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Abstract
We address the problem of the achievable regret rates with online logistic regression. We derive
lower bounds with logarithmic regret under L1, L2, and L∞ constraints on the parameter values.
The bounds are dominated by d/2 log T , where T is the horizon and d is the dimensionality of the
parameter space. We show their achievability for d = o(T 1/3) in all these cases with Bayesian
methods, that achieve them up to a d/2 log d term. Interesting different behaviors are shown for
larger dimensionality. Specifically, on the negative side, if d = Ω(

√
T ), any algorithm is guar-

anteed regret of Ω(d log T ) (greater than Θ(
√
T )) under L∞ constraints on the parameters (and

the example features). On the positive side, under L1 constraints on the parameters, there exist
Bayesian algorithms that can achieve regret that is sub-linear in d for the asymptotically larger val-
ues of d. For L2 constraints, it is shown that for large enough d, the regret remains linear in d but no
longer logarithmic in T . Adapting the redundancy-capacity theorem from information theory, we
demonstrate a principled methodology based on grids of parameters to derive lower bounds. Grids
are also utilized to derive some upper bounds. Our results strengthen results by Kakade and Ng
(2005) and Foster et al. (2018) for upper bounds for this problem, introduce novel lower bounds,
and adapt a methodology that can be used to obtain such bounds for other related problems. They
also give a novel characterization of the asymptotic behavior when the dimension of the parameter
space is allowed to grow with T . They additionally strengthen connections to the information the-
ory literature, demonstrating that the actual regret for logistic regression depends on the richness of
the parameter class, where even within this problem, richer classes lead to greater regret.
Keywords: Logistic regression, online learning, Bayesian methods, convex optimization, regret,
redundancy capacity theorem.

1. Introduction

Logistic regression plays a significant role in many learning applications, where a set of parameters
representing the effects of different features on the outcome (label) is learned from a training data
set with known labels. The learned parameters are then used to predict the true labels of, yet unseen,
data examples. Examples include predicting the probability some person carries some disease based
on features that are, e.g., hereditary or environmental; or predicting the click-through-rate of ads
shown in online advertising. Many applications may require to operate in the online learning (or
online convex optimization) setting. In this setting, an algorithm consumes the data in rounds. At
round t, predictions can be based on all examples seen up to round t − 1, including on their true
labels (but not on data beyond round t− 1), to predict the label of the example at round t.

c© 2020 G.I. Shamir.
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The performance of an online algorithm is measured by its regret, which is defined as the extra
loss it incurs beyond that of an algorithm that is playing, at all rounds, some comparator value
θ∗ ∈ Θ, where Θ is a predefined space of possible values. The values of the parameters θ∗ can be
those that minimize the cumulative loss over all rounds up to the horizon T . While regret is defined
for the online setting, it is directly connected to the convergence rate, which measures an expected
loss on an unseen example at round T + 1, based on training on the first T examples.

Paper Outline: In Section 2, we outline our contributions. We present a summary of related
work in Section 3. Section 4 formulates the problem. In Section 5, we frame and extend results
from the literature, setting them to prove our results. Section 6 describes regret lower bounds for
any algorithm. Section 7 shows upper bounds that can be achieved with Bayesian mixture algorithms
and apply to logistic regression when the feature vector xt is observed prior to predicting a label.

2. Summary of Contributions and Methods

We consider several settings with a d-dimensional parameter space limited by B (B can be function

of T , including o(1)) , specifically, Θ
4
= {θ∗ : ‖θ∗‖ρ ≤ B}, for ρ = 1, 2,∞. Define γ = B/(log T )

as the count of log T units constituting B. We focus on the case in which the norm of the example
(or feature value vector) xt at t is bounded in L∞, i.e., |xt,i| ≤ 1, ∀i = 1, 2, . . . , d, (or ‖xt‖∞ ≤ 1).
(This setup generalizes the practical setup with binary features). However, with proper adjustments
(which decrease the bounds), the results transform also to the more restrictive ‖xt‖2 ≤ 1.

Our contributions include:
• Comprehensive characterization of the regret for the logistic regression problem, including

the asymptotic behavior in the dimensionality d, showing regret bounds logarithmic in T and
linear in d for lower regions of d.
• Novel bounds that lead to this characterization, especially, lower bounds showing limitations

on regret in the different settings.
• Specific negative results that demonstrate that in cases such as L∞ constraints, for d =

Ω(
√
T ), we are guaranteed regret rates of at least Ω(

√
T log T ).

• Specific positive results that demonstrate that for upper regions of d, there exist Bayesian al-
gorithms with regret rates o(d) (for L1 constraints with d = ω(B

√
T )), as well as regret rates

that are linear in d, and no longer logarithmic in T (for L2 constraints with d = Ω(B2T )).
• Strengthened adaptation of a principled methodology from the information theory literature,

that allows derivation of lower bounds for this and related problems.
The sub-linear regret in d for L1 is very interesting for logistic regression because the dot product,
used for prediction, is a linear combination of the parameters, making L1 constraints very realistic,
especially in sparse real-worlds problems that have binary feature vectors (see, e.g., McMahan et al.
(2013)).

Our results characterize the behavior of the regret for the various regions of d. For smaller d, we
show lower bounds of (d/2) log(T/d), (d/2) log(T/d2), and (d/2) log(T/d3) for the cases where
‖θ∗‖ρ ≤ B and ρ is∞, 2, 1, respectively, and upper bounds of (d/2) log(B2T ), (d/2) log(B2T/d),
and (d/2) log(B2T/d2) for the respective norm constraints. (An additional d term in the denomina-
tor of the logarithm in all bounds applies to the setting in which ‖xt‖2 ≤ 1.) The difference between
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the constraints on different norms illustrates that regret is a function of the richness of Θ. The richer
is Θ (e.g., L∞ constraints are richer than L2, which are richer than L1) the greater is the regret. As
the dimension d is allowed to grow, the bounds change when the denominator of the logarithmic
term above equals the numerator. They lead to different regions of the different bounds, with dif-
ferent behavior in each region. Table 1 shows the different lower and upper bounds for different d
and different norm constraints on the space Θ, and summarizes the results in Theorems 3-5. For
simplicity of the table, we omitted the lower limit on d for each row, but it should be understood as
Θ(n) where the upper limit of the previous row is o(n) (for the first row in each block, the previous
n = 1). The lower bounds that are Θ(Tα) should be understood as Θ(Tα(1−ε)) for some small
ε > 0 which can be as small as O(log log T/(log T )). This is again omitted for simplicity. For
the setting in which ‖xt‖2 ≤ 1, the additional d term in the denominators of the logarithm leads to
earlier transitions between regions of d, for all cases (as well as adding a d/2 upper regret region
for L∞). Table 2 compares results in this paper to previously reported results (described in more
detail in Section 3). We omit middle ranges of d that are in Table 1. Some results in this paper are
extended from Kakade and Ng (2005) and adapted to the setup ‖xt‖∞ ≤ 1. A footnote marks these
with a proper explanation. For multi labels, we use θ∗(m) to denote the d-dimensional projection of
the parameter space for label m. Results for L1 and L∞ (that were not directly derived) are gen-
eralized from results that were derived for L2 and are described in the “previous results” column.

Table 1: Summary of regret bounds

Norm Constraint 1 Dimension d 2 Lower Bound Upper Bound

L1 : ‖θ∗‖1 ≤ B o
(
(γT )1/3

)
d
2 log γT

d3
d
2 log B2T

d2

o
(
B
√
T
)

Θ
(
(γT )1/3

)
d
2 log B2T

d2

ω
(
B
√
T
)

Θ
(
(γT )1/3

)
o(d)

L2 : ‖θ∗‖2 ≤ B o
(√
γT
)

d
2 log γT

d2
d
2 log B2T

d

o
(
B2T

)
Θ
(√
γT
)

d
2 log B2T

d

Ω
(
B2T

)
Θ
(√
γT
)

d
2

L∞ : ‖θ∗‖∞ ≤ B o (γT ) d
2 log γT

d
d
2 log

(
B2T

)
Ω (γT ) Θ (γT ) d

2 log
(
B2T

)
To prove lower bounds, we adapt techniques based on the redundancy-capacity theorem (see,

e.g., Davisson (1973); Merhav and Feder (1995); Shamir (2006a)) from the information theory
literature. Specifically, we set a grid of points in the parameter space that are distinguishable by the
observed label sequence for some example sequence. The logarithm of the cardinality of the grid
is a lower bound on the regret. The concept of distinguishability was used somewhat differently by
Hazan et al. (2014) to prove regret lower bounds. Upper bounds for L2 and L∞, but not for L1, can
be derived by manipulating the Bayesian mixture approach in Kakade and Ng (2005), (adjusted to

1. The dimension column shows an upper limit on the shown range. The lower limit should be understood as Θ(n)

where the upper limit for the previous row is o(n), (n = 1 for the row “previous” to the first one in a block).
2. Lower bounds that are Θ(Tα) should be understood as Θ(Tα(1−ε)) for some small ε > 0.
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Table 2: Comparison of regret bounds in this paper with previously reported bounds

Problem Setting Previous Results This Paper

Binary Labels,
d = 1

: R = 1
2 log T [Davisson (1973)]

[Krichevsky and Trofimov (1981)]
[McMahan and Streeter (2012)] 1

Multi Labels 2

ω(1) = m = o(T )

d = 1

: R = m
2 log(T/m) [Krichevsky and Trofimov]

[Orlitsky and Santhanam (2004)]
[Shamir (2006a)]

Binary Labels 3

Multi Dimensions d
L1 : ‖θ∗‖1 ≤ B

: O(B
√
dT ) [Xiao (2010)]

R ≤ d
2 log (1 + T ) [Kakade and Ng (2005)]

R ≤ d
2 log

(
B2T
d + e

)
[Kakade and Ng] 4

R ≤ 5d log
(
BT
d + e

)
[Foster et al. (2018)]

d = o
(
(γT )1/3

)
:

d
2 log γT

d3 ≤ R ≤
d
2 log B2T

d2

d = Ω
(
B
√
T
)

:

Θ
(
(γT )1/3

)
≤ R = o(d)

Binary Labels
Multi Dimensions d
L2 : ‖θ∗‖2 ≤ B

: O(B
√
dT ) [Xiao (2010)]

R ≤ d
2 log (1 + T ) [Kakade and Ng (2005)]

R ≤ d
2 log

(
B2T
d + e

)
[Kakade and Ng] 4

Ω(d) ≤ R ≤ 5d log
(
BT
d + e

)
[Foster et al.]

d = o
(√
γT
)
:

d
2 log γT

d2 ≤ R ≤
d
2 log B2T

d

d = Ω
(
B2T

)
:

Θ
(√
γT
)
≤ R ≤ d

2

Binary Labels 3

Multi Dimensions d
L∞ : ‖θ∗‖∞ ≤ B

: O(dB
√
T ) [McMahan (2017)]

R ≤ d
2 log

(
B2T

)
[Kakade and Ng (2005)] 4

Ω(d) [Foster et al. (2018)]

d = o (γT ):
d
2 log γT

d ≤ R ≤
d
2 log

(
B2T

)
d = Ω (γT ) :

Θ (γT ) ≤ R ≤ d
2 log

(
B2T

)
Multi Labels m
Multi Dimensions d

: L2 constraints:
R ≤ 5md log

(
BT
dm + e

)
[Foster et al. (2018)]

‖θ∗(m)‖∞ ≤ B:
R ≥ d(m−1)

2 log
(
T
d·m
)

Binary Labels,
Multi-d, proper

: Ω(
√
BT ) [Hazan et al. (2014)]

our setup). Using a normal prior with large variance can attain the proper rates, with the respective
constants. However, for ‖θ∗‖1 ≤ B, we combine this approach with the method of grids, applying a
discrete uniform prior on some Θm ⊆ Θ. Applying the method in Kakade and Ng (2005), log |Θm|
initially dominates an upper bound, with additional contribution from the effective quantization of
the parameters by the mixture only on a discrete subset of the space. This method can also be used
for L2 and L∞, and achieves a similar bound for L∞, but slightly weaker one for L2.

1. The single dimensional results were known in the information theory literature, and derived using Bayesian mixture
methods. McMahan and Streeter (2012) demonstrated their achievability with a Follow The Regularized Leader
(FTRL) gradient method.

2. Results for m = O(1) were known in the information theory literature since Davisson (1973) and perhaps even
before that. The KT estimator achieves the upper bound also for m = ω(1). Lower bounds were derived in the
references cited.

3. The previous results in the table for L1 and L∞ are implied from results for L2 in the literature.
4. These upper bounds are derived by extending the derivation from Kakade and Ng (2005) as in Theorem 4 in our

paper. For L2 this was also shown in Foster et al. (2018).
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3. Related Work

Prior results in both the machine learning literature (see, e.g. Azoury and Warmuth (2001); Cesa-
Bianchi et al. (2002); Littlestone (1989)) and the information theory literature (see, e.g., Krichevsky
and Trofimov (1981); Merhav and Feder (1995); Rissanen (1984)) illustrate that the performance
of the regret (redundancy in information theory) of the online setting normalized by T meets batch
convergence rates at least to first order. Hence, studying online regret also implies to generalization
ability. The setup of a logistic regression problem, whether online or batch is very similar to the se-
tups of the universal compression problems in the information theory literature. In these problems,
the redundancy in predicting multi label outcomes in a setup that is equivalent to single dimensional
logistic regression with binary features was studied. It was shown (see, e.g., the seminal work in
Rissanen (1984), subsequent work in Drmota and Szpankowski. (2004); Orlitsky and Santhanam
(2004); Shamir (2006a); Szpankowski and Weinberger (2012), and references therein) that for these
problems, regret of m2 log(T/m) is achievable to first order, where m is the number of labels. How-
ever, the concepts presented by Rissanen (1984) should apply also to more general d dimensional
problems, where d is the number of parameters that affect the label outcome. Specifically, in Ris-
sanen (1984), central limit arguments, that are also satisfied in the logistic regression setting, were
used to prove d

2 log T redundancy bounds, when d = Θ(1). The subsequent results in Drmota and
Szpankowski. (2004); Orlitsky and Santhanam (2004); Shamir (2006a,b), however, extended the
redundancy results to m

2 log(T/m), even when m = T 1−ε = o(T ) (for some small fixed ε > 0) but
were more specific to the equivalent of single dimensional logistic regression with multi m labels.

The machine learning literature considered general online convex optimization, and derived
minimax-optimal algorithms for both the linear and strongly convex settings (see, e.g., Abernethy
et al. (2008)), with logarithmic regret in the strongly convex setting. General minimax bounds for
a wide variety of loss functions and references classes, including large and nonparametric classes,
were provided in a series of papers by Rakhlin et al. (2010a,b); Rakhlin and Sridharan (2014, 2015);
Rakhlin et al. (2017). For weakly convex settings (which generally includes logistic regression),
regret rates of O(dB

√
T ) have been shown to be achievable (see, e.g., Zinkevich (2003), and refer-

ences therein), and later, rates of O(B
√
dT ) (see, e.g., Xiao (2010)), where B is the radius of the

L2 ball defining the allowed values of the parameter θt, played at round t, and the space Θ of values
of a possible comparator θ∗.

To the best of our knowledge, in Kakade and Ng (2005), a first result suggesting that regret of
O(d log(T/d)) is achievable for logistic regression, and in fact for other generalized linear models,
was presented. Instead of using gradient methods, (typically used for this problem) in which the
training algorithm updates the learned parameters taking a step against the gradient on the loss, the
method took from the Bayesian literature to apply Bayesian Model Averaging (or Bayesian mixture)
to show a regret upper bound (but not a lower bound) that achieves this rate. In addition, however,
the algorithm pays an additional penalty that depends on the prior selection as well as on the squared
L2 norm of a comparator θ∗ (which can be the loss minimizing parameter in hindsight). If ‖θ∗‖22 is
larger than the O(d log(T/d)) term, this penalty term could dominate the bound (depending on the
selected prior). The proof of the bound utilized variational techniques, and also, in part, resembled
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some of the central limit arguments used in Rissanen (1984) to show upper bounds on redundancy.
The use of Bayesian methods is also justified in the information theory literature (see, e.g., Davisson
(1973); Krichevsky and Trofimov (1981); Rissanen (1984)). Specifically, Merhav and Feder (1995)
showed that a mixture code is as good as the best code in terms of regret (and thus can be better but
not worse than any other type of code).

McMahan and Streeter (2012) demonstrated that with binary feature values, using the Follow-
The-Regularized-Leader (FTRL) methodology (see, e.g., Hazan (2012); McMahan (2011); Rakhlin
et al. (2005); Shalev-Shwartz (2007) and references therein) with a Beta regularizer, O(log T ) re-
gret can be achieved for the single dimensional problem. In the special case of a Beta regularizer
with α = β = 1/2, their FRTL algorithm coincides with the well-known (add-1/2) Krichevsky
and Trofimov (1981) (KT) estimator that, in fact, achieves the lower bound on the regret for this
problem of 0.5 log(T ). It is interesting to note, however, that the KT method is derived using a
Bayesian mixture with the Dirichlet-1/2 prior. Thus for the single dimensional case, both the FTRL
methodology and the Bayesian mixture one result in the same estimator. Unfortunately, this result
does not generalize to larger dimensions.

While the lower bound can be achieved for the single dimensional case for binary features with
an FTRL gradient method, McMahan and Streeter (2012) posed a problem of what happens in larger
dimensions. The results in Kakade and Ng (2005) hint in the direction of Bayesian methods, but still
fall short of achieving d/2 log(T/d) regret due to the additional penalty on the prior. (Although,
as we demonstrate, these results with a proper, perhaps unexpected, choice of prior could lead to
the desired rates and constants in some cases, but, to the best of our knowledge, such a result was
not reported in the literature.) A series of papers Bach (2010); Bach and Moulines (2013); Bach
(2014) studied the convergence rate of gradient methods for logistic regression, and concluded, that
while logistic loss is not globally strongly convex, it can, depending on the actual data, locally
exhibit strong convexity (referred to as the self-concordance property). Then, gradient methods
can achieve convergence rate of O(1/λT ), where λ is the smallest eigenvalue of the Hessian at the
global optimum. This implies that gradient methods can, in many case, achieve logarithmic regret,
but there do exist situations where gradient methods fail to achieve O(d log(T/d)) regret (when λ
is small).

Hazan et al. (2014) studied the problem, in which Bayesian methods are not possible to apply
directly, where the feature values are unknown when playing θt at round t, and are only revealed
later, together with the label. Bayesian methods do condition the predicted label probability on
the observed feature values, and if such are not available, they would require also mixing on the
feature values. It was shown, that in this setting, which is more difficult to the algorithm, regret of
O(B3T 1/3) is achieved for the single dimensional problem where only Ω(B2/3T 1/3) is possible,
and Ω(

√
BT ) is only possible for any larger dimensions even for d = 2.

Foster et al. (2018) separated the problem posed in McMahan and Streeter (2012) to the case
considered by Hazan et al. (2014), where the algorithm plays θt with no knowledge of the feature
values xt, which is referred to as a proper setting, and to the mixable setting where the feature
values are revealed to the algorithm prior to generating a prediction, referred to as the improper
setting. Using Bayesian model averaging with a uniform prior with an approach that resembles
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that in Kakade and Ng (2005), an upper bound of O(md log(T/md)) was shown for the multi
label d-dimensional (with d distinct features) logistic regression problem, wherem is the number of
distinct labels, under L2 constraints on θ∗. A lower bound of Ω(d) was shown for the binary labels
/ binary features setting under the constraints that B = Ω(

√
d log T ). The upper bound matches the

logarithmic order of the bound expected from the information theory problems, but not the constant,
and the lower bound is lower in order.

The results summarized above suggest that there are, in fact, two different sets of online logistic
problems considered. In the first, the features xt are revealed prior to playing θt or to generating a
prediction, and in the second, θt is played before the feature values are revealed. The first problem
allows the use of Bayesian methods, while the second will require such methods to also mix over
the unseen xt. For the first problem, logarithmic regret is possible for low dimensionalities, whereas
for the second extreme case, it is not in many settings, even in the single dimensional problem. In
this paper, we give a comprehensive characterization of the regret behavior for the first problem,
including the asymptotic regime, where d is allowed to grow with T . The lower bounds we derive
apply to any case, including the second problem, but the upper bounds are specific to the first one.

4. Problem Formulation, Notation and Definitions

We consider online convex optimization over a series of rounds t ∈ {1, 2, . . . , T} as in (McMahan,
2014) (see also Boyd and Vandenberghe (2004); Rockafellar (1997); Shalev-Shwartz (2012)). Each

round t, a d-dimensional example feature vector xt
4
= {xt,1, xt,2, . . . , xt,d} ∈ X and a label yt ∈ Y

are observed. For the binary labels, we use Y = {−1, 1}. We assume, without loss of generality,

that |xt,i| ≤ 1, as features can be normalized. We denote a subsequence up to time t by xt
4
=

{x1, x2, . . . , xt}. For the example/label pair, we also use St
4
= {(xs, ys)}ts=1. Capital letters denote

random variables. A learning algorithmA is a function that, given a sequence St−1, an example xt,
and an arbitrary label y ∈ Y , returns at round t a probability for the label

A(St−1, xt, y)
4
= P [Yt = y|Xt = xt, St−1]. (1)

To produce a prediction, an algorithm may play a weight vector θt ∈ Θ, or perform a Bayesian
mixture over θ ∈ Θm ⊆ Λ ⊆ Rd. For a given model θ, the probability of a label for example x is

given by p (y|x, θ) 4= 1
1+exp(−y·xT θ) . The loss at t for model θ is `(θ, xt, yt)

4
= − log p(yt|xt, θ) =

log
(
1 + exp(−yt · xTt θ)

)
, where it will sometimes be convenient to use the dot product z

4
= xT θ.

Similarly, the loss of A at t is `(A, xt, yt)
4
= − log[A(St−1, xt, yt)]. The total loss for model θ on

sequence ST is L(θ, ST )
4
=
∑T

t=1 `(θ, xt, yt). Similarly, L(A, ST )
4
=
∑T

t=1 `(A, xt, yt).
The regret of A for a given example/label pair sequence ST relative to a comparator model

θ∗ ∈ Θ
4
= {θ : ‖θ‖ρ ≤ B}, where B constrains the norm of θ∗, is defined as

Regret (A, ST , θ∗)
4
= L (A, ST )− L (θ∗, ST ) . (2)

We limit the comparator such that θ∗ ∈ Θ, and consider the different cases where ρ ∈ {1, 2,∞}. It
is reasonable to assume that B = γ log T for some γ > 0. Bayesian mixture algorithms could have
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support in Θm ⊆ Λ where Λ ⊇ Θ. The regret of A relative to the best comparator is given by

Regret (A, ST )
4
= sup

θ∗∈Θ
Regret (A, ST , θ∗) . (3)

A mixture algorithm A that may rely on the values of xt in its predictions of yt, predicts

pA(yt|xt) 4=
∫
θ∈Θm

p
(
yt|xt, θ

)
· p0(θ)dθ =

∫
θ∈Θm

t∏
τ=1

p (yτ |xτ , θ) · p0(θ)dθ (4)

where p0(θ)
4
= p0,A(θ) is some initial prior for A on the distribution of the parameter vector θ, and

Θm ⊆ Λ is the support of the mixture, which may be different form Θ. The probability (4) assigned
to yt can also be expressed as a set of equations that sequentially update a posterior distribution
over θ at round t from the prior at t, which is the posterior at t− 1, i.e.,

pA(θ|St) =

∏t
τ=1 p (yτ |xτ , θ) · p0(θ)∫

θ

∏t
τ=1 p (yτ |xτ , θ) · p0(θ)dθ

4
=
pA(θ, yt|xt)
pA(yt|xt)

. (5)

The prediction of yt is then given by

pA(yt|xt, St−1) =

∫
θ
p(yt|xt, θ) · pA(θ|St−1)dθ. (6)

As seen in (6), the prediction is also conditioned on the feature values (example) vector xt. The
prior distribution p0(θ) of A is shown to be continuous in (4)-(6). However, Θm can be set to be a
discrete set, and then (4) can be re-rewritten as

pA(yt|xt) 4=
∑
θ∈Θm

p
(
yt|xt, θ

)
· p0(θ) =

∑
θ∈Θm

t∏
τ=1

p (yτ |xτ , θ) · p0(θ). (7)

5. Useful Methods

5.1. Lower Bounds on Regret - The Redundancy Capacity Theorem

A lower bound on regret is meaningful only when stated in terms of existence of a sequence ST
for every possible algorithm, for which the regret is at least the lower bound. Davisson (1973) for-
mulated such a notion connecting universal compression redundancy with problems like hypothesis
testing by the redundancy-capacity theorem, which shows that the redundancy (or regret) can be
lower bounded by the mutual information I(Θ;ST ) between the parameter and the observed data
sequence, induced by the prior on Θ of a mixture model. A specific interesting case is when the
prior is uniform on a discrete subset Θm ⊆ Θ of the parameter space, and the elements in Θm are
distinguishable by the observation ST , i.e., observing ST is sufficient to determine which θ ∈ Θm

generated ST with error probability Pe → 0 as T →∞. This case leads to a weaker lower bound
than the bounds described in Davisson (1973) and subsequent works, but is sufficient for showing
redundancy bounds in many cases (see, e.g., Merhav and Feder (1995); Shamir (2006a)), and also
for regret bounds for our problem. We frame this result to regret, and prove it by mirroring the part
of the derivation in Davisson (1973) that is sufficient for the result we need, but described in terms
that apply to the regret problem. We next state the theorem, which is proved in Appendix A.
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Theorem 1 Distinguishable Grid Regret (adapted from Davisson (1973)): Let T →∞. Let Θm ⊆
Θ be a set of M → ∞ distinct values of θ. Draw Φ ∈ Θm with a uniform prior, and generate ST
from the distribution determined by Φ. Let Φ̂

4
= f(ST ) be some estimator of Φ ∈ Θm from the

observed ST . Then, if Pe
4
= P (Φ̂ 6= Φ) → 0, the regret of any algorithm A for the worst sequence

ST is lower bounded by
sup
ST

Regret (A, ST ) ≥ (1− o(1)) logM. (8)

Similarly, for a fixed x∗T , if we draw Y T instead of ST and the conditions above hold, (8) also
holds.

5.2. Variational Approach for Upper Bounds

Upper bounds can be obtained by showing Bayesian methods that can achieve low regret and bound-
ing their regret. For simplicity, one can select priors p0(·) with a diagonal covariance. Kakade and
Ng (2005) selected a normal prior, whereas Foster et al. (2018) used a uniform one. We follow
Kakade and Ng (2005) and manipulate their approach to obtain tighter bounds for L2 and L∞, and
then use the method of grids with a uniform discrete prior combined with their method to derive
an L1 bound. We first describe their approach. Define a distribution Q(θ) on Θq ⊆ Θm where
Eq(θ) = θ∗, and Eq[(θi − θ∗i )(θj − θ∗j )] ≤ η2

q · δ(i − j), where δ(n) = 1 if n = 0 and is 0,
otherwise, i.e, diagonal covariance matrix, where η2

q is an upper bound on elements of the diagonal.
(Note that Θq can be a subset of Θ, but does not have to, and in fact, is not for the normal prior).
Let D(Q||p0) be the KL-divergence between Q and p0. Then the following theorem holds.

Theorem 2 Kakade and Ng (2005): The regret of a Bayesian algorithm A∗ with prior p0 for
sequence ST and comparator θ∗ is upper bounded by

Regret (A∗, ST , θ∗) ≤ D(Q||p0) +
dT

8
η2
q (9)

The proof of Theorem 2 is in Kakade and Ng (2005), but needs to be modified a bit because they
restricted ‖xt‖2 ≤ 1, while we assume |xt,i| ≤ 1 (‖xt‖∞ ≤ 1). We rely on their proof, except
where it needs to be modified. The proof is in Appendix B.

6. Regret Lower Bounds

We now use Theorem 1 to derive lower bounds for the binary label case. A lower bound for the
multi label case is given in Appendix E. We first define

γ
4
= min

{
B

log T
,
{
α : α ·min[T 1−ε, d] = T 1−ε}} (10)

as the effective count of log T units in B (where if d is very large, we will only consider a clipped
portion of Θ for Θm to ensure distinguishability. This will guarantee that γmin[T 1−ε, d] = o(T )).
The lower bounds are stated in the following theorem.

9
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Theorem 3 Fix an arbitrary ε > 0, let T → ∞. Then, for every algorithm A there exists a
sequence ST , for which the regret is lower bounded by

Regret(A, ST ) ≥



(1− o(1))d2 log T
d ; for d = O(1),

(1− o(1))d2 log 4γT
d ; for ‖θ∗‖∞ ≤ B and d < 4

eγT
1−ε,

(1− o(1))2
eγT

1−ε; for ‖θ∗‖∞ ≤ B and d ≥ 4
eγT

1−ε,

(1− o(1))d2 log 2πeγT
d2

; for ‖θ∗‖2 ≤ B and d <
√

2π
e γT

1−ε,

(1− o(1))
√

2π
e γT

1−ε; for ‖θ∗‖2 ≤ B and d ≥
√

2π
e γT

1−ε,

(1− o(1))d2 log 4e2γT
d3

; for ‖θ∗‖1 ≤ B and d <
(

4γT 1−ε

e

)1/3
,

(1− o(1))3
2

(
4γT 1−ε

e

)1/3
; for ‖θ∗‖1 ≤ B and d ≥

(
4γT 1−ε

e

)1/3
.

(11)

Theorem 3 shows that for small d each feature/dimension contributes 0.5 log(T/d) to the worst
case regret. Generally, for L∞ each parameter costs 0.5 log(γT/d). For L2 there is a factor d
reduction inside the logarithm. An additional similar reduction is observed between L2 and L1.
These relations are expected, because they reflect the logarithm of the ratio between the respective
volumes of the parameter spaces, dictated by the constraints. The greater the volume, the harder the
algorithm has to work to match the best comparator, and the larger the regret penalty it pays. This is
similar to observations in the information theory literature and in results as Rakhlin and Sridharan
(2015), which tie the regret to the richness of the class. The dependence on B is through γ. Each
interval of log T consists of roughly

√
T/d distinguishable parameters. Hence, the ratio between B

and log T dictates how many parameter regions are in an interval of diameter 2B. Thus this ratio,
represented by γ, dominates the effect of B, which is normally, in practice, negligible relative to
the effects of T and d. (In practice, we would normally limit θ to some reasonable range, which is
usually O(1). However, theoretically, γ can be larger, in which case it does influence the bound.)
If B is too large, the effective γ in (10) guarantees that γd = o(T ), and if d = Ω(T ), it guarantees
this with respect to the largest value T 1−ε used for the bound.

An interesting behavior is observed for all casesL∞, L2 andL1. When we reach d = O(T ), d =

O(
√
T ) and d = O(T 1/3), respectively, a threshold phenomenon happens, and the bound becomes

constant for every greater d. It is not clear how much of this is a result of the bounding techniques
and how much is real. However, as we see in the upper bounds for L1 in the following section, there
exist Bayesian algorithms that achieve o(d) regret for L1 constraints. We also observe a decrease
in rate in the upper bounds for L2 at d = O(T ). Together, these results imply, that there are, in
fact, cases in which the regret does not grow linearly with d for large enough d. The L∞ bounds
demonstrate that there are situations in which we are guaranteed regret rates of Ω(

√
T log T ). In

fact, the regret could even be linear with d up to d = T 1−ε = o(T ).
To prove the first region of Theorem 3, we partition x∗T into d separate equal length segments,

where in each segment only one component x∗t,i; i = 1, 2, . . . , d; of x∗t is 1 and the rest are 0. This
transforms the problem to a standard universal compression problem in d different segments, in each
a single parameter is to be estimated. In each segment, we now have a grid of

√
T/d

1−ε
points,

which are spaced (in the space of label probability they induce) at a distance
√
d/T

1−ε
from one

10
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another. The total grid Ψ is the power set of the individual grids over the segments. Large deviation
typical sets analysis (see Cover and Thomas (2006)) with the union bound over the segments is used
to show that each of these points is distinguishable from the others. Finally, applying Theorem 1
with a fixed x∗T gives the lower bound. For diminishing large deviation exponent to dominate over
the union bound, we need to use d = o(T ). For larger values of d, we use a grid that varies only in
the first T 1−ε components of θ, and apply the resulting bound.

For the remaining regions, we fix the first component of the parameter at the maximal point
θ1 = B. Then, xt,1 would scale it by factors of s/γ, where s is an integer, taking all values from
−γ to γ. This will induce 2γ + 1 priors, that make (2γ + 1) distinct distinguishable regions of a
second nonzero component θi of θ that occurs in the same examples as θ1. We partition each of
now d − 1 segments, where in each of these segments a different component x∗t,i is 1 for i > 1,
while the remaining ones are 0, to (2γ + 1) subsegments corresponding to the different values
of xt,1. We show that the points on the grid, now constructed as a power set of d − 1 grids of
(2γ + 1)

√
T/dγ

1−ε
points, are, again, distinguishable with the fixed x∗T . Using Theorem 1, the

logarithm of the cardinality of the power grid lower bounds the regret. However, for L2 and L1,
only the components of θ ∈ Ψ which satisfy the constraints are included in the grid. This reduces
the bounds, and leads to a threshold point, in which the lower bounds become useless for the value
of d, since the remaining space no longer contains parameters for which all components of θ are
nonzero. We can thus use the value of d, which is lower, but achieves the largest bound. This leads
to regions 3, 5, and 7 in the bound. The proof of Theorem 3 is presented in Appendix C.

7. Regret Upper Bounds for Bayesian Methods

Theorem 2 allows us to prove the following two theorems:

Theorem 4 There exist Bayesian algorithms A∗ that for every sequence ST and comparator θ∗ ∈
Θ, achieve regret

Regret(A∗, ST , θ∗) ≤



(1 + o(1)) · d2 log
(
B2Te

4 + e
)

; for ‖θ∗‖∞ ≤ B,

(1 + o(1)) · d2 log
(
B2Te

4d + e
)

; for ‖θ∗‖2 ≤ B,

(1 + o(1)) · d2 log
(
B2Te3

4d2

)
; for ‖θ∗‖1 ≤ B and d = o(B

√
T ),

(1 + o(1)) ·
(
d
2 log(4e) + B

√
T

2

)
; for ‖θ∗‖1 ≤ B and d = Θ(B

√
T ),

(1 + o(1)) ·
(
d
2 +

√
2dB
√
T
)

; for ‖θ∗‖1 ≤ B and d = Ω(B
√
T )

(12)

Theorem 5 Let d = ω(B
√
T ). Then, there exists a Bayesian algorithmA∗ that for every sequence

ST and comparator θ∗ ∈ Θ with ‖θ∗‖1 ≤ B, achieves regret

Regret(A∗, ST , θ∗) = O
(
T 1/5d3/5B2/5

)
= o(d). (13)

Theorem 4 shows that regret logarithmic with T and linear with d is achievable in all three
cases. The bounds asymptotically differ only by a factor of d inside the logarithm. The wider

11



LOGISTIC REGRESSION REGRET

allowable range of θ∗ gives an upper bound where T in the logarithmic term is not normalized by
d. The smaller comparator region, where θ∗ norms are restricted by L2, reduces the logarithmic
cost from log T to log(T/d). A similar reduction is achieved from L2 to L1. Both L2 and L1 have
interesting threshold behavior, which matches the behavior with the lower bounds. For L1, as long
as d = o(B

√
T ), we observe regret linear in d and logarithmic in T . For larger dimensions, though,

we observe only linear behavior in d, without the logarithmic terms. Furthermore, if we tighten the
bounds further, Theorem 5 shows that even sub-linear behavior in d is possible (o(d), which as long
as d = o(B6T 3) is o(B

√
dT )). For L2, transition from O(d log T ) to O(d) occurs at d = O(B2T ).

The bounds in Theorem 4 are derived for our setting of ‖xt‖∞ ≤ 1. Kakade and Ng (2005)
and others considered the setting where ‖xt‖2 ≤ 1. In their setting, all the bounds in (12) will have
an additional factor of d in the denominator of the logarithmic term. This means that the transition
from O(d log T ) to O(d) rate (and for L1 to o(d)) will now occur at d = O(T 1/3), d = O(

√
T ) and

d = O(T ) for L1, L2, and L∞, respectively. (Such a transition will now also happen for L∞.)
Unlike Theorem 3, B is present in the upper bounds instead of γ. For distinguishability on an

individual feature, each region of log T in a single dimension consists of only
√
T distinguishable

points, and not
√
T log T . However, when dimensions are mixed through the dot product, it is hard

to disentangle the dimensions. This leads to the difference between the lower and the upper bounds.
The proof of Theorems 4 and 5 is based on Theorem 2. For L∞ and L2, we use a Gaussian prior

with a Gaussian Q(·). We derive the bounds on the terms of (9), find the value of the parameter that
gives the smallest bound and apply it. We then find the variance of the prior that gives the tightest
bound, and apply it. For L1, we construct a grid whose points are assigned a uniform probability.
We construct Q(·) as a Bernoulli distribution in each dimension, giving nonzero probability only to
the surrounding neighbors of the ith component θ∗i of θ∗, but ensuring that θ∗ is the expectation of
Q(·). Then, in the same manner, we upper bound the terms of (9), and optimize the free parameter
for the tightest bound. Finally, since a threshold occurs, where the bound becomes useless, we
use a union bound on lower dimensions of the parameter space. We find the dimension that gives
the maximal element of the sum over all dimensions, and use it to upper bound all dimensions.
Applying this method more tightly gives some tedious algebra, but yields a bound of o(d) for the
upper region of the L1 constraint problem. The proof of both theorems is presented in Appendix D.

8. Conclusions

We studied logistic regression regret, and derived lower and upper bounds for settings constraining
the norm of a comparator. We presented a comprehensive characterization of the regret for the dif-
ferent settings, including the asymptotic behavior in the dimensionality. Adapting a methodology
from the universal compression literature, we derived lower bounds on the regret, showing initial
logarithmic in T , linear in d regret, with rates whose growth slows with larger dimensions of the
feature space. Matching upper bounds confirm the general behavior of the lower bounds. Specifi-
cally, we demonstrated that under L1 constraints, for large enough d, regret becomes sub-linear in
d, and for L2 constraints, it drops from linear in d and logarithmic in T to just linear in d. On the
negative side, under L∞ constraints, regrets of Ω(

√
T log T ) are guaranteed for d = Ω(

√
T ).
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Appendix A. Proof of Theorem 1

The following lemma is needed to prove Theorem 1.

Lemma 6 Let θ∗ ∈ Θm be a parameter in the support of a Bayesian algorithm A = A∗ that
predicts as described in (4)-(6) or in (7). Then,

Regret(A∗, ST , θ∗) = log pA∗(θ
∗|ST )− log p0(θ∗) (14)

where pA∗(θ∗|ST ) is the posterior that A∗ assigns to θ∗ in (5) at t = T .

15
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Proof By the definition in (2), the regret ofA∗ over label sequence yT is the difference between the
log-likelihood assigned to the complete label sequence yT by the comparator θ∗ and that assigned
to yT by A∗

Regret(A∗, ST , θ∗) = log p(yT |xT , θ∗)− log pA∗(y
T |xT )

= log
p(yT |xT , θ∗)p0(θ∗)

pA∗(yT |xT )p0(θ∗)
= log pA∗(θ

∗|ST )− log p0(θ∗) (15)

where pA∗(yT |xT ) is defined in (4) for A = A∗ and t = T . The equalities are obtained by multi-
plication and division by p0(θ∗), which by the conditions of the lemma (θ∗ ∈ Θm) is greater than
0, and by identifying the posterior of A∗ defined in (5) for A = A∗, θ = θ∗, and t = T .

Proof of Theorem 1: Let A∗ be a Bayesian algorithm as defined in (7) on a discrete Θm. Let p0(θ)

now be uniform with p0(θ) = 1/M,∀θ ∈ Θm, and ‖Θm‖ = M (where M can be a function of T ).
Now,

sup
ST

Regret (A, ST ) = sup
ST

sup
θ∗∈Θ

Regret (A, ST , θ∗)
(a)

≥ sup
θ∗∈Θm

sup
ST

[L(A, ST )− L(θ∗, ST )]

(b)

≥ sup
θ∗∈Θm

EST |θ∗
[
log p(Y T |XT , θ∗)− logA(ST , X

T , Y T )
]

(c)

≥ E log p(Y T |XT ,Φ)− ESTEΘm|ST log pA∗(Y
T |XT ,ST )

= E[Regret(A∗,ST ,Φ)]
(d)
= E log pA∗(Φ|St)− E log p0(Φ) (16)

Step (a) follows for exchanging order of supremums, and shrinking Θ to Θm. Substituting loss
definitions, and lower bounding the supremum on ST by an expectation over ST conditioned on θ∗

leads to (b). Step (c) follows from lower bounding the supremum on Θm by expectation of Θm

w.r.t. p0(θ). This yields expectation w.r.t. θ∗ and ST for the left term. Performing this expectation
on the right term implies expectation on Y T with a distribution that is the one assigned to Y T by
A∗. This negative logarithm is minimized with predictions given from A∗, leading to the right term
in step (c), which, similarly to the left term, performs the expectation on both ST and Θm. The
resulting expression is the expectation of the regret of A∗ on Θm. Applying Lemma 6, gives (d).
By the uniform construction of p0(·), the right term is logM . The left term can be bounded using
Pe (see, e.g., Fano’s inequality, Cover and Thomas (2006))

− E log pA∗(Φ|St) ≤ h2(Pe) + Pe log(M − 1) ≤ 1 + Pe · logM, (17)

where h2(p)
4
= −p log p− (1− p) log(1− p) is the binary entropy function. This is proved by ex-

pectation over Φ, and then, breaking the events of the value of Φ̂ into the event Φ̂ = Φ and Φ̂ 6= Φ,
and then hierarchically separating the latter into the M − 1 different possible values of Φ̂, upper
bounding the conditional entropy on Φ̂ 6= Φ by that of a uniform distribution. Combining both
terms of (16), given M →∞ and Pe → 0, concludes the proof of the first statement of Theroem 1.
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The second statement follows the exact same derivation conditioned on a fixed x∗T , after lower
bounding the supremum over ST by that for this fixed x∗T .

Appendix B. Proof of Theorem 2

Proof of Theorem 2: Let L(Q,ST )
4
=
∫
θ∈Θq

L(θ, ST )Q(θ)dθ. (Similarly, if Θq is discrete, the
integral is replaced by a sum). Then, for a Bayesian algorithm A∗ with prior distribution p0(·) on a
logistic regression model,

Regret (A∗, ST , θ∗) = L (A∗, ST )− L (Q,ST )︸ ︷︷ ︸
≤D(Q||p0)

+L (Q,ST )− L (θ∗, ST )︸ ︷︷ ︸
≤d·T ·η2q/8

(18)

The first term is bounded in Lemma 2.1 in Kakade and Ng (2005). For the second term, recall

the dot product zt
4
= xTt θ. Then, for some θ, round t, and example/label pair {xt, yt}, define

f(z)
4
= `(θ, xt, yt) as the per example/label loss, which can be expressed as just a function of z.

Then, using Taylor expansion,

Eq[f(z)]− f(z∗) = f ′(z∗) · 0 + Eq

[
f ′′(ξ(z))

(z − z∗)2

2

]
≤
d · η2

q

8
(19)

where the first term is 0 by definition of the expectation w.r.t. Q(·). Then ξ(z) is some point be-
tween z∗ and z for which equality is satisfied for the second order Taylor approximation. The
second derivative of logarithmic loss w.r.t. the dot product for a diagonal term is x2

t,ip(1 − p) for
some probability p, and thus upper bounded by 1/4. By construction of a diagonal covariance ma-
trix, σ2

z ≤ η2
qx

Tx ≤ dη2
q . Since this bound is added on T examples, this term is multiplied by T .

This concludes the proof.

Appendix C. Proof of Theorem 3:

Proof of Theorem 3: We construct grids Ψ = Θm of points ψi for all dimensions i in the parameter
space, fix x∗T , show that the points are distinguishable given x∗T , and use the version of Theorem 1
for a fixed x∗T to lower bound the regret by the logarithm of the cardinality of the grid Ψ. For
the first region, partition x∗T into d separate length T/d segments. For segment i, i = 1, 2, . . . , d;
x∗t,i = 1 and all xt,j = 0 for j 6= i. The grid Ψ is a power set of grids for dimension i, for all i.
Define

pi,j
4
=

1

1 + exp(−ψi,j)
; i = 1, 2, . . . , d; j = 0, 1, . . . , b

√
T/d

1−ε
c 4= k (20)

for some fixed ε > 0. Then, the elements of ψi,j are defined such that

pi,j+1 − pi,j =

√
d

T

1−ε
4
= δ;∀i, j (21)
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with pi,0 = 0. In this step we can use all k + 1 values of ψi,j . For the subsequent regions of the
bound, we omit the first and the last i (i = 0 and i = k). Note that we can similarly define the grid
to be uniformly spaced w.r.t. ψj , where spacing is δ · (log T ). This makes the distinguishability a
little more tedious to prove, but does preserve a uniform grid (which will be necessary for L2 and
L1 results). For simplicity, and without loss of generality, we will show distinguishability with the
current definition.

The setup above transformed the problem to a standard well-known universal compression prob-
lem Rissanen (1984), but for d different segments, where in each a single parameter is to be esti-
mated. The cardinality of the grid is M = kd. Distinguishability is proved using the union bound
on the d segments applying large deviations typical sets analysis (see Cover and Thomas (2006)).
We skip this step, and perform it for the next regions. The method we use for the next regions also
applies here. Applying Theorem 1 with a fixed x∗T gives the lower bound for the first region, taking
the logarithm of M .

We now consider larger B = γ log T , and the behavior with asymptotically larger d. For
simplicity, we assume that γ satisfies (10). (If it does not, we lower the value of B for which
the analysis is done.) If d > T 1−ε, the analysis will assume d = T 1−ε, and the resulting bound will
be also applied for large d. In single dimension, for a sequence of length T , we can only distinguish
between parameters in [−0.5 log T, 0.5 log T ]. Any parameter greater than 0.5 log T will appear
with non-diminishing probability the same as the 0.5 log T parameter. Similarly, parameters smaller
than −0.5 log T will not be distinguishable from −0.5 log T . Therefore, we cannot use the method
described for smaller B to enhance the bound for the larger B. We will thus have to manipulate
the wider region to achieve the desired results. The idea is to “sacrifice” one dimension from the
parameters to serve as a prior, which for the other parameters maps different regions in [−B,B]

to [−0.5 log T, 0.5 log T ]. Each such distinct region will be considered in a separate segment, in
which distinguishability will be shown for parameter values in that region. We note that because we
actually consider intervals [−0.5 log(T/d), 0.5 log(T/d)], instead of a factor γ, we would actually

have a factor γ ·κ in the lower bounds, where κ
4
= (log T )/ log(T/d) ≥ 1. For simplicity, however,

we chose to omit this term from the bounds. We proceed without this sidestep.
Recall that ψi,j is the jth grid point for the value of parameter i; 1 ≤ i ≤ d. We now omit the

extreme points j = 0 and j = k to prevent duplications between partitions of the region [−B,B].
For i = 1, we now only include one grid point ψ1,1 = B. Instead of d segments as before, we now
have d − 1 segments, one for each of the remaining d − 1 components of ψ. We further segment
each of the d − 1 segments of x∗T defined earlier, each into 2γ + 1 subsegments. (For simplicity,
we ignore negligible integer length constraints on γ.) Let s ∈ {−γ,−γ + 1, . . . , 0, 1, . . . , γ} be a
subsegment index. Then, for subsegment s, x∗t,1 = s/γ. We still have for segment i representing
dimension i, x∗t,i = 1 for one i, and for the remaining components j 6= 1, j 6= i, x∗t,j = 0. The
grids ψi,j for dimensions i = 2, 3, . . . , d now consist of a grid which is a union of 2γ+ 1 sub-grids.
The sth sub-grid of dimension i is on the range [−0.5 log T, 0.5 log T ] − s log T . By adding the
contribution of component 1, which is B · s/γ = s log T , the region of sub-grid s in subsegment s
is mapped back into [−0.5 log T, 0.5 log T ]. With this mapping in mind, we place the points in the
sub-grid s such that they either map into probabilities as in (20), with the contribution of component
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i = 1, or they are just uniformly spaced in [−0.5 log T, 0.5 log T ] − s log T . The spacing in each
sub-grid must be adjusted (increased) from the case of the first region of the bound to account for
the reduction in subsegment length, and is set to

δ =

√
dγ

T

1−ε

. (22)

The construction described yields a total (d− 1)(2γ + 1) subsegments, each of length T/[(d−
1)(2γ + 1)], with a total of (2γ + 1)/δ grid points in each of the d− 1 original segments. Thus

logM = (d− 1)

[
log(2γ + 1) + (1− ε)1

2
log

T

dγ

]
≥ (1− o(1))

d

2
log

4γT

d
. (23)

Let ST be generated by θ ∈ Ψ, and let θ̂ be estimated from ST . Define δe = θ̂ − θ. For making
an error between two grid points we have to have δe ≥ 0.5

√
dγ/T

1−ε
. Using large deviation typical

sets analysis, there are at most T/[(d−1)(2γ+1)] different types for an error event per subsegment.
Then using the union bound on 2γ + 1 subsegments, and then again on d − 1 segments, we get a
multiplier of T . Thus, absorbing lower order terms in o(1), we have

Pe ≤ (1 + o(1)) · T · exp

{
− T

2dγ
min
θ̂ 6=θ

D(Pθ̂||Pθ)

}

≤ (1 + o(1)) · exp

{
log T − 1

4

(
T

γd

)ε}
(24)

where the second inequality follows from the relation between the KL divergence and L1 norm
D(Pθ̂||Pθ) ≥ 2δ2

e taking the minimum δe for an error event. From the definition of γ in (10) and
from the assumption made that d ≤ T 1−ε, we have γd = o(T ), which with a fixed ε > 0 yields
Pe = o(1). We note that this can also be achieved with diminishing ε = O(log log T/(log T )), with
large enough constant. This, together with the bound of (23) and Theorem 1, concludes the proof
for the second region. The derivation of the error for the first region is very similar to the one above.
The third region is proved by taking d that maximizes the bound in the second region and applying
its bound to every greater value of d. (This is the justification for replacing d > T 1−ε earlier by
T 1−ε.)

It remains to derive the lower bounds for L2 and L1. Utilizing a uniform version of the grid for
L∞, and since we already proved distinguishability, this remains as a counting problem, of which
portions of Ψ satisfy the L2 and L1 constraints. For L2, using the volume of a d-dimensional ball,
we have

logM = (1− o(1)) ·
(
d

2
log π + d log γ − d

2
log

d

2e
+

1− ε
2

d log
T

dγ

)
≥ (1− o(1))

d

2
log

2πeγT 1−ε

d2
. (25)

19



LOGISTIC REGRESSION REGRET

This gives the fourth region of the bound.
We observe that as d = Θ(

√
T ) the bound becomes negative. This is because we can no longer

fit d-dimensional cubes in the d-dimensional balls. Instead, cubes with lower dimensions can be fit
in a lower dimension ball. This implies that we can have grid points that are sparse in the sense
of having many 0 components. The set of possible points for large dimensions can include all the
combinations of points in lower dimensions. We can thus lower bound the regret by taking the
dimension that maximizes the lower bound in (25). The value d =

√
2πγT 1−ε/e maximizes the

bound. Plugging it into (25) gives the fifth region of the bound.
Similarly, normalizing the size of the grid by d! gives a lower bound on M for L1

logM ≥ (1− o(1))
d

2
log

4e2γT 1−ε

d3−ε . (26)

This gives the sixth region of the bound. Again, a similar issue as for L2 occurs, but now at
d = O(T 1/3). Optimizing, again, for a lower value of d, gives an optimizer at d =

(
4γT 1−ε/e

)1/3.
Plugging this value to (26) gives the last region of the bound, thus concluding the proof.

Appendix D. Proof of Theorems 4 and 5

Proof of Theorems 4 and 5: We apply Theorem 2. For L∞ and L2, we extend Kakade and Ng
(2005), using Gaussian distributions with diagonal covariance matrices for both the prior p0 and Q.
For L1, the Gaussian distributions cannot work, and we use a uniform prior p0 on a grid with Q
with diagonal covariance. (This also works for the other two cases, and gives identical bound for
L∞ but a weaker bound for L2.) The first term in (9) dominates for L∞, and the first regions of L1

and L2, but the second term for the second regions of L1 and L2.

Let p0
4
= N (θ; 0, ν2Id), 0-mean normal with diagonal covariance with ν2 variance. LetQ(θ)

4
=

N (θ; θ∗, ε2Id) be a normal distribution with θ∗ mean and diagonal covariance with variances ε2.
Then, as Kakade and Ng (2005) showed

D(Q||p0) = d log ν +
1

2ν2

(
‖θ∗‖22 + dε2

)
− d

2
− d log ε. (27)

By definition of Q, the second term in (9) is Tdε2/8 (where η2
q = ε2). Combining the terms,

minimizing for ε, we have ε2 = 4ν2/(4 + Tν2). (This is slightly different from Kakade and Ng
(2005), because the d term is omitted due to the different constraints on the norm of xt.) Plugging
ε,

Regret(A∗, ST , θ∗) ≤
1

2ν2
‖θ2‖22 +

d

2
log

(
1 +

Tν2

4

)
. (28)

Extending Kakade and Ng (2005), we now consider what variance of p0 would give the smallest
bound. This is achieved with ν2 = ‖θ∗‖22/d, which implies that we must have large variance on p0

so that the cost of the prior does not dominate the bound. This may be unexpected, but in order to
encapsulate the whole allowed range Θ, it is reasonable that the prior has variance, large enough,
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to include the far ends. For the worst case with L∞, ‖θ∗‖22 = dB2, giving ν2 = B2. For L2,
‖θ∗‖22 = B2, giving ν2 = B2/d. In both cases, the first term of the bound becomes d/2. Plugging
ν2 to the second term as well, combining both terms into the logarithm, gives the first two regions
of the bound.

For L1, we use a uniformly distributed grid for the support of p0. This method resembles
approaches in Vovk (1990), but requires careful design of the prior and the variational distribution
Q(·). The grid is defined by

Ψ = Θm =

ψ :

‖ψ‖1 ≤ B;

ψj,i = i · ε;
i ∈ {−bB/εc − 1,−bB/εc,−bB/εc+ 1, . . . bB/εc, bB/εc+ 1};
∀j ∈ {1, 2, . . . , d}


where j denotes the dimension. The grid consists of ε spaced points in each dimension, including 0,
in [−B− ε,B+ ε], that satisfy the L1 constraints. The spacing parameter ε will be optimized later.
Allowing for integer length constraints and accounting for 0, in each dimension, we upper bound
the number of grid points by 2(B+ ε)/ε+ 1, giving an additional ε margin (that would not actually
matter for the asymptotic results). (Note that the points in Q must be in Θm, so that D(Q||p0) is
finite. Hence, the margin outside [−B,B] is needed.) The volume of a subspace of a cube in Rd

which satisfies an L1 constraint is the d! fraction of the space. Hence, to bound the actual number of
grid points we divide the number of points in the cube by d!. For sufficiently small d = o(B

√
T ),

this will suffice with the extra margin. Hence, we have

M ≤

(
2(B+ε)

ε + 1
)d

d!
. (29)

Assume that the ith dimension θ∗i of θ∗ falls between adjacent grid points ζ1 and ζ2, for which
ζ2 − ζ1 = ε in the projection of Ψ to dimension i. We then define the distribution Q as a product of
independent components

Q(θ)
4
=

d∏
i=1

qi(θi) (30)

where

qi(θi)
4
=


α; θi = ζ1,

1− α; θi = ζ2,

0; otherwise
(31)

where 0 ≤ α ≤ 1 is determined such that

Eqi(θi) = αζ1 + (1− α)ζ2 = θ∗i . (32)

By definition of ζ1, ζ2 and the expectation of qi(θi), we have α = (ζ2 − θ∗i )/ε, and we can show
that the variance of qi(·) is

Eqi(θi − θ∗i )2 = (1− α)αε2 ≤ ε2

4

4
= η2

q . (33)
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We can now apply the bound of Theorem 2. Since p0(·) is uniform over the grid with M points,
and the support of Q(·) is a subset of the support of p0(·),

D(Q||p0) ≤ logM (34)

where the negative entropy of Q(·) is bounded by 0 (which can be the case if θ∗ falls on a grid point
ψ ∈ Ψ). The second term of (9) is bounded from (33). Substituting (29) for M (absorbing low
order terms in the o(1) term) and using Stirling approximation for the factorial, we thus have

Regret (A∗, ST , θ∗) ≤ (1 + o(1))

[
d log(2B)− d log

d

e
− 1

2
log(2πd)− d log ε+

Tdε2

32

]
. (35)

Differentiating w.r.t. ε gives ε2 = 16/T , which gives the minimal bounds. Substituting this value,
gives the third region of the bound in Theorem 4.

As long as d = o(B
√
T ), the bound on M includes sparse points with many components which

are 0 (this is guaranteed by the additional margins and 1 term in (29), which are basically negligible
in this region). However, for larger d, we no longer have full d-dimensional cubes with side ε that
can fit in the allowable volume of the L1 constrained space. We still, however, have points that are
included in this space, that have a large fraction of 0 coordinates, but for which the bound in (29) is
no longer sufficient. We note that this problem is not only an artifact of the grid approach. The first
term of (9) becomes negligible for d = O(T ) with L2, and if we used ‖xt‖2 ≤ 1 in our setting, this
would also happen at d = O(T ) for L∞, and at d = O(

√
T ) for L2. This implies that because the

constraints shrink the parameter space, the variance of p0 will be small enough, such that Q and p0

almost match.
When the bound in (29) starts diminishing, the normalization in d! eliminates many grid points

that include 0 coordinates from the count. To account for these points, we can upper bound M with
a union bound over all subsets of d with n nonzero coordinates.

M ≤ (1 + o(1)) ·
d∑

n=1

(
d

n

)
Bn2n

n!εn
. (36)

The term to the right of the combination is maximized for no = 2B/ε = B
√
T/2. For d =

Θ(B
√
T ), no = Θ(d). We can use a (loose) upper bound of 2d on the combination number in (36),

to obtain a union bound

logM ≤ (1 + o(1)) ·

[
d log 2 +

B
√
T

2
+ log d

]
, (37)

Combining this bound with the bound of d/2 on the right term of (9) we obtain the fourth region of
the bound of Theorem 4.

To prove the last region, we can use a tighter bound on the combination term in (36), for no ≤
d/2. For the last region this is satisfied. We thus bound

M ≤ (1 + o(1)) ·
d∑

n=1

(
de

n

)n Bn2n

n!εn
. (38)
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The largest element for the sum is obtained with n2
0 = dB

√
T/2 = o(d) in this region. Plugging no,

still using ε = 4/
√
T , using a union bound on all d elements of the sum, taking the logarithm of M ,

and adding the d/2 bound for the right term of (9) gives the last region of the bound of Theorem 4,
thus concluding its proof.

The only change from the last region to prove Theorem 5 is that now we first bound M using
the optimizing n2

o = 2Bd/ε, and then we find ε that minimizes the joint bound. Bounding all terms
with a parameter ε gives

Regret (A∗, ST , θ∗) ≤ (1 + o(1)) ·

[
log d+

√
8Bd

ε
+
Tdε2

32

]
. (39)

The minimizing ε is then

ε =
29/5B1/5

T 2/5d1/5
. (40)

Plugging this value in the bound gives

Regret (A∗, ST , θ∗) ≤ (1 + o(1)) · 5

4
· 23/5B2/5d3/5T 1/5 = o(d). (41)

This concludes the proof of Theorem 5.
We note that the grid approach used for the L1 bounds requires an algorithm to know the horizon

T in advance, to perform the mixture. However, in a strongly sequential setting, when the horizon
is not known a-priori, we can start with some hypothesized horizon. Once it is reached, the next
horizon can be squared (or exponentiated with some exponent 1 + ε, for some small ε), and the cur-
rent posterior (or prior of the next example), can be split from each grid point to the new T ε nearest
grid points. This will incur some additional negligible regret relative to the logarithmic regret in T ,
but can still achieve the current bounds.

Appendix E. Multi Label Lower Bound

Similarly to Theorem 3, we can state a regret lower bound for multi label logistic regression. We
only state the bound for L∞. Let θ∗(m) be the projection of the parameter space on label m, i.e., a
d-dimensional parameter space for label m.

Theorem 7 Let ‖θ∗(m)‖∞ ≤ B. Fix an arbitrary ε > 0, let T →∞, and let the number of labels
m = o((T/d)1−ε). Then, for every algorithmA there exists a sequence ST , for which the regret for
multi m label logistic regression is lower bounded by

Regret(A, ST ) ≥ (1− o(1)) · d(m− 1)

2
log

T

m · d
. (42)

The m − 1 factor is used to indicate that there are only m − 1 free parameters per feature. It
does not affect the asymptotic behavior. The proof of Theorem 7 is similar to that of the first region
of Theorem 3 in segmenting x∗T into d segments, where in each only a single dimension exists.
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However, handling each segment, especially if m = ω(1), is substantially more difficult. The
behavior for a single segment, however, appears as Theorem 1 in Shamir (2006a). For tight behavior
it requires a nonuniform grid, which is described in the proof. Because of the nonuniform grid,
distinguishability (proven in Appendix A in Shamir (2006a)) is more difficult to prove. Borrowing
the proof from Shamir (2006a), all is left to do is sum up the size of the grid over the d segments,
and apply the union bound on the d segments for proving distinguishability. In each segment, there
are logMd = (1 − o(1))0.5m log T/(md) distinguishable parameters. The normalization in d is
because the segment is of length T/d by the partitioning of x∗T . The m parameter appears due to
effectively L1 constraints imposed by the fact that the probabilities on all labels must sum to 1. As
in the proof of Theorem 3, for d > T 1−ε, we clip the analysis at dm = T 1−ε. As in Theorem 3,
we will have a threshold that depends on both d and m over which the bound becomes negative and
useless. We can derive bounds, as those in the other regions of Theorem 3 for these cases, by taking
the values of d and m that produce a maximal value of the bound, and lower bounding the regret for
the larger d and m by the regret for the maximizing d and m.
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