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Abstract

We consider the problem of controlling a possibly unknown linear dynamical system with adversar-
ial perturbations, adversarially chosen convex loss functions, and partially observed states, known
as non-stochastic control. We introduce a controller parametrization based on the denoised observa-
tions, and prove that applying online gradient descent to this parametrization yields a new controller
which attains sublinear regret vs. a large class of closed-loop policies. In the fully-adversarial set-
ting, our controller attains an optimal regret bound of v/7T-when the system is known, and, when
combined with an initial stage of least-squares estimation, 7'2/% when the system is unknown; both
yield the first sublinear regret for the partially observed setting.

Our bounds are the first in the non-stochastic control setting that compete with all stabilizing
linear dynamical controllers, not just state feedback. Moreover, in the presence of semi-adversarial
noise containing both stochastic and adversarial components, our controller attains the optimal
regret bounds of poly(log T') when the system is known, and VT when unknown. To our knowl-
edge, this gives the first end-to-end /7 regret for online Linear Quadratic Gaussian controller, and
applies in a more general setting with adversarial losses and semi-adversarial noise.

1. Introduction

In recent years, the machine learning community has produced a great body of work applying mod-
ern statistical and algorithmic techniques to classical control problems. Subsequently, recent work
has turned to a more general paradigm termed the non-stochastic control problem: a model for
dynamics that replaces stochastic noise with adversarial perturbations in the dynamics.

In this non-stochastic model, it is impossible to pre-compute an instance-wise optimal controller.
Instead, the metric of performance is regret, or total cost compared to the best in hindsight given
the realization of the noise. Previous work has introduced new adaptive controllers that are learned
using iterative optimization methods, as a function of the noise, and are able to compete with the
best controller in hindsight.

This paper presents a novel approach to non-stochastic control which unifies, generalizes, and
improves upon existing results in the literature. Notably, we provide the first sublinear regret guar-
antees for non-stochastic control with partial observation for both known and unknown systems.
Our non-stochastic framework also leads to new results for classical stochastic settings: e.g., the
first tight regret bound for linear quadratic gaussian control (LQG) with an unknown system.

© 2020 M. Simchowitz, K. Singh & E. Hazan.
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The non-stochastic linear control problem is defined using the following dynamical equations:
Xt+1 = Asxe + By + wy, vyt = Cixt + ey, (1.1)

where x; is the system state, u; the control, wy, e; adversarially-chosen noise terms, and y; the ob-
servation. A learner iteratively chooses a control u; upon observing y;, and suffers a loss ¢;(x;, uy)
according to an adversarially-chosen loss function. Regret is defined as the difference between the
sum of costs and that of the best controller in hindsight among a possible controller class.

Our technique a classical formulation based on the Youla parametrization Youla et al. (1976)
for optimal control, which rewrites the state in terms of what we term “Nature’s y’s °, observa-
tions {y®'} that would have resulted had we entered zero control at all times. This yields a con-
vex parametrization approximating possible stabilizing controllers we call Disturbance Response
Control, or DRC. By applying online gradient descent to losses induced by this convex controller
parametrization, we obtain a new controller we call the Gradient Response Controller via Gradi-
ent Descent, or DRC-GD. We show that DRC-GD attains wide array of results for stochastic and
nonstochastic control, described in Section 1.2. Among the highlights:

1. O (v/T) for controlling a known system with partial observation in the non-stochastic control
model (Theorem 2), and O(T 2/ 3) regret (Theorem 3) when this system is unknown. This is
the first sublinear regret bound for either setting, and the former rate is tight (Theorem 6).

2. The first O(v/T) regret bound for the LQG unknown system (Theorem 5). This bound is
tight, even when the state is observed (Simchowitz and Foster, 2020), and extends to mixed
stochastic and adversarial perturbations (semi-adversarial). We also give poly logT" regret
for semi-adversarial control with partial observation when the system is known (Theorem 4).

3. Regret bounds hold against the class of linear dynamical controllers (Definition 2.1), a much
richer class than static feedback controllers previously considered for the non-stochastic con-
trol problem. This class is necessary to encompass Ho and H, optimal controllers under
partial observation, and is ubiquitous in practical control applications.

Organization: The remainder of this section formally defines the setting, describes our
results, and surveys the related literature. Section 2 expounds the relevant assumptions and describes
our regret bound, and Section 3 describes our controller parametrization. Section 4 presents our
algorithm and main results. All proofs are deferred to the appendix, whose organization and notation
is detailed in Appendix A. Appendix B states lower bounds and provides extended comparison to
past work, Part I gives high-level proofs of main results, and Part II supplies additional proof details,
and allows for possibly unstable systems placed in feedback with stabilizing controllers.

1.1. Problem Setting

Dynamical Model: We consider partially observed linear dynamical system (PO-LDS), a contin-
uous state-action, partially observable Markov decision process (POMDP) described by Eq. (1.1),
with linear state-transition dynamics, where the observations are linear functions of the state. Here,
x;, Wy € R%, vy, e, € R%, u, € R* and A,, B,, C, are of appropriate dimensions. We denote
by x; the state, u; the control input, y; is the output sequence, and w;, e; are perturbations that
the system is subject to. A fully observed linear dynamical system (FO-LDS) corresponds to the
setting where C, = I and e; = 0, yielding a (fully observed) MDP where x; = y;. We consider
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both the setting where A, is stable (Assumption 1), and in Appendix G, unstable systems where the
controller is put in feedback with stabilizing controllers

Interaction Model: A control policy (or learning algorithm) alg iteratively chooses an adaptive
control input w; = alg;(y1.4, W14—1, £1.4—1) upon the observation of the output sequence (y1, . .. y¢),
and the sequence of loss functions (¢1,...¥¢;_1), past inputs, and possibly internal random coins.
Let (y'8, u?'®) be the observation-action sequence from this resultant interaction. The cost of ex-
ecuting th1s controller is Jr(alg) = ZtT L U(ys 2l alg). Notice that the learning algorithm alg
does not observe the state sequence X;. Furthermore, it is unaware of the perturbation sequence
(wy, €;), except as may be inferred from observing the outputs y;. Lastly, the loss function ¢; is
only made known to alg once the control input u; '8 is chosen. Morever generally, our results ex-
tend to achieving low regret on loss functions that depend on a finite history of inputs and outputs,
namely £¢(Yt.t—n, Ugt—p)-

Policy Regret: Given a benchmark class of comparator control policies 7 € 1I, our aim is to
minimize the cumulative regret with respect to the best policy in hindsight:

T
I : T
Regrety(II) := Jr(alg) — rn1n Jr(m E l(y7 e, — Imin tE_l l(yf,af) (1.2)

Note that the choice of the controller in II may be made with the complete foreknowledge of the
perturbations and the loss functions that the controller 7 (and the algorithm alg) is subject to. In
this work, we compete with benchmark class of stabilizing linear dynamic controllers (LDC’s) with
internal state (see Definition 2.1 and Section 2). This generalizes the state-feedback class u; = Kx;
considered in prior work.

Loss and Noise Regimes: We consider both the known system setting where alg has foreknowl-
edge of the system Eq. (1.1), and the unknown system setting where alg does not (in either case,
the comparator is selected with knownledge of the system). We also consider two loss and noise
regimes: the Lipschitz loss & non-stochastic noise regime where the losses are Lipschitz over
bounded sets (Assumption 2) and noises bounded and adversarial (Assumption 3), and the strongly
convex loss & semi-adversarial regime where the losses are smooth and strongly convex (Assump-
tion 5, and noise has a well-conditioned stochastic component, as well as an oblivious, possibly
adversarial one (Assumption 6). We term this new noise model semi-adversarial; it is analogous to
smoothed-adversarial and semi-random models considered in other domains (Spielman and Teng,
2004; Moitra et al., 2016; Bhaskara et al., 2014). In the first noise regime, the losses are selected by
an adaptive adversary; in the second, an oblivious one.

Relation to LQR, LQG, H> and H.:  The online LOG problem corresponds to the prob-
lem where the system is driven by well-conditioned, independent Gaussian noise, and the losses
l(y,u) = y' Qy + u' Ru are fixed quadratic functions. LQR is the fully observed analogue of
LQG. The solution to the LQR (resp. LQG) problems are known as the Hz-optimal controllers,
which are well-approximated by a fixed state feedback controller (resp. LDC). In context of worst-
case control, the H, program can be used to compute a minimax controller that is optimal for
the worst-case noise, and is also well-approximated by a LDC. In contrast to worst-case optimal
control methods, low regret algorithms offer significantly stronger guarantees of instance-wise opti-
mality on each noise sequence. We stress that the H, and 5 optimal control for partially observed
systems are LDCs controllers; state feedback suffices only for full observations.
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1.2. Contributions

We present Disturbance Response Controller via Gradient Descent, or DRC-GD, a unified algorithm
which achieves sublinear regret for online control of a partially observed LDS with both adversarial
losses and noises, even when the true system is unknown to the learner. In comparison to past work,
this consitutes the first regret guarantee for partially observed systems (known or unknown to the
learner) with either adversarial losses or adversarial noises. Furthermore, our bounds are the first in
the online control literature which demonstrate low regret with respect to the broader class of linear
dynamic controllers or LDCs described above (see also Definition 2.1); we stress that LDCs are
necessary to capture the Hy and H., optimal control laws under partial observation, and yield strict
improvements under full observation for certain non-stochastic noise sequences. In addition, all
regret guarantees are non-asymptotic, and have polynomial dependence on other relevant problem
parameters. Our guarantees hold in four different regimes of interest, summarized in Table 1, and
described below. Tables 2 and 3 in the appendix gives a detailed comparison to past work.

For known systems, Algorithm 1 attains O(+/T) regret for Lipschitz losses and adversarial
noise (Theorem 2), which we show in Theorem 6 is optimal up to logarithmic factors, even when
the state is observed and the noises/losses satisfy quite restrictive conditions. For strongly convex
losses and semi-adversarial noise, we achieve poly log T regret (Theorem 4). This result strength-
ens the prior art even for full observation due to Agarwal et al. (2019b) by removing extraneous
assumptions on the gradient oracle, handling semi-adversarial noise, and ensuring bounded regret
(rather than pseudo-regret). We do so via a regret bounds for “conditionally-strongly convex loses”
(Appendix E), which may be of broader interest to the online learning community.

For unknown systems, Algorithm 3 attains O(T2/ 3) regret for Lipschitz losses and adversarial
noise, and O (+/T)-regret for strongly convex losses and semi-adversarial noise (Theorems 3 and 5).
The former result has been established under full observation but required “strong controllability”
(Hazan et al., 2019); the latter O(+/T") bound is novel even for full observation. This latter model
subsumes both LQG (partial observation) and LQR (full observation); concurrent work demon-
strates that /7T regret is optimal for the LQR setting (Simchowitz and Foster, 2020). As a special
case, we obtain the first (to our knowledge) O(\/T ) end-to-end regret guarantee for the problem of
online LQG with an unknown system, even the stochastic setting'. Even with full-observation LQR
setting, this is the first algorithm to attain /7 regret for either adversarial losses or semi-adversarial
noise. This is also the first algorithm to obtain /7 regret without computing a state-space represen-
tation, demonstrating that learning methods based on improper, convex controller parametrizations
can obtain this optimal rate. Adopting quite a different proof strategy than prior work (outlined
in Appendix F), our bound hinges in part on a simple, useful and, to our knowledge, novel fact>:
strongly convex online gradient descent has a quadratic (rather than linear) sensitivity to adversarial
perturbations of the gradients (Proposition F.3).

Disturbance Response Control Our results are based on novel perspective on the classical Youla
parametrization, called Disturbance Response Control (DRC). DRC affords seemless generaliza-
tion to partially-observed system, competes with linear dynamic controllers, and, by avoiding state
space representations, drastically simplifies our treatment of the unknown system setting. Our regret

1. An optimal v/T-regret for this setting can be derived by combining Mania et al. (2019) with careful state-space
system identification results of either Sarkar et al. (2019) or Tsiamis and Pappas (2019); we are unaware of work
in the literature which presents this result. The DRC parametrization obviates the system identification subtleties
required for this argument.

2. Robustness for the batch (fixed-objective) setting was demonstrated by Devolder et al. (2014)
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guarantees are achieved by a remarkably simple online learning algorithm we term Disturbance Re-
sponse Controller via Gradient Descent (DRC-GD): estimate the system using least squares (if it is
unknown), and then run online gradient descent on surrogate losses defined by this parametrization.

In Appendix G, we present a generalization called DRC-EX, or Disturbance Response Control
with Exogenous Inputs, which combines exogenous dictated by the DRC parametrization with a
nominal stabilizing controller. This allows us to leverage the full strength of the Youla parametriza-
tion, and extend our results to arbitrary stabilizable and detectable systems. As we explain, the
classical Youla parametrization requires precise system knowledge to implement. In constrast, our
Nature’s Y’s perspective allows yields a novel formulation which is implementable under inexact
system knowledge.

Regret Rate
Setting Known Unknown
General Convex Loss O(VT) O(T?/3)
Adversarial Noise (Theorem 2) | (Theorem 3)

Strongly Convex & Smooth Loss | polylogT (5(\/?)
Adpversarial + Stochastic Noise | (Theorem 4) | (Theorem 5)

Table 1: Summary of our results for online control. Tables 2 and 3 in appendix compare with prior
work.

1.3. Prior Work

Online Control. The field of online and adaptive control is vast and spans decades of research,
see for example Sastry and Bodson (2011); Ioannou and Sun (2012) for survey. Here we restrict
our discussion to online control with low regret, which measures the total cost incurred by the
learner compared to the loss she would have incurred by instead following the best policy in some
prescribed class; comparison between our results and prior art is summarized in Tables 2 and 3
in the appendix. To our knowledge, all prior end-to-end regret bounds are for the fully observed
setting; a strength of our approach is tackling the more challenging partial observation case.

Regret for classical control models. We first survey relevant work that assume either no pertur-
bation in the dynamics at all, or i.i.d. Gaussian perturbations. Much of this work has considered
obtaining low regret in the online LQR setting (Abbasi-Yadkori and Szepesvari, 2011; Dean et al.,
2018; Mania et al., 2019; Cohen et al., 2019) where a fully-observed linear dynamic system is
drive by i.i.d. Gaussian noise via x;11 = Ayx; + Byus + wy, and the learner incurs constant
quadratic state and input cost /(z,u) = %xTQx + %uTRu. The optimal policy for this setting is
well-approximated by a state feedback controller u; = K, u;, where K, is the solution to the Dis-
crete Algebraic Ricatti Equation (DARE), and thus regret amounts to competing with this controller.
Recent algorithms Mania et al. (2019); Cohen et al. (2019) attain VT regret for this setting, with
polynomial runtime and polynomial regret dependence on relevant problem parameters. Further,
Mania et al. (2019) present technical results can be used to establish \/7T-regret for the partially
observed LQG setting (see Footnote 1). A parallel line by Cohen et al. (2018) establish /7 in a
variant of online LQR where the system is known to the learner, noise is stochastic, but an adversary
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selects quadratic loss functions ¢; at each time ¢. Again, the regret is measured with respect to a
best-in-hindsight state feedback controller. Provable control in the Gaussian noise setting via the
policy gradient method was studied in Fazel et al. (2018). Other relevant work from the machine
learning literature includes the technique of spectral filtering for learning and open-loop control of
partially observable systems (Hazan et al., 2017; Arora et al., 2018; Hazan et al., 2018), as well as
prior work on tracking adversarial targets (Abbasi-Yadkori et al., 2014).

The non-stochastic control problem. The setting we consider in this paper was established in
Agarwal et al. (2019a), who obtain /T -regret in the more general and challenging setting where
the Lipschitz loss function and the perturbations are adversarially chosen. The key insight behind
this result is combining an improper controller parametrization know as disturbance-based con-
trol with recent advances in online convex optimization with memory due to Anava et al. (2015).
Follow up work by Agarwal et al. (2019b) achieves logarithmic pseudo-regret for strongly convex,
adversarially selected losses and well-conditioned stochastic noise. Under the considerably stronger
condition of controllability, the recent work by Hazan et al. (2019) attains 7%/ regret for adversarial
noise/losses when the system is unknown. Analogous problems have also been studied in the tabular
MDP setting (Even-Dar et al., 2009; Zimin and Neu, 2013; Dekel and Hazan, 2013).

Convex Parameterization of Linear Controllers There is a rich history of convex or lifted pa-
rameterizations of controllers. Nature’s y’s is equivalent to input-ouput parametrizations Zames
(1981); Rotkowitz and Lall (2005); Furieri et al. (2019), and in Appendix G, we extend to more
general parametrizations encompassing the classical Youla or Youla-Kucéra parametrization (Youla
et al., 1976; Kucera, 1975), and approximations to the Youla parametrization which require only
approximate knowledge of the system. More recently, Goulart et al. (2006) propose a parametriza-
tion over state-feedback policies, and Wang et al. (2019) introduce a generalization of Youla called
system level synthesis (SLS); SLS is equivalent to the parametrizations adopted by Agarwal et al.
(2019a) et seq., and underpins the T%/3-regret algorithm of Dean et al. (2018) for online LQR with
an unknown system; one consequence of our work is that convex parametrizations can achieve the
optimal v/7 in this setting. However, it is unclear if SLS (as opposed to input-output or Youla) can
be used to attain sublinear regret under partial observation and adversarial noise.

Online learning and online convex optimization. We make extensive use of techniques from the
field of online learning and regret minimization in games (Cesa-Bianchi and Lugosi, 2006; Shalev-
Shwartz et al., 2012; Hazan, 2016). Of particular interest are techniques for coping with policy
regret and online convex optimization for loss functions with memory (Anava et al., 2015).

Linear System Identification: To adress unknown systems, we make use of tools from the decades-
old field linear system identification (Ljung, 1999). To handle partial observation and ensure robust-
ness to biased and non-stochastic noise, we take up the approach in Simchowitz et al. (2019); other
recent approaches include (Oymak and Ozay, 2019; Sarkar et al., 2019; Tsiamis and Pappas, 2019;
Simchowitz et al., 2018).

2. Assumptions and Regret Benchmark

In the main text, we assume the system is stable:
Assumption 1 We assume that is p(A,) < 1, where p(-) denotes the spectral radius.

In Appendix G, we detail generalizations which apply to stabilizable and detectable, but potentially
unstable systems. For simplicty, we assume xg = 0; further, we assume:
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Assumption 2 (Sub-quadratic Lipschitz Loss) There exists a constant L. > 0 such that non-
negative convex loss functions {; obey that for all (y,u), (y'u’) € R%&+du and for the choice

R = max{||(y, )2, |(y/, 0)]|2,1},?
y -y
u—u

’Et(yla u/) - gt(y7 u)’ < LR
Linear Dynamic Controllers Previous works on fully observable LDS consider a policy class
of linear controllers, where u; = —Kx; for some K. Here, for partially observable systems, we
consider a richer class of controller with an internal notion of state. Such a policy class is necessary
to capture the optimal control law in presence of i.i.d. perturbations (the LQG setting), as well as,
the H, control law for partially observable LDSs (Basar and Bernhard, 2008).

and 0 </{(y,u) < LR?.

2

Definition 2.1 (Linear Dynamic Controllers) A linear dynamic controller, or LDC, 7 is a linear
dynamical system (Ay, Br,Cy, D), with internal state $; € R, input yi* € R% ul® € R%,
output ug"* € R%, equipped with the dynamical equations:

St11 = ArSt + Bwy,ifn and ufut = CL8; + Dwy%n. 2.1)

The closed loop iterates (y[,u]) are the unique sequence of iterates satisfying both the LDS dy-
namical equations Eq. (1.1) with (y¢,u;) = (y7,u]) and LDC dynamical equations Eq. (2.1) with
yi" = yF and ug™ = uf = uf.

The dynamics governing (y],u]) are described by an augmented LDS, detailed in detailed in
Lemma G.2. Note that the optimal LQR and LQG controllers take the above form. The class of
policies that our proposed algorithm competes is defined in terms of the Markov operators of these
induced dynamical systems.

Definition 2.2 (Markov Operator) The associated Markov operator of a linear system (A, B, C, D)

is the sequence of matrices G = (G150 € (R®*%)N, where GI% = D and GU) = CA*' B for

i > 1. Let Gy (resp. Gy cle—su) be the Markov operator of the nominal system (A, By, Cy,0)
(resp. of (Ar.cl, Brcles Cr.clu, Dr), given explicity by Lemma G.2). We let ||G|¢, .op := D ;>0 HGM llop-

Definition 2.3 (Decay Functions & Policy Class) We say v : N — R+ is a proper decay func-
tion if ¢ is non-increasing and lim,,_,o, ¥ (n) = 0. Given a Markov operator G, we define its
induced decay function ¥g(n) = > .-, ||G[ﬂ llop- For proper decay funciton ), the class of all
controllers whose induced closed-loop system has decay bounded by 1 is denoted as follows:

H(’l/)) = {ﬂ' : vn Z 07 wGﬂ',cl,eau (n) S w(n)} .
We define Ry := 1V 4(0) and R, = 1+ ¢, (0), where 4, (0) = 150 IG lop = |Gl 1 0p-

Note that the class I1(¢)) does not require that the controllers be internally stable (p(A,) < 1), only
that they induce stable closed-loop dynamics. The decay function captures the decay of the response
of the system to past inputs, and is invariant to state-space representation. For stable systems G, we
can always bound the decay functions by 1g(m) < Cp™ for some constants C' > 0, p € (0,1);
this can be made quantitative for strongly-stable systems (Cohen et al., 2018). While we assume
G, exhibits this decay in the main text, our results naturally extend to the stabilized systems via the
DRcC-EX parametrization (Appendix G).

3. This characterization captures, without loss of generality, any Lipschitz loss function. The L - R scaling of the
Lipschitz constant captures, e.g. quadratic functions whose lipschitz constant scales with radius.
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Regret with LDC Benchmark We are concerned with regret accumulated by an algorithm alg as
the excess loss it suffers in comparison to that of the best choice of a LDC with decay 1, specializing
Eq. (1.2) with II « TI(¢)):

Regretr(v) := Jr(alg) — ﬂénnm Jp(m Zﬂt 2l u?lg wénnl(%; Zﬁt yr,up). (2.2)

Note that the choice of the LDC in II may be made with the complete foreknowledge of the pertur-
bations and the loss functions that the controller 7 (and the algorithm alg) is subject to. We remark
that the result in this paper can be easily extended to compete with controllers that have fixed affine
terms (known as a DC offset), or periodic (time-varying) affine terms with bounded period.

3. Disturbance Response Control

The induced closed-loop dynamics for a LDC 7 involves feedback between the controller 7 and
LDS, which makes the cost .J(7) non-convex in 7, even in the fully observed LQR setting (Fazel
et al., 2018).* We propose representing our controllers with the classical Youla parametrization,
which both ensures convexity and is ammenable to partial observation. Our formulation emphasizes
a novel perspective we call “Nature’s Y’s”, which allows us to execute these Youla controllers in
the non-stochastic setting.

Nature’s y’s Define y?®' as the corresponding output of the system in the absence of any con-
troller. Note that the sequence does not depend on the choice of control inputs u;. In the analysis,
we shall assume that 1 V max; [|y?]| < Rpat.

Definition 3.1 (Nature’s y’s) Given a sequence of disturbances (Wi, €¢):>1, we define the natures
y’s as the sequence y*' := e; + 22;11 C A5~y

Throughout, we assume that the noises selected by the adversary ensure y}*" are bounded

Assumption 3 (Bounded Nature’s y) We assume that that w; and e; are chosen by an oblivious
adversary, and that | y?*||o < Rpa for all t. 3

The next lemma shows for any fixed system with known control inputs the output is completely
determined given Nature’s y’s, even if wy, e; are not known. In particular, this implies that the one
of the central observations of this work: Nature’s y’s can be computed exactly given just control
inputs and the corresponding outputs of a system. More precisely:

Lemma 3.2 For any LDS (A, By, Cy) subject to (possibly adaptive) control inputs uj, g, - €
RY%, the following relation holds for the output sequence: y; = yp** + Z LGh [ .

Proof This is an immediate consequence of the definitions of Nature’s y’s and that of a LDS. |

4. This has motivated a long line of work to consider control parameterizations for which J() is convex (Youla et al.,
1976; Zames, 1981). For non-stochastic control, Agarwal et al. (2019a) consider a parametrization which selects
inputs as linear functions of the disturbances w, which can be exactly recovered under a full state observation. But
under partial observation, the disturbances w; cannot in general be recovered (e.g. whenever C, does not possess a
left inverse).

5. Note that, if the system is stable and perturbations bounded, that y** will be bounded for all ¢.
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Disturbance Response Control In the spirit of Zames (1981), we show that any linear controller
can be represented by its action on Nature’s y’s, and that this leads to a convex parametrization of
controllers which approximates the performance of any LDC controller.

Definition 3.3 (Distrubance Response Controller) A Disturbance Response Controller (DRC),
parameterized by a m-length sequence of matrices M = (M [’])Zr’g)l, chooses the control input as
uM = ZT:_Ol Mly?at We let yM denote the associated output sequence, and Jp(M) the loss

functional.

Define a class of Distrubance Response Controllers with bound length and norm M (m, R) =
{M = (M1 | M|lg, 0p < R}. Under full observation, the state-feedback policy u; = Kx;
lies in the set of DRCs M(1, || K ||op). The following theorem, proven in Appendix C.1, states that
all stabilizing LDCs can be approximated by DRCs:

Theorem 1 For proper decay function ¢, 7 € II(¢), and any m > 1, there exists M €
M(m, Rpy) such that Jp(M) — Jp(m) < 2LTRMRE, R2, (m)

As 1p(m) typically decays exponentially in m, we find that for any stabilizing LDC, there exists a
DRc that approximately emulates its behavior. This observation ensures it sufficient for the regret
guarantee to hold against an appropriately defined Disturbance Response class, as opposed to the
class of LDCs. Note that the fidelity of the approximation in Theorem 1 depends only on the
magnitude of the true system response G, and decay of the comparator system G .1, but not on
the order of a state-space realization. Theorem 1b in the appendix extends Theorem 1 to the setting
where (G, may be unstable, but is placed in feedback with a stabilizing controller.

4. Algorithmic Description & Main Result

OCO with Memory: Our regret bounds are built on reductions to the online convex optimiza-
tion (OCO) with memory setting as defined by Anava et al. (2015): at every time step ¢, an online
algorithm makes a decision z; € IC, after which it is revealed a loss function F} : Khtl 5 R,

and suffers a loss of Fy[zy,...,xi_p]. The policy regret is defined as Z;‘F:hﬂ Fz,...,z—p) —
mingex Fy(z,...z). Anava et al. (2015) show that Online Gradient Descent on the unary special-
ization fi(x) := Fy(x,...,x) achieves a sub-linear policy regret bound (Proposition C.4).

Algorithm: Non-bold letters My, M, ... denote function arguments, and bold letters Mg, M, . ..

denote the iterates produced by the learner. We first introduce a notion of counterfactual cost that
measures the cost incurred at the ¥ timestep had a non-stationary distrubance feedback controller
My, = (My, ..., M;_) been executed in the last & steps: This cost is entirely defined by Markov
operators and Nature’s y’s, without reference to an explicit realization of system parameters.

Definition 4.1 (Counterfactual Costs and Dyamics) Given M, € M(m, R M)h“, we define

w (M | 9330) 1= S Mgty My | G 93] = 9ot 0, GFlug sy (M | 993

and F} [Mt;t,h ] G, ﬂ“}t} =4 (yt {Mt;t,h \ G, ?ﬁ‘:} cuy (M | ?ﬂt)) Overloading notation,
fora given M € (M, Rnm), we let y (M | -) := yi[M,..., M | -] denote the unary (single-M )
specialization of yy, and lower case fi (M|-) = Fy[M, ..., M|] the specialization of F;. Through-
out, we use paranthesis for unary functions of My € M(m, Rnq), and brackets for functions of
My € M(m, Rag)"

),
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For known G, Algorithm 1 compute y?®' exactly, and we simply run online gradient descent

on the costs fi(- | G4, y}3"). When G, is unknown, we invoke Algorithm 3, which first dedicates
N steps to estimating G via least squares (Algorithm 2), and then executes online gradient descent
(Algorithm 1) with the resulting estimate GG. The following algorithms are intended for stable G,.

Unstable GG, can be handled by incorporating a nominal stabilizing controller (Appendix G).

Algorithm 1: Disturbance Response Control via Gradient Descent (DRC-GD)

Input: Stepsize (7:):>1, radius R, memory m, Markov operator G.

Define M = M(m, Ra) = {M = (M5 < [M]lg0p < Roe).

Initialize M; € M arbitrarily.

fort=1,...,7Tdo

Observe y*® and determine y22t as ynat «— y?'8 — il Glil u?'_gl.. 6

Choose the control input as u'® + u, (M, | §33¢) = 37" iR yrat,

Observe the loss function ¢; and suffer a loss of £; (¢, ut).

Recalling f;(-|-) from Definition 4.1,update the disturbance feedback controller as

M, = Iy (Mt — 0 f (Mt ] G , §?3t)>, where I1 denotes projection onto M.’

Algorithm 2: Estimation of Unknown System

Input: Number of samples N, system length h.
Initialize GU! = 0 for i ¢ [h).
For t =1,2,..., N, play u® ~ N(0,1,).

Estimate G'"" < arg min Zt]\ih_H y2® — S Gllu®e |12 via least squares, and return G.

Algorithm 3: DRC-GD for Unknown System

Input: Stepsizes (7:)¢>1, radius R4, memory m, rollout s, Exploration length NV,

2 Run the estimation procedure (Algorithm 2) for N steps with system length h to estimate G
3 Run the regret minimizing algorithm (Algorithm 1) for 7' — N remaining steps with estimated

Markov operators G, stepsizes (14N )¢>1, radius R, memory m, rollout parameter h.

