err(w) =
^(w∗,w)

π
=

1

π
arccos

〈w∗,w〉
‖w‖ . (1)

3. Adaptive Perceptron – The Algorithm

In this section we present our algorithm, which is in fact the classical perceptron learning rule
supplemented with a variable learning rate η > 0. First, let us consider the single perceptron update

w′ = w + η bx (2)

of a hypothesis w 6= 0 through a counterexample (x, b) ∈ Sn−1 × {−1, 1}. Then according to
Equation (1) the error of the updated hypothesis w′ is

err(w′) =
1

π
arccos

〈w∗,w + ηbx〉
‖w + ηbx‖ . (3)

Now we minimize err(w′) as a function of η. Since arccos is monotonically decreasing we find a
global minimum of err(w′) by maximizing its argument g(η) := 〈w∗,w + ηbx〉 / ‖w + ηbx‖. We
determine a zero of g′ by applying the quotient rule and forgetting its denominator:

0
!

=
d

dη

(〈w∗,w + ηbx〉
‖w + ηbx‖

)
⇔ 0 =

d 〈w∗,w + ηbx〉
dη

‖w + ηbx‖ − d ‖w + ηbx‖
dη

〈w∗,w + ηbx〉

⇔ 0 = b 〈w∗,x〉 ‖w + ηbx‖ − b 〈w,x〉+ η

‖w + ηbx‖ 〈w
∗,w + ηbx〉 (4)

By setting d∗ := b 〈w∗,x〉 and d := −b 〈w,x〉 / ‖w‖ for the distances from x to the target hyper-
plane and the actual hyperplane we obtain from Equation (4)(

‖w‖2 − η ‖w‖ d
)
d∗ =

(
η − ‖w‖ d

)
〈w∗,w〉

⇔ η = ‖w‖
d∗ + d

〈
w∗, w

‖w‖

〉
〈
w∗, w

‖w‖

〉
+ dd∗

.

Now with 〈w∗,w/ ‖w‖〉 = cosβ, where β is the angle between w and w∗, we get the locally
optimal learning rate as a function of ‖w‖, d∗, d and β, namely

ηopt = ‖w‖ d
∗ + d cosβ

cosβ + dd∗
. (5)

Of course this learning rate is useless in practice, since it depends on d∗ and β, which are unknown
to the algorithm. Nevertheless it motivates a useful choice of η: Assume w has a small error. Then
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β is small and thus cosβ close to one. The expected distances E
[
d∗
]

and E
[
d
]

should therefore be
also small. Since by symmetry these expected distances are equal, so

η := ‖w‖ 2d (6)

is hopefully a good and certainly an easily computable choice. This directly provides our algorithm:

Algorithm 1: ADAPTIVEPERCEPTRON

Input: Number of examples s to be drawn uniformly from Sn−1

Output: Hypothesis w
Get first labeled example (x, b) where b = f∗(x);
w ← bx;
for i = 2 . . . s do

Get labeled example (x, b);
if fw(x) 6= b then

w′ ← w − 2 〈w,x〉x;
w ← w′;

end
end
return w;

Suprisingly, the error of ADAPTIVEPERCEPTRON is monotonically decreasing. Moreover, all
hypotheses are unit vectors. These two properties turn out to be crucial for the analysis.

Proposition 1 (first properties) For any hypothesis w determined by ADAPTIVEPERCEPTRON,

(a) ‖w‖ = 1, as well as

(b) err(w′) ≤ err(w) ≤ 1/2.

Proof After the first example x we have ‖w‖ = ‖bx‖ = 1. Also err(w) = 1
π arccos 〈w∗,w〉 ≤

1/2, since 〈w∗, bx〉 ≥ 0. Moreover, after updating w with a counterexample x we have∥∥w′∥∥2 = ‖w − 2 〈w,x〉x‖2 = ‖w‖2 − 4 〈w,x〉 〈w,x〉+ 4 〈w,x〉2 ‖x‖2 = ‖w‖2 = 1.

For the error of w′ we have

err(w′) =
1

π
arccos

〈
w∗,w′

〉
=

1

π
arccos(〈w∗,w〉 − 2 〈w,x〉 〈w∗,x〉)

≤ 1

π
arccos 〈w∗,w〉 = err(w),

since arccos is monotonically decreasing and 〈w,x〉 〈w∗,x〉 ≤ 0 for the counterexample x.

We conducted experiments for dimension n = 210 and up to s = 1010 examples, comparing
the learning curves of the perceptron algorithm of Baum (1990), the average algorithm of Serve-
dio (1999) and ADAPTIVEPERCEPTRON. It turns out that for up to s ≈ n examples the three
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algorithms do not differ significantly with ADAPTIVEPERCEPTRON even lagging behind. However
after 105 examples asymptotics seems to take over, ADAPTIVEPERCEPTRON clearly pulls ahead
and continues to stay in front from there on (see Figure 1).

We also investigated the “hypothetical” OPTADAPTIVEPERCEPTRON, which in each step uses
the locally optimal learning rate ηopt (see Equation (5)). Observe that ADAPTIVEPERCEPTRON and
OPTADAPTIVEPERCEPTRON are almost indistinguishable.
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Figure 1: log-log plot of the learning curve for different algorithms at n = 1024 dimensions.

4. Adaptive Perceptron – Analysis

In this section we prove our main result:

Theorem 2 After s = Θ
(
n
ε (log 1

ε + log 1
δ )
)

examples ADAPTIVEPERCEPTRON outputs a hypoth-
esis which with probability at least 1− δ has error at most ε for each ε, δ ∈ (0, 1], n ≥ 2.

Note that our simulation is consistent with the results of Theorem 2, i.e. the error of ADAP-
TIVEPERCEPTRON behaves asymptotically as s−1, whereas the error of PERCEPTRON and AVER-
AGE is roughly s−1/3 and s−1/2, respectively (see Figure 1 again).

Proof [Theorem 2] Let wk be the k-th hypothesis determined by ADAPTIVEPERCEPTRON for k ≥
1. We write βk = ^(w∗,wk) for the angle between w∗ and wk. The theorem follows if the
expected cosine of βk is “exponentially close” to one, i.e. we later show the following lemma.

Lemma 3 (expected cosine of hypothesis angle) For each k ≥ 1 we have

E
[

cosβk
]
≥ 1− e− 2

3n
(k−1),
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where the expectation is taken over the random sequence of examples.

4.1. Proof of Theorem 2 with Lemma 3

We show the theorem with the help of two inequalities.

Lemma 4 For each 0 < z ≤ π
2 we have

sin z

z
− cos z ≥ 1

3
(1− cos z), (7)

and for each 0 ≤ y ≤ 1 we have
arccos y ≤ 2

√
1− y. (8)

Proof Let 0 < z ≤ π/2. We show sin z
z − 2

3 cos z− 1
3 ≥ 0 using Taylor approximations of sine and

cosine. With Lagrange remainder we have

sin z = z − 1

6
z3 +

cos ξ1
120

z5 and cos z = 1− 1

2
z2 +

cos ξ2
24

z4

with constants 0 ≤ ξ1, ξ2 ≤ z. Since cos ξ1 ≥ 0 and cos ξ2 ≤ 1, we may conclude

sin z ≥ z − 1

6
z3 and cos z ≤ 1−

(
1

2
− 1

24
z2
)
z2 ≤ 1− 1

3
z2, (∗)

where the last inequality follows from the fact that 0 < z < 2. Hence we have

sin z

z
− 2

3
cos z − 1

3
≥ 1− 1

6
z2 − 2

3
+

2

9
z2 − 1

3
=

1

18
z2 ≥ 0

and (7) is proven. To prove (8) one can solve (∗) for z. This yields

z ≤
√

3− 3 cos z ≤ 2
√

1− cos z.

Substituting z := arccos y shows (8).

Since arccos is concave in [0, 1], we can apply Jensen’s inequality in addition to applying Lemma 3
and thus bound the expected error of the k-th hypothesis by

E
[
err(wk)

]
=

1

π
E
[

arccos(cosβk)
]

≤ 1

π
arccos

(
E
[

cosβk
])

(Jensen’s inequality)

≤ 2

π

√
1− E

[
cosβk

]
(Inequality (8))

≤ 2

π
e−

1
3n

(k−1) (Lemma 3)

≤ e− k
3n . (n ≥ 2)

Hence after
k ≥ k0 := 3n ln

2

εδ
(9)
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counterexamples have occured, we have E
[
err(wk)

]
≤ εδ

2 . Now suppose the output hypothesis wk

has error greater than ε. Then due to monotonicity (Proposition 1, (b)) the error has always been
greater than ε. So if we draw

s :=
2k0
ε

= Θ

(
n

ε

(
log

1

ε
+ log

1

δ

))
(10)

examples, we expect to have at least 2k0 counterexamples in this case. We apply the Chernoff
bound in the following version to bound the probability of getting less than k0 counterexamples in
this case.

Lemma 5 (Lower tail Chernoff bound) If Y1, . . . , Ys are {0, 1}-valued random variables with
P
[
Yi = 1 | Y1, . . . , Yi−1

]
≥ p, then for all 0 < c < 1,

P
[∑

i

Yi < (1− c)sp
]
≤ e−c2sp/2.

Proof The lemma follows from the standard Chernoff bound.

To bound the probability of getting less than k0 counterexamples in s trials let the 0-1 variable Yi
indicate whether the i-th example is a counterexample. Set p := ε, c := 1/2 and we obtain

P
[∑

i

Yi < k0
]
≤ (εδ/2)3n/4 ≤ δ/2.

If the error of the output hypothesis wk is greater than ε, less than k0 counterexamples were encoun-
tered or the random variable err(wk) exceeds its expected value by at least a factor of 2/δ. Hence,
by the union bound and Markov’s inequality, the probability that the output hypothesis wk has error
greater than ε is at most δ/2 + δ/2 = δ, which proves Theorem 2.

4.2. Proof of Lemma 3 with Lemma 6

Proof [Lemma 3] Since w∗ and wk have norm one (Proposition 1, (a)), the cosine of βk is given as

cosβk = 〈w∗,wk〉 . (11)

Recalling the update rule of ADAPTIVEPERCEPTRON for k ≥ 2, we have

〈w∗,wk〉 = 〈w∗,wk−1 − 2 〈wk−1,xk〉xk〉
= 〈w∗,wk−1〉 − 2 〈wk−1,xk〉 〈w∗,xk〉 , (12)

where xk is the k-th counterexample. We combine Equations (11) and (12) and set d∗k := ±〈w∗,xk〉,
dk := ∓〈wk−1,xk〉 for the distances from xk to the target hyperplane and the current hyperplane
of the algorithm. This yields

cosβk = cosβk−1 + 2dkd
∗
k. (13)

By symmetry the probability distribution of dkd∗k only depends on the hypothesis angle βk−1. Thus
we can form total expectation to obtain

E
[

cosβk
]

= E
[

cosβk−1
]

+ 2E
[
E
[
dkd
∗
k | βk−1

]]
. (14)

The following key lemma provides the conditional expectation.

7
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Lemma 6 (expected product of distances) Let w be a hypothesis with ^(w∗,w) = β > 0. As-
sume x is a randomly drawn counterexample. Let d∗ and d be the distances from x to the target
hyperplane and the hyperplane represented by w. Then we have

E
[
dd∗ | β

]
=

1

n

(
sinβ

β
− cosβ

)
.

We show Lemma 6 later. In combination with Lemma 4 we see

E
[
dkd
∗
k | βk−1

] Lemma 6
=

1

n

(
sinβk−1
βk−1

− cosβk−1

)
Inequality (7)

≥ 1

3n
(1− cosβk−1).

Thus, we may bound E
[

cosβk
]

in Equation (14) as follows

E
[

cosβk
]
≥ E

[
cosβk−1

]
+ 2E

[
1

3n
(1− cosβk−1)

]
≥ 2

3n
+

(
1− 2

3n

)
E
[

cosβk−1
]
.

Now expand this inequality recursively and notice that cosβ1 = 〈w∗,w1〉 = 〈w∗, b1x1〉 ≥ 0 for
the first example (x1, b1). Hence we have for all k ≥ 1,

E
[

cosβk
]
≥ 2

3n

k−2∑
i=0

(
1− 2

3n

)i
= 1− (1− 2/3n)k−1 ≥ 1− e− 2

3n
(k−1).

4.3. Proof of Lemma 6

Proof [Lemma 6] Let w, β, x and d, d∗ be given as stated in the lemma. Without loss of gener-
ality (rotational symmetry) let w∗ = (1, 0, . . . , 0) and w = (cosβ,− sinβ, 0, . . . , 0). Note that
^(w∗,w) = β, ‖w∗‖ = ‖w‖ = 1 and dd∗ = −〈w,x〉 〈w∗,x〉 = x1(x2 sinβ − x1 cosβ). Also
by symmetry we may assume that x is a positive counterexample. Now consider x to be the angular
part of a standard normal vector u = rx, where r is its length. Note that r and x are independent
and thus it holds

Ex

[
− 〈w,x〉 〈w∗,x〉

]
Er
[
r2
]

= Eu

[
− 〈w,u〉 〈w∗,u〉

]
.

Since r2 has a chi-squared distribution with n degrees of freedom, its expected value is Er
[
r2
]

= n.
Hence it remains to show that Eu

[
− 〈w,u〉 〈w∗,u〉

]
= sin(β)/β − cosβ. This can be done by
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calculating a simple Gaussian integral:

Eu

[
− 〈w,u〉 〈w∗,u〉

]
=

2π

β

∫
u∈Rn,u1≥0,

u1 cosβ−u2 sinβ<0

1√
(2π)n

e−
1
2(u21+···+u2n) u1(u2 sinβ − u1 cosβ) d(u1 . . . un)

=
1

β

∫
u1≥0,

u1 cosβ−u2 sinβ<0
e−

1
2(u21+u22) u1(u2 sinβ − u1 cosβ) d(u1, u2)

=
1

β

∫ ∞
r=0

∫ β

ϕ=0
e−r

2/2 r sinϕ(r cosϕ sinβ − r sinϕ cosβ) r dϕdr

=
1

β

∫ ∞
r=0

r3e−r
2/2 dr

∫ β

ϕ=0
sinϕ cosϕ sinβ − sin2 ϕ cosβ dϕ.

Now substituting the two integrals∫ ∞
r=0

r3e−r
2/2 dr =

[
−r2e−r2/2

]∞
0

+

∫ ∞
0

2re−r
2/2 dr =

[
−2e−r

2/2
]∞
0

= 2

and ∫ β

ϕ=0
sinϕ cosϕ sinβ − sin2 ϕ cosβ dϕ

=

[
−1

2
cos2 ϕ

]β
0

sinβ −
[

1

2
(ϕ− sinϕ cosϕ)

]β
0

cosβ =
1

2
(sinβ − β cosβ)

shows the claim.

5. Conclusions and Open Problems

The classical perceptron algorithm – with adaptive learning rate – turns out to be nearly optimal for
learning homogeneous halfspaces against the uniform distribution on the unit sphere. The algorithm
is fast, extremely simple, strictly error-decreasing and even conservative, i.e. it performs updates
only on counterexamples.

Experiments suggest that OPTADAPTIVEPERCEPTRON performs only slightly better than ADAP-
TIVEPERCEPTRON. It would be interesting to investigate if there exist (conservative) learning algo-
rithms which perform better than ADAPTIVEPERCEPTRON.

Moreover, it would be interesting to search for possible generalizations. For which distributions
does Theorem 2 still hold? Is it possible to find a version of the algorithm which fits a given class
of distributions?
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