4.1. Main Results for Non-Stochastic Control

For simplicity, we assume a finite horizon 7'; extensions to infinite horizon can be obtained by
a doubling trick. To simplify presentation, we will also assume the learner has foreknowledge
of relevant decay parameters system norms. Throughout, let dpi, = min{dy,d,} and dpax =

6. This step may be truncated to y;** <« yf'g — Zz;tlfh Gl ui'ﬁi; these are identical when G is estimated from
Algorithm 2, and the analysis can be extended to accomodate this truncation in the known system case

7. To simplify analysis, we project onto the £1,op-ball M(m, R) := {M = (M) : [[M|le,.0p < R}. While
this admits an efficient implementation (Appendix A.5), in practice one can instead project onto outer-approximations
of the set, just as a Frobenius norm ball containing M(m, R), at the expense of a greater dependence on m.

10
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max{dy,d,}. We shall present all our results for general decay-functions, and further specialize
our bounds to when the system and comparator exhibit explicity geometric decay, and where the
noise satisfies subgaussian magnitude bound:

Assumption 4 (Typical Decay and Noise Bounds) Let C' > 0, p € (0,1) and § € (0,1). We as-
sume that R2,; < dumaxRE: 02550 10g(T/8)8, that the system decay Y, satisfies disn |CLAL|op

noise

Ya,, and that V¢, and the comparator 1) satisfies 1(n), Vg, (n) < Cp™

IN

We explain the above assumption, relations between parameters, and analogues for the strong-
stabilized setting adressed in Appendix A.4. For known systems, our main theorem is proved
in Appendix C:

Theorem 2 (Main Result for Known System) Suppose Assumptions 1 to 3 hold, and fix a decay
Sfunction 1. When Algorithm 1 is run with exact knowledge of Markov parameters (ie. G =G, ),
radius Ry > Ry, parameters m,h > 1 such that ¢, (h + 1) < Rg, /T and (m) < Ry /T,
and step size Ny =1 = \/dmin/ 4LhR121atRé* V2mT, we have’

Regret () < LR2 RE RAV/ h2dminm - VT

In particular, under Assumption 4, we obtain Regret(v¢) < poly(C, 1%/), log %)-02 Amind2, .. T

noise max. *

Theorem 6 in the appendix shows that /7 is the optimal rate for the above setting. For unknown
systems, we prove in Appendix D:

Theorem 3 (Main Result for Unknown System) Fix a decay function 1, time horizon T, and
confidence 5 € (e~ T, T~1). Let m, h satisfy 1)(m) < Ra/VT and vq, (h + 1) < 1/10V/T, and
suppose Raq > Ry, and Rya Ry > \/dy +10g(1/6). Define the parameters

05 = \/dmax + log% + log(l + Rnat)' (41)

Then, if Assumptions 1 to 3 hold, and Algorithm 3 is run with estimation length N = (Th? R RnatC(;)z/ 3
and parameters m, h, R, step sizeny =n = \/dmin/4LhRgatR%;* V2T, and if T > c’h4C'55R3M R? +
dminm? for a universal constant ¢, then with probability 1 — § — T~ o> 1),

Regrety (1)) < LRS, B3, R, (h2Rp Rt Cs) > - T3,

nat
. : - < 2 1 Y. 23 172/3
In particular, under Assumption 4, we obtain Regret (1) < poly(C, 05 ices 7 log % )-dmax LT*/°.

4.2. Fast rates under strong convexity & semi-adversarial noise

We show that OCO-with-memory obtains improved regret the losses are strongly convex and smooth,
and when system is excited by persistent noise. We begin with a strong convexity assumption:

Assumption 5 (Smoothness and Strong Convexity) For all t, aioss = V2l (-, ) = Ploss I-

8. For typical noise models, the magnitude of the covariates scales with output dimension, not internal dimension
9. If the loss is assumed to be globably Lipschitz, then the term R2,, Ré* RA3, can be improved to Ruat R, R

11
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The necessity of the smoothness assumption is explained further in Appendix E. Unfortunately,
strongly convex losses are not sufficient to ensure strong convexity of the unary functions f;(M | -).
Generalizing Agarwal et al. (2019b), we assume an semi-adversarial noise model where distur-
bances decomposes as w; = Wadv + WStOCh and e; = e“ldv + eStOCh, where Wad" adv

and eV are
an adversarial sequence of disturbances, and w$*°" and eStOCh

are stochastic disturbances which
provide persistent excitation. We make the following assumption:

Assumption 6 (Semi-Adversarial Noise) The sequences wfg‘d" and eadv and losses Uy are selected
by an oblivious adverary. Moreover; wito‘:h e ,WE‘EOCh and ethCh ey e%OCh are independent ran-

dom variables, with E[w$*°?] = 0, E[ef**"] = 0 and
E[WitOCh (W?tOCh)T] - U%vL and E[ stoch(ei,toch>T] - UgI.

This assumption can be generalized slightly to require only a martingale structure (see Assump-
tion 6b). Throughout, we shall also assume bounded noise. Via truncation arguments, this can
easily be extended to light-tailed excitations (e.g. Gaussian) at the expense of additional logarith-
mic factors, as in Assumption 4. For known systems, we obtain the following bound, which we
prove in Appendix E:

Theorem 4 (Logarithmic Regret for Known System) Define the effective strong convexity pa-

, 2
rameter oy := Qjogs - <ag + a2, (%) ) and assume Assumptions 1 to 3, 5 and 6 hold. For

a decay function 1, if Algorithm 1 is run with G = G,, radius R M > Ry, parameters 1 < h <m
satisfying Ve, (h+ 1) < Rg, /T, o < ay, (m) < Ry /T, T > amR%,, and step size 1y =
we have that with probability 1 — 0,

2m3dminRﬁatR4G* R.%\/l 1 ’81055 . log z (4 2)
min {a LR? RZG*} LR 5 .

at’

Regret(¥) S

nat
Under Assumption 4, we have Regret (1) < L2 = 3 (14 Buoss/L)poly(C, 02 e, T p,log L.

Finally, for unknown systems, we show in Appendix F that Algorithm 3 attains optimal /7" regret:

Theorem 5 (/T -regret for Unknown System) Fix a decay function 1, time horizon T, and con-
fidence § € (e T, T~Y). Letm > 3h > 1 satisfy ¥(| %] —h) < Ry /T and Y, (h+1) < 1/10T,
and suppose Ryq > 2Ry and Ryat Rpq > (dy + log(1/8))Y/2. Finally, let o > oy for ay as in
Theorem 4, and Cy as in Theorem 3. Then, if Assumptions 1 to 3, 5 and 6 hold, and Algorithm 3
is run with parameters m, h, R, step sizes 1, = appropriate N and T sufficiently large (Eq.

at’

(F.4)), we have with probability 1 — 0 — T—(0g” ),
Regret (1) < (RHS of Eq. (4.2)) + Lm/2h2 R, R3R%, Cs (1 + L + By /2 /T

Under Assumption 4, Regrety () < poly(C, L, Bioss: &1 Tnoiser o0 108 § ) (Ao VT +das)-

noise’ 1—p?

Due to space limitiations, examples for the LQR and LQG settings are deferred to Appendix A.6,
and concluding remarks are provided in Appendix A.7.
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Appendix A. Appendix Organization and Notation
A.1. Organization

This appendix presents notation and organization. Appendix B presents a (v/T") lower bound for
the online non-stochastic control problem, even with partial observant and benign conditions. It also
gives a detailed comparison with prior work, detailed in Tables 2 and 3.

PartI: Sections C, D, E, and F provide the main arguments in the proofs of our main theorems in
the order in which they are presented in Section 4.

PartII: Appendix G introduces the general stabilized setting, where the nominal system need not
be stable, but is placed in feedback with a stabilizing controller. All results from the stable setting
(Assumption 1) extend to the stabilized setting (Assumption 1b) with appropriate modifications.
Statement which apply to the apply specifically to stabilized setting are denoted by the number of
their corresponding statment for the stable setting, with the suffix ’b’. For example, Assumption 1
stipulates the stable-system setting, and Assumption 1b the stabilized setting.

Appendix H adresses ommited proofs and stabilized-system generalizations of Theorems 2
and 3, which give regret bounds for nonstochastic control for known and unknown systems re-
spectively. Appendix I does the same for the strongly-convex, semi-adversarial setting, namely
Theorems 4 and 5. This section relies on two technical appendices: Appendix J verifies strong
convexity of the induced losses under semi-adversarial noise, and Appendix K derives the regret
bounds for conditionally-strongly convex losses (see Condition E.1), and under deterministic errors
in the gradients(see Condition F.1).

A.2. Notation for Stable Setting

We first present the relevant notation for the stable setting, where the transfer function G, of the
nominal system is assumed to be stable. This is the setting assumed in the body of the text.

Transfer Operators Definition (Stable Case)

G, (stable case) Gl — I;>0C, AL B, is nomimal system (Definition 2.2)

s refers to an LDC (Definition 2.1)

Gr cle—u transfer function of closed loop system (Lemma G.2)

M = (M) disturbance response controller or DRC (Definition 3.3)
Transfer Classes

P proper decay function if ), - (n) < oo, (n) >0

Ya(n) Sion G lop (e.g. ¥a,)-

I1(%) Policy Class {7 : Vn,¥q, ,(n) < 9(n)}, assuming 1 is proper
M(m, R) {M = (ML |M|lg op < R} (calls of DRCS)
Input/Output Sequence

4y Loss function

e, Wi output and state disturbances (do not depend on control policy)

yhat Nature’s y (see Definition 3.1, also does not depend on control policy)
yi,up output, input induced by LDC policy 7

y M uM output, input induced by DRC policy M

y; 'e output seen by the algorithm

20




IMPROPER LEARNING FOR NON-STOCHASTIC CONTROL

alg

u, input introduced by the algorithm

M, DRc selected by algorithm at step ¢

u, (M | y53Y) counterfactual input (Definition 4.1)

yi(M | G, yra) unary counterfactual output (Definition 4.1)

Yt {Mt;t_h | C:’, ?If";t} non-unary counterfactual output (Definition 4.1)
fi(M | G , yhan) unary counterfactual cost (Definition 4.1)

F; [Mt;t_h | é, ﬂ“ﬂ non-unary counterfactual cost (Definition 4.1)
Radius Terms and Alg Parameters

m length of DRC

h memory off approximation to transfer function
Ryat HY?atH < Rpat

Rq, stable case: 1V ||G4|l¢,.0p < Ra,

Iy 1V 50%(n) < Ry

R I M¢ll¢, 0p < Rt (algorithm parameter)

Eu est f Ru,est (5) iv du + log 5

Ry = Ry(9) Ry(0) := 2max{Ryest (), R Rnat }

Cs \/ dmax + log % + log(1 + Ryat) (least squares estimation constant)

A.3. Notation for Stabilized Setting

In general, we do not require that G, be a stable matrix, but instead that G, is placed in feedback
with a stabilizing controller my. In this case, we let GG, denote the dynamics introduced by the
feedback between the nominal system and m; details are given in Appendix G; at present, we
summarize the relevant notation.

A.4. Relationship Between Parameters (Assumption 4)

e In typical settings, we might imagine that (w, e;) are a sequence of noise which are possibly
biased, by have mean say at most o and subGaussian proxy o2. Then, with probability 1 — 6,
the max{|| Xe||, || Xw||} < || X]|op O (1) - odlog(T'/§) for any matrix X of rank at most d.

e By inflating Rq, , ¢q, if necessary, we can take 9, (n) to be an upper bound on

o()- ZmaX{HBAi*lCHOp, |’Ai710H0p}‘

i>n

This together with the previous statement yields a bound of Rpat < R, odlog(T'/§), where
d = max{d,,dy}.

e While this parameter regimes suggest suggests that R, is large relative to Rg,, we recal
that Ryat, R, are upper bounds on various system norms, rather than exact characterizations
any given norm. Thus, we can satisfy the relation in the previous bullet by inflating Rt
appropriately. Note that our bound degrade gracefully in Ry,¢, so this does not force an
undue increase in regret.
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Transfer Operators Definition (Stabilized Case)
0 nomimal stabilizing controller
“control-output” produced by nomimal controller
L reduces to y; in stable case
e Exogenous input to controller

reduces to u in stable case

transfer function from
Gex—(yu) exogenous inputs to system outputs and inputs
(almost equivalent to G, 1, see Definition 2.2b)

transfer function from

Gex—n exogenous inputs to control-output 7,
(Definition 2.2b)
Input/Output Sequence
v = (Yt, uy) Output-Input Pair
\ e (ye,ue) Output-Input Pair produced by algorithm
viat = (ynat yhat) Output-Input Pair with no exogenous input
pat Nature’s “control-output” under zero output
¢ reduces to y*! in stable case
LSl exogenous input introduced by algorithm
t

(not including nominal controller)
Exogenous input from estimates of 7"t

ex ~nat
uy (Mt | 0 ) See Definition 4.1b for expression, and for below

Vi [Mytn | Gexos(yu)s MY, V2| | Prediction of v; under estimated dynamics and 7"

Fy [ Mytn | Gexos gy, 1", VY| | Prediction of loss under estimated dynamics and 7.

fi(M | (A}ex_%y’u), At v pat) Unary specialization of the above.

Radius Terms

RG* 1v ||G*,U—>uH€170p \ HG*,(y—>u)||f1,Op < RG*

e The reason for the geometric decay is as follows: any stable matrix A with p(A) < 1 admits a
positive definite Lyapunov matrix P > I, for which AT PA < (1—¢) P, for some appropriate
e. This implies that, for a suitable constant £ > 0 depending on ||C||op, || Bllop, and || P||,
max{||CA!B|,|CA*'B|} < k(1 — €)*!, Thus, using our inflated definition g, =
O (1) 35, max{||[BA™Cllop, | A Cllop}. we have that vc, (n) = O (k) 3, K(1 -
€)" 1 < k(1 — €)" !/e. Absorbing these other factors int ok gives the desired geometric
decrease.

e Most conditions can be relaxed up to constant factors, because online learning methods de-
grade gracefully when parameters are misspecified. The main exceptions are: (a) one needs
to still choose h, m so that ¥, (h) < 1/T, and similarly ¢(m) < 1/T. If the decay param-
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eters are not known exactly, then the learner must choose a larger h to be conservative. (b),
for strongly convex losses, the effective strong convexity parameter used must be *less* than
the true strong convexity modulus. Lastly, (c), parameters out to be selected so as to ensure
stability in the unknown system setting (see Lemma D.1)

A.5. Efficient /1, op Projection

We describe an efficient implemtation of the ¢, op projection step in the algorithms above. As
with other spectral norms, it suffies to diagonalize and compute a projection of the singular val-
ues onto the corresponding vector-ball, which in this case is the ball: {(zl7) : 2l = 0,7 >
m, Z?:ol 12|l < R}; an efficient algorithm for this projection step is given by Quattoni et al.
(2009).

A.6. Examples for LQR and LQG

We now demonstrate how our results specialize to the LQR and LQG settings:

Example 1 (LQR) In the LOR setting, the observable state x; evolves as xi11 = AyXy + Byuy +
wy, where wi ~ N(0,02), and the associated losses are fixed quadratics 1(x,u) = x' Qx +
u' Ru. The optimal control'® is expressible as vy = —Kx; (trivially an LDC). Our framework
realizes this setting by choosing C, = I and 02 = 0 (observations are noiselss). The strong

2
convexity parameter is then oy = Waloss, which degrades with the norm of Ay, but does
*|lop

not vanish even as A, becomes unstable. For LQR, Theorem 5 guarantees a regret of O(v/T)
matching the previous results (Cohen et al., 2019; Mania et al., 2019).

Example 2 (LQG) In the LQG setting, the state evolves as Equation 1.1, where w; ~ N'(0,02,), e;
N(0,02), and the associated losses are fixed quadratics l(y,u) = y' Qy +u' Ru. The optimal
control for a known system may be obtained via the separation principle (Bertsekas, 2005), which
involves the applying the LOR controller on a latent-state estimate z; obtained via Kalman filtering.

Xi+1 = AXeqr1 + Boug + L(yi1 — Co(AXe + Bowy)); u = Kz

By setting z; = X1 and Ar = (I — LC,)(Ax + ByK), we get 2,41 = Arzy + Ly, and
w; = KA.z, + KLy, therefore, implying that such a filtering-enabled policy is a LDC too. For an
unknown LQG system, Theorem 5 guarantees a regret of O(\/T ).

We remark both of the above examples can be extended to the setting where (G, may be unstable,
but is placed in feedback with a known stabilizing controller (Assumption 1b) via Theorems The-
orems 4b and 5b; assumption of such a stabilizing control is standard in the LQR setting. We note
that for general partially-observed stabilized settings, the strong convexity modulus is somewhat

more opaque, but still yields o <ﬁ> regret asymptotically.

10. In strict terms, this is only true for the infinite horizon case. However, even in the finite horizon setting, such a control
law (utilizing the infinite horizon controller) is at most log 7" sub-optimal additively.
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A.7. Concluding Remarks

This work presented a new adaptive controller we termed Disturbance Response Control via Gradi-
ent Descent (DRC-GD), inspired by a Youla’s parametrization. This method is particularly suitable
for controlling system with partial observation, where we show an efficient algorithm that attains
the first sublinear regret bounds under adversarial noise for both known and unknown systems.

This technique attains optimal regret rates for many regimes of interest. Notably, this is the
only technique which attains v/T-regret for partially observed, non-stochastic control model with
general convex losses. Our bound is also the first technique to attain v/7-regret for the classical
LQG problem, and extends this bound to a more general semi-adversarial setting.

In future work we intend to implement these methods and benchmark them against recent novel
methods for online control, including the gradient pertrubation controller Agarwal et al. (2019a).
We also intend to compare our guarantees to techniques tailored to the stochastic setting, including
Certainty Equivalence Control Mania et al. (2019), Robust System Level System Dean et al. (2018),
and SDP-based relaxations Cohen et al. (2019). We also hope to design variants of DRC-GD which
adaptively select algorithm parameters to optimize algorithm performance, and remove the need
for prior knowledge about system properties (e.g. decay of the nominal system). Lastly, we hope
to understand how to use these convex parametrizations for related problem formulations, such as
robustness to system mispecification, safety contraints, and distributed control.
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Appendix B. Comparison with Past Work & Lower Bounds

B.1. Comparison to Prior Work

Tables 2 and 3 describe regret rates for existing alorithms for known system and unknown system
settings, respectively. Within each table, bold lines further divide the results into nonstochastic and
stochastic/semi-adversarial regimes. Specifically, stochastic noise means well conditioned noise
that is bounded or light-tailed, non-stochastic noise means noise selected by an arbitrary adver-
sary, and semi-adversarial noise is an intermediate regime described formally by Assumption 6/ 6b.
Compared to past work in non-stochastic control, we compete with stabilizing LDCs, which strictly
generalize state feedback control. We note however that for stochastic linear control with fixed
quadratic costs, state feedback is optimal, up to additive constants that do not grow with horizon 7.

Table 2: Comparison with prior work for known system. See above for explanation of relevant

settings.
Comparison with Past Work: Known System
Work Rate Obs. | Loss Type Noise Type Comparator
Adversarial . Disturbance &
Agarwal et al. (2019a) VT Full Lipschitz Nonstochastic State Feedback
. Adversarial . Stabilizing
Theorem 2 \/T Partial Lipschitz Nonstochastic LDC
Cohen et al. (2018) Adversarial . State Feedback
(Known System & Noise)® VT Full Quadratic Stochastic (Pseudo-regret)
Adversarial Disturbace &
(Kﬁf\?vrrgl :ttei g?\}fﬁl)m) polylogT | Full Strongly Stochastic State Feedback
y Convex (Pseudo-regret)(b)
Adversarial
. Strongly . . Stabilizing
Theorem 4 polylogT | Partial Convex & Semi-Adversarial LDC
Smooth®

@ Agarwal et al. (2019b), Cohen et al. (2018) assume the knowledge of the noise model making the as-
sumption stronger than simply knowing the system

®) Pseudo-regret refers to the best comparator “outside the expectation”. It is strictly weaker than regret.

(© The smoothness assumption is necessary to remove the need for the expected-gradient oracle, and can be
removed if such a stronger oracle is provided.
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Table 3: Comparison with prior work for unknown system. See above for explanation of relevant
settings.

Comparison with Past Work: Unknown System

Adversarial . Disturbance &
(@ 2/3
Hazan et al. (2019) T Full Lipschitz Nonstochastic State Feedback
. Adversarial . Stabilizing
2/3
Theorem 3 T Partial Lipschitz Nonstochastic LDC
Abbasi-Yadkori & d © Fixed .
Szepesviri [2011] ed . /T Full Quadratic Stochastic State Feedback
2/3 Fixed .
Dean et al. (2018) T Full . Stochastic State Feedback
Quadratic

Cohen et al. (2019) Fixed
Faradonbeh et al. (2018) VT Full Stochastic State Feedback

Mania et al. (2019)® Quadratic
Adversarial
. Strongly . . Stabilizing
Theorem 5 VT Partial Convex & Semi-Adversarial LDC
Smooth®

@ To identify the system, Hazan et al. (2019) assumes that the pair (A,, B,) satisfies a strong contra-
billity assumption. Our Nature’s y’s formulation dispenses with this assumption.

® This bound is exponential in dimension d.

® The authors in Mania et al. (2019) present technical guarantees that can be used to imply 7%/% re-
gret for the partially observed setting when combined with concurrent results. Since the paper was
released, stronger system identification guarantees can be used to establish /7 regret for this setting
(Sarkar et al., 2019; Tsiamis and Pappas, 2019). To our knowledge, this complete end-to-end result
does not yet exist in the literature.

® Unlike Theorem 5, smoothness is still necessary even when given access to the stronger oracle.
Alernatively, certain noise distributions (e.g. Gaussian) can be used to induce smoothness.

B.2. Regret Lower Bounds for Known Systems

We formally prove our lower bound in the following interaction model:

Definition B.1 (Lower Bound Interaction Model) We assume that x;11 = AXxy + Byuy + wy,
where wy are drawn i.i.d. from a fixed distribution. We assume that the learners controlers u; le
may depend arbitrarily on x; and (s, Xs)1<s<t. For a policy class 11 and joint distribution D over
losses and disturbances, we define

PseudoRegretaTIg(H, D) :=Ep < E [Regret(IT)],

T
Zﬁt(xilg,uilg)] — inf Ep

11
=1 IS

T
> b(xf,uf)
t=1
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Informally, our lower bound states that /7" regret is necessary to compete with the optimal state
feedback controller for pseudo-regret in the fully observed regime, either when the noises are
stochastic and loss is known to the learner, or the the noises are constant and deterministic, and
the losses stochastic. Formally:

Theorem 6 Let d, = 2, and d, = 1, A, = 04, xd,, B« = —e1, and 11 denote the set of all
state-feedback controllers of the form u; = K,xy, for K, = v - eir. Then for the interaction Model
of Definition B.1, the following hold

1. Fixed Lipschitz Loss & Unknown i.i.d Noise: Fix a loss {(z,u) = |z[1]],
distributions & = {P} over i.i.d. sequences of w; with ||w|| < 2 forT > 2

inf  max PseudoRegret}lg(H7 D) > 1+ QTY?),
alg DG{Hgt:g}(XJ:@

where {I;,—¢} @ P is the set of joint loss and noise distribution induced {; = ¢ and w; i1 P.

2. Li.d Lipschitz Loss & Known Deterministic Noise Then there exists a family of distribu-
tions & = {P} over i.i.d sequences of 1-Lipschitz loss functions with 0 < £,(0) < 1 almost
surely such that

inf max PseudoRegret;lg(H, D) > —1 4 Q(TY?)
alg DeZ®{Iw,=1,0}}

where & ® {th:(o,l) }} is the set of joint loss and noise distribution induced {1, {5, . . . Hdp
and wy = (1,0) for all t.
Proof Let us begin by proving Part 1. Let & denote the set of distributions 7, where w;[2] = 1 for

all ¢, and wy[1] thd Bernoulli(p) for ¢ > 1. Let E,, denote the corresponding expectation operator,
and let PseudoRegretaTIg(T, p) denote the associated PseudoRegret. We can verify

. .alg _
X:_IEI _ [Wt[l] 1ut [1]} ’uf(v — ijfﬂj — [Wt[ll] U}
For {(z,u) = |x[1]],
T
Ep[Y e, u®)) = Z [we[1] - ufE[L]]] -
t=1

Since wy[1] € {0,1}, we can assume u?'g[l] € [0, 1], since projecting into this interval always
decreases the regret. In this case, given the interaction model, wy|[1] | uilg[l] is still Bernoulli(p)
distributed. Therefore,

T T
Ep[) [wil1] = uB[L]]] = Ey[Y (1 — p)ui® +p(L - u}'®)]
t=1

t=1
=pT + (1-2p)E Zua'g

=pT+(1- QP)TEp[ZtL
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where we let Z; := & 3" u®® ¢ [0,1]. On ther other hand, for any v € [0, 1],

T
Ey[Y_ 0(xf uf)] < 14 T{(1 —p)v+ p(1 —v)} = L+ pT + (1 - 2p)T,
t=1

where the additive 1 accounts for the initial time step. Hence,

PseudoRegret3®(T, p) > —1 + m[%)i(l —2p)T(Ep(Z:) —v) = =1+ T[1 = 2p| - |Ep(Z:) — I(1 — 2p > 0)].
ve

The lower bound now follows from a hypothesis testing argument. Since Z; € [0, 1], it follows that
there exists an € = Q(T~1/2) such that (see e.g. Kaufmann et al. (2016))

OO\\]

‘Ep:1/2+e(Zt> p 1/2— e(Zt)’
Combining with the previous display, this shows that for p € {1/2 —¢,1/2 + €},
PseudoRegretaTlg(T,p) > 14 T[1—2p|Q1) > -1+ Q(Te) = -1+ Q(T?).

This proves part 1. Part 2 follows by observing that the above analy51s goes through by moving the

disturbacnce into the loss, namely ¢;(z,u) = |2[1] — e;| where e; '~ Bernoulh( ) and w;[1] =0
for zero. |
Part I

High Level Proofs

Appendix C. Analysis for Known System

In this section, we prove Theorem 2. We begin with the following regret decomposition, for sim-
plicity, we abbreviate M < M(m, Ry):

T
| |
Regretr(TH(1)) = > 4 (yi®, up'®) — it Z& y7 . uf) (C.1)
=1 T
m+h T
| | | |
< (Z G(y7®,u®) > + ( Z G(yr®,up®) — Z Fy Myt | Gy, Yﬁto
t=1 t=m+h+1 t=m-+h+1
burn-in loss algorithm truncation error
T
+ ( > FMyp | Gu, yiY - Z fo(M | Gy, y“at)>
t=m+h+1 t m+h+1

f policy regret
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T
f (M | Gy f G(yM uM C2
+<lnM Z fi(M | Gy, yi7) — ot > byt )) (C2)

t=m+h+1 t=m+h+1

comparator truncation error

+ inf ;ft(yé” Jull) - TR (C.3)

policy approximation :=J (M )—J ()

Here, the burn-in captures rounds before the algorithm attains meaningful regret guarantees, the
truncation errors represent how closely the counterfactual losses track the losses suffered by the
algorithm (algorithm truncation error), or those suffered by the algorithm selecting policy 7 = M.
The dominant term in the above bound in the f policy regret, which we bound using the OCO-with-
Memory bound from Proposition C.4. Lastly, the policy approximation error measures how well
finite-history policies M € M approximate LDC’s 7 € II(1)), and is adressed by Theorem 1; this
demonstrates the power of the nature’s y parametrization.

We shall now bound the regret term-by-term. All subsequent bounds hold in the more gen-
eral setting of stabilized-systems (defined in Appendix G), and all ommited proofs are given in
Appendix H.1. Before beginning, we shall need a uniform bound on the magnitude of u?'g and
v; '8 This is crucial because the magnitudes and Lipschitz constants of the losses ¢; depend on the
magnitudes of their arguments:

Lemma C.1 (Magnitude Bound) For allt, and M, M1, Ms,--- € M, we ahve

u (M | yi7) H } < RmPBuat

[Yt[Mtt h | Gy, ynatq
ut[Mtt h ’ Gy, ynat]

max { |[uf®]|_ [u]],

alg M
Y Yi
max { ‘ [uilg] [uiw ]

Proof The proof is a special case of Lemma C.1b in the appendix. |

} S QRG* RMRnat

9 2

The above lemma directly yields a bound on the first term of the regret decomposition (C.3):
Lemma C.2 We have that (burn-in loss) < 4LRZ, R3(RZ.(m + h)

Proof Combine Assumption 2 on the loss, Lemma C.1, and the fact Rg, , Raq, Rnat > 1. |

The algorithm and comparator truncation errors represent the extent to which the h-step trunca-
tion differs from the true losses induced by the algorithm:

Lemma C.3 (Bound on Truncation Errors) We can bound
(algorithm truncation error) + (comparator truncation error) < 4LT Rg, R?\/{ R2 Wa, (h+1).

Now, we turn the the f-regret. We begin by quoting a result of Anava et al. (2015):

Proposition C.4 For any a sequence of (h + 1)-variate F;, define fi(z) = Fi(x,...x). Let L,
be an upper bound on the coordinate-wise Lipschitz constant of Iy, Ly be an upper bound on the
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Lipschitz constant of f:, and D be an upper bound on the diameter of KC. Then, the sequence {:L‘t}thl
produced by executing OGD on the unary loss functions f; with learning rate n guarantees

T
D2

PolicyRegret := Z Fyx,...,z_p) —min Fy(x,...x) < — +nT - (L?f +h®LcLy).
t=h+1 ek n

In order to apply the OCO reduction, we need to bound the appropriate Lipschitz constants. No-
tice that, in order to apply projected gradient descent, we require that the functions f; are Lipschitz
in the Euclidean (i.e., Frobenius) norm:

Lemma C.5 (Lipschitz/Diameter Bounds) Define Ly := L\/mR?2, R?, R. Then,
e The functions fi(- | G, y3') are L¢-Lipschitz

o The functions Fy[My,_, | Gy, yi3¥] are L p-coordinate-wise Lipschitz on M in the Frobenius
norm ||M|[p = [|[M1, ..., MU=,

e the Euclidean diameter of M is at most D < 2+/din Bq.

We now bound the policy regret by appealing to the OCO-with-Memory guarante, Proposi-
tion C.4:

Lemma C.6 (Bound on the f-policy regret) Let din = min{dy,dy}, and 1, = n = \/dwin/ALhR2, RE, V/2mT
for all t. Then,

(f-policy regret) < 2L+/TdminmhR2,, R%, R

Proof From Proposition C.4 with Ly = L, as in Lemma C.5, and diameter D < 2+v/dyin R A from
the same lemma, Lemma H.2, we

2

. D R2  dmin
(f-policy regret) < T""TL?(}F‘FU?? < METT

; + T(LR2, RZ.)* R m(h* + ).

Selecting 7 = /dmin/ 2LhRI21atRé* v2mT and bounding v/h2 + 1 < v/2h concludes the proof. B

Recalling the bound on policy approximation from Theorem 1, we combine all the relevant bounds
above to prove our regret guarantee:

Proof [Proof of Theorem 2] Summing up bounds in Lemmas C.2, C.3 and C.6, and Theorem 1, and
using Raq > 1,

Regretp(v) < LR, (R%RQG* (m + h) + VThy/mdmin Ra4RE. + RiRa,Ya, (h+1)T + RMR%;*w(m)T)
S LRZ (VTh/mduin B3R, + Ry Ra. v, (h+ )T + RpBg, v(m)T)

= LR, R% R%\NT (h\/mdmin +VT <¢G*(h b, Mm))) .
* Ra R

*
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C.1. Proof of Theorem 1

Proof Let (y], u]) be the output input sequence produced on the execution of a LDC 7 on a LDS
(Ay, By, Cy), and (yM,uM) be the output-input sequence produced by the execution of an Dis-
turbance Feedback Controller M on the same LDS. By Lemma G.2, the closed-loop dynamics are
given by

x71| _ [Av+B.D:C. B.Cr| [x]| | [I B.Dx) [wi c
Z?Jrl_ L B Ci Ar zf 0 Br e ]’ ‘
A:rr,cl B‘ir,cl
yf_ . [ C, 0 [xF I
[u;:_ ~ D0 Cul lzr] T | Da o €3)
——— —
CVﬂ',cl

Further, define C 1, as the second row of Cr ¢, and By 1, and By ¢ . as the first and second
columns of B .. We then have

t—1 t—1
T s—1 s—1
u; = Dre; + E CTr,cl,uAmdBw,cl,eetfs + E CTr,cl,uAmclBTr,cl,thfs'
s=1 s=1

Our argument hinges on the following claim which we establish shortly below:

Claim C.7 (Control Approximation Identity) Define the matrices M") = Dy, and M =
C,T7C17uA[Z_1}Bﬂ’C1,efori > 1. Then,

m,cl

i = 3wy

As a consequence, we have that, for ult Zm L gl w;_;, we find

t—1
uf =u) + > Myt (C.6)

i=m

This, in particular, implies the following bounds.

t—1

[uf —u|| < (Z HCW,CMA;SIBM,AO max [ly;*|| < 4 (m)Ryat
i=m !

Iyt —yi || < ||G*||€1,op1/’(m)Rnat

Hence,

< (L+ [[Guller.op)(m) Buas = R, 4 (m) Ruas.-

Yf - YiM 2
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Moreover, from Eq. (C.6), we can show that ||(u],y])| < 2Rg, RaRuat, as per Lemma C.1.
Thus, from the sub-quadratic assumption (Assumption 2),

b
y7r M

e (yT uf) — Gy’ ul)| < 2LRG, R Ruat < 2LR%, Ria Raatb(m).

t — Yt 2
|
Proof [Proof of Claim C.7]
=1 =1 t—i—1 '
> MUy = Z MY (et_i + Y C*Ai”lws>
=0 i s=1
t—1 s—1 ' '
SIS S WU
s=11=0
t—1 t—1 s—1
- Dﬂ'et +Zcﬂclu ﬂ—C]Bﬂcleet s +D ZC At swt + ZZ M[Z AS - Z)Wt s
s=1 s=1i=1
(C.7
Let us unpack the last line:
M[i]C*Ai_l_i = Cﬂ',Cl uA7T clB ,cl, ec As_l_iwtfs
B,D,;C,
= ﬂ‘,CluAj-(-Cll |: B.C :| As - l Wi—s
™~ %
_ i—1 B*ch* B*Cﬂ’ Ai_l_iwt—s
- 7T,C1,u ﬂ',Cl BWC* Aﬂ' 0 )
(4)
sflfiwt
where we fill the last two columns of the matrix () arbitrarily, since [ * 0 has a zero in its
second block component. Define the matrices (X,Y) = A 0 , BiDrCy BiChr . We
0 0 B,C, Ax

then recognize A, . = X + Y, and can thus express

MUC, AT = Cp (X +Y) Tty X7t [WB—S]

Before proceeding, observe the following identity for any positive integer n.

n
X"=Y"+) XX -y

1=1
Thus,
s—1
> MUIC AT Wiy = —Cr W X [WgS] + Cretal X + V) [“’gs]
i=1

= _DTrC*Aiilwt—s + Cﬂ‘,Cl uAS

el Bﬂ,cl,wwt—s
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Picking up where we left off,

t—1
i|  ,nat
> MUy
=0
t—1 t—1 s—1
-1 1—-
= Dre; + § Cﬂ,cl,uA;-’C] Bx cle€t—s 1 Dy § Cy At “wy § E M[Z AS Z)Wt s
s=1 s=1 i=1
t—1 t—1 s—1
=D et+§ Crclu 7rcl wcleet s T g 5 Cﬂ'clu 7rc1 wcl,wwt—s
s=1 s=1 1=0
t—1 t—1
—1
= Dre; + E Cw,cl,uAfnd Bw,cl,eetfs + E C7r,cl uAﬂ- cl B7r clwWt—s = u;r- (C.8)
s=1 s=1

Appendix D. Analysis for Unknown System
D.1. Estimation of Markov Operators

In this section, we describe how to estimate the hidden system. We prove the following theorem
assuming some knowledge about the decay of GGx. We defer the setting where the learner does
not have this knowledge to later work. The proof of the following guarantee applies results from
Simchowitz et al. (2019), and is given in Appendix Appendix H.2:

Theorem 7 (Guarantee for Algorithm 2) Leté € (e~ 771, N,d, < T, and ¢g, (h+1) <
For universal constants c, Cegt, define

1

10°

hQRnat
VN

and suppose that N > ch4C§R3\AR2G*. Then with probability 1 —§ — N~ log? N Algorithm Algo-
rithm 2 satisfies the following bounds

utH S Rmest(é) = 5\/ du + 210g(3/5)

2. The estimation error is bounded as

€G(IN,0) = Cegt Cs, where Cs := \/almaX + log% + log(1 + Rpat)-

1. Forallt € [N],

1G = Gulltrop < IGO0 — GO )1yy op + Ruesitba, (h+1) < eq(N,8) < 1/2max{ RyRe, , Ruest}-

For simplicity, we suppress the dependence of e on IV and § when clear from context. Throughout,
we shall assume the following condition

Condition D.1 (Estimation Condition) We assume that the event of Theorem 7 holds.
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D.2. Stability of Estimated Nature’s y

One technical challenge in the analyis of the unknown G, setting is that the estimates y34

on the history of the algorithm, because subtracting off the contribution of the inexact estimate &G
does not entirely mitigate the effects of past inputs. Hence, our the first step of the analysis is
to show that if G is sufficiently close to G, then this dependence on history does not lead to an
unstable feedback. Note that the assumption of the following lemma holds under Condition D.1:

depend

Lemma D.1 (Stability of y}3) Introduce the notation Ry (8) := 2 max{ Ry est (), RapRnat }, as-
sume that (N, ) < 1/2max{RyRg, }. Then, fort € [T], we have the bounds

[y < Ru(6), 19712 < 2Rnats ||y "8|| < Ruat + R, Ru(6)

Proof Introduce [|[u'%]|5,o := max,<; [|u2®||2. We then have

nat Snat | |

lyi - zd”“gG““@<M:GM@mﬂ

2

]| < e fullzoe.

D.1)
‘We now have that

j—1
0221200 < max { Ry est, max > Ml
j=t—m+1

< max{ Ry est, RMm max Hy?atH }
< max{ Ry, esthM(Rnat + (|G« HfhopeGHult 1l2,00) }
< maX{Ru ests RMRnat} + RMHG ||€170P€GHu1t 1”2 0

Moreover, by assumption, we have e < 1/2Ra R, , so that

HualgHQOO < maX{RuestyRMRnat}"i_ ”ult 1”2 00/2
< max{ Ry est, BmPBnat } + 5( west + Bt Rnat) + Hult 2ll2,00/4
<..-< 2InaX{-Ru,esta]%./\/I‘Rnat} = RU

The bound ||yP?t||y < 2Rya¢ follows by plugging the above into Eq. (D.1), the the final bound from
I(y?8, u?)|| < Ruat + | Gilley opllufs P2 < Ruas + (1+ 1GAller op) 05 12,00 ==
Rnat + Ra, ||u1:t l[2,00- u

D.3. Regret Analysis

We apply an analogous regret decomposition to the proof of Theorem 2, again abbreviating M <

M(m, Rnm):
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m+2h+N
Regret(II( ( Z U(y alg u?lg)>

estimation & burn-in loss

T T
+ ( Z l(y;®, uf®) — Z Fy[Myy | G, ?ﬁto

t=N+m+2h+1 t=N+m+2h+1

loss approximation-error

T T
+ ( Z Ft[Mt:t—h | G, ???] _ M}gf\/‘ Z (M | G /\nat)>

t=N+m+2h+1 t=N+m+2h+1

fpolicy regret

T T
inf M G Anat — inf g M .M
+ (MlgM >, MMIG ) - if Y] (v ul)
t=N+m-+2h+1 t=N+m+2h+1

Ve
comparator approximation-error

T
+ Mir&;et(th ) = dnf G(yP,uf) (D.2)

policy approximation :=J (M )—J ()

Let us draw our attention two the main differences between the present decomposition and that
in Eq. (C.3): first, the burn-in phase contains the initial estimation stage /N. During this phase, the
system is excited by the Guassian inputs before estimation takes place. Second, the truncation costs
are replaced with approximation errors, which measure the discrepancy between using G and yhat
and using G, and y¥2t.

Observe that the policy approximation error is exactly the same as that from the known-system
regret bound, and is adressed by Theorem 1. Moreover, the policy regret can be bounded by a
black-box reduction to the policy regret in the known-system cases:

Lemma D.2 Assume Condition D.1. Then, for n; = 1 o /duyin/LhR? atR vmT, we have

(f-policy regret) < VT L\/dminmhR2, R% R%,

Proof Observe that the f -regret depends only on the y}'** and G sequence, but not on any other
latent dynamics of the system. Hence, from the proof Lemma C.6, we see can see more generally
that if max; [|§52¢|| < Rl and [|Gll, op < Ris_, then i o v/diin/Lh(Rhy)? (Rl )2VmT,

( f policy regret) < L\/m hat) )2R% M

< 2Rpaand Ry, < 2Rg, .

In particular, under Condition D.1 and by Lemma D.1, we can take R}, <

y; IgHg < Rpat + Rg, Ry < 2R, Ry. Assumption 2 then yields

35



IMPROPER LEARNING FOR NON-STOCHASTIC CONTROL

Lemma D.3 Under Condition D.1, we have that (estimation & burn-in) < 4L(m+2h+N )RZG*Ei.
To conclude, it remains to bound the approximation errors. We begin with the following bound on
the accuracy of estimated nature’s y, proven in Appendix H.3.1:

Lemma D.4 (Accuracy of Estimated Nature’s y) Assume Condition D.1, and lett > N +h+1,
we have that that ||y?®* — yPaY| < 2R Rpateq-

We then use this to show that the estimation error is linear in 7, but also decays linearly in €g:

Lemma D.5 (Approximation Error Bounds) Under Condition D.1,
(loss approximation error) + (comparator approximation error) < LT R, R%,l RﬁateG

Proof [Proof Sketch] For the “loss approximation error”, we must control the error introduce by
predicting using G instead of G4, and by the difference from affine term y** in y (- | G y1at) from
the true natures y y*. For the “comparator approximation error”’, we must also adress the mismatch
between using the estimated 9@ sequence of the controls in the functions f;(- | G, y92t), and the
true natures y’s y1* for the sequence (y,u}). A complete proof is given in Appendix H.3.2 MW

Proof [Proof of Theorem 3] Assuming Condition D.1, taking N > m-+h and combining Lemma D.3
with the substituting Ry(8) < max{\/d, + log(1/5), RmRe,}, and with Lemmas D.2 and D.5
and theorem 1,

dy +log(1/9)

Regret; (1)) < LRE, R3(R2. (( R \Y 1> N + Teq(N,0)Rp + Vdmh?T + Ty (m
nat* "M

Rm
For ¢)(m) < Raq/V/T, the last term is dominated by the second-to-last. Now, for the constant
C'(9) as in the theorem statment, and for Ryt Raq > dy, +1og(1/9), we have ("Rtloig]g/é) VI)N +
Teq(N,8)Ra < (N +CsTh?Raq Ruat /v N). We see that if we have N = (Th2R MRuat Cs)?/3,
then the above is at most

Regret (1) < LR% R%, R <(h2TRMRnath)2/3—|— dmmfﬂmT).

nat

Finally, since 9¢, (h + 1) < 1/10v/T, one can check that Condition D.1 holds with probability

1-35— Nlog"N — 1 _ 5 7200 T) g5 so0n as T > IR CIRE R2 .

¢/. When T > dypinm?, we can bound the above by < LRZ, R, B2, (h2RpRuaiCs)™> - T2,
|

for a universal constant

Appendix E. Logarithmic Regret for Known System

In this section, we prove Theorem 4. The analoguous result for the strongly-stabilized setting is
proved in Appendix 1.

Theorem 4 applies the same regret decomposition as Theorem 2; the key difference is in bound-
ing the f-policy regret in Eq. (C.3). Following the strategy of Agarwal et al. (2019a), we first show
that the persistent excitation induces strongly convex losses (in expectation). Unlike this work, we
do not assume access to gradients of expected functions, but only the based on losses and outputs
revelead to the learner. We therefore reason about losses conditional on k£ > m steps in the past:
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Definition E.1 (Filtration and Conditional Functions) Let F; denote the filtration generated by

the stochastic sequences {(e3°" wit°M)} ., and define the conditional losses
ft;k (M ‘ G*a Y?gt) =K [ft(M ’ G*a yglift) | ‘Ft—k] :

A key technical component is to show that f.; are strongly convex:

Proposition E.2 For ay as in Theorem 4 and t > k > m, fupx(M | Gy, yi3') is o-strongly
convex.

The above proposition is proven in Appendix J.4, with the Appendix J devoted to establishing a
more general bound for strongly-stabilized (but not necessarily stable) systems.

Typically, one expects strong-convex losses to yield log T-regret. However, only the condition
expectations of the loss are strongly convex; the losses themselves are not. Agarwal et al. (2019a)
assume that access to a gradient oracle for expected losses, which circumvents this discrepancy. In
this work, we show that such an assumption is not necessary if the unary losses are also S-smooth.

We now set up regularity conditions and state a regret bound (Theorem 8) under which conditionally-
strong convex functions yield logarithmic regret. The proof of Theorem 4 follows by specializing
these conditions to the problem at hand.

Condition E.1 (Unary Regularity Condition (uRC) for Conditionally-Strongly Convex Losses)
Suppose that K C R%. Let f; := K — R denote a sequence of functions and (Ft)e>1 a filtration.
We suppose fy is L¢-Lipschitz, and maxqex | V2 fi(2)|lop < B, and that fir(z) == E[fi(z) | Fi—k]
is a-strongly convex on K.

Observe that Proposition E.2 precisely establishes the strong convexity requirement for uRC,
and we can verify the remaining conditions below. In the Appendix, we prove a generic high-
probability regret bounds for applying online gradient descent to uRC functions (Theorem 12).
Because we require bounds on policy regret, here we shall focus on a consequence of that bound for
the “with-memory” setting:

Condition E.2 (With-Memory Regularity Condition (vmRC)) Suppose that I C R® and h >
1. We let Fy := K" — R be a sequence of L coordinatewise-Lipschitz functions with the induced
unary functions fi(x) := Fy(x,. .., x) satisfying Condition E.]I.

Our main regret bound in the with-memory setting is as follows:

Theorem 8 Let K C R have Euclidean diameter D, consider functions Fy and f; satisfying
Condition E.2 with k > h > 1. Consider gradient descent updates z+1 < (2t — my1Vfi(zt)),
with n; = % applied for t > tq for some to < k, with z0 = 21 = --- = 2z, € K. Then, with
probability 1 — 9,

T T
E Ft(Zt, Zt—Ty ey thh) — 1nf E ft(2>
ze
t=k+1 t=k+1

(k+ W) LeLe + kdL + KPLe | kL2 <1 + log(e + aD2)>

< akD? T)+ —11
S akD” + g(T) + —~log 5

(67
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The above bound is a special case of Theorem 9 below, a more general result that adresses com-
plications that arise when G, is unknown. Our regret bound incurs a dimension factor d due to a
uniform convergence argument' !, which can be refined for structured /C.

To conclude the proof of Theorem 4, it we simply apply Theorem 8 with the appropriate param-
eters.
Proof [Proof of Theorem 4] From Lemma C.5, we can take L¢ := 4L\/mR3, R, Ry and D <

2v/dR 4. We bound the smoothness in Appendix L1:

Lemma E.3 (Smoothness) The functions f;(M | G, y}5") are 3;-smooth, where we define 3y :=
mR?lat RzG’* Bloss-

This yields that, for a < oy and step sizes 7; = the f-policy regret is bounded by

at’

< amdR%, +

(md + h?)L? + mBsL¢ log(T) + mL? f 1 (1 + log(e + ozdegw)>
! 0

L2m2 R4 R4 R2 h 1/2
< amdR3, + “2 2 M <d + > g Ezm
R

+
1+1 dR?
- max {log T,log < + log(e + At ) }

m3dR2 R4G* R3,
o

T +1 dR3

3dR4 tR4 RM 5loss T
na L > 2
o max{l,LdRM}log(5> (T > log(e+ adR3,))

m3d Ry R, R B T
= 1,—>= Sblog | = E.1
~ a/\LRﬁatRQG* max{ ’LdRM} °g<5>’ ED

< amdR%, +

< adei/l +

Therefore, combining the above with Lemmas C.2 and C.3, and Theorem 1,

V. (h+ DT | b(m)T
Ra R

*

LR}, Ri,RE, (m +h+ + (Eq. (E.l))) .

Applying ¥g, (h+ 1) < Rg, /T, ¥(m) < Ry /T, and h < m, the term in Eq. (E.1) dominates.
|

Appendix F. \/T-regret for unknown system under strong convexity

In this section, we prove of Theorem 5, which requires the most subtle argument of the four settings
considered in the paper. We begin with a high level overview, and defer the precise steps to Ap-
pendix F.1. The core difficulty in proving this result is demonstrating that the error €5 in estimating

11. This is because we consider best comparator z, for the realized losses, rather than a pseudoregret comparator defined
in terms of expectations
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the system propagates guadratically as T(%v /o (for appropriate o« = acy/4), rather than as T'ei in
the weakly convex case. By setting N = /7T'/«a, we obtain regret bounds of roughly

T 1 T logT
Regrety(¢¥) S N+ —eq(N,6)* + —logT < {/ — + o8 , (E1)
a « a «

where we let < denote an informal inequality, possibly suppressing problem-dependent quantities
and logarithmic factors, and use e (N, 0) < 1/v N. To achieve this bound, we modify our regret
decomposition by introducing the following a hypothetical “true prediction” sequence:

Definition F.1 (True Prediction Losses) We define the true prediction losses as

h
Y My p) =y} + Z Gy (Mi—i | 977%4)
=1

FP [My—p) == 4 (yzlgmd [Mye—p) ,uy (M | ynat)> ;

and let fpred( M) = F} Pred(\f .. M) denote the unary specialization, and define the conditional
unary functions fpred( M) :=E]| pred( M) | Fi—k)-

Note that the affine term of yfred is the true nature’s y'%, and the inputs u;—; (M;—; | y13° ;) are

multiplied by the true transfer function G,. Thus, up to a truncation by h, ypred describes the true

counterfactual output of system due to the control inputs u;_; (Mt il ynat, ) selected based on the
estimated nature’s y’s. FP™® and fP™? then correspond to the counterfactual loss functions induced
by these true counterfactuals.

While the algorithm does not access the unary losses "¢ directly (it would need to know y»t
and G, to do so), we show in Appendix 1.2.2 that the gradients of fP**% and f,(M | G, y22t) are
O (eq) apart:

Lemma E.2 For any M € M, we have that
|V | G, 3555 = O a)| < Cappron €

where we define Capprox := VMR, RpR2, (8Bi0ss + 12L).

As a consequence, we can view Algorithm 1 as performing gradient descent with respect to the
sequence fP™*%, but with non-stochastic errors €, := Vf(M | G, y22t) — VfP"4(M). The key
observation is that online gradient descent with strongly convex losses is robust in that the regret
grows quadraticaly in the errors via = Zt 1 HEtH2 By modifying the step size slightly, we also
enjoy a negative regret term. The followmg bound applies to the standard strongly convex online
learning setup:

Proposition F.3 (Robustness of Strongly Convex OGD) Ler I C R? be convex with diameter
D, and let f; denote a sequence of a-strongly convex functions on K. Consider the gradient update

12. Note that yp”Sd [My.1—p) differs from y:[My.c—n | Gx, 15| (the counterfactual loss given the true function G, and
estimates ¥14%) precisely in this affine term
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rules zi11 = (2 — i1 (Vfie(2¢) + €)), where €, is an arbitrary error sequence. Then, for step
size 1y = %,

2

T T T
6L 6 «o
Voo €K, 3 file) — filea) < T log(T+ 1)+ aD? 4 = 3 lal3 = 537 o~ =B
t=1 t=1 t=1

For our setting, we shall need a strengthing of the above theorem to the conditionally strongly
convex with memory setting of Condition E.2. But for the present sketch, the above proposition
captures the essential elements of the regret bound: (1) logarithmic regret, (2) quadratic sensitivity
to €, yielding a dependence of Te% /a, and (3) negative regret relative to arbitrary comparators.
With this observation in hand, we present our regret decomposition in Eq. (F.2), which is described
in terms of a comparator M,pprx € M, and restricted set Mo = M(Raq/2,mp) C M, where
moy = L%J — h:

m+2h+N
Regret(TI( ( Z U(y alg u?lg)>

burn-in loss
T T
alg alg pred
+ E 6 (Yt , U ) E Ft [Mt:tfh] )
t=m+2h+N+1 t=m+2h+N+1
algorithm tlﬁgcation error
T T
pred pred
+ E F [Mi:—n] — E t (Maper)
t=m+2h+N+1 t=m+2h+N+1
fPred policy regret
T T
red . t
+ E , § " (Mapprx) — _Inf E fe(M | Gy, y15)
MeMy
t=N+m+2h+1 t=N+m+2h+1

y2at control approximation error

T T
inf M | Gy, y13") — inf Gy at
+ (Mlen/\/to Z oM | Gy, y1%) Mlen/\/lo Z (ve,wy ))

t=N-+m+2h+1 t=N+m+2h+1

Ve
comparator truncation error

f Uy, — inf 4(yf,uf F.2
Mlen/vloz syt u) Wellr_ll(w) t(y¢,uf) (F2)

policy approximation :=.J(M)—J ()

The novelty in this regret decomposition are the “ fP* policy regret” and “y?®* control approx-

imation error” terms, which are coupled by a common choice of comparator Malpprx € M. The

first is precisely the policy regret on the F**, fP**? sequence, which (as decribed above) we bound

via viewing descent on fi(- | Gy, y}3') as a running OGD on the former sequence, corrupted with

nonstochastic error.
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The term “y}** control approximation error” arises from the fact that, even though fpred de-

scribes (up to truncation) the true response of the system to the controls, it considers controls based
on estimates of natures y’s, and not on nature’s y’s themselves. To bound this term, we show that
there exists a specific comparator M, Which competes with the best controller in in the re-
stricted class My that access the true natures y’s. Proposition F.8 constructs a controller M«
which builds in a correction for the discrepancy between y"2 and y"2. We show that this controller
satisfies for any ¢ > 0,:

«nat

vy control approximation error’ S Z M — Mappres||3- (F.3)

~

A proof sketch is given in Appendix F.1.2, which highlights how we use that M overparametrizes
M. Unlike the coarse argument in the weakly convex case, the first term Eq. (F.3) has the desired
quadratic sensitivity to eQG. However, the second term is a movement cost which may scale linearly
in T' in the worst case.

Surprisingly, the proof of Eq. (F.3) does not require strong convexity. However, in the presence
of strong convexity, we can cancel the movement cost term with the negative-regret term from the
fPred policy regret. As decribed above, the fP*d policy regret can bounded using a strengthening
of Proposition F.3, to

_ Te2
« ppred policy regret” < log T+—C - Z M — Mapprx ”Fv

for appropriate strong convexity parameter «.. By taking c to be a sufficiently small multiple of «,

T2
policy regret” < log T+ iy
!

«nat

y;*" control approximation error” + “f pred

In light of Eq. (F.1), we obtain the desired regret bound by setting N = /T /..

F.1. Rigorous Proof of Theorem 5
F.1.1. fPd_poLICY REGRET

We begin with by stating our general result for conditionally-strongly convex gradient descent with
erroneous gradients. Our setup is as follows:

Condition F.1 We suppose that z;+1 = Uy (z¢ —ngy), where g = Vfi(2t) + €. We further assume
that the gradient descent iterates applied for t > to for some to < k, withzg = 21 = --- = 2z, € K.
We assume that ||g;||2 < Lg, and Diam(K) < D.

The following theorem is proven in Appendix K.

Theorem 9 Consider the setting of Condition E.2 and F.1, with k > 1. Then with step size ny =
the following bound holds with probability 1 — § for all comparators z, € K simultaenously:

T
Z fe(ze) = fi(z) —< Z HetHz 122”215 Z*Hz)

t=k+1 t=k+1
kLt + h?L. kdL? + kBL kL? 2
SO&k‘DQ—F( £+ ) ga+ f+ 5 glog(T) - 1 <1+10g(§+aD ))
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Observe that when €; = 0, we can take Lg = L¢ and discard the second on third terms on the first
line, yielding Theorem 8. Let us now specialize the above to bound the fP™-policy regret. First,
we verify appropriate smoothness, strong convexity and Lipschitz condiitons; the following three
lemmas in this section are all proven in Appendix 1.2.3.

Lemma F.4 Under Condition D.1, f red(M ) are 43-smooth, for 3y as in Lemma E.3.
Lemma F.5 Let oy as in Proposition E.2 and suppose that

1 oy
€qg <
9Rnat R./\/l RG* Moss

Then under Condition D.1, the losses ffzed(M ) are oy /4 strongly convex.

Lemma F.6 (Lipschitzness: Unknown & Strongly Convex) Recall the Lipschitz constant L ¢ from
Lemma C.5. Then under Condition D.1, fP**(M) is 4L ¢-Lipschitz, fP"* [My.,_) is 4L coordi-
nate Lipschitz. Moreover, maxyrepm ||Vfe(M; G,y ||2 < 4Ly

Specializing the above theorem to our setting, we obtain the following:

Lemma FE.7 (Strongly Convex Policy Regret: Unknown System) For the step size choose 1 =

12 . . . )
> the following bound holds with probability 1 — 0.
T 2 2
TC, eq(N, o
(fPr-policy regret) + % Z IM; — Mapprx [l S (Bq. (E.1)) + —222 o, 9)
t=N+h+m @

Proof In our setting, z; <— My, 2z, < Mapprx, €, and €, < Vf(M | é, yian) —Vftpred(M). More-
over, we can can bound the smoothness 3 S 3y, the strong convexity o 2 oy, and all Lipschitz con-
stants S Ly, where Ly was as in Lemma C.5. Using the same diameter bound as in that lemma, we
see that the term on the right hand side of Theorem 9 can be bounded as in Eq. (E.1)), up to constant
factors. Moreover, in light of Lemma F.2, we can bound the term £ Z?: 1 € || from Theorem 9

by < éT(CapprOXeg)? This concludes the proof. Lastly, we lower bound — {5 Zthl |2t — 24|13 by
T
— 3% D= Nt hm M — Mapprs| 3. |

F.1.2. y"*_COMPARATOR APPROXIMATION ERROR

We prove the following theorem in Appendix 1.3:

Proposition F.8 Let M := M (mq, Ra/2), suppose that m > 2mg — 1 + h, Pg, (b + 1) <
R, /T, and that Condition D.1 holds. Them there exists a universal constant C' > 0 such that, for
all T > 0,

(y"**-approx error) < 36m>R¢; R Riq(m + Tel) max{L, L?/7}
T

2
+7 Z M — Mapprex| | -
t=N+m+h+1
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Proof [Proof Sketch] Let M, denote the optimal M € Mg for the loss sequence defined in terms of
the true y"' and G,. First, consider what happens when the learner selects the controller M; = M,
for each ¢ € [T]. By expanding appropriate terms, one can show that (up to truncation terms), the

contoller M, operating on y‘ff}t produces the same inputs as the controller Mpprx = M+ M, +(G—

G.,) * M, operating on y2*, where ‘x’ denotes the convolution operator. Since M overparametrizes
My, we ensure that M, € M.

Realistically, the learner does not play M; = M, at each round. However, we can show that the
quality in the approximation for playing M, instead of M, degrades as ), eg - |[M; — M, ||r. By
construction, || Mapprx — M, ||r scales as eg, so the triangle inequality gives e - |[M; — M||r <
€2 + €¢||My — Mapprx||p. By the elementary inequality ab < a?/7 4 7b%, we find that the total
penalty for the movement cost scales as Y, €% + €4/7 + 7||My — Mappix||& = TeZ (14 1/7) +
73 [IM¢ — Mapprex ||%; this argument gives rise quadratic dependence on €2, at the expense of the
movement cost penalty. [ |

F.1.3. CONCLUDING THE PROOF OF THEOREM 5

We assume that N and T satisfy, for an appropriately large universal constant ¢/,

nat>
[0

L 2
N = mh?C5Rq, Rt Rua \/ mT(1+ = + ﬁLkZS) and T > h*C{R}, R (F4)

Since we also have ¥, (h + 1) < 1/10T, our choice of N ensures Condition D.1 holds with
probability 1 —§ — N~ log? N — 1 _ § — 7~og?T), Combining Lemma F.7 and Proposition F.8

with 7 = J¢, we can cancel the movement cost in the second bound with the negative regret in the

first:

(¥™**-approx error) + (fP**I-policy regret)

2
< (Eq. (E.1) + (T +m) (m2R4G* RA(R., max{L, %2} + @)
TC?
,S (Eq. (E.1)) + (T(S + m)m2h4R4G*le\/lR4 (L + W)

nat
TC?
< (Eq. (E.1) + T‘sm%%‘éﬁj{m‘* (L + Ltbios)®y

nat

where in the second line we recall from Lemma F.2 the bound Capprox < vVmRa, RaR2,; (Bloss +

L), and use eg(N,0) = Cegt hz\;%“ Cs for Cs5 = \/dmaX + 10g% + log(1 + Rpat). In the third

line, we use the assumption that 7" > m? from the Theorem.
From Lemma D.3, we can bound

(estimation & burn-in loss) < 4L(m + 2h + N)R% R, < LNR% R,

where R, as in Lemma D.1. By assumption \/d, +log(1/d) < Rp(Rpat, we have Ry <
Ra(Rpat. Thus,

pred

(y"*-approx error) + (fP**-policy regret) + (estimation & burn-in loss)

TC? L+p32 /L
< (Eq. (E1) + L <N‘5m2h4R§;*Rj{/,Rﬁat <1 n *5;/> N NRiatR.%\/lRé‘*> _
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For our choice of IV, the above is at most

L 2
S’ (Eq. (E.1)) + mthR%*Ri/lnglatCCS\/m(l + E + Boléols/s) ’ \/T

Finally, similar arguments as those in previous bounds show that the truncation costs and policy
approximation error are dominated by the above regret contribution under the assumptions ([ 5 | —
h) = ¥(mo) < Rg,/T and Ry, < Rp/2 (note that the policy approximation is for the class
Mo = M(mo, Rp/2)), and Y, (h + 1) < Rg, /T. O
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Proof Details

Appendix G. Generalization to Stabilized Systems

In this section, we consider a generalization to settings where the system may not be internally
stable; that is, where p(A,) > 1. Throughout, we assume the system is stabilizable and detectable:
a linear system is said to be stabilizable if, in the absence of perturbations, there is a state-feedback
controller that drives the state of the system asymptotically to zero; a detectable system is one
where, in absence of perturbations, the state asymptotically tends to zero as long as the observations
are all zeros. Relaxing the notions notions of controllability and observability respectively, these
requirements do not impose any conditions on the stable modes of the system. In particular, we will
employ these assumptions to guarantee the existence of a stabilizing observer-feedback control.
See Anderson and Moore (2007) for an extensive discussion.
Our general recipe is as follows:

1. We assume access to a stabilizing nominal controller my. This induces an dynamical system
with exogenous inputs, or LDC-EX (Definition G.4).

9, G

2. The LDC-EX produces a control ouput, 73;. It’s “natural” version n"®* (Definition 3.1b) can
be computed from input output data, and is what is used to parametrize the controller. This
formulation is described in Appendix G.2.

3. In Appendix G.3, we formalally detail our controller parametrization for this framework,
which we call DRC-EX, or Disturbance Response Control with Exogenous inputs. We then
provide the generalization of our main algorithm, which we term DRC-GD-EX.

4. In Appendix G.4, we detail various examples of LDC-EX parametrizations.

(a)

(b)

(©

We show that the stable setting can be recovered as a special case, as well as the static-
feedback control, and control with nominal stabilizing controllers which are themselves
internally-stable (Examples 3 to 5).

In general, unstable systems may require internally-unstable controllers to yield stable
closed-loop dynamics. To this end, we describe an LDC-EX parametrization based on
exact observer feedback (Example 6), which yields the classical Youla parametrization
(Youla et al., 1976), and allows us extend our results to arbitrary stabilizable and de-
tectable systems.

The exact Youla parametrization requires full system knowledge to construct an exact
observer-feedback controller. To circumvent this, we demonstrate a convex parametriza-
tion based on approximate observer feedback, Example 7. This combines the classical
Youla parametrization with a perspective based on Nature’s n’s, which affords convex
parametrization without an exact observer-feedback controller.

5. Finally, in Appendix G.5, we demonstrate that all above examples of DRC-EXparametrizations
are fully expressive, in that they can approximate the dynamics of any stabilizing linear dy-
namic controller to arbitrary degrees of accuracy (Theorems 10 and 1b).
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G.1. Preliminaries

Going forward, it will be useful to slightly formalize our notion of Markov operators, which we
shall interchangably refer to as transfer operators. We define

Definition G.1 (Markov Operator) Let %> %n denote the set of Markov operators G = (G )i>0
with Gl € Réo*din such that ||G|¢, op < 00. Given a system (A, B, C, D) with input dimension di,
and output dimension d,, we let G = Transfer(A, B,C, D) € 9, 4, denote the system GO =D
and Gl = CA*1B.

Next, we state a computation of the joint evolution of a system under an LDC :

Lemma G.2 Let (y],x]) be the observation-state sequence produced on the execution of a LDC
m on the LDS parameterized via (A, By, Cy). For a given sequence of disturbances (e, W), the
Jjoint evolution of the system may be described as

Xpi1 _ A+ B.D;C, B,Cr| [x] n I B,D;| |w; G.1)
Vi) I B,C, Ar \ 0 Bx e |’ )
———
ATr,cl B7|-7C1
vi| | Ck 0| [xF 0 I |w
b= e, ] [ ol [a] =
_C,_/ 7,—/
,cl ,cl

We refer to this dynamical system as the closed-loop system in the main paper. Finally, we define

B, D,
C'7r,cl,u = [DWC* Cﬂ] s Bﬂ,cl,e = |: B :| >

and let Gw,cl,e—)u = TranSfer(Aw,ch By cle; CTI',C],’LL? Dy).

Proof The dynamical equations may be verified as an immediate consequence of Equation 2.1. W

Definition G.3 (Markov Operators for closed loop systems) Given an LDC w, we define the sys-

tems,
[i] —1 (2] G, 1 B
i— *
Gﬂ',cl,u%(y,u) = Hi:ODﬂ'vCl + Hi>OCT"7C1A7r,c1B7T7CLin’ Gn,cl,uﬁ\(y,u) = GEIC R ) Bﬂ',CLiH |: 0 :|
T,clLu—u

where (Ay o1, Br.cl, Cr o1, D c1) are given by Lemma G.2. Furthernote, we define ) o1 = ¢
as the decay function of G c1, namely, ) q1(n) = Ziz“ Grol

m,cl

G.2. Linear Dynamic Controllers with Exogenous Inputs (LDC-EX)

In this section, let us set up a general stabilized parametrization. First, let us define the notion of an
internal stabilizing controller:
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Definition G.4 An linear dynamic controller with exogenous inputs or LDC-EX, denoted by a
policy mo = (Anry, Bry, Cry, Dy ), as well as matrices By, Cro,ns Drg,ny which selects inputs
u; le according to the following dynamics:

o o alg ex
St+1 = A7rost + Bm)yt + B7T07uut

o o alg
w = CrySt + Dryy;

alg o alg
My~ = CromSt + Dro Yy
alg ex o
u - =u +uy

We refer to ug™ as the exogenous input, 0 as the internal input, and u?lg as the total input. We refer
ton; '8 ¢ R gs the control-output. The control policy m is called the nominal controller. Lastly,

we also define v2'® := (y*'8 u®®) € R which we call the total output.
Overloading notation, we will alternatively use 7 to refer to the policy control (A, Br,, Cry, Dry),
and to index objects associated with both 7 and the additional matrices By, Cry,ny Dro.n-

In an LDC-EX, the endogenous input 1 is chosen so that, in the absence of inputs —i.e. ug* = 0
— the joint dynamics of the system remain stable. This allows us to generalize to settings where
the dynamics of the nominal system may not be stable. For somewhat sophisticated reasons, in
stabilized systems, one can be restricted by using Nature’s y’s for inputs. Instead, we will base our
inputs on Nature’s 7’s, defining 17]'®* to be the control-output in the absence of exogenous inputs:

Definition 3.1b (Natures u’s, y’s, 1)’s) We define ul®t, y1*, and n®" as the sequence that arises
when, for all s, u$* = 0. We set vi®* = (yPa*, upat). We note that u®', y ' coincide with uy®,y;°,

whose dynamics are given by Lemma G.2 with the policy m < .
Rather than requiring the nominal system to be stable, we will use controllers based on 1" (or

estimates thereof). This requires only that the 7 stabilize A,. Formally:

Assumption 1b (Stabilized Setting) We assume that an LDC-EX is stabilizing,; namely that Ay, o
is stable, where Ay .| be defined in Lemma G.2.

In order to define our DRC-EX parameterization, we need to introduce the following relevant
transfer operators. We note that the ‘A’ matrix in each of the following Markov operators is Az, 1,
which is stable by the above assumption, so each of the following operators are stable:

Definition 2.2b (Markov Operators for Strongly Stabilized System) Fix an LDC-EX controller,
and let Az, 1, Bry 1y Cro.cly Dy o1 be as in Lemma G.2, with w < mq. Further, define

Cﬂo,clm = [DTFOJIC* Cﬂoﬂ?] ) D?dem = [0 Dfroﬂ?] )

B 0
BWQ,CLBX = |:B * :| ) Dﬂo,cl,ex = |:I:| )

0,6X
and the transfer functions Gex_(y ) € @(dytdu)xdu gpq Gex—sn € @dnxdu yjg
Gex—>(y,u) = TranSfer(Awo,cla Bwo,cl,exa Cm),cla Dﬂo,cl,ex)
Gex—m = TranSfer(AﬂQ,ch Bﬂ'o,cl,ex; C7T0,C1,’I77 0)
G(w,e)—)n = TranSfer(Aﬂo,cla B7T0,C17 CTI'Q,CL?]? Dﬂ'o,cl,n)

G(w,e)—>(y,u) = TranSfer(Awo,cla B7T07C17 C7T(),C17 Dwo,cl)>
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ex—Y

vw) = [Gex—m

We can now write a “Nature’s y’s” representation of all relevant quantities:

and will decompose G —( } for appropriate Gex_sy € Gdyxdu G . Gduxd

Lemma 3.2b We have the following identities for (y; 2l ,u; 'e ,u; Ig).
alg nat t—1
Ye o _ | Ye [4] ex
0| L?at] 2 Gy W
Moreover, we have the following identity for n; e

alg __ nat § : X
n - = + Gexﬂnutfi

Finally, we can express Nature’s y’s, u’s and n’s as functions of the noise via

nat t t
nat yi _ 4] Wi—i nat __ 4] Wi—i
Ve [ugat} = 2_; C w0 [et_i] o= Z_; G lwerm [et_i]
The proof of the above lemma is a consequence of computation augmenting that of Lemma G.2
computation, whose proof we omit in the interest of brevity. We now state the relevant generalization

of Assumption 3, which by the above lemma and a similar computation for the mapping of (w, e) —
(y, u), holds for any bounded noise sequence:

Assumption 3b (Bounded Nature’s y, u, 7) We assume that that w, and e; are chosen by an
oblivious adversary, and that |[vi®||y == ||(yP*, ud)||a < Ryat and |92 < Rpat forall t. '3

G.3. DRC-EX Parametrization and Algorithm

Let us now describe the DRC-EX parametrization. Throughout, we will supress dependence on .

Definition 3.3b (Disturbance Response Controller with Exogenous Inputs) A Disturbance Re-
sponse Controller with Exogenous Inputs (DRC-EX), parameterized by a m-length sequence of
matrices M = (MU 1 chooses the control input as u§* Z M [slppat . For a fixed M,

we denote the resultant inputs, ouputs, and control-outputs (yt ,uM ,nt M) and let J7 (M) the loss
functional. We also set vM = (yM u™).

Parallel to the stable setting, if Gex—s,, is known exactly, one can exactly recover 7**% via Lemma 3.2b.

nat

When unknown, we can approximately recover 7;'®] using an estimate Gex_m, namely (Line 7)

t
Anat . alg (4] ex
U = Z ch—m u;—;
i=1

13. Note that, if the system is stable and perturbations bounded, that y}** will be bounded for all ¢.
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Thus, we propose to use the estimates 7,°* to define our controller. Moreover, to estimate the
consequence of a given input, we also need to estimate the v; = (y??', ul®") so can ascertan the

baseline in the absence of exogenous input. Thus we take
¢

Snat . _alg 1 ex
v, =y g Gex—}(y,u)ut*i'
=1

The above definitions give rise to the following counterfactual dynamics and losses:

nat nat

Definition 4.1b (Counterfactual Costs and Dynamics, Stabilized Systems) Let viat = (yPat ybat)
and V"' denote estimates of vi®*. We define the counterfactual costs and dynamics

m—1
i (M | A1) = Y My
i=0
h .
Vi |:Mt:t—h | Gex%(y,u)v ﬁﬁtatv thati| = that + Z ng(_)(yﬂ) : ugii (Mt—i ’ 77111?31) )
i=1
F [Mt:t—h ’ Gex%(y,u)’ﬁﬁ?tavtnat} =4 (Vt [Mt:t—h ’ Gex%(y,u%ﬁlﬁ?tavtnat})
Overloading notation, we let vi(M; | -) := v{[My,..., M, | -] denote the unary (single M;) spe-

cialization of vy, and lower case f; (M|-) = Fy [M, ..., M|] the specialization of F;. Throughout,
we use paranthesis for unary functions of My, and brackets for functions of My.+_p,.

The gradient feedback controller (Algorithm 1) and estimation procedure (Algorithm 2), and
DRrc-GD algorithm for unknown algorithm (Algorithm 3) are modified in algorithms Algorithms 4
to 6, respectively.

49



10
11

IMPROPER LEARNING FOR NON-STOCHASTIC CONTROL

Algorithm 4: Disturbance Response Controller via Gradient Descent, with Exogenous Inputs
(DRrRC-GD-EX)
Input: Stepsize 7, radius R, memory m, Markov operators @OX_,(
Define M = M(m, R) = {M = (M) ;' || M|l 0p < R}
Initialize M; € M arbitrarily.
fort=1,...,7do

al lg . al
Observe Vit = (yil & ul'®)

Update §;, 1, 17? € as in Definition G.4
Estimate v,"** and 7" vi

y,u) an—)’l]’ rollout h.

g hnat . Ali] ex ~nat .__ -alg 4] ex
Vi = E Gexﬁ(yuut—ia n = _E Gex—mut—i

Choose the exogenous control 1nput as

ex,alg ex /\nat (4] /\nat
u, —u (M | n1) E M;

Play total input u'® = u™% 4+ g,
Observe the loss function ¢; and suffer a loss of ¢;(y¢, ut).
Recalling f;(-|-) from Definition 4.1b,update the disturbance feedback controller as

Mt+1 = HM (Mt - ntaft (Mt ’ éex—)(y, )7771nt ’that>>

G.4. Examples of LDC’s with exogenous inputs

Let us now provide examples of possible LDC’s with exogenous inputs mg which can be used.
The first three examples (Examples 3 to 5) are only pertain to a subset of dynamical systems -
namely those that are (a) internally stable, (b) stabilizable by static feedback, or (c) stabilized by an
internally stable controller.

In general, the are certain pathological which are unstable, and cannot be stabilized by static
feedback or internally stable controller (see e.g. Halevi (1994)). For general systems, Appendix G.4.1
describes an LDC-ex formulation based on powerful parametrization known as the “Youla parametriza-
tion” Youla et al. (1976), also attributed to Kucera (1975), which uses an observer-feedback con-
troller to provide an internally stabilizing, convex controller parametrization for arbitrary systems.

Unfortunately, realizing an exact Youla parametrization requires exact system knowledge. To
adress this, we consider introduce an LDC-ex parametrization based on approximate youla parametriza-
tion. Under mild conditions, we shall show that these parametrizations have the same expressive
power as the exact Youla parametrization, despite allowing for inexact system knowledge.

Example 3 (Stable System) The internally stable system case (Assumption 1) corresponds to the
setting where p(A,) < 1. Hence, we can Ar,, Br,,Cr,, Dr, to be identically zero, nt y?lg,
corresponding to Cr, , = 0 and Dy, = I, . This satisfies Assumption 1b because Ar, o = A,,

which is stable by assumption. This identical to the stable system setting in the body of the paper.
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Algorithm 5: Estimation of Unknown System

Input: Number of samples NV, system length h.
Initialize

A10] _ |94, xd, Ali] _ ,
Gex%(y,u) - |: jdx :| ) Gex%(y,u) - O(dy+dU)Xdu’ ngc—m OandU’ i>0

forr=1,2,...,Ndo
L Play u;™ o ~ N(0,14,), recieve v’ = (u?'®, y2'€) and n'

Estimate GLLL;’, and @BjL via least squares:

N
A[1:h] . alg cx alg
Gex%(y,u) = arg[f;l]ln t:§h+:1 HV § G ||2

Gz[e?(ﬂn%argmm Z ||173|g ZG[l exaIgH2
O —ht1

Return Gy (1), Gex—n-

Algorithm 6: DRC-GD-EX for Unknown System

Input: Stepsizes (7:)¢>1, radius R, memory m, rollout s, Exploration length IV,
Run the estimation procedure (Algorithm 2) for IV steps with system length h to estimate

Gex%(y u)» Gex—m

Run the regret mlmmlzmg algorlthm (Algorithm 1) for T' — N remaining steps with estimated
Markov operators Gex_,(yvu), Gex_m, stepsizes (74N )¢>1, radius R 4, memory m, rollout
parameter h.

Example 4 (Static Feedback) Under static feedback, we take Ar,, Br,,Cr, to be zero, but set
D, = K for a static-feedback matrix K € R%*d= - Again, we set n; e — y; e corresponding to
Cron = 0and Dy, ,, = I. From Lemma G.2, the closed-loop matrix A, o is given by A,+B,KC,.
Thus, we require K such that p(A, + B, KCy) < 1. For general partially observed systems, it may
not be the case that such a K exists, even if the system is stabilizable (i.e. there exists a control
policy my which stabilizes it). However, for stabilizable fully observed systems, such a K is always
guaranteed to exist, and can be obtained by solving the discrete algebraic Riccati equation, or
DARE (Anderson and Moore, 2007). Observe that static feedback reduces to the stable-system
setting when K = (.

Example 5 (Stabilizing Feedback) More generally, we can select a stabilizing controller wy such
that Ay, Bry, Cr,, Dr, need not be zero, but both the internal controller dynamics, and the closed-
loop dynamics are stable. That is, p(Ax,) < 1 and p(Ax, 1) < 1. Yet again, we set nf'g = y?'g,

corresponding to Cr ,, = 0 and Dy, , = I. Note that this strictly generalizes Examples 3 and 4:
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Static feedback is recovered by setting Ar,, Br,,Cr, = 0 and D, = K, and stable systems by
setting D, = 0 as well.

G.4.1. ExAacTt YouLA LDC-EX

As described above, certain pathological systems may not admit any stabilizing controller my sat-
isfying Example 5, and thus no controllers satisfying either of the special cases Examples 3 and 4.
However, all stabilizable system and detectable systems do admit stabilizing controllers of the fol-
lowing form:

Example 6 (Exact Observer Feedback) Consider a stabilizable and detectable system, and fix
matrices L, F that satisfy p(As+ By F') < 1 and p(A, + LC,) < 1. Exact Observer Feedback with
Exogenous inputs denotes the internal state $; via X, € R%, and has the dynamics

Xi+1 = (Ax + LC)x — Ly, + B*llilg

et = O %y, w)® = uft + FX,,
with X1 = 0. This yields an LDC-ex d,, = d,, with Ary = (Ax + LCy + B.F), By, = —L,

Cro =F, Dy =0, Cryy = Cy, and Dy, ) = —1.

Note that the optimal LQG controller is an observer-feedback controller. However, for this parametriza-

tion, we don’t need to know this optimal LQG controller. Rather, any observer-feedback controller
will suffice.

Lemma G.5 Under Example 6, following identities hold:

1 G([f)](%n = 0 forall i > 0. In other words, n] e — n for all t, regardless of exogenous
inputs.

2. We have the identity.
p=liz0 [0 Ig,] + TisoCu(Ax + LC)' ™ [Ig,  F].
3. We have the identity

Gl

ex—(y,u)

0 C .
=T [Id ] + Liso [F*} (A, + B,F)"'B,.

u

4. We have the identity

i—1
[4] . |0 T 10 A, B,F Ce O
G(w,e)—>(y,u) = Lizo {0 o] +1i>0 {0 —L| |-LCy A.+ BF+ LC, 0 F

Moreover, via a change of basis, we can write

i—1
0 o, [I O0][A+BF BF C, -F
G e () = Ti=0 [0 O}—HIDO [—L ~Lj| o A+rc) |0 F
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Proof The first four computations may be verified directly. Alternatively, Lemma G.6 suffices to
establish this while substituting (A, B«, Cx) = (A, B,C). For the last claim, a change of basis

conjugating the A, o matrix by 7' = H ?] ,via T~ A, oT suffices. [ |

In particular, since p(A, + BiF), p(Ax + LC,) < 1 hold by assumption due to stabilizability and
detectability, all of the above systems are guaranteed to be stable.

G.4.2. APPROXIMATE YOULA LDC-EX (LDC-EX)

The previously suggested parameterization requires exact specification of the system parameters
(A, By, Cy). However, for an unknown system, one can only hope to estimate parameters approx-
imately. This section details the effects of executing a Youla controller with approximate estimates
of the system parameters.

Example 7 (Approximate Youla LDC-Ex) An Approximate Observer-Feedback controller when
given parameter estimates A, B, C and executed under the influence of exogenous inputs follows:
)/Et—&-l = (A\—I- La)it - Lyt + Eut
- é\it -
ur = ufx + Fﬁt
Note that 7); depends on the history of exogenous inputs ug*. Still, we can give a closed

form representation of the overall system dynamics, and the map from exogenous inputs to out-
puts/controls:

Lemma G.6 Ser 6; := X; — x; and Ayqy = A—A, + L(a — C). Then, the dynamics induced
by Example 7 satisfy that

Xi+1| _ [Ac+ BoF BF | [x n B s i I 0| |w
dir1] | Ayow A+ LC| |6 B-B,| ! —I —L||e

———
::A:,m B?,in
and
Yyt C* 0 0 I
ﬁt - C_O* C |:6:| + I ut + _I et.
u F R 0 0

Denoting by G- ;, the Markov operator describing the map from ug* — (y¢, u;), we then have the
identity that

nat
Yt E: [d]
|:ut:| |: nat:| + G ~in t I
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Proof Let’s change variables.

Xt41 = Auxt + BoFXy + Boud™ + wy
= (A + B,F)x; + B, Fd; + B,uy™ + w;
A+ LC)%; — Ly, + BF%, + Buj*
A+ BF)X;, + L(CX — C,x;) + Bu$* — Le;
A+ LO%, — (A, + LC)x; — Le; — wy + (B — B)uS

)
A+ LCYs; + (A— A, + L(C — C)x¢ — Ley — wy + (B — By)us™

Xt+1

5t+1 = Xt+1 — Xt+1 =

(
= (
(
= (

Once again, changing variables, we have

= 65t—|— (5— Ch)xi — e
ut:u§X+F5t+Fxt.

G.5. Expressivity of DRC-EX

In this section generalize the expressivity guarantee of Theorem 1 to our more general setting.
To begin, let us define a notion of an operator which translates the dynamics under the nominal
controller my to target dynamics 7:

Definition G.7 Given a dynamical system 7, we say that G, is a 1y — T conversion operator
if the following under dynamics induced by any noise sequence (W, e;): If (y7,uf) are the input-
output sequence under 7 (Lemma G.2), then the sequence defined by

ex T—>T0 z : t
0 = Gﬂo%ﬂ'rr,;la

satisfies the following for all t:

™ nat
Ye | + Z [t z] uET o
u?’ - nat ex—(y,u) u; :
In other words, if one selects exogenous inputs u;™ ™70 then one recovers the dynamics of the
controller 7. Note that, it is enough to show that one recovers the dynamics of uj, since the inputs

and noise to the system uniquely determine the dynamics of y; via Eq. (1.1). With the above
definition, we define our comparator class accordingly:

Definition 2.3b (Decay Functions & Policy Class) Given an LDC-EX my, we define the com-
parator class 11(1)) as the set of all 7 for which there exists a m9 — ™ conversion operator
Gro—n Which decay dominated by +): that is, Yc, . (n) < ¥(n) for all n. Moreover, we define

R, = 1V [Gexsnllerop V |Gexsyun) 11 op and ¥, () == max{idc, ., (1), ¥Gus ., (1)}

With this definition in mind, Theorem 1b follows by direct analogy to Theorem 1:
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Theorem 1b Let I1(v)) be as in Definition 2.3b, Ry = 1(0), and let Jp(M) of the strongly
stabilized DRC controller (Definition 3.3b). Given a proper decay function 1 and € I1(v)), there
exists an M € M(m, Ry,) such that

Jr(M) — Jr(r) < 2LTRyRE, B2, (m). (G.3)

Proof The proof is analogous to the first part of the proof of Theorem 1, where the control approxi-
mation identity (Claim C.7) is built into the definition of ¢(-) by assumption. We omit the proof in
the interest of simplicity. |

While quite general, Theorem 1b guarantees competition with policies whose conversion operators
(II(+) in Definition 2.3b) have reasonable decay, and unlike Theorem 1, it does not make this
explicit. Thus it remains to show that this class II(¢)) is reasonable expressive.

In what follows, we will show that an analogoue holds in all of our examples. Let’s make this
formal:

Definition G.8 (Convolution of Markov Operator) Ler G € 9% %% and Gy € G%>d2  We
define G = G1 © G as the operator

Gl =% ai .
§=0

Theorem 10 For any policy w, the matrix G r,—. can be represented as follows:

1. Ifthe system is internally stable (Example 3), Gr,—z = Gr ol e—su, for mo which is identically
zero.

2. Ifthe system is stabilized by static feedback mo (Example 4), Gz = @ﬂoﬁﬂoGWO,y_}(y’u) is
as detailed in Proposition G.10 since a static controller is internally stable too, with Ay, = 0.
Furthermore, since p(Ar, 1) = p(A« + B.KC,) < 1, both G ny—sn and G ro,y—(y,u) €xhibit
geometric decay.

3. If the system is stabilized by internally stable feedback (Example 5), Grosr = Gry—r ©
G ro,y—(y,u) IS as detailed in Proposition G.10. In particular, both Gry—r and G,
exhibit geometric decay as long as  is stabilizing, since p(Ar,) < 1 and p(Ar, 1) <1

y,u)

4. If the system is stabilized by exact observer feedback (Example 6), the G, is as detailed
in Proposition G.11. The latter exhibits geometric decay as long as T is stabilizing.

5. If the system is stabilized by inexact observer feedback (Example 7), then G, is as Propo-
sition G.12 details. In particular, it is a convolution of three Markov operators of stable
systems, as long as max{p(Ay + BF),p(A+ BF),p(As + LC,),p(A+ LC)} < 1.

In each of the above cases, Gr,— is either the Markov operator of a stable system, or can be
expressed by a convolution of two (Example 5) or three (Example 5) Markov operators of stable
systems.

Specifically, we show that there we can represent G, as an convolution of stable transfer
operators. Since a convolution of operators with geometric decay itself has geometric decay, we
find that we obtain the same expressive power as in the stable system case.
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G.5.1. EXPRESSIVITY OF INTERNALLY STABLE FEEDBACK

Let us begin by defining a closed form expression for the mg — 7 operator that arises under inter-
nally stable feedback:

Definition G.9 (Internally Stable Dynamical System Conversion) Given a nominal controller
mo given by (Ary, Bry, Cry, Dry ), and a target controller w given by (Ar, Br,Cxr, D), and re-
calling the closed loop matrix Ay 1 from Lemma G.2, define the matrices Ar,—rx, Bry—r,Cry—nr

by

A7r,c1 0 B*l)7r —B*
AT('()—)ﬂ' = 0 5 BTI'()—>7T = B7r 0 )
BryCy 0 A, 0 0

CT(()—)T( = [(DT( - DWO)C* Cr _CT(()]
and Dy, —r = [D7T O] Define Gry—n = Transfer(Ar,—sr, Bry—sms Cro—sms Drg—sn ), and define:
[ |1 . 0
GWO:y‘)(yfu) B HZ:O |:D7T0:| + HlZI |:C7TOA£T;1BTI'0:| .

Finally, we define the my — m coversion operator

7r0—>7r § :GTI'()—MT 7’[’0 y_>(y u)

Proposition G.10 For any stabilizing m and internally stable 7y, the Markov operator G,
defined in Definition G.9 is the convolution of two stable Markov operators, and is a my —
conversion operator. That is, for all t, the exogenous inputs

t—1

ex,m—=T __ § : [7] nat
ut ' - Gﬂ‘o*}ﬂ' Yi—i-
i=0

produce the input-output pairs (y7,uf) via
er nat eX 71'_)71'
— 0
[uz:} - [ ] +ZG€HW =

G.5.2. EXPRESSIVITY OF OBSERVER-FEEDBACK (YOULA PARAMETRIZATION)

Proposition G.11 Define the matrices

B.D;—L
* ér :| ) C1y1a,7r = [DT(C* - F] ) DylaJr = Dy
*

AylaJr = ATI',C17 Byla,w = |:
Then,
Gylamr = Tra nSfer(Ayla,m Byla,m Cyla,m Dylam)

is a mg — m conversion operator for the Youla LDC-Ex of Example 6. That is

s—1

y7r nat e .
KA S SR e Sl
j=0
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The statement of the Youla parametrization is standard, though varies source-to-source. We use the
expression in cite Megretski (2004, Theorem 10.1).

G.5.3. EXPRESSIVITY OF APPROXIMATIVE OBSERVER-FEEDBACK (DRC-YOULA
PARAMETRIZATION)

Proposition G.12 Let Gy, be as in Proposition G.11, and define G’ylam € Glutdyxdy iq

~[i Gl
GL%&,TI’ = [I yliﬂr ] :
dy " Li=0

Further, define the operators

o A, + B.F 0 B, B
G,_,*.—Transfer<[§F_LC* /T—FL@]’[L L},[F —F],[I 0])

A, + LC, &F_La’ﬁjﬂa"Q’g'

0 A+ BF
Then, the transfer operator G,z := G:_,, © G’ylaﬂr © G, is a g — T conversion operator for
the Approximate Youla LCD-Ex of Example 7.

Gy_» := Transfer (

G.6. Proofs of Expressivity Guarantes

G.6.1. PROOF OF PROPOSITION G.10

Define
I B,D w I
e ) 22 [2) e 3]

From the closed loop matrices Ay o1, Cr, 1 described in Lemma G.2, the nomimal system with
exogenous inputs is then described by the equations

_ -Xt- _ B*
X1 1= ét = Aﬂ-O’C]Xt + |: 0 :| U?X + Wit
L=t ]
Brro,cl
_— _yt_ _
Y= g, | T CroaXe +em G4

We then put Eq. (G.4) in feedback with the following system via uy™ = utA:

atA+l = Aﬂ—atA + [Bﬂ— 0] S/t

up = Crap + [Dr 1|y (G.5)
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Then, the joint dynamics of Egs. (G.5) and (G.4) are given by

|:Xt+1_ _Aﬂo,cl +_B7r0,ch7r07ro,cl BTI'Q,Clcﬂ’:| |:Xt+1:| + |:I Bﬂ'oLchﬂ':| |:W7r0,t:|

A A
At BrCro a1 Ar. A 0 B €.t

::AAW,CI BATr,Cl

yt_ _ __Cﬂo,cl 0 Xy _[
|:utA_ B _DWCWO,CI C'7r:| |:atA:| + |:D7r Cmo,t- (G.6)

CAW,C]

First, we claim that, for all ¢, the system Eq. (G.6) yields inputs an outputs equivalent to uy, uj:

Lemma G.13 Lety; = (y;,0;) and u® be as given by Eq. (G.6). Then, for us®* defined above,

Vt,y; = yT and ; + u2 = u.

: Yi| _ st Al A
In particular, [uf} =>4 Gﬂg,cl,u%(y,u)ut .

Proof Let us consider the update of the state x;: xy11 = AxX¢ 41+ By(uy + utA) +wp = AyxXpr1+
B*C'TratA + B, D;y;" + w;. First, note that

w = + u,tA = D;y: + C7ratA = D,C.x; + Dme;.
Thus,
Xp11 = AuXpp1 + 0 +ud +wy
= (A, + B,D,C,)x; + B,Cra2 + B,Dye; +w,
Moreover, we have that
aﬁl = AwatA + Bry: = AwatA + B.C.x; + B,C,e;
= AwatA + (BzCy+4)x: + Brey.

Thus, (x;,as") have the same evolution as (x7,af), where aJ is the internal state of the system
when placed in feedback with 7. Thus,

yvi=Cxi + e =CuX] + e =y7
W +ud = D.C.x; 4+ Cra® + D, Cre; = DC,xT + Cral + Dye; = uf.
|

Next, we show that utA can be represented as a linear function of the sequence y;° = (y™, u™):

Claim G.14 Define

_ B . DW
CA“’CL“ = [DWCWO,Cl CW] ) BATr,cl,e = |: "B :|

Bx

Then, the matrices N9 = D, Nl = CAW’Cl’uAiA;{ aBAarcle satisfy

=1 0
PO ST T o |
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o
Proof Analogous to Claim C.7, and the fact that, in the absence of utA, Ve = [3’120} . |
t

Let us now show that N7 is given by C_J,TO_W:

Claim G.15 Forall i 2 0, NI = é%—m. As a consequence,
=1
utA - Z G%aw}_’ﬁw where _7sTO — (y;"O7 u;ro).
1=0

Proof By definition D, = D+, —x. To establish the identity, define the block permutation matrix 7',
where the blocks correspond to the x;, S, atA states:

T —

O O~

0 0
0 I
I 0
Since T2 = I, it suffices to show that

TAATr,clT = Aﬂ'oﬁ\ﬂv TBATr,cl = B7ro~>71'a TCATr,cl = C7T04)7T'

Recall that
Aprel = AWO’CI—FEWO’CUHDWCWO,CI Bﬂo,cl,incw:|
,C Bﬂcﬂmcl Aﬂ“
We begin with
_ (A, + B,D,,C, B,C B C 0
I <l 1o A )
- o o o &k 0
_ [Ay + BiD,C B,Cx, B,
“ | BnC. A | Tl [(Dr — Dy)Cy —Clry]
_ -A*+B*D7TC* 0
= BWOC* A7T0

Moreover, recalling B, = [B | 0], we have

Bﬂ'cﬂ'o,cl = [BWDWOC* O] + [(Dﬂ- - Dﬂ'o)C* _Cwo] = |:B7TO* O]

Finally, since By, c1,inCr = [B*OCW} , we have
Ay + B.D,C 0 B.C
A _ A7T07C1 + Bﬂo,cl,il’lDAWCﬂ()7Cl B7r07cl,in07r _ * B *C' —r A *O T
Aﬂ',cl - B C ) A - T~k 0
wlm,c - B, C, 0 A,
Thus,
A* + B*DTI'C* B*CTI' 0 ATr,cl 0
TAAﬂ',clT = BCy Ar 0 = 0 = A7r0—>7r
B, C 0 Ag Br,Cy 0| Ag,
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c, 0 I B,Dx,

Now, recall Cr, o1 = [D c. C ] and By o1 = [O B
o % s o

} . Then,

CAmcl,uT = |:D7'(C7-(—07C1 Cﬂ.] T
= [(Dr = Dg))Cy —Cry C4] T
= [(Dy — Da)Ch Cp —Cn] = Crpsr

and
TBAﬂ'vCl,e = TBAW,CI’Q = |:B7T07C_lvinD7F:| T
s
B*Dw _B* B*_Dﬂ_ _B*
- 0 0 T = Bﬂ— 0 - BTro—>7r
B, 0 S

We conclude the proof by showing that y;° = (y;°, u;°) can be represented in terms of y;°:

Claim G.16 Recall GY) = T,— Dy +1i51Crry Ao (Bry+ Bro Dy )- Then, u® = 3> GH ym,
Asa consequence,

t—1
S0 [¢]
ye' = ZGW073/_>(31 U)yf g
i=0
Proof Directly from the LDC equations. |
In sum,
t—1t—i—1 ]
ZGTF()—)FS’?OZ = Z GT(()—HT 770 y—(y, u)yt i—7
=0 5=0
which concludes the proof. .

G.6.2. PROOF OF PROPOSITION G.12

Consider the system

n = CX; —yi
VtA+Tr1 AATI'V + BAWT’t
utA T CAﬂ'V + DAHH

w = Fx; + ult . (G.7)
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From Proposition G.10, the inputs u; coincide with uf for all ¢ > 1. Thus, if we set uf* =
F (X} —X;) + uf™, the system
/}Zt_t,_l = (A\—F La)it — Lyt + Eut
uy = Fﬁt + ufx
m = CRip1 —yi (G.8)

also generates u; = uj. Now, let us represent the above as a system with inputs 7y, utA”. We shall
show that these can all be represented in terms of 77,°*%, concluding the proof.
First, we write
X1 = (A + LCOX; — Lyt + By
= (Aw + LCOX; + Lnf + L(y: — n;) + BJFX; + B,ul™
= (A, + LC )X + Ly} — LC,X + B,FX + B,u>™
(

= (A, + B,F)X} + Ly} + B,u?",
where we use the fact that n; = C,x} — y;. Next, we write
Rit1 = (A+ LO)X; — Ly; + Bu
— (A+ LO)%, — Ly, + BFX} + Bu®"
= (A+ LC)X; + Ln} + (BF — LC,)X! + Bu>™,

where in the last line we use n; = C, X} — y;. This gives that

X5 ] [Ac+ BF 0 5:; L [B B] [up™

Xt11| |BF —LC, A+LC| |X L L]|n

. X* uA7r
W [F —F] L{jﬂz 0] [T;t }

Thus, letting
A+ BF 0 B, B
2 = T f =~ -~ o) * F _F I
Cioe ranser([BF—LC* A+LC]’[L L}’[ I O]>
A

. u
denote the transfer operator mapping [ ?; N ] — uf™, we can render
t

Next, for Gyla » := Transfer(Ayia , Bylar, Cylax, Dyla,x) from Proposition G.11, we have
—~ sl
A __ S—J|, %
i =3 Gy,

J=1
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giving that, for uf* defined in Eq. (G.8),

. [z]
t—s s ~|t G
=S A dll - | e )
s=1 j=1 y =

To conclude, let us represent 1} in terms of "', Here, we use the crucial fact that the dynamics of
n; are non-counterfactual. Thus, let us instead consider the following “natural” dynamics:

X?j‘_tl = A X + Bouf™ 4wy

vt = Cuxe + e

snat (A+LC) nat _ pynat +Bunat
wiat — pghat

X0 = (A, + LCE™ — Ly™™ 4 Bud™

nat nat nat
yp CXt — Y

* nat C = nat nat
*X

t — Yt

From Lemma G.5, the n-dynamics under exact observer feedback do not depend on the exogenous

inputs; thus, n;” mat _ = nf for all ¢, where *1?" is defined in Eq. (G.7). Next, we can substitute

XP = (Aw + LC)XP™ — Ly + Boup™
= (Au+ LO)X™ + L™ — LOX™ + B Fxp™
= (A, + LCHX™ + L 4+ (B, F — LC)xM™
Furthermore, we can write
A?_itl = (A+ LO)X™ + Ly — LOXS™ + BFxp™
A+ BF)& 4 Lppat,

—~

Thus,

]l 1A +LC, B,F-LC
xpat | 0 A+ BF

t+1

~nat L
|:Anat:| + |:L:| n?at

Moreover,
*,nat nat nat snat nat nat
n =0 -yt =0 CX T

or in matrix form

snat

TI:’nat _ |:C* _é} |:)A(nat:| +7- nnat_
X

Hence, defining

A, +LC, B,F-LC

Gy_» := Transfer ( 0 i+ BF

[l el
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as the nf'®* — nat transfer operator, we see that

j
my =" =y G et
=1

Thus, from Eq. (G.9), the exogenous inputs ug* from Eq. (G.8) satisfy

ZZZG[t S]Gyslajer[—> }n;lat,

s=1 j=1 i=1

t
- Z(G?—M © Gylam © G*—ﬁ)[t_s]"ﬁlat'

Since ug™ induces the desired inputs uy, the proposition follows.

Appendix H. Regret Analysis: Non-Stochastic

While the theorems in the main paper hold for stable systems, the stated proofs and claims here hold
for the more general setting of stabilizable systems, with the following modifications:

Definition H.1 (Modifications for the Stabilized Case) The following modifications are made for
the Stabilized Setting of Appendix G:

1. We are given access to a stabilizing controller satisfying Assumption 1b

2. We replace Assumption I with Assumption 1b.

3. Yqg, and Rq, are defined as in Definition 2.3b.

4. We replace Algorithm 1 with Algorithm 4, and Algorithm 2 with Algorithm 5.

(where we are granted access to a sub-optimal stabilizing controller).

H.1. Omitted Proofs from Section C

In this section, we present all ommited proofs from Section C, and demonstrate that all bounds either
hold verbatim in the more general stabilized system setting, or present generalizations thereof. This
ensures that Theorem 2 holds verbatim in the more general setting as well. Before continuing, let
us review some of the notation from the stabilized setting, and how the stable system setting can be
recovered:

e Weuse v = (y,u) € R% +d“ to denote the pair of outputs and inputs on which the loss is

(alg alg) (M M).

i and v yiow

measured. In particular, vt
e The exogenous inputs ug* reduce to the inputs u; in the stable case.

o The exogenous inputs u§™ are linear in 17/'®* or estimates 7,*'; in the stable case, these corre-
nat Gnat

spond to y;*, ¥}
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Next, we note that the regret decomposition is the same as in the stable case, given by Eq. C.3.
We begin with a magnitude bound that generalizes Lemma C.1:

Lemma C.1b (Magnitude Bound) Recall the notation with variants v? Ig,vM . For all t, and
M, My, Ms,--- € M, we have

|

maX{HVt [Myi—p | Gex%(y,u)anﬁt,vilat]

ex,M

ex,alg
u
t

o

“(My | 35, } < Rt R

2’ 2

VL IV} < 2Re, Ry Ruas.

Proof The proofs of all these bounds are similar; let us focus on the u;™ alg, \ 'e sequence. We have

T D M[t slynat from which Holder’s inequality implies 0P|y < RuqRuat.

Then, ”V gH = anat_|_28 1 ng—i]u gx algH2 < Rnat"i_HGeX—mHEl,op”u gH2 < Rnat""RG*RMRnat <

2Rq, RpRyat, since Ry, Rg, > 1. |

We now restate the burn-in bound, which can be checked to hold in the more general present
setting:

Lemma C.2 We have that (burn-in loss) < 4LRZ, R3,R2.(m + h)
We now turn to the truncation costs (Lemma C.3):
Lemma C.3 (Bound on Truncation Errors) We can bound
(algorithm truncation error) 4 (comparator truncation error) < 4LT Rg, R.QM Riatwg* (h+1).

Proof Let us bound the algorithm truncation cost; the comparator cost is similar. Note that uy™ Ale

u*(My). By the magnitude bound (Lemma C.1b) and Lipschitz assumption,

T
Z gt alg uilg) Z Ft[Mt:t—h ‘ G*v ylll?ft] =
t=m+h+1 t=m-+h+1
= QLRG* Ranat
T |
Z yt[Mt:tfh ‘ Gex—> (y,u)> nlnt ’V?at] y?Ig
t=mrht1 || L1 [Mit—p | Gex—s yu)»n?%tvvilat] ?g 2
T
Lo RuRe Y [5G, |

t=m+h+1
< 2LTRg, Ry Rnattc, (h + 1) ma [Kthaad P
ELS

By Lemma C.1b, the above is at most 2LT R, beRgatl/)G* (h+1). [ |

Next, we turn to bounding the Lipschitz constants. For this, we shall need the following bound:
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Lemma H.2 (Norm Relations) For any M € IC, we have

h
1Mo 0p < VmlM]p and - max|[Mi—illey op < v/ml| Mo |v

Proof The first inequality follows form Cauchy Schwartz:
m ) m )
1Ml op = D 1M op <D IME e < V| M]lp.
i=1 i=1

The second follows from using the first to bound

h
max [ Mi—illey,op < m?vaHMtfiIIF < Vm||My—pl|p.
[ |

As a second intermediate step, we show that the maps M — y(M | Gy, y13') and M +— uy (M |

nat nat

G, y13',ui?) are Lipschitz:
Lemma H.3 (Lipschitz Bound on Coordinate Mappings) For any M, M € M(M, R),

nat nat nat

V(M | G 3 V) = V(T | Gy, i Vi)
< RnatHM - MHh,op < \/HRG*RnatHM - MHF

2

Similarly, for any My.,_p, My_p € M(M, R)"1,

nat _ nat ] nat _ nat
Hvt[Mt:t—h | Gexs ) Mt Vi) = VielMea—n | Gexos gy M5 V™

)

t ~
< \/%RG*Rnat slilta—)%z HMS - MS”F'

nat

Proof Let us prove the bound for [|v(M | Gex—(y,u), At viat) v, (M | Gex—s(y,u)» At viaty ||y,
for time varying M., 5 and J\;[t;t,h are similar. We have

t—1
Ve LMt | Gos s 13 V] = Vel Mg llo = || 32 Gosiyay (M | 7i5Es) — u(27 | niﬁ?))“
s=t—h
< Ra, hax (M | mia) — (01 | nii's)|
t—1 >
=R 18 — M)s—dpynat
G max ||y (M= M)
j=s—m+1 9
< RucRa, [M = 01| < vmRuaRe, |M -3
41,0p F
where the last step uses Lemma H.2. |

We now present and prove the generalization of Lemma C.5 to the stabilized setting:
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Lemma C.5b Define Ly := L\/mR?, R?, R Then, the functions fi(- | G, yi5', ul3') are Ly-
Lipschitz, and Fi[Myy_p, | Gy, y33¢, ujit] are L s-coordinate-wise Lipschitz on M in the Frobenius
norm | M||p = ||[M9O, ..., M™U]||p. Moreover, the Euclidean diameter of M is at most D <
2V AR .

Proof Let us bound the coordinate-Lipschitz constant of F}, the bound for f; is similar.

nat nat nat

‘Ft[Mt:t—h | Gex%(y,u)»”?:%&"t ] - Ft[Mtit—h | Gex—)(y,u)a’r’l:t y Vi ]

- ‘Et (Vt [Mt:tih ‘ GGXH(?J:“)’ niliatt’ V?at]) — b (Vt [Mtit*h ‘ Gex%(yyu)v ’rlil:atta V?at]) ‘

nat nat nat

< LBnat R, Rt |[VilMa— | Gy W VE™] = Vel Mot | Gy 3 Vi)

< mLRiatRé*RM (Sel%tlil;l(.t] HMS - MsHF) )

where the last inequality is by Lemma H.3. The bound on the diameter of M follows from
Lemma H.2
|

H.2. Estimation Bounds: Proof of Theorems 7 & 7b

We state a generalization of Proof of Theorems 7 for estimating both respose Gex—syy and Gey_, ()"

Theorem 7b (Guarantee for Algorithm 5, Generalization of Theorem 7) Let § € (e*T, Tfl),
N,d, <T,and g, (h+1) < \/% Define dyayx = max{dy + dy,dy}, and set

h?Rya
eq(N,9) = \/Nth, where Cs := 14\/dm(erX +d, + log %, and Ry est = 3/ dy + log(1/6).

and suppose that N > h4C§R121,estR3\/[ R(Q;* + coh®d? for an appropriately large co, which can be
satisfied by taking

N > 1764(dmax + dy +1og(1/8))?h* R, RE, + coh?d>.
Then with probability 1 — 6 — N~ log? N , Algorithm 5 satisfies the following bounds

1. ¢ < 1/max{Ryest; RMRa, }-

ut” < Ru,est = 3y/dy + log(1/5)

3. For estimation error is bounded as

2. Forallt € [N],

||éexﬁ\7] - Gex%n”fl,op < ||ét[3())(ﬁ]m - ng(:ﬂnnh,op + Ru,estd)G*(h + 1) < e

~ AN[1:h 1:h
|Gexs(yan) = Gexmsyanlleno < NGL =GR o levop + Ruesitia, (h+1) < ecr

Moreover, Algorithm 2 satisfies the same for G , G
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Proof Let us focus on Algorithm 5, the bound for Algorithm 2 is the special case of @exﬁ( =G
and Gex%(y,u) = G*.
The first bound of the lemma is strictly numerical. Lets prove the second part of the lemma.

Using standard gaussian concentration (see e.g. Vershynin (2018, Section 4.2)):

|| < 4v/2,/d, Tog 9 + log(3N/5) <

Y,u)

Claim H.4 With probability 1—§/3and § < 1/T <1/Nand < 1/3,
Ruest := 3+/dy +log(1/6) for all t € [N]. Denote this event £Pound,

Let us turn to the last part of the lemma. To begin, let us bound the truncation error. We have

2]%u,est

h? Rnat C5 \/N
1

h2 Rnat \/N

< ¢G*(h+1)\/1ﬁ <1

where the second inequality uses C's > 2Ry est, the thir uses h2Rpat > 1, and the four holds from
our choice of ¥, (h + 1). Hence,

2 ~
% : Ru,estHG»[?h} - G[>h] H@l,op < ¢G*(h + 1)

<vg,(h+1)

Ruest |G = GEM g, o0p < ec/2 < 1/6 (H.1)

, where the last step uses Part 1 of the lemma.

Let us now bound the estimation error. We begin by bounding || G0 — Gl l|op- To this end,
define 6; = v; — Z?Zl GUhy,, and define A = [5]—\;1 | -+ | 8%]. Simchowitz et al. (2019) develop
error bounds in terms of the operator norm of A. In the subsubection below, we provide a simplified
and self-contaned proof of the estimation guarantees from Simchowitz et al. (2019):

Lemma H.5 (Simplification of Proposition 3.2 in Simchowitz et al. (2019)) Then, if N is suffi-
ciently large that N > chd, log4(N ) for some universal constant ¢ > 0, and &) is the event that
|Allop < A, then, with probability 1 — N—1°8"(N) — 5 /4

5 . 5.6
1Grs = G op < S2AV/(h -+ 1) (dax + du + 10g(1/6)).

In particular, for h > 2, we have the simplifid bound

~ . 5.6
1Grs = G2 lop < 22Ny dinas + i+ 10g(1/3)
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Observe that for a sufficiently large constant cg, taking N > coh?d? implies our condition in the
above lemma N > chd,, log* (V). Next, let us bound ||A||op. We the have on the event £%:Pound;

h
Allop < VN & =vVN A Nl
A llop < VN mas 18] = VN maglye = 3 Glue|

=VN pat 5 Gl < VN pat|| 4 | GLM -
max |1y} +; Y| < max [y + 1G5 s op mak e

< VN (Ruae + 1G5l op - Rusest)

<VN (Rnat + é)) (Eq. (H.1))

S g \/NRnat )

where we used the assumed upper bound on ¢, from Plugging the above into Lemma H.5 and
using Ry,¢ > 1 by assumption gives gives

7
3

_ = _ hCy/VN.

Thus, 2||Grs — GLI:h]||g170p < 14h%Cs/V/'N := eg(N, ), as needed.

IN

~ . 5.6
2)|Grs — G |lop < = Rumg VN - Wh\/dmax T dy + log(1/0)

H.2.1. PROOF OF LEMMA H.5

We adopt the argument of Simchowitz et al. (2019), but provide a simpler and self-contained proof.

Let us focus on the Gy (,, ) case, which we shall denote G, for the present argument. We denote

the esimtate of @exﬁ(y,u) and G. Further, let U denote the matrix with rows u?’;jl,f forl1 <t <

N — h — 1. Moreover, let §; = y; — Z?Zl G[ﬂ uy, and let A denote the matrix with rows &; for
h+1 <t < N. We then have the identity

G-G, =T 0T A
We can crudely bound

-~ === _ ==
”G_ G*Hop S ||U U) IHOPHU AHOP’

Let us now bound the operator norm of ||ﬁTA||0p. We have that the columns of U ' A are of the
form

(a8, pr1<een], i€{0,1,...,h}
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Thus, by Tsiamis and Pappas (2019, Lemma A.1), and the definition of the operator norm (with
Sl .= {p:e R% : |jv|| = 1)),

=T
1T Allop < VA+T max, (078 1<i<n lop
2 yeuns

< max  max [[(v uf®? Ig5t)h+1<t<N||2

~i€{0,...,h} veSdu—1

By the self-normalized martingale bounds (Abbasi-Yadkori et al. (2011, Theorem 3)), and the fact
that d; is F;_p_1 measurable, where (F;) is the filtration generated by the random inputs, we have
that with probability 1 — §

1
(v T g™ g5t)h+1<t<N(A A+ X213 < 2log det()\2 ATA +1)+2log(1/6)

In particular, if A2 is any parameter such that the event £y := ||A|op < A, then we have that with
probability 1 — § that whenever £, holds,

exa

1 eXa
FH( e 80 ni<exn |13 < (10 U B0 h1<en (AT A + AT |2
< 2log det(ﬁATA + 1)+ 2log(1/9)
< 2logdet(27) 4 2log(1/9) = 2(dmax log 2 + log(1/4)).

So rearranging,

(0 a8, ) 1 <i<n |2 < Av/2(dimax log 2 + log(1/6)).

Next, by a standard covering argument Vershynin (2018, Section 4.2), we have that if Sy is an 1/5-

netof S%~1, then max, c ga, 1 [|(v U288, ) pi1<e<n 2 < 3 maxyes, [|(v uf"f'gét>h+1<t<zv|rz,

and that we can take log |Sy| < dy log9. Thus, by a union bound overv € Spandi € {0,...,h},
the following holds with probability 1 — §/4,

(v w288, s <e< w2 < /\\/ max + dy)10og 9+ log(4(h +1)/0))
4+/2
N

< ((dmax + du) log 9 +log(8h/4))

< 2.8\ dmax + doy + log(h/d),

Hence, we have that

~ =T
IG = Gullop < 2.8[(T U HlopA/ (7 + 1) (dmax + du +log(h/0)).

Finally, by constants in the argument modifing the arguments of Oymak and Ozay (2019, Lemma
C.2), we have that for any ¢, we can ensure that for ' > ¢(¢)(h + 1)d, log*(Nd,), we can ensure

||(ﬁTﬁ)_1||Op < (1 —€)(N — (h+ 1))~! with probability 1 — N—1og*N_ By enforcing N >
(h+1)/4 and taking € = 1/2, we can obtain || (ﬁTﬁ)_l lop < IN/2, yielding

~ e=Tem
1G — Gullop < 56110 0) ™ lopAy/(h + 1) (s + du + Log(h/5)),

with probability 1 — §/4 — N~1°8" N on &,.
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H.3. Unknown System Regret (Section D.3)

Let us conclude with presenting the omitted proofs from Section D.3, and generalize to the stabilized

case. The regret decomposition is identical to Eq. (D.2), modifying the functions if necessary to

capture their dependence on u'3'. Throughout, we will assume e¢ satisfies a generalization of

Condition D.1 to the stabilized setting:

Condition D.1b (Estlmatlon Condltlon) We assume that the event of Theorem 7b holds (i.e. ac-
curacy of estimates Gex_,( w) and Gex_m) which entail e(N,0) < 1/2 maX{RMRG*, west I

where Ry cst = Ruest(0) 1= 31/dy + log(1/9). Moreover, these entail that |’Gex~)n”f170p) HGex—> y,u)||121,0p <
2R, . These also entail that maxs< N ||uf§Ig | < Ruy,est-

We begin with the following generalization of the stability guarantee of Lemma D.1:

Lemma D.1b (Stability of y}3') Introduce the notation Ry, := 2 max{ Ry est, RapBunat}. Then,
foreg < 1/2max{RmRq,, Ruest} (satisfied by Condition D.1b) the following holds t € [T,

”utx algHQ < Ry, HVtIgH < Rpat + RG*R < 2RG*Ru,
V5% |2, (177 2 < 2Ruat,

Proof The proof is analogous to that of Lemma D.1, but with the following modifications. Let us
sketch the major steps in the proof: we first establish the inequality ||77n‘ert 02 < eglluly

where we recall the notation |lufly alg”gm = maxeqq, ) [[us” gHg introduced in the original
proof. Next, we can establish that

I exalg” <maX{RuestyRMRnat}+€GRMHGexﬁn”E1,OpHu1t 1||2oo

Gex—nlle1,0p < R, (Definition 2.3b). Hence, foreg < 1/2max{RmRq,, Ruest} <
1/2RmRq,, we can recursively verify that Huex’algHg < 2max{Ryest, RmBnat }. Lastly, we
can bound [|[¥228 — v1at|ly < eq||u 8|20 < Ruat under the conditon of the lemma, giving

|[vpat]] < 2||viat||. Similarly, we can bound |72 < 2||nPat]|. [ ]

In the stabilized setting, we shall need to slightly modify our magnitude bounds to account for that
norms of the controls:

Lemma H.6 (Magnitude Bounds for Estimated System) Suppose that Condition D.1b holds. Then,
foranyt > N, and all M € M(m, Rpq) and Mys_p, € M(m, Rpq)",

al ~
a8 (], fuf (M | 9l < 2R Ruat

~nat S nat
Hvt |:Mt:t—h | Gex%(y,u)vnlt » Vi ]

’ 5 < GRG* R./\/l Rnat

Proof We have that [[u$*(M)|l> = || 327" MEgrat|| < Ry maxg<; |77 < 2Ra(Ruat by
Lemma D.1b. The bound on u'® specializes by setting M < M.
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By the same lemma, and the fact that H@ex_,(yju)thop < g + |Gexs g ller,op < 2Ra, by
Condition D.1b,

A ~nat = on [t— X =
Ve [Mro | Gosiguyo it 50 | = |50 + S0 @, s, |

ex— (y,u)
s=t—h
~ ~nat
< 2Rpat + HGex%(y,u)HZhOPM ./\I/nl(?nXRM) max Hut (M ’ nln? )H
< 2Rna‘c + 4RG*RMRnat < 6RG*R./\/anat-
The bound on ||y; | Mys_y, | G, ﬂﬂ | is similar. m

Next, we check that the proof of Lemma D.2 goes through in the general case
Proof [ Proof of Lemma D.2 for Stabilized Setting] The proof is analogous to the general case,
where we replace the dependence no Ry, and R, with an upper bound on y12¢, G2t and max{ H@u—w lle1,0ps 1Gussulley
In light of the above bounds, these quantities are also < Rpat and Rg,, up to additional constant

factors, yielding the same regret bound up to constants. |

Lastly, we establish Lemma D.5, encompassing both the stabel and stabilized case. Given that
the proof is somewhat involved, we organize it in the following subsection.

H.3.1. PROOF OF LEMMA D.4/D .4B
We bound the error in estimating natures y’s and natures u’s:

Lemma D.4b (Accuracy of Estimated Nature’s y and u and ) Assume Condition D.1b. Then
fort > N + h + 1, we have that

Vi = V{2 < 3R Ruateq
0™ — 0|2 < 3RpRuareq

nat nat

Proof Let us focus on [|vI?" — v3%||,, the error bound on ||n?* — §3%||5 is similar. Let us use
the notation G1% to denote the restriction of a Markov operator to (G m)fzo, and G>4 to restrict
to (G11);~. We can then bound:

¢
Z G[t s] ufx,alg G[t s] u:x,alg

anat that H2 —

ex—(y,u) ex—(y,u)
s=1 2
—(N+1 0:t—(N+1
HG +1)] G[ (N+1)] . max [u®® aIgH
ex—(y,u) ex— (y,u) t1,0p sE[N+1:]
[>t— (N+1)] Al>t— N+1] ex,alg
L e

Fort > N+h—1, we have |[u€|| < 2R Ruyat. and under Condition D.1b, we have max,< y [[us*'8|| <
[0:t—N+1] @[O:t—N-i—l]

Ry. Moreover, we can bound HGeX ) e ()

< HG ~G <
P ex—(y,u) ex—(y,u) P

€ under Condition D.1b. In addition, sincet > N + h+ 1,t — N+ 1> h, so

[>t—(N+1)] A[>t—N+1] >h) A[>h]
HGex—> (y,u Gex—)(y u) tiop HGex—>(y u) Gex—)(y,u) 01,0p
>h]
N H ex—(y,u) 0 0p < wG* (h + 1)7
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where we use the fact that GH Sy = 0 for i > 0, and the fact that we define g, (1) :=
max{Yc,,_, . () VGexn ()} (Deﬁnltlon 2.3b). Thus, all in all,

anat AtnatHQ < 2RmRuaceg + wG*(h + 1)Ru,est < 3RmPRnatea,

where the last step holds because RaqRnat > 1 by assumption, and that under Condition D.1b,
¢G* (h + 1)Ru,est < €G- [ |

H.3.2. PROOF OF LEMMA D.5

We prove the lemma in the more general stabilized setting, where we require the stronger Condi-
tion D.1b instead of Condition D.1. For completeness, we state this general bound here

Lemma D.5b (Approximation Error Bounds: Stabilized) Under Condition D.1b,
(loss approximation error) + (comparator approximation error) < LT R¢, Ri,t RﬁateG

Proof Let us start with the loss approximation error. For ¢ > N + h + 1, and using uf*(M;) =

ex,alg

u, ", we have
alg A ~nat /\nat
‘Vt - Vt[Mt:t—h | Gex—>(y, YTt » Ve ] ‘2
_ nat 2 exalg /\nat E [t—s] ex,alg
”V + Gex—)(y u) Uy + C¥e><—> (y,u) uS )||2
s=t—h

_ anat + Z Gex_>(y 2 uix,alg /\nat + Z G[t 5] uss aIg)H2 é[l]

ex—(y, u) s ex— (y,u)

=(0fori>h

~ t— [ t— al
<”ynat y?at|’2+ ZG[ s] uexag G[ s] u)uixag

ex— (y,u) ex—(y,
s=1

= [|vPRt — 9P|y 4 [[vPt = Y|y < 6RAqRuateq

2

where we use Lemma D.1b in the last inequality. Moreover, recalling the following bound from
Lemma H.6,

Ve [ Mot | Goxoiyans A5 9] ll2 < 6B, R B

we have

max{Hv?'gHQ, Hvt [Mt:t—h ’ éex%(yu )ﬁln?t)vtnat} H }
< 6Rq, RpmBRuat + 6 R BRratea < IR, RpmRuat,
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where we use the bound e < 1/2RyRg, < Rg, /2 under Condition D.1b and the bounds
Raq, Rg, > 1. Hence, we have

(loss approximation error)

T T
[ ~ ~ ~
= Z et (V? ) - Z Ft [Mt:tfh ‘ Gex%(y,u)v nﬁ?tv vtnat]
t=N+m+h+1 t=N+m+h+1
T
[ | =~ ~nat -~
< Z |ft(}’? g, 11? g) — L (Vi[Mi | Gex%(y,u)vnlrftv thatD”
t=N+m-+h+1

<9LRg, RpmRuat

T
alg A ~nat < nat
§ Hvt - Vt[Mt:t—h | Gex—)(y,u)ﬂh:t » Vi ]HZ
t=N+m-+h+1

< 54LTRg, R R2 e

where we used Assumption 2 and the bounds computed above.
Let us now turn to the comparator approximation error

(comparator approximation error)

T T
= inf Z ft(M | Gex—)(y,u)v ﬁlr%?tvetnat) — inf Z gt(th, uiw)
MeM MeM
t=N+m+h+1 t=N+m-+h+1
T
<mac 3 B = M | G g T TP
= e ex—(y,u)s Nt » Vit
t=N+m+h+1

<6LTRqG, RpmBnat

T
M ~ ~nat < nat
+ max Z Hvt - Vt(M ‘ Gex%(y,u)v Uff? 7vtna )H
MeM 2
t=N+m+h+1
where again we use the magnitude bounds in Lemmas C.1b and H.6, and the Lipschitz Assumption
(Assumption 2). Let us bound the differences between the v; terms, taking caree that errors is

introduced by both the approximation of the transfer function Gy, (y,,) and the Nature’s ) sequence
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ni. Fort > N + h + 1 + m, we obtain

M A~ ~nat < nat
Hvt —vi(M | Gexs (yyu)> Tt » Vi )H2

““ZGLZ—?]W (O | ) - ( e Y A ‘”‘(Mﬁfit)>

s=t—h 2
- anat vtnaLtHQ + HGex—>(y7u) — Gexs y7u)||51,0pt rerng<t Hu (M ﬁlﬂ?h)”
<3Rp Rnatec <ec <2RMmR
< M {tnat
t—h+1

t —~
Z GL S (M | 1)

2

t
ZlGLiiiy DU (M | A2

= SRy PRnateq +

2

where we have used the magnitude bounds in Lemma D.1b and H.6. We can further bound

< va, (h+ 1)maX [ug*(M | 7|
2
<q, (h+ 1)2max{Rycst, RmPBnat }

ZG[JX: (US| 1)

where we use Lemma D.1b abolve. From Conditions D.1/D.1b, we can bound ¢, (h + 1) Ry est <
€. And since Ry est > 1, this implies that the above is at most 29 ¢, Ry est B Rnat < 26 R Rnat-
Thus, from the above previous two displays,

[V = Ve | Gy, 01591 || < TeaRatBinat,
giving
(comparator approximation error) < 6 LRg, RaqRnat - Teg RapRpay = 42LT Rg, R?\/t Rﬁateg
Combining the two bounds, we and using Rg, , Rpm > 1,

(comparator approximation error) + (loss approximation error) S T LR¢, R?\/t Rﬁateg
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Appendix I. Strongly Convex, Semi-Adversarial Regret

We begin by stating a slight generalization of the semi-adversarial model described by Assump-
tion 6. Recall the assumption that our noises decompose as follows:

w; = W?dv + W?tOCh

e = etaLdv + eitoch
We make the following assumption on the noise and losses:

Assumption 6b (Semi-Adversarial Noise: Martingale Structure) We assume that there is a fil-
tration (Ft)i>0 and a matrix Yyoise € R(datdy)? > 0 (possibly degenerate), and Ua,,ag >0
(possibly zero) such that the following hold:

1. The adversarial disturbance sequences (w3%) and (e?V)

oblivious, in the sense that they are Fy-adapted.

and the loss sequence (,(-) are

2. The sequences (w5°") and (e5'°?) and (F)-adapted
3. E[eftoh | Fi_q] = 0, E[wioh | F_y] = 0.

4. The noises satisfy

stoch stoch] T
E || Wi | Fio1
e;toch estoch

t

2
o1, 0
[ En01se - |: 0 Ugfdy]

Moreover, at least one of the following hold:
(a) The system is internally stable has no stabilizing controller 7o, and o2, + 02 >0

(b) The system is stabilized by a static feedback controller mo (that is, Az, = 0 and dim(z™) = 0),
and o2, > 0

(c) The system is stabilized by a general stabilizing controller; and o2 > 0. '*
As in thes stable setting, the strong convexity parameter governs the functions
for (M| G, Y, 015) = E [fo(M | G, y5°,01) | Fior] - (L1)
For stabilized settings, Proposition E.2 admits the following generalization:

Proposition E.2b (Strong Convexity for known system) Suppose that we interact with an internally-
controlled system (Definition 2.1). Then, under assumptions Assumptions 2, 3, 5, 1b and 6b,
there exists system dependent constants Mgy, Psys > 0 and oy > 0 such that, for h = |m/3],

k = m + 2h, and m > myys, the functions f}, (M | Gy, yiar, uﬁt) are ouf.y,-strongly convex,
where

A fum = Qloss * Olgys * mpPsys

In other words, the strong convexity parameter decays at most polynomially in m.

14. This condition can be generalized somewhat to a form of “output controllability” of the noise transfer function, which
can potentially accomodate o = 0. We omit this generalization in the interest of brevity
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The above proposition is given in Appendix J.2.1. For general LDC-Ex controllers, we do not have
transparent expressions for agys and mPsvs. Nevertheless, we ensure that the above bound is strong
enough to ensures rates of logo(l)ﬂ’sys T and VT logo(l)“’sys, where the exponent hidden by O (1)
does not depend on system parameters (so that the exponents are determined solely by psys). We
make a couple remarks, which in particular describe how pgy is often 0 in many settings:

1. In general, the strong convexity parameters of the system are determined by the properties
of the Z-transforms for relevant operators. A general expression is given in Theorem 11
, and the preliminaries and definitions relevant for the theorem are given in Appendix J.1.
Proposition E.2b is proven in Appendix J.2 as a consequence of this more general result, and
Appendix J contains all details related to establishing strong convexity.

2. In Appendix J.2.2, we show that for systems stabilized via static feedback, we can take psys =
0, and give explict and transparent bounds on asys. This recovers the special case of internally

O"?vo'min (C*)

stable systems as a special case, where we can take agys = o+ A2
* [lop

3. For the special case of internally systems (Proposition E.2,), we present a smaller self-contained
proof that does not appeal to Z-transform machinery (Proposition E.2. Note that this resut
does not require that m > myy restriction required by Proposition E.2b.

4. The parameter mys is related to the decay of the system, and can be deduced from the con-
ditions of Theorem 11.

Theorems 4 and 5 generalize to the stabilized-system setting:

Theorem 4b (Fast Rate for Known System: Stabilized Case) Suppose assumptions Assumptions 2,
3, 5, 1b and 6b holds. Thenw with the additional condition h = | m/3] and and appropriate mod-
ifications as in Definition H.1, Theorem 4 holds verbatim when o is replaced with the stabilized
analgoue o5, from Proposition E.2b. In particular, taking o = Q(ovf.ry, ), we obtain regret bounded
by

L2m>*Psvsd o RERY R? T
RegretT(z/J) 5 : min 2at g’* M < + Bloss ) log ~. (1.2)
min {asys, LR, R, } LR )
In particular, under Assumption 4, we obtain
1 1
RegretT(d)) S (1%9 log %)psys ' pOIY(C7 L7 510887 aﬂ Urzloiseﬂ ﬂ? log %) ’ (d?nax\/f + d?nax)?

where the exponents in the poly(-) term do not depend on system parameters, although psys does.

Again, for general stabilized system, we may suffer exponents which depend on this system-dependent
Dsys- But, as discussed above pgsys may be equal to 0 in many cases of interest.
For unknown systems, we have the following:

Theorem 5b (Fast Rate for Unknown System: Stabilized Case) Suppose assumptions Assump-
tions 2, 3, 5, 1b and 6b holds. Thenw with the additional condition h = |m/3] and and appropriate
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modifications as in Definition H.1, Theorem 5 holds verbatim when o is replaced with the stabi-
lized analgoue o .y, from Proposition E.2b. In particular, taking o = (., ) and Assumption 4,
we obtain

1 1
RegretT(w) SJ pOIY(C? L, Bross» av 01210ise7 ﬂ’ log %) '(d?nax \/T(ﬁ log %)PSys + (1T1p IOg )pbys dr3nax)

where the exponent in psys where the exponents in the poly(-) term do not depend on system param-
eters, although psys does.

I.1. Proof Details for Theorems 4 and 4b

The proof of Theorems Theorems 4 and 4b are identical, except for the difference in strong convex-
ity parameters in view of Proposition E.2b and Proposition E.2. Thus, the proof of Proposition E.2b
follows from the proof of Proposition E.2b given in Appendix E, ammending o to ay,,, where it
arises.

It remains to supply a the ommited proof of the lemma that establishes smoothness of the ob-
jectives, Lemma E.3. We restate the lemma here to include the | G, y}3", u}3" encountered in the
stabilized case:

Lemma E.3b (Smoothness) The functions fy(M | Gy, y3, a3t are Bg-smooth, where we de-
fine By = mRiatR%;* Bloss-

Proof For brevity, we omit | Gy (y.u), M5, vi®. Let Dv;[-] the differential of the function as
maps from R(mdydu) _ RdﬁdU, these are elements of R(Mdydu)*(dy+du) Thege are affine func-

tions, and thus do not depend on the M argument.From the chain rule (with appropriate transpose
conventions), and the fact that affine functions have vanishing second derivative

Vft(M) = th(Vﬁ)(vt)
V2 (M) = Dvy - (V20)(vi) - DV{ = Bioss [[DVe]|2, T (1.3)

Let us now bound the norm of the differentials. Observe that ||D(u:(M)||op and ||D(y(M)||op are
just the Frobenius norm to /2 Lipschitz constant of M +— v;(M) is bounded by /mR¢, Rnat Via
Lemma H.3. Thus V2 f;(M) < BiossmRE, Ra,:1, as needed. [ |

1.2. Supporting Proofs for Theorems Theorems 5 and 5b

We now generalize to the stabilized, unknown setting. Throughout, we shall use the various mag-
nitude bounds on y"# " .. developed in Appendix H.3 for unknown system / Lipschitz loss
setting.

For this strongly convex, stabilized, unknown setting, we generalize the true prediction losses
of Definition F.1 as follows:

Definition F.1b (True Prediction Losses) We define the true prediction losses as

d ~
pe (My—p) == vi[Meg—p | Goxs yu)anlntata"?at]
= nat+ZG£)Z)]<—> yu) M | ﬁlniatz)

FPY My 4] == 4, ( pred[Mtt iJ)
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and let fpred( M) = Ftpred(M ,- ., M) denote the unary specialization. The corresponding condi-
tional functions of interest are

Fh () =B [P ) | Foo

Throughout the proof, it will be useful to adopt the shorthand v; (M) := u;(M | Gexy(y, ) niat viat),
andy; (M) =y (M | Gy, y'a') to denote the counterfactuals for the true nature’s y, and v (M) :=

(M | Gexs(yu)» M1, V") denote the counterfactuals for the estimates G' and 7™ and v "*

Note that uP™d and yP™4 can be though as interpolating between these two sequences.

We shall also let Dv?™*? denote differentials as elements of are elements of R(dydu)x (dy+du)
, and similarly for Dv* and Dv. As these functions are affine, the differential is independent of
M -argument

1.2.1. PRELIMINARY NOTATION AND PERTURBATION BOUNDS

Before continuing, we shall state and prove two useful lemmas that will help bound the gradients /
Lipschitz constants of various quantities of interest.

Lemma 1.1 (Norm and Perturbation Bounds) The following bounds hold fort > N:
(@) DV ||op, < 2v/mRyai Re,

(b) VPN (M) — vi(M)|2 < 3y/mRmBuatRe, | M||r

(c) HD( pred _ t)Hop < 2\/77L€GRnat
(d) Forall M € M, |[vP™4 (M) — V,(M)||2 < 5RpmRnatec

Proof Note that operator norm bounds on the differential are equivalent to the Frobenius-to-¢o
Lipschitz constants of the associated mappings. The proofs are then analogous to the proof of
Lemma H.3, where the role of y??' and G, are replaced with the appropraite quantities. For clarity,
we provide a relevant generalization of that lemma, without proof.

Lemma 1.2 (Llpschltz Bound on Generalized Coordinate Mappings) Let G yiat uatat be ar-
bitrary, let Ry = 1Glle, .op and Ruats := max{[|72|| : s € [t — h — m + 1 : t]}. Then,
Ive(M | G ¥7 7750 = ve(M | G,V i) o
< Rnat tR HM - MH&,op S \/ﬁRéRnat,tHM - MHF

The generalized to non-unary functions of M,_p,.; is analogous Lemma H.3. Notice the above bound

does not depend on V', which consitutes an affine term.

. For part (a), the bound follows by bounding ||| < 2Ry, by Lemma D.1b, and applying
Lemma 1.2 with 7" < 2%, and vP** « V", and G < Gex_y(yu)- {MS: from here}
In part (b), we can compute

red ~ ~
Vi N(M) = vi(M)]l2 < IVe(M | Gexos(ya), ViR 1Y) = V(M | Gexmyoys Vi, 1) |12

= Ve(M | Gexs (s Vi, 2" = 1s) 2
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Let us apply Lemma 1.2 with 8¢ < qpat — pnat and G < Gex—(yu)- The associated value of

Ryats can be replaced by an upper bound on max{n® — 7 : s € [N + 1 : ]}, which we
can take to be 3R\ Rpatec by Lemma D.4b. This gives a bound of 3\/mRa Rpat R, || M||F-, as
needed.

For part (c), take 7" < fat G « éexﬁ(ym — Glexy(y,u) Playing the role of G, yielding a
Rnat,t < 2Rpat by Lemma D.1b and Ré < € from Lemma H.6.

Finally, let us establish part (d). We have

red na na 4 4 ~na
VP (M) — Go(M) |2 < Vi — 9225 +HZG[ GU (M| )|

ex—(y,u) ex%(y,u)

< flvpt - t“atuz+HZG£;yu Gty UES (M [ A1)

< |[vE2 =925 + 2R pq R Z (G G4 Yo

ex— (y,u) ex— (y,u)

< Vi =922 + 2R pRuatec

where the second to last step uses Lemma H.6. Finally, we can bound || vPa'—v22t||, < 3R\ Rpateq
by Lemma D.4b. Combining the bounds yields the proof. |

1.2.2. GRADIENT ERROR (LEMMAS F.2 AND F.2B)

Lemma F.2b For any M € M, we have that
|V | G g = Vi ()| < Cappros

where is Capprox := VMR, RpmR2,, (8B10ss + 121L).

Proof Let denote the differential of the functions as maps from R(™@vd)  respectively. Define
differentials analogously for uP™d, yPred Then,

VAP M) = VfoM | Gy, A" )
= DVl ((VE) (v (M) = (VE) (¥,(0M)) )
(a)

+ DV = 9,) (VL) (Ve(M))
(b)

We can bound the first term via

(1) ro
l@llop = [PV (1)

B [ VE () = 9i(00)

op

()
< (2\/ERG’*Rnat) : /Bloss : (4RMRnatEG)
= 8Bioss VMR, R Rasiec
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where (i) uses smoothness of the loss, (i¢) uses Lemma I.1. To bound term (b), we use the Lips-
chitzness from Assumption 2 to bound the norm of the gradient:

|(VO)(ve(M))||2 < Lmax{l, ||[vi(M)||} < 6LRqg, RypRuat  (by Lemma H.6)
Hence, from Lemma 1.1,

|®)llop < 6LRG. Rt Ruat - | D™ = %2)

op

< 6LRG, RapRnat - 2v/meg Ry = 12/mLRg, R, Rpmec
Hence, we conclude that

VM) — V(M | G, 9558, @58 < VmBRe, RmR24(88i0ss + 12) €

: :Capprox

1.2.3. SMOOTHNESS, STRONG CONVEXITY, LIPSCHITZ (LEMMAS F.4, F.5/F.5B, AND F.6)
We begin by checking verifying the smoothness bound, which we recall from Section F.1:

Lemma F.4 Under Condition D.1, f red(M ) are 43-smooth, for By as in Lemma E.3.

Proof The proof follows by modifying Lemma E.3b, replaced Dv} with Dv} red, By Lemma 1.1

part (a), we bound the operator norm of these differentials by twice the corresponding bound in
Lemma E.3b, incurring an additional factor of four in the final result. |

Next, we check Lipschitznes:

Lemma F.6 (Lipschitzness: Unknown & Strongly Convex) Recall the Lipschitz constant L ¢ from
Lemma C.5. Then under Condition D.]1, ftpred(M) is 4L ¢-Lipschitz, ffred [My.4—p) is 4L ¢ coordi-

Snat

nate Lipschitz. Moreover, max e pm HV]/C;(M, G, Yii)lle < 4Ly

Proof [Proof of Lemma F.6 ] We prove the general stabilized case. Recall that for the known-

system setting, the losses fi(| Gexy(yu)> M, vi¥) and Fi[|| Gex(yu), MG, vt are Ly =

LymR2,, RQG* R p-Lipschitz and L g-coordinate Lipschitz, respectively. Under Condition D.1b, we

have that || @ex%(ym) ey 0p < 2Rg, . and moreover, by Lemma D.1b, we have that ||V 22%||2, |22 <

2Ryt for all s € [t], Hence, repeating the computation of the known-system Lipchitz constant
in Lemma C.5, but with inflated norms of G2 adn y22t, we find that fP™*? (resp. FP™?) are

Ly := 4Ly-Lipschitz (resp. -coordinate Lipschitz). |

A

Finally, we verify strong convexity in this setting. The following subsumes Lemma E.5:

Lemma FE.5b (Strong Convexity: Unknown Stabilized System) Consider the stabilized setting,
with at.,, as in Proposition E.2b. Suppose further that the conditions of that proposition hold, and

in addition,
1 of.
€g < \/ fim
9RMm RnatRG* Mjegs
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Then, the functions are ff Zed are .y, /4-strongly convex. Analogously, replacing o g, by oy in

the stable setting, the functions fg,)fd are oy /4 strong convex for oy as in Proposition E.2.

Proof Let us consider the stabilized case; the stable case is identical. Proposition E.2b (proved in
Appendix J.2.1) follows from Theorem 11, and an can be used to prove the following intermediate
bound:

n. n ary; i —
E |:Hvt(M ’ Gex—>(y,u)a"1?7vtat _VtatHQ ‘ Fi k‘} = Oé{ ||M||F7 VM = (M[Z])Ziol

To deduce our desired strong convexity bound, it suffices to show that M = (M )t

red -
E[[[vi™ (M) = vi™ |5 | Fix] > HMHFa

with an additional slack factor of 1/2. To begin, note the elementary inequality

11 1
o+ wl3 = loll3 + llwll3 = 2llvllllw] > vl + [lwl3 - 25 - 515+ 3 - 2lwlE)

= [lvll3/2 = [Jwlf3
This yields
red
E[|[vy (M) = vi*'|5 | Fii]
d n n n n
- E[H( P (M) - Vt(M | Gex—) yu)anlitﬂvtat) +Vt(M | Gex—>(y,u)>n1?€tavtat) - VtatHQ | ‘7:15 k]
*E[llvt(M | Gesos (o) M VES) = Vi3 | Fii)

d n n
— B[V (M) = vi(M | Gexs gy, 155 Vi3 | Fii]
gl MIE

red na na
E[[VP (M) = vi(M | Gexs gy it VOIS | Foi] -
(@)

200

Moreover, by Lemma 1.1 part (b), we have

IVE M) = Ve (M | Gexes gy M5 Vi) I3 < (BRat Ruat R Vimee).

. TS N . M2 .
Hence, if eg < %, then the term (7) is bounded by (7) < %, which concludes

the proof. |

L.3. Proof of Proposition F.8 (Approximation Error)

We prove the proposition in the general stabilized setting, where assume the corresponding Condi-
tion D.1b holds. Recall the set M := M (mg, Raq/2), and consider a comparator

T

M, € arg inf li(yM oM
* gMeMo Z (ve u)
t=N-+m-+2h+1

We summarize the conditions of the Proposition F.§8 as follows:

81



IMPROPER LEARNING FOR NON-STOCHASTIC CONTROL

Condition 1.1 (Conditions for Proposition F.8) We assume that (a) e < 1/Rq, (b) m > 2mg+
h, and (c) Y, (h+1) < Ra, /T.

Note that the first condition holds from from Condition D.1/D.1b., and the secnd two from the
definition of the algorithm paramaters. The proof has two major steps. We begin with the following
claim, which reduces the proof to controllng the differences ||uf*(Mapprx | ¥313°) — uf™ (M, |
y 135 |2 between algorithmic inputs on the y*** sequence using Mappryx, and on the y™® sequence
using M,:

Lemma 1.3 We have the bound.:

T
(y"**-approx error) < 3LRG R Ryat Z m?xh [0S (Mapprx | $125) — uS (M, | y729) |2
t=N+m+h+1"

The above lemma is proven in Appendix 1.3.1.
We will neglect the first mg + 2h terms in the above sum. Specifically, defining Ny = N +m +
3h + 1+ mg, we have

(§"**-approx error) < 3LR%, Rt Ruas Z i (U (Mapprs | 7229) — 0 (My | 72 3
t= N1

2 Ny ~
+BLRE, Rualmo +20) _ it [0 (Mapprs | A20) — ut* (M | 7).

Moreover, by the triangle inequality and Lemmas H.6 and C.1b
[0 (Mapprx | 915") — 0 (M | 0150 12 < 3Rt Ruat,
giving

(y"**-approx error) < 3LRG R Ruat Z max ([0S (Mappr | Nixg) — ug* (M | i) |12
t= Nl

+9L(mo + 2h) R, R3(Ruat- (1.4)

We now turn to bounding these u®* differences, which is the main source of difficulty in the
proof of Proposition F.8. The next lemma is proven in Appendix 1.3.2:

Lemma 1.4 Under Condition 1.1, there exists an Mppex € M(m, Rprq), depending only on e
and My, such that for allt > m + 1 and T > 0,

[ (M | y15) — 0 (Mappes | 9757 [l2 <

5) R R +7—_1 T t 2
2 2 nat{lM ~ t
RuRatba, (h+ 1)+ Riqel <2 + 5 o max [V = Mappse) | 985°)]
(truncation term)
(estimation term) (movement term)
(1.5)
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From the above lemma and Eq. (1.4), and reparametrizing 7 < 27/ 3LR2G* R Rpat, and bounding
mg + 2h < m, have

(y™**-approx error) < 3L - R MRG Ruat (TR, (h+1) + 3m + Ry RpTel - (1+ LRE 771))

+7 Z ] trﬁ%}il h Huix(Mj - Mapprx ‘ ﬁlrl?t HZ

For ¢c, (h + 1) < Rg, /T, the above simplifies to

2
Snat 2 P2 2 LRG* 2 p2
(y"*-approx error) < 3LR3 (R RZ, Teg [ 1+ + 3LR3 R, Ruat(RuRg, + 3m)
T

~

o Z - i S (M; — Mappes | a5

Moreover, we can crudely bound

T T

Z j:t—r?n%il—h Hugx(Mj — Mapprx | ﬁlni;t H; < (mo+ h) Z Huﬁx(Mj — Mapprx | Anat H2
t=N; =N o
T
=(mo+h) >0 [~ Mg | 21595

t=N-+m+2h+1
Thus, again reparametrizing 7 <— 7/(mg + h), and bounding mo + h < m,

2
Snat 3 p2 p2 2 LmRg, 2 p2 ¥el
(y"*"-approx error) < 3LR\ R, Ry .«Teq; | 1+ + 3LRy R¢;, Ruat(RuRg, + 3m)
T

T

T Z HUEX(MJ' — Mapprx | ﬁf?t H; (1.6)
t=N+m+h+1

Finally, let us upper bound

[ (M — Mapprx | 0151 |, < maXHnnatIIQ IV = Mapprx |, op

< 2Rpat - [|M; — Mapprtzl,op (Lemma D.1b)
< 2Rt - Vi [[Mj — Mappex|| g - (Lemma H.2)

Thus, 7 < 7/4R2,,m, we obtain

(y"*-approx error) < 3LR MRG* R?

nat

Lm*R2%, R2 =
Te, (1 + %G + 3LR3RE, Ruat(RuRa, + 3m)

d.7)
T

2
+7 Z 1M — Mapprex||f -
t=N+m+h+1
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Finally, let us crudely bound the abouve by

(y"**-approx error) < 36m>R3, Ry RE:. Tegmax{L,L?/7} + OILRA R% Ruat(RuRc, +m)
T

2
+7 g M — Mappex || -
t=N+m-+h+1

as needed.

1.3.1. PROOF OF LEMMA 1.3
Let Mapprs; My € M(m, Raq), and recall the shorthand

n 1 d ~> 1. n
V:(M) = Vt(M | Gex—>(y,u)7 nl:?ft7 Vi at)7 Vzl‘?re (M) = Vt(M | Gex—)(yvu)anlzﬁtv Vi at)
Then,

tpred(Maper) — fr(M, | Gexa(y,u)mi‘iﬂ"?at) Et(vfrEd(Maper)) — L(vi(My))
< Lmax{ ||V (Mappese) 12, [V (M)l|2: 1} (VP (Mapprs) — v (M) -

(a) (0)

From Lemma C.1b, we have (b) < 2R¢, RaqRpat. Moreover, combining with Lemma H.6, a
similar argument lets us bound (a) < Rpat + 2Ra, RaBRnat = 3R, RaqRuat- Since these upper
bounds are all assumed to be greater than one,

tpred(Mapprx) - ft(M* ’ Gex—)(y,u)ﬁn?ityvgat)’ <3LRqg, RpmBRuat ijlj)red(Mapprx> - V:(M*)HQ

(I.8)
Unfolding
h
[VE™* (Mappre) = Vi (M2 = S G (05 (Mapprs | 15,) — 05, (M, | pi5L,)
=0 2
< R, mitoe |0 (Mapprs | 2) = 0 (M, | 030)| -
Combining with Eq. (I.8) gives the bound. (|
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1.3.2. PROOF OF LEMMA 1.4

For simplicity, let us use G, G for Gex—n» @ex_m. Since M, € M(mq, Ra/2), we have M =0
for all ¢ > mg. Therefore, we can write

uX (M, | yiah) 1.9)
_ Z M[t s] nat
s=t—mo+1
t
t— ~n n ~n
= > M (gt — )
s=t—mo+1
t S .
_ Z ME_S] 'ﬁgnat+ ’r]?lg ZGLS—]]ujx,alg - n?lg Z G exalg
s=t—mo+1 j=1 Jj=s—h
t s
_ Z Mit_s} ﬁsrlat+ Z (é[]] G[J]) ex,alg
s=t—mo+1 j=s—h
:l:gnain
t
t— -7 x,al
- S My gl (1.10)
s=t—mo+1 1<j<s—h
l;trrunc
Here, u{™" is a lower order truncation term:

Claim L5 Fort > N +m + 1, we have that ||[u{™¢||y < RyRmbg, (b + 1).
Proof We have that ||u;ix’a|gH2 < Ry, by Lemma D.1b. This gives

t

Hugrunc H _ Z Mitfs] Z GLS*]'] u§X73|g

s=(t—mo+1)+ 1<j<s—h—1
<RuRa Y IGE < RuRuve, (h+1).
1<j<s—h

Ig . .
main e express u’ ¢ in terms of 772" and the controller M, :

To bound the dominant term uj ¥

J
| X A~ o~
W= u (M A = Y Mg
q=j—mo+1
J
_ Z J\/[lij},ﬁqnat_F Z M[J q _ [J q])7
g=j—mo+1 g=j—m+1

(0)
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where sum only over ¢ € {(j — mg)+,...,j} in the bracketed term (b) because M™ = 0 for
n > myg since M, € M(mq, Rx/2). Next, the equalities

u = u(M; | )
= w (M, | A5 + uf (M | A1) — u (M, | 715

= u* (M, | ) + (u*(M; — M, Anaw

J
= > M) a0 A,

g=j—mo+1

and introducing the shorthand Ag] = Gl — G[*j ], we can further develop

t
uinaln — Z MF—S] Anat + Z A[J] ex ,alg
s=t—mo+1 j=s—h
t
- Z M,Et_s] ’\nat + Z Z A[ }M[J Q]Anat
s=t—mo+1 j=s—hq=j—mo+1
,u:;lpprx

t s J
+ Z Z Z Mlt SA[J] ex(M — M, | Anat)‘ 111)

s=t—mo+1 j=s—h qg=j—m+1

— err
=u

prx apprx

Here, the input ujP""™ is respresents the part of the input which can be represented as u =
U (Mapprs | ¥72°) for some Mappx € M(m, Rpq); the remaining error term, uf™, will be
bounded shortly thereafter.

Claim L6 (Existence of a good comparator) Define the controller

Ma[fr])prx = M,Ei]fiﬁmofl + Z Z Z M’Ea]A[CbT‘}M’EC}Ha"'b"'CZi’

which depends only of M, and eg. Then,
1. We have the identity

apprx _

uy ;™ (Mapprx | ), Vt> N, (L.12)

2. |[Mapprs — Mul[ey,0p < ||M*”%170p6G < R?\45G/4-

3. Ifm>2mg—1+handeg < 77— (as ensured by Condition 1), then Mppex € M(m, Rq)
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Proof To verify Eq. (I.12),

t t s J
u?pprx _ Z M,[ffs] ,ﬁsnat + Z Z Z M*[t*S} Agﬂ] M’[g*q} 77qnan;
s=t—mo+1 s=t—mo+1 s=j—h g=j—mo+1

mo—1 mo—1 h mg—1

Z Miz]/\nat_‘_ Z Z Z M[G]A[b]M[C]Ana(ta+b+c)

a=0 b=0 c=0

2(m0—1)+h ) mo—1 h mo—1
- Z (M*MIKmo—l + Z Z Z M*[G]A[Gb]M*[C]HaerJrc:i) ﬁtnfit
i=0 a=0 b=0 c=0

2(mo—1)+

= Z M [Ilprxﬁtna; ’
Next, since || M. || < Ram/2,

mo—1 h mo—1 . R2 €c
| Mappes = Mullevop < D7 7 3 1M apll A lopl M lop < M7, opecs < =42,
a=0 b=0 c=0

which verifies point 2. Therefore, for e < 1/R 4,

RM R 3
”MaperH < ||M*”€1,0p + ||Mapprx — M, ||€1,0p = "9 + T

< Rpm.

Moreover, by assumption on m > 2mg+h—1, we have Mgﬂprx > 0fori>m > mo2(mo—1)+h.
|

Lastly, we control the error term. We shall do this incrementally via two successive claims. First,
we “re-center” uy'" arround the comparator M), rather than M, and uses AM-GM to isolate terms

M — Mapprs [

Claim L.7 For m > 2mg — 1 + h, the following bound holds for all T > 0

Rt R3 €2 R2 ¢2 t ~ 2
Hu(;rr‘b < nattA1¢G MG + - max Hu(;X(Mj _ Mapprx ’ ,rhnj,t HQ

2 21 2j_t mo+1—h

Proof Using [|7;*" ||z < 2Rya¢ (Lemma D.1b) and || M, ||¢, op < R1/2 by assumption,

pl=| >0 M Al - )
s=t—mo+1j=s—h 2
t
< R ex M _M Anat
< MEGj:tfr?n%?(Hthu] (M « | M5 H2
t A~ t fos t
gRMeGj:tgmH(uu;ﬂM*—Mapprx\mﬂ? [y + [V = Mappes | 59)]1,)
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Next, from (Lemma D.1b) and Claim 1.6, we can bound

|‘U§X(M* — Mapprx | ﬁf‘;‘t H2 < || My — Mapprx|les o pmaXHn“atHg

< 2Rpat|| My — MaperHh,Op

< Rnath\/(eG'
- 2
This yield
Ryt RS (€2 t
err nattAMCG e L Anat
[|[uy ||2<f+RM€G] t_gln%ﬁl_hHuJ'X(MJ Maper|7713 HQ
Ruan Byl | Riuct fnaty |2
S o+ o, max, hHu”M Mappes | 71551l

T
23
< R?\/lGQG <RnatRM + 7 )

2]tmo—|—1 h

Putting things together, we have that

J[u (Mo | y17) — i (Mapprs | 1) 112

= [ — " (Mapprs | 1) 12
— [ g PP = (Mappes | 9152
_ Hutrunc + uﬁrrHZ

< ™l + g™l

trunc main
+ u;

RnatRM + 7'71 >
2

< BuRate, (h + 1) + Bel (

T M~ Mg 703

= (RHS of Eq. (1.5)),

as needed.

Appendix J. Establishing Strong Convexity

H“ex (M — Mapprx | ﬁlnit H;

(Eq. (1.10))
(Eq. (I.11))
(by Claim 1.6)

This appendix is devoted to establishing strong convexity of the DRC and DRC-EX parameteri-
zations under semi-adversarial noise, described by Assumption 6b in the previous appendix. The

organization is as follows:

1. Appendix J.1 introduces the necessary preliminaries to state our bound, including the Markov
operators of the dynamics that arise from an internal stabilizing controller, and the notion of

the Z-transform.

2. Appendix J.2 presents Theorem 11, which describes the strong convexity of internally stabi-
lized systems in terms of certain functionals of the Z-transforms of relevant Markov opera-
tors. Combining with Proposition J.6 which characterzes the behavior of these functionals,
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we this section concludes with the proof of Proposition E.2b. This section then specializes
this bounds for systems with internal controllers which are given by static feedback (Ap-
pendix J.2.2), and exact observer-feedback (Appendix J.2.3).

3. Appendix J.3 adresses the proof of Theorem 11.

4. Appendix J.4 establishes the proof of Proposition E.2. It borrows one lemam from the proof
of Theorem 11, but bypasses the Z-transform to establish bounds via elementary principles.

5. Appendix J.5 proves Proposition J.6 via complex-analytic arguments. The focus is to obtain
polynomial dependence in the horizon parameters, and no care is paid to specifying system-
dependent constants.

J.1. Strong Convexity Preliminaries

Transfer Functions and Z-Transforms The strong convexity modulus is most succintly de-
scribed in the Fourier domain, where we work with Markov operators and their Z-tranfsorms. We
recall the definition of an abstract Markov operator as follows:

Definition G.1 (Markov Operator) Let %> denote the set of Markov operators G = (G 2 )i>0
with Gl € Rée*dn, such that || G||¢, op < 00. Given a system (A, B, C, D) with input dimension di,
and output dimension d,, we let G = Transfer(A, B,C, D) € 9, 4. denote the system GOl = p
and Gl = CA-'B.

We shall also use the notation
G = Transfer(A, B,C,D)" = Transfer(AT,CT, BT, D"),

where (AT,CT, BT, D7) is commonly referred to as the adjoint system. For an abstract Markov
operator G, its Z-transform is the following power series:

Definition J.1 (Z-Transform) For G € 9, ., the Z-transform is the mapping from C — Cdo>din
n B .
G(z):z— ZG[’]zﬂ
i=0

For finite-order linear dynamical systems, the Z-transform can be expressed in closed form via:
Lemma J.2 If G = Transfer(A, B, C, D), then G(z) = D + C(zI — A)"'B.

Closed Loop Dynamics: For stabilized systems, the relevant Markov operators that arise cor-
respond to the closed-loop dyanics of the nominal system placed in feedback with the stabilizing
controller mo. From Lemma 3.2b, we recall the operators Gey_, (y,4) and G, o), Which satisfy:

ya|g ynat t—1 [i]
t _ t ? ex
u?lg B L?at] - Z;Gexﬁ(ymut—i
and
: (4] w
nat __ ? t—1
N - Zl G(w,e)—m |:et—i:| :

The Markov operators in terms of which we bound the strong convexity modulus are as follows:
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Definition J.3 (Markov Operators for Strong Convexity) Recall the Markov operators

Gex—>(y,u) = TranSfer(Aﬂo,cla Bﬂ’o,cl,em Cﬂo,cla Dﬂ'o,Cl,eX)

G(w,e)—m = Transfer(AWO,d, BT(O,C]? Cm),cl,na Dﬂo,cl,n)

from Definition 2.2b. We define the noise transfer function as
1
3 di X (dp+dy
Groise = G(w,e)ﬁnzzoise €Y n>x(dst )’

. . 1
where the above notation is short hand for Gl[ﬁ)ise = G[é]v’e)%nEzoise for all i. Note that Gex_,(y v

has di, = dy and d, = dy + d,,, whereas G . hasdiy, = dy and dy = d + d,,. We further define

noise
the function Y ¢ and Yq,,,.. denote the corresponding decay functions, which are proper by
Assumption 1b.

ex— (y,u)

Here, Gy, () describes the dependence of (y,u) on exogenous inputs u®*, and Gpeise is the

transpose of the system which describes the effect that the noise in the system has on natures y}t.
Since ug* (M) is linear in natures y, Gpoise nNeeds to be sufficiently well conditioned (in a sense we
will describe) to ensure strong convexity. Note that >, ,ise above need not be full-covariance, pro-
vided that it satisfies Assumption 6b. Moreover, since f:(M ) depends on uS*(M) via the Markov
operator Gey_,(y,4)» this operator also needs to be sufficiently well conditioned. 15

J.2. Internally Stabilized Strong Convexity and Proof of Proposition E.2b

The relevant strong convexity parameter is bounded most precisely in terms of what we call “H”
functions, which describe the behavior of the Z-transform G/(z) of a Markov operator along the
torus: T := {e* | 6 € [0,27]}:

Definition J.4 (M in-Functional) Let di, < do', G € G%*in. We define the Huin and Hoo
functionals as

HainlG] 1= min 04, (G(")  and |Gl = masx G op,

We will show that for h, k sufficiently large, the strong convexity parameter is lower bounded by
2 Hmin [Gexﬁ(y,u)] - Hmin [Groise]- Unfortunately, for certain pathological systems, one or both of
these terms may vanish. To ensure fast rates for all systems, we will need a more refined notion:

Definition J.5 Letrd;, < do, G € G%>dn andlet w = (w[i])izo denote elements of 4%n = @1 *din,
with ||wH?2 = D0 w2 and Z-transform c. Further, define #5, = {w € 9% - ||wlly, =
1, wll =0, Vi > h}. We define the Hpn)functional as

. 1 2n ST AN
Hiy[G)? == min /0 | G(e)(e)||2d6.

weWy 2T

15. In the full observation setting, with controllers depending directly on noise w, Agarwal et al. (2019b) only needs to
verify that (the appropriate equivalent of) Gy, (y,) is Well conditioned, since the noise terms w; are independent
by assumption.

16. The restriction din < d, is to remind the reader that, if din > do, then Hmin[G] is identically zero.
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Abusing notation, we also will write H,in[G] and other relevant functionals as a function of the
Z-transform, where convenient. We also note that, just as oy (+) is not a norm, H i, -] and H[h] [']
are not norms as well.

Having defined the relevant functions, the following bound gives us a precise bound on the
relevant strong convexity parameter. We consider the functions

fer(M | G, y13'uily) = E[fu(M | G, y17' i) | Fel,

where F; is the filtration from Assumption 6b. In what follows, we will adopt the shorthand f;.;, (M |

Gy, y13', ula). Our main theorem is as follows:

Theorem 11 Fix, m, h and let k = m + 2h. Further, define

1
Om,h = ) ) %[m] [Gex—>(y,u)]2 : H[m-‘rh] [GI—eriSe]Q
1
> 9 Hmin[Gexﬁ(y,u)]Z * Hmin [Gr—lroise]2 ‘= Qoo
Then
2
E [Hvt(M | Gex—)(y,u)alr]?:%tvv?at) - V?atHg | ‘Ft*k} > Oém,h,kHMH% > OCOOHMHIQ-T?

provided that

(H[h] [Gex%(y,u)])
8(m+h)

Thus, if each  is chosen by an oblivious adversary and is a-strongly convex, the functions fy.;,(M)
are Moss * Oy h k ANA Qllogs + QopStrongly-convex, provided that Eq. (1.1) holds.

h) < H[m-l—h—l] [Gnoise]

d U
ane e =" 2(m+h)

VG sy () < (J.1)

noise (

The above theorem is proved in Appendix J.3. Some remarks are in order:

1. While m, h are algorithm parameters, k appears only in the analysis. The constraints on h
reflects how the m-history long inputs u§*(M/) must be given time to propogate through the
system, and the constrain £ > m+ h reflects the sufficient excitation required from past noise
to ensure the last m + h natures y’s are well conditioned.

2. As we shall show in Proposition J.6, the functional #;,)[G] decays polynomially as a function
of h. On the other hand, decay functions decay geometrically, so these constrains on m, h, k
can always be satisfied for h and & sufficiently large.

3. We consider G .. to insure that the input dimension is greater than output dimension, as per

the restriction in J.4.

Appendix J.2.2 provides a transparent lower bound on a., when the system is stabilized by
an static feedback controller. For general controllers, however, Hpnin [Gexﬁ(yyu)] may be equal to
zero. We introduce the following condition. However, we can show that H ;) [G] degrades at most
polynomially in h:

Proposition J.6 Let d;, < d, and G = Transfer(A, B,C, D) € 9%>dn with o4 (D) > 0, or
more generally, that G is Then, there exists constants c,n depending only on G such that, for all
h >0, H[h] [G] >c¢/(h+1)"

We are now in a place to prove our intended proposition:
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J.2.1. PROOF OF PROPOSITION E.2B

Recall the settings h = |m/3], and k = m + 2h. First, we lower bound «,, 5. From Propo-
sition J.6, there exists constances c1,ca > 0 and n1,ng such that Hj,, (Gexs(yu)] = cam™™
Himin) [Groisel > c2(m 4 h)™"2 > £2:m", since h < m. Thus, there exists somes ays > 0 and
Dsys such that o, j, > agysmPsss.

Now, let us show that there exist an m > mgys for which conditions of Theorem 11 hold. From
the stability assumption of the stabilized system (Assumption 1b), there exists constants C' > 0 and
p € (0,1) for which ¢ (n) Vg, ... (n) < Cp™. Thus, form >4 and h = [m/3| > m/4,
we have

ex— (y,u)

(%[h] [Gex%(y,u)]) Cptm/:”

(

) ' wGex%(y,u) (h) <

8(m +h) ~ 8(m+ [m/3])er[m/3] 7
which is at most 1 for all m sufficiently large. A similar argume,tm applies to checking the bound
H[m — ][Gnoise]
U Ge (h) < =500 =

J.2.2. EXAMPLE: STATIC FEEDBACK CONTROLLERS

Consider the static feedback setting (Example 4), where we have a stabilizing controller with A, =
0, and 7; = y;. For consistency with conventiona notational, we set ' = D, € R%%, This
includes the full observation setting via the laws (A, + B,F’), but may also include settings with
partial observation which admit a matrix F' such that (A, + B,KC,) is stable: Note that taking
K = 0 subsumes full-feedback as well. The proposition shows that o, from Theorem 11 admits a
transparent lower bound:

D=

Proposition J.7 Consider a static feedback controller with K = Dy,, and recall oo =
Hmin [Gexﬁ(y,u)]2 * Hmin [GT ]2. Then,

noise

1. Snoise = 021, then ae > %o min {1, | K52} - min {1, || B, K||;2} -

2. Ifonly 02, > 0 (but Yyoise may not be positive definite), then

o2 Omin(Cy)?
2 36 I ) A

3. Finally, if K = 0, then

i Umin(c*)
2 (1+ | Adllop)?

+

Note that if omin (Cx) > 0, then we only need U?N > 0 to ensure o > 0. In particular, with with
C, = 1, we recover the bounds from Agarwal et al. (2019b), even with stabilizing feedback. Note
that, unlike Agarwal et al. (2019b), these bounds don’t require any assumptions on the system, or
any approximate diagonalizability.!” It order to illustrate how useful it is to the represent strong
convexity in terms of Z-transform and H-functionals, we provide a proof of the above proposition

17. However, to conclude strong convexity via Theorem 11, we require A — m > 0. Still, we note that these bounds
apply to more general settings where one has (a) observation noise and (b) partial observation.
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Proof [Proof of Proposition J.7] In static feedback, we have a stabilizing controller with A, = 0,
and set D, = K and Ax = A, + B,KC,, and Ak (z) = (21 — Ag)~L. Then, we can verify

i 0 Cy i i i
GL)](%(%U) = Li=o |:I:| + Ii>o |:KC*:| AKlB*a G[(1]u,e)—>77 = Li=o [0 I] + I[’i>OC*AK1 [0 K]
Thus,
G (Z) _ C*AK(VZ)B* G ) (Z)T _ 21/2 AK(Z)VTCI
ex= () I+ KC,Ag(2)B,]" "™ moise | T+ BIK T Ag(2)TCT |

We now invoke a simple lemma:

Lemma J.8 Consider a matrix of the form W = [I}:)%Z] € R+Dxd iy Y ¢ ROxd,

X,ZT € R™N. Then, oyin(W) > L min{1, Uﬁl}i(n”g) 1.

Proof [Proof of Lemma J.8] Consider ||[Wo||s for v € R? with [[v]| = 1. If | Zv|l2 < 1/2(|X ||ops
then

1 1
[Wolls 2 I+ XZull3 2 1= [ Xl Zollo 21— 5 = 5.

. min Y
Otherwise, [WWv[| > ||V Zv|| > owin(Y) - | Z0]] > Gpf) |

[

By Lemma J.8, we see that
1 _
Hmin[Gexﬁ\(y,u)] > 5 mln{l, HKHopl}7
and if Epoice = 021, then
noisel —

g . —
Hmin[GT ] > Emln{lv ||‘B*I(”0p1 .

This establishes the first result of the Proposition. Moreover, if we just have state noise o2, but

possibly no observation noise, then Hin[Gnoise] = min(Cx)Hmin [/l K] > 71?]?2(3*) , where we
op
1 A p— =2 1 pr— 1 1 1 %
note that omin(Ax(2)) ) T = THETAxon’ which is at least i e for z € T.

Lastly, when K = 0, we can direclty lower bound Hmin[Gex—(yu)] > 1, and lower bound
Hnin[Croise)? > 02 0min(Co)*Humin[Ax]? + Humin[l + Bl KT Ag(2)TCT1?02 By specializing
F = 0in the argument adopted for the previous part of the proposition, Huin [[4+B, K T Ak (2)TC] >

FnCe)and by setting K = 0, Huin[I + B KT Agc(2)TCT? = I |

J.2.3. EXAMPLE: YOULA LDC-EX WITH EXACT OBSERVER FEEDBACK

In general, static feedback is not sufficient to stabilize a partially observed linear dynamic system.
Let us consider what arises from the the Youla LDC-Ex parametrization. From Lemma G.5, we
have

y = Li=0 [0 Ig,]+ LisoCu(As+ LC,)! [Is, F].
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and

Gl

ex— (y,u)

O C* 71—
= Ii—o [Id } + Liso [F} (Ai + B,F)"'B,.

Thus, introducing Apr(z) = (2I — (A+ BK))™!,and Azc(2) = (2I — (A — LC))™', we have
- _[o C.l _ [ C.Apr(2)B.

Moreover,

Gluwe)sn(2) = [0 Ig,] + Clre(z) [Is, F],
giving
= 1 ALc(z)TCT

. — 2 z *
Chnoise(2) = Tiie [Idy FFTAre(z)TOT |

From Lemma J.8, we have

. 1
7'[min Gnoise z Z min {17 } .
(Chrose(2)] M FTon

Lower bounding Gex%(y,u) (z) is a little trickier. Define X (z) = 2I — A,. We have

Iy, + FAgp(2)By =T+ F(2I — A, — B,F) !B, = + F(X(2) — B,F)"'B,
=1+ F(X(z) — B,F)"'B,
= —((=1) = F(X(2) + B(-)F)"'B,)
=—(-I1+FX(z)7'B,)".

Then,

1 1

omin(la, + FAprp(2)By) = - < —.
o V=T 4+ FX(2) " Billop — 1+ [1F llopl| Bullopll X (2) " lop

Substituting X (z) = (2I — A,), we have

1
>
T 1+ || Fllopll Bellop maxer [|(2I — Ax) 7 lop

Hmiﬂ[éexﬁ(y,u)]

In otherwise, if the eigenvalues of A, are bounded away from 1 in magnitude, then Hpin [Gexé(y,u)] >
0, yielding a bound of aio, > 0.

J.3. Proof of Theorem 11

The proof of Theorem 11 proceeds by first representing the strong convexity in terms of the Toeplitz
operator defined below:
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Definition J.9 Ler k,/,h € Nwithk > h > 0, and £ > 0. Given a Markov operator G € Gdoxdin
with G € R%*din [ot Gy € R%*din denote the Markov operator with GLZ] = HigeG[i]- The Toeplitz
operator is defined by

'GP 0 o0 ... 0]
c G o ... o0
Toepy,.; o(G) := Géh} GLh_H GE] GLD] € RUHDdox (h+1)din
gt gl @l gl
e/ e U ¢/ i)

We use the shorthand Toepy,.(G) = Toepy,;, 1 (G).
Our first lemma establishes strong convexity in terms of the above operator:

Lemma J.10 For any M = (MU, we have the bound
nat _ nat nat ||2 2
E |:Hvt(M ’ Gex%(y,u%nl:t y Vi ) -V H2 ’ ‘Ft*k:| > gm,h,kH]WHF

where |[ M]3 := S [ A1)

%, and

-
Qo bk — Udum(Toepmfl;m+h71,h(Gex—>(y,u)))2 " Ody(m+-h) (Toeperhflgk(G(noise))2

Next, we show that the smallest singular value of a Toeplitz operators is lower bounded by the
Hip[G]

Lemma J.11 Let G € 9% pe a Markov operator, which in particular means ||G||¢, op < 0.
Further, let £k, h € N, with £ > 1, and k > h > 1. Finally, set ¢; = ¢y if £ > k, and otherwise, let
ca=1-7),c= % — 1 for some ™ > 0. Then,

Ta(hr1) (Toepp o(G))? > crH i [G? — ca(h + 1)k — h Vv €)%,
where H[G] is as in Definition J.5.

The above lemma is proved in Appendix J.3.2. Theorem 11 noq follows readily:
Proof [Proof of Theorem 11 ] From Lemma J.10, the functions f;.,(M) = E[f(M) | Fi_| are
Qoss * Oy, 1 Strongly-convex, where

2 T 2
Y bk = Udum(Toepm—l;m+h—1,h(Gexﬁ(y,u))) " Ody(m+h) (Toepm—i-h—l;k(Gnoise))

Applying Lemma J.11 with 7 = %,

ool

O-dum(Toepmfl;erhfl,h(Gex—>(y,u)))2 > H[h] [Cyex—>(y,u)]2 - 7(h + 1)2wGex_,(y7u)(h)2

. Taking

h + 1(7’[[}1] [Gex%(y,u)])2
/(/)Gexﬁ(y,u) (h) S 8 ’
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we obtain

3
Odym (Toepm—1;m+h—1,h(Gex—>(y,u))) ZH[h] [Gex—>(y,u)]2
. Further, applying Lemma J.11 with ¢ = k, we obtain
0d, (m-+h) (Toepm+h—1;k(Gnoise))2 > Himth-1] [Gnoise]2 —(m+h-— 1)2\I/Gnoise(k —(m+h- 1))2-

(h)2 < Hmtn=1lCroise]

Taking k = m+-2h, it suffices that U Stmihy > We obtain oy, 1p) (Toepm+h_1;k(Gnoise))2 >

%/H [m+h] [Gnoise] 2 . Thus,

3 3
S bk > ZH[h} [Gex—>(y,u)]2 ' ZH[m—i-h—l] [Gnoise] = 2H[h] [Gex%(y,u)]ZH[m—&-h—l] [Gnoise]2 = Oy hk-

noise

Since Hj,)[G] > Hmin[G], we conclude that oy, j, > @o. Therefore,
2
E [[[Ve(M | oy mliEvi™) — i |21 Fick] 2 o sl MIE > o MR (12

Finally, we observe that if f(z) = ¢(Xz+v) is a function with a random variable X and a-strongly
convex loss ¢, then E[f(2)] is « - o/ strongly convex as long as E[|| X z||2] > /| z||3 for all z. This
means that Eq. (J.2) entails that f.j, is both qoss - Qb1 and Qs - Qoo-Strongly convex.

[

J.3.1. PROOF OF LEMMA J.10

For simplicity, we assume that M € M (m+1, R,); this simplifies the indexing. Further, introduce
the row-toeptliz operator

ToepRow,, (G) =[G gl ... GiH].
Further, lets us introduce the shorthand
5Vi(M) = vi(M | Gexs(yu)y M VES) = vi™, ug® (M) := ug™(M | nii").

We can directly check that

u;*(M)
6vi(M) = ToepRow, (G ex— (y,u)) ut—.1.(.M)
up™, (M)
Moreover,
us (M) Mo prar Mlm] 0 et
u (M) _ | o MOyt el et
g, (M) R VAU (L I VA (0] I .
n{lat
e
= Toeph;m-‘rh(M) )
n?a‘Em—i—h)
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Letting N?f;i(m ) denote the vector above, this us gives the compact representation:

ovi(M) = ToepROWh(Gex—>(y,u))Toeph;m+h(M)N?;?t_(m+h)-
Recall that, to establish the lemma, we wish to lower bound
E[[|6ve(M)[13 | Fir] > apmill M|,
where ||M||2 := 327" | MU]||2. To this end, define the random variable

Nt mmyse = Nt man) — EINGE (nny | Feoil- J.3)

at

Since Nga(l;_(m Fh)k is uncorrelated with IE[Nil (t—(m-+h

) | Fi—k], we have
E [lave(M)|} | Fi-r]

=F -HToepRowh(Ge)H(y’u))Toeph;erh(M)Nzi‘t_(erh)Hz | }'t_k]
=F -HToepRoWh(Gexﬁ(yﬁu))Toeph;m%(M)NE?_(erh);lHz | }‘t_k]

2
+ HToepRowh(Ge)H(y’u))Toeph;m+h(M) -E [Nﬁit_(m%);k | ]-"t_k] H2 (By uncorrelation)

[ 2

>E HToepRowh(GeH(w))Toeph;m L (M)NDat (m+h);kH2 | }'tk]
) 2

= HToepROWh(GeXﬁ(yau))Toeph;m+h(M)H2
X Tdy(1+me+h) (E {1\Iffl:i;{<m+h);k<1\I?:?5(m+h>;k)T | 7 t*’“]) '

Thus, to conclude the proof, it suffices to establish that, for N?iﬁ( ;. defined in Eq. (J.3),

we have

m-+h);

Ody (1+m+h) (E [N?:?t—(m—i-h);k(N?:?t—(m-i-h);k)—r | ft—kD > 04, (m+1+h) (T0eP 1ok (Ghoise))”
J4)

and

2
}{ToepROWh(Gex%(y,u))Toeph;m+h(M) HF > 0d,(m+1) (Toepm;erh,h (Gex—>(y,u)))2 d.5)

Note that m in the above display in fact corresponds to m — 1 in the statement of the lemma, since
for the proof we assume M € M(m + 1, R) to simplify indices.
Let us now establish both equations in the above display.

Proving Eq. (J.4) Recall that G, ), denotes the Markov operator mapping disturbances to
outputs, which satisfies by Lemma 3.2b the following

t
nat __ (4] Wi—i
M= Gl [et_zl :

i=1
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Then, since Ngi‘i(m ) is the component of nature’s y’s depending only on noises (W, e,) for
se{t—k,t—k+1,...,t}, we deduce:

N?:it—(m—i-h);k = ToepTransm+h;k(G(w,e)—>77) (Wil 1>

€k
Wit ]
where we have defined the Toeplitz Transpose operator
GO gl g@l . gl=rlo o G
ToepTrans)(G) i 0o GO g .. ghk=rll o Gl
oG e

Thus, letting Diagy, 4 (Xpoise) denote a block diagonal matrix with X,4isc along the diagonal, we
have from Assumption 6b

n n T
E [Nt:?t—(m—f—h);k‘(Nt:?t—(m—&—h);kz) | ]:t—k::|
. T
= ToepTrans,, . (G(w,e)%n) Diagy, ., (Znoise)ToepTrananh;k (G(wﬁ)%n)

-
1 1
= ToepTransm-i—h;k <G(w:€)ﬁ77 ) Z1r2101813> ToepTransm+h;k <G(w,e)ﬁn ' Eéoise)

= ToepTrans,, ;. (Gnoise) ToepTranstrh;k(Gnoise)T

Y

1
where we use the convention G/, o)y, - 235 denotes the Markov operator whose i-th component
1

. 1 1
is GIL %2 and recall the definition Ghoise := Gue)y - X yiee (Definition J.3),

(w,e)—n~noise’
The following fact is straightforward:

Claim J.12 For all 04(ToepTrans;, . (G)) = ad(Toeph;k(GT))for all d.

Thus, combining the above with Claim J.12,

Ody(1+m-+h) (E[Nﬁ‘?—

2
(m+h);k(N2?t_(m+h);k)T | —Ft—kz]) > ady(1+m+h) (ToepTransm—l—h;k(Gr—lroise))
2
= 0dy(14+m+h) (Toeperh;k(G;lroisc)) )

concluding the proof of Eq. (J.4).

Proof of Eq. (J.5) This bound is a direct consequence of the following claim, which thereby
concludes the proof of Lemma J.10.
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Claim J.13 Suppose that G and M are of conformable shapes. Then,

Mol
T Ml
[ ToepRow, (G)Toep (M) 1 > 0, 1) (ToePmmnn @) |||
Mm] v
Proof Keeping the convention M = 0 for i > m, we can write
ToepRowy, (G) Toepy,., 41, (M)
=[G | GOAY 4 GUIAI | - | SO GO | SO GOl | | o Gl Al
m+h
i=0

The above block-row matrix has Frobenius norm equal to that of the following block-column matrix,

ol Z?:o HighG[i]M[_i]
N Nl Z%:o I, GEI M1
Nm+h] ZZZB}L I <, Gl pglmth—il,

which can be expressed as the product

lell 0 0 0 0 0 " M 101
elyelt 0 0 0 0 MU
= lgh ghu G g o |- |arm|,
0 gkl qglh-1) Gl 0 0
0 e e =t col | o |

where we have use MY = 0 fori > m. Let us denote the first m column blocks of the above matrix

as X,,. Letting G%] = HighG%}, we have

ey 0

al Gl

x| ™
g gl
Gt g
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MOl
_ M ] )
Then, we have that N = X, and in particular,

Mml
Mol

— M

1Nl 2 oaumeny(Xm) || |

Ml

To conclude, we recognize X, are the matrix Toep,,.,,, + 4 (G), so that

Mol

— Ml
IN|p = Fanmsr) (ToePmaminn(G))

Aglm)

J.3.2. PROOF OF LEMMA J.11
LetG = (Gm )i>0 be a Markov operator. We define its z-series as the series
i>0

Our goal is to prove a lower bound on oy (Toepy.,(G)). Introduce a “signal” {wl1};50, and
annotate the fo-ball 7, == {w : Y0 |wl|}3 < 1,0l = 0, > h}. Let us introduce the
convention GI#! = 0 for i < 0. Then, we can express

2
Toep e (G) (w7, ..l |

Omin(Toepy, 1 o(G))* = min

wWEW,
k h
— Gli—il ] 1.6
521//% Z j)<e (J1.6)

=0 ||7=0 9

Let us first pass to the &k, £ — oo limit.

Lemma J.14 Let ¢y = ¢y if ¢ > k, and otherwise, let ¢y = (1 — 7), ca = % — 1 for some T > 0.
Then, for ||G||¢, op < 00, we have

2

min(Toepy ¢(G)) 2 c1 min ST Ty <GV AWV = ea(h+1)%0a(k — h)?,

wWEW;
h €L ||JEZL 9

where if £ > k, c1,cosac1 =co = 1.
c1, co satisfy either , or,

100



IMPROPER LEARNING FOR NON-STOCHASTIC CONTROL

Proof For w € %}, we have

2
R | R o
HToeph;k‘,Z(G) (W[O]v s 7w[h]) H2 = Z Z ]I(ifj)SZG[Ziﬂwm
=0 || =0 )
- Z Z(G[Z—J] _ H(i_j)%G[Z_J])w[J]
=0 ||j=0 )
oo h 2
= Z Z(G[Fﬂ —Ti—j>eoriskGl o )wl]
=0 ||j=0 )

where in the last line we use that £ < k. Let us introduce the shorthand T; ; := I;_j)> ori>x- Using
the elementary vector inequality |[v + w||3 > (1 — 7)[|v||3 + (1 — 1)||w||3. This gives

2

2
00 h 00 h
HToeph;kl(G)(w[O},...,w[h])Hz > clz Z wb! —CQZ ZHW-G[i_ﬂwm
=0 || 7=0

9 =0 ||7=0 9

where ¢; = (1—7) and ¢, = (£ — 1), and where all sums converge due to ||G||¢, op < 1. Moreover,
one can see that if £ > k, then we can simplify the above argument and take ¢; = ¢o = 1, as in this
case

2 2 2
k h 00 h 00 h
Z Z(G[i—j] — ]I(i_j)>gG[i_j])wm - Z Z Gli=a bl — Z Z z>kG[Z
i=0 ||j=0 o =0 |[j=0 5 =0 ||j=0 9
Observe that since w has £2-norm bounded by 1, we have
1D Ly G WS < || [y G |-+ | T ys e GEMI] 12, < D L GET)3,
j=0 j=0
Thus,
oo h o ' 2 o h o oo  h o 2
D[ 2o TG < 3 I GEG, < | 30D MG o
i=0 || =0 5 =0 j=0 i=0 j=0
2
< (h+1) [ D Micmingen—m G lop | = (h+ 1)*pa(€ Ak — ).
i>0
Thus, we conclude that, for any 7 > 0,
N 2
- 1
HToeph.H(G)(w[O], L wlhly H (1= Y S GF0 4 (1= ) (h+ 1) (min{e, k - h})>.
” T
=0 || =0 9
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Finally, since wl! = 0 for j ¢ {0,...,h}, and G7 = 0 for j > 0 and i < 0, we can pass to a
double-sum over all indices ¢, j € Z. |

Next, for each w € #,, we introduce
Gl = (Gxw)ll = Zg[i—j]w[j]’
JEZ
and let G, [2] denote its Z-transform. By the convolution theorem,

Gew(2) = G(2)0(2),

where 0(2) = >,y wlil 2 is the Z-transform induced by w. Moreover, by parseval’s indentity,

; 1 2 . 1 2 N
SIGHLE = 5= [ 1Cule) B0 = 5 [ IG ()t 306 = 7ty G

; 27 i
€L
Therefore, for ¢, co as in Lemma J.14,

2

Omin(Toepy, . (G)) > ¢1 min Z Z Gl —co(h+1)%g(t Ak — h)?

we,

€L ||JEZ 9

= c1 min Z IGUL |2 — ea(h + 1)20c(E A Kk — h)?
= My [G] —ca(h 4+ 1% (L Ak — h)>.

J.4. Proof of Proposition E.2 (Strong Convexity for the Stable Case)

For stable systems — that is, systems without a stabilizing controller — we can directly lower bound
bound the strong convexity without passing to the Z-transform. This has the advantage of not
requiring the conditionson W¢, . and ¥ stipulated by Theorem 11. As our starting bound,
we recall from Lemma J.10 the bound that f;.,, (M) are ajogs - Q11 Strongly-convex, where

noise

2 T 2
DY bk = Udum(Toepm—l;m+h—1,h(Gexﬁ(y,u))) " Ody(m+h) (Toepm—i-h—l;k(Gnoise))

The followign lemma bounds the quantities in the above display, directly implying Proposition E.2:

Lemma J.15 Foranym > 1andany k > m+h, we have that oq,,(,+1)(Toepy. i n—1(Gex—(yu))) =
min C*
L and 04, (m+n) (Toepm+h71;k(Gnoise)) >0+ m
Proof
In the stable case, we have that

Gl

Gl
1 dy Li—o.

ex— (y,u)
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Thus, for m > 1, Toep,,, 1. +n—1,h—1(Gex—s(y,u))) can be repartioned so as to contain a submatrix
14, mxd,m- Thus, Udum(Toeph;m+h—1(Gexﬁ(y,u))) > 1

To lower bound o4, (mr)(Toep,, +h71;k(Gn0ise)T)2a we use the diagonal covariance lower
o2l; 0

bound Y pise = [ 0 Ug Idy

} . For this covariance, G oisc takes the bform
ol [ i>1- (G Ao
- I

noise
=0 * I dyOe-

Thus, Toep,,, th-1; 1 (Ghnoise) can be partitioned as a two-block row matrix, where one block is an

Oe - I(h—i—m)
X = | O(k—(m+h—1))du X(mh)dy
UwToepm-i—h—l k( *w)v

where G, w = ]Iile*Ai_l. From this structure (and use the short hand )
Ody(m+h) (Toepm+h71;k(Gnoise)T)2

= 0lmnya, (X)

= (m—‘rh)dy (02 (hsmya, + To TP 1.1(GL ) Toep,, 14 1.4(Gl )

> 02+ 0 Oimrnya, (Toep n 1.1(Gl )

It remains to lower bound o, 1)4,, (Toep,,, 4 1, _1.4(G )% We can recognize that, for k > m+h,
Toep,, 1 h_1. k(G w) has an (m + h)d, x (m + h)d, submatrix which takes the form

Diag(Cy,...,Cy) - PowToep,, 1 (As) |,
+ hi

where we have defined

I A A%z ... Aprl
p—2
PowToepp(A) = ¢ I 4 .. 4
0O 0 0 I

Thus,
O (m~+h)dy (Toepm#»hfl;k:(GI,w)) > Jmin(c*) ’ Umin(POWToepm+h(A))

= Omin(Cy) - [[PowToep,, 1 4(A4) ™ flop

We can verify by direct computation that

I -A 0 0 ... 0
PowToep(4) ! 0 I —-AO0 ...0 7
O 0O ... 0 0 I
giving | PowToep,,;(A) " lop < 1+ [[Allop- THUS, 0511, (To&Py -1 (L)) > Tl
yielding o4, (m+n) (Toepm+h—1;k(Gnoise)T)2 > 02 + 02, (Tiuﬁﬁﬁ)_l as needed. [
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J.5. Proof of Proposition J.6

The proof of all subsequence lemmas are provided in sequence at the end of the section. As we
continue, set T := {e* : § € [27]} C C. For w € ¥%n, we the following signal norms:

Definition J.16 (Signal norms) For a complex function p(z) : z — C%, we define

1 2m

2 0y12 10

= de =

ol =5 [ o) Ba8, pla i= max e

By Parseval’s theorem, ||lwl|,, = [|]|5,, whenever ||w||,, < co. Importantly, whenever w € #4,,

the signals w are not too “peaked”, in the sense that they haved bounded H .-norm:

Lemma J.17 Suppose that w € #},. Then, & is a rational function,
h+ 1.

Ol = 1 and [l0ff3,, <

Using this property, we show that integrating against w, for w € #4, is lower bounded by integrating
against the indicator function of a set with mass proportional to 1/h:

Lemma J.18 (Holder Converse) Let Let € (€) denote the set of Lebesgue measure subsets C C
[0, 27 with Lebesgue measure |C| > €. Then,

weWh, 8T Ccet(77

. 1 . 2
HnlG] = mip G ey 2 - min [ o, ()" at
oeC
The next steps of the proof argue that the function oy, (G‘(ebe))Q can be lower bounded by a
function which, roughly speaking, cannot spend “too much time” close to zero. First, we verify that
o4, (G(z)) can only reach zero finitely many times:

Lemma J.19 Let G = (A, B,C, D) be a Markov operator from R% — R%. Suppose that
do > din, and 04, (D) > 0. Then, o4, (G(z)) = 0 for at most finitely many = € C.

Using this property, we lower bound o, (G(e*?))? by an analytic function. Recall that f : R — R
is analytic if it is infinitely differentiable, and for each z € R, there exists a radius 7 such that, for
all § € (0, ), the Taylor series of f converges on (z — d,x + §), as is equal to f.

Lemma J.20 There exists a non-negative, analytic, function f : R — R, which is is not identically
zero such that, for any 0 € R, oin(G(e9))? > £(0), for all 6 € R.

Finally, we use the fact that analytic functions cannot spend “too much time” close to zero (unless
of course they vanish identically):

Lemma J.21 Let f : R — R be a real analytic, nonegative, periodic function with period 2,
which is not identically zero. Then, there exists a constants ¢ > 0 and n € N depending on f such
that the following holds: for all € € (0,27], and any set C C [0, 27] of Lebesgue measure |C| > ¢,
then,

/ £(0)d0 > ce,
C
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The proof of Proposition J.6 follows from applying the above lemmas in sequence. Recalling that
¢ (77) denotes the set of C C [0, 27] with |C| > 375, for some non-vanishing, periodic, analytic
f, we obtain

Hy|G(2)] > — - min / o4 (é(ebe))Zde (Lemma J.18)
) Joec

81 et

v
|

- min 0)do (Lemma J.20)
8 Ce%(hjl)/gec 19)

v

min |C|" (Lemma J.21)

_— 1
87 cet(3y)

c/

— 87

for some ¢ > 0, and n € N.

J.5.1. PROOF OF LEMMA J.17

Proof Since w(z) = Z?:o wll 2% %(2) is rational. The bound ||cd||24, = 1 follows from Parsevals
identity with 3. |wf|s = 1 for w € #,. The third point explicitly uses that w € # is an
h 4+ 1-length signal. Namely, by Cauchy-Schwartz,

h

h h h
lw(2)ll2 = || Zz w2 < Z\Z |2 Z [wlil|)3 = Z\Z 2,
i=0 0 i=0

1= = =0

where we use that the ¢ norm of w is bounded by 1. If z = €', then |2%|2 = 1, so ||@(2)]]2 <

vh+1. |

J.5.2. PROOF OF LEMMA J.18

We argue that rational functions p with unit Ho-norm and bounded 4, norm must be large on a set
of sufficiently large measure:

Lemma J.22 Let |- | denote Lebesgue measure. Let p be a rational function on C with ||p||y, = 1
and || pH%{Oo < B. Then, there exists a Lebesgue measurable C which is a finite union of intervals
with Lebesgue measure |C| > F; for which

1
vz el llp()ll2 = 5-

Proof Let C; := {0 € [0,27] : ||p(e'?)||2 > t}, which is Lebesgue measurable by rationality of p.
Then, by a Chebyschev-like arugment,

1 0 1 0
L= Iply < g [ W@t g [ e
eCt €10,27|—=C¢

Celllpll3, |Cy|
< — = 1——)t
- 2T +( 277)
< Bl
< —— 4+t

2T
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|Ct ]

) 2 % In particular, if we C = C /5, then |Ct

[ > as needed. [ |

Hence, > 2B’

We can now prove Lemma J.18 as follows. For each w € #4, let C,,) denote the corresponding
subset of [0, 27] guaranteed by Lemma J.22, that is || (e'?)||2 > 31(0 € C.,. Then, for w € #4,

2m
1G(2)0(2) .. = 5= min /0 IG () (e'”) |38

v
|

o |, 04, (G(e”))? | (e)|3d8

1 2

Y

3 | G2 (G0 € )P0

1 27
oq (G(e?))2de.

in

87 0€eC.,

Since each set C,, C [0, 27| has Lebesgue measure at least 7/(h + 1), and since € (7 /(h + 1))
denotes the collection of all subsets with this property, min,ecy;, ||G(2)w(2)]|3., is lower bounded
by

1 2m

. - (G 0 2d9
L= oa,(G(e”))"d0,

as needed.

J.5.3. PROOF OF LEMMA J.19

Proof Next, Note that if G = (A, B,C, D), then G(z) = D + C(2I — A)~'B. Since a4, (D) > 0,
there exists a projection matrix P € R%n% such that PD is rank d;,. Moreover, if o4, (PG‘ (2)) =0,
then o4_(G(2)) = 0, so it suffices to show that o4 (PG(z)) = 0 for only finitely many 2. Since
PG(z) € R¥n*din j5 square-matrix valued, it suffices to show that determinant det(PG(z)) = 0 for
at most finitely z. Since det is a polynomial function, and PG (z) has rational-function entries, (this

can be verified by using Cramers rule), there exists polynomials f, g such that det(P@ (2)) = g 8

for € C. This means that either det(PG(z)) = 0 for all z € C, or is identically zero on C. Let
us show that the second option is not possible. Consider taking z — oo (on the real axis). Then
lim, o0 G(2) = lim, 0o D + C(2I — A)"'B = D. Hence, lim,_,o, det(PG(2)) = det(PD) >
0, since o4, (PD) > 0. [ |

J.5.4. PROOF OF LEMMA J.20
Proof We have the following lower bound
d; = H A~
- - Lin )\Z
)\min(G(z)HG(Z)): 1_!;:_11 GV(Z) GV(Z)
Hz’lznl )‘iG( )HG(Z)
o I AGEMGE)
(maxzer | G(2)][2,) %~
G(

_ det(G(ME()
EER
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By assumption, ||G/(2)|l%.. < oo, and so ¢(z) only vanishes when det(G (2)"G/(z)) does, which
itself only vanishes when Apin(G(2)HG(2)) = 0. By Lemma J.19, this means that ¢(z) is not
indentically zero on T.

Now, let ¢(0) = det(G(e?)HG(e?)). It suffices to show that this function is real analytic. We
argue by expressing ¢(6) = ®o(P1(0)), where ®1 is a real analytic map from R — (R?)de*din_and
®, an analytic map from (R?)de>dn 5 R,

Let embed : C%xdin — (R2)%*din denote the cannonical complex to real embedding. We
define ®;(#) = embed(G(e*?). To see that ®;(6) is real analytic, we observe that the map z +— e/
is complex analytic, and since G' is a rational function, u — G(u) is analytic away from the poles
of G. Since G has no poles u € T (by assumption of stability/bounded H, norm), we conclude
that z — G/(e*?) is complex analytic at any z € R. Thus, § — embed(G/(e?)) is real analytic for
0 € R.

Second, given X € (R?)%*din Jet ®y(X) = det((embed (X)) (embed 1 (X))). It is easy
to see that ®5(X) is a polynomial in the entries of X, and thus also real analytic. Immediately, we
verify that ¢(6) = ®o(P;(0)), demonstrating that ¢ is given by the composition of two real analytic
maps, and therefore real analytic. |

J.5.5. PROOF OF LEMMA J.21

We begin with a simple claim:
Claim J.23 f has finitely many zeros on [0, 27].

Proof Since f is real analytic on R, it can be extended to a complex analytic function f on a open
subset U C C containing the real line R. Since f is not identically zero on R assumption, f is not
identically zero on R, and thus by “Principle of Permanence”, f can have no accumulation points
of zeros on U. In particular, its restriction f can have no accumulation points of zeros on R. As
[0, 27] is compact, f has finitely many zeros on [0, 27].'8 [ |

We now turn to the proof of our intended lemma:
Proof [Proof of Lemma J.21]

Let6y,...,0,, denote the zeros on f(6) which lie on [0, 27), of which there are finitely many by
the above argument. The Taylor coefficients of f cannot be all zero at any of these 6;, for otherwise
analyticity would imply that f would locally vanish. Thus, by Taylor’s thoerem, at each zero 6;, we
have that for some constants ¢; > 0, 7; > 0, n; € N,

f(0)>cil0—6;]"", VO eR: 10 —6;] <m;
Letting ¢ = min; ¢;, n = max; n;, and r; = min{1, min; r; }, we have that for all

FO)>clo— 0", VO R |0 —0;] <r

18. As a proof of this fact, note that if f has no accumulation points, then for each = € [0, 27], there exists an open set
set U, C R containing = which has at most 1 zero. The sets U, form an open cover of [0, 27]. By compactness,
there exists a finite number of these sets Uy, , . . ., Us,, which cover [0, 27]. Since each Uy, has at most one zero,
there are at most m zeros of f on [0, 27].
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By shrinking 7 if necessary, we may assume that the intervals I; = [0; — r,0; + r| are disjoint,
and that there exists a number 6 such that [0y, 27 + 6y] D |/~ I;. By periodicity, one can check
then f(6) only vanishes on [0, 27 + 6] at {61, ...,0,,} C J;", Interior(/;). Compactness of the
set S := [0y, 27 + 6p] — U/~ Interior(/;) and the fact that f(0) # 0 for all § € S implies that
infgpeg f(6) > 0. By shrinking c if necessary, we may assume infgcg f(6) > c. Therefore, we have
shown that

VO € [0o, 21 + 0o], f(0) >£(0) :=c (]I (Zrél[lrg |0 — 0;| > r) + iﬂ((@ —6;) >r)|o —9”1) :

i=1

Now, let €'(€) denote the set of subsets C C [0y, 2w + 6] with Lebesgue measure €. By translation
invariance of the Lebesgue measure, and periodicity of f(6), it suffices to show that, for constants
¢, n’, the following holds for all € € (0, 1), the following holds

min / f(6)do > e a.7)
Ce%(e) Joec

In fact, by shrinking ¢ if necessary, it suffices to show that the above holds only for € € (0, 2mr).
Examining the above display, we that any set of the form C := {6 : f(0) < ¢} with |C| = e is a

minimizer. Assuming the restriction e < 2mr, this implies that the minimum (J.7) is attained by the
set Cc := |, Ii(€), where we define the intervals I;(¢) = [0; — €/2m, 6; + €¢/2m]. We can compute

then that,
i —e/2m
0)do = / !
/OEC Z —e/2m

m

0;—e/2m
_ Z/ clo — 0;"0
0;—e/2m

€/2m
= Z / c|6|™de

€/2m

€/2m
= 20m/ |r|"d6
0

2cm
— 2 n+1
2 (ef2m),

which has the desired form.
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Appendix K. Gradient Descent with Conditional Strong Convexity

We begin by recalling Condtions E.1, E.2and F.1 under which we argue the subsequent bounds.
First:

Condition E.1 (Unary Regularity Condition (uRC) for Conditionally-Strongly Convex Losses)

Suppose that I C RY. Let f; := K — R denote a sequence of functions and (F;)i>1 a filtration.
We suppose fi is L¢-Lipschitz, and maxgexc | V2 fi(2)|lop < B, and that fr. () := E[fi(z) | Fr]
is a-strongly convex on K.

Note that, by Jensen’s inequality, f;.; are S-smooth and L¢-Lipschitz on K. Second, we recall
the with-memory analogue:

Condition E.2 (With-Memory Regularity Condition (vwmRC))  Suppose that I C R? and h >
1. We let Fy := K'"' — R be a sequence of L coordinatewise-Lipschitz functions with the induced
unary functions fi(x) := Fy(x, ..., x) satisfying Condition E.1.

Lastly, we formalize the fashion in which the iterates are generated:

Condition F.1 We suppose that z11 = Uy (2 —ng:), where g = Vfi(zt) + €. We further assume
that the gradient descent iterates applied for t > to for some to < k, withzg = 21 = --- = 2z, € K.
We assume that ||g¢||2 < Lg, and Diam(KC) < D.

The remainder of the section is as follows. Section K.1 proves Lemma K 1 Which relates the
regret on the non-conditioned unary sequence f;
correction for the errors €;, the negative regret, and a correction €' for the mlsmatch between
ftand fip. For k = 0, f,;, = t; and e“OCh is zero, recovering Proposition F.3. Next, Section K.2
proves Lemma K.2, which bounds theterms €5*°°" in terms of a mean-zero sequence Z;(z,) depend-
ing on the comparator z,.

Next, Section K.3.1 states and proves our main high-probability regret bound for unary func-
tions, Theorem. Lastly, Section K.3.3 extends

K.1. Basic Regret Lemma and Proposition F.3

We begin by proving the following “basic” inequality for the unary setting, which provides a key
intermediate regret bound adressing both conditional strong convexity and error in the gradients, as
well as incorporating negative regret:

Lemma K.1 (Basic Inequality for Conditional-Expectation Regret) Consider the setting of Con-
ditions E.1 and F.1. For step size ny =

T T 6L2
Vz, € K, : ) < — — 2|3+ —Llog(T +1
Zx Z fre(2t) — frn(20) < Z |2t — 24|32 + o og(T'+1)

o
6
t=k+1

T
6 aD?*(k+1)
+= Z Hetug—z<e§toch zt—z*>+72 ,

t=k+1 t=1

where we define eStOCh V() — Ve (2)
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Note that Proposition F.3 in the body arises in the special case where k¥ = 0. For k > 1, the
error €§'°°! is required to relate the updates based on Vf;(2;) to to based on Vfy.j(z;), the latter of
which corresponding to functions which are strongly convex.

Proof Let g; := Vfi(2) + €. From (Hazan et al., 2016, Eq. 3.4), strong convexity of f;.;, implies
that

2(ft;k:(2t) - ft;k(z*)) < QV;l;—k(Zt — 2x) — oz — Zt”% (K.1)

Now, we let gradient descent correspond to the update y;11 = 2; — 14194, where g = Vi +

€5t 1 ¢, for stochastic error €5°" and deterministic noise €;. The Pythagorean Theorem implies

241 — 2|3 < N2t — 20 — m19ell3 = N2t — 23 + 121 lgell” — 2ne19) (20— 20),  (K2)

which can be re-expressed as

2 2
Z —Z — ||kt — %
+

Furthermore, using the elementary inequality ab < % + %bQ for any a,b and 7 > 0, we have that
forany 7 > 0

_<gt7 2t — Z*> = - <Vt;k + EitOCh, 2t — 2’*> - <€t, 2t — Z*>
aT 1 9
< — (Ve + €N m =) + Tl — a3+ o—lel} K4
Combining Equations (K.3) and (K.4), and rearranging,

_ 2 . 2
IV (21 — ) < 2= 2l =z = =]
Mt+1

+ Tallze — Z*HQ -2 <e§t°Ch, 2 — z*>

1 2
+ i llgell® + — el
T

2 2
2 — Z — |Rt+1 — 2 —1
< || t *H H t+ *H + 277t+1L2 -+ (2"7t+1 + > ||€t”§
Nt T

ol — 22 = 2 (€N 2 - ),

where we used ||g:]|3 < 2(||VFf(20) |3 + ll€:l|3) < 2(L? + ||&:]|3). Combining with (K.1), we have

T
Z ft;k<zt) - ft;k(z*)

t=k+1
T
1 1 1
< - == n)a) - B
2 tzk;rl <77t+1 Mt .
S ! S [E1[
+ Z 21 L? + <7‘a + 277t+1) let 13 — Z <€§t00ha zt — Z*> 4 2
t=h+1 =1 Mtk
Finally, let us set 7y = 2, 7 = %, and recall D = Diam(K) and ||V;||3 < L?. Then, we have that
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T T . .
LIS (5 = 2 - (1= 7)a) llz — 243 = S0 (a/3 — 20/3) 20 — 243, whichis

equal to & S |21 —

2. (55 + 201) < Soand 2300y men L < 2-3LF log(T + 1) /a

3. lzals < ok 4 1)D2/3.

m+e —

Putting things together,

T T
o
Z Jew(ze) = fun(ze) < 5 Z l2¢ — 2/[3 + 6LF log(T" + 1)

t=k+1 t=k+1
T T
3 2 h OéDZ(k -+ 1)
+ 237 el = Y (et s — ) +
t=k+1 t=1
Finally, to conclude, we bound
aDYk+1) o — (k+1)aD? (k +
T2 Y m—all s T+ (ZH% 25
t=k+1

(k+1)aD? «
_(rDal’ _asm g

K.2. De-biasing the Stochastic Error

The next step in the proof is to unpack the stochastic error term from Lemma K.1, yielding a bound
in terms of a mean-zero sequence Z;(zy):

Lemma K.2 (De-biased Regret Inequality) Under Conditions E.1 and F.1 step size ny = - t’ the
following bound holds deterministically for any z, € K
aD%(k+1) 6L+ kLg(65 + 12L; 6
Z folz) — filz) < (2 LY gi )log(T+1)+a > el
t=k+1 t=k+1
T 0T
£ 30 2 - 53 - sl
t=k+1 t=1

where we define Zy(z) := (ft;k: — ) (zt—k) — (ft;k = )(z) + (V(fr = ft;k)(zt—k)a 2k — Zx)-

One can readily check that E[Z;(z,) | Fi—x] = 0.
Proof

Let z, € K denote an arbitrary competitor point. We recall that fy., := E[f; | F:_x], and set
€M .= Vfi(2t) — Vfir(z). Proceeding from Lemma K.1, there are two challenges: (a) first,
we wish to convert a regret bound on the conditional expectations f;.;, of the functions to the actual
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functions f; and (b) the errors (€'°", 2z, — z,) do not form a martingale sequence, because the errors
€5t are correlated with z;. We adress both points with a decoupling argument. Begin by writing

€M = Vi (1) — Vinw(2t) = V(fr — frn) (ze—k) + V(e — o) () — V(e — Fon) (ze—1)-

‘We then have that

T
Z <€§toch 2 — Z*>
t=k+1
T
- E (V(fe = frr)(ze—k)s 2t—k — 24)
t=k-+1
* Z = fer)(z) = V(e = fer) (ze—k); 2t — 20) + (Ve = fer) (ze—r), 2t — 2-k)

t=k+1
Since fi.;, and f; are L-Lipschitz and 3-smooth, we have

T

D Ao = fur)(z0) = Ve = for) (zeor)s 2 = 20) + (Ve = fon) (ze-k)s 26 — 2-1)

t=k+1

T T
< Z 20||zt — zt—kll2llzt — zull2 + 2L¢|l2e — 2| < Z 2(8D + L¢)||z¢ — z—l|-
t=h+1 t=k+1

Similarly, we decouple,

T T
Z ft;k(zt ft ik Z* Z ft Zt ft Z*) Z (ft;k - f)(zt—k) - (ft;k - f)(z*)
t=k+1 t=k—+1 t=k+1
T
+ Y flzmk) = fiz) + fen(z) = fer(zin).

t=k+1

Similarly, we can bound

Z ||zt — 21|

T
Z Te(ze—k) — fi(ze) + fer(2e) = fen(ze—r)

t=k+1 t=k+1
Putting the above together, we find that
T T
S S~ e+ Y (6 n) € 3 Rl - Al
t=k+1 t=k+1 t=k+1
(4)
T T

+ Y ik = D zek) = (Fie = D20 + (Ve = o) i)y 2k — 200+ > (28D + 4Lg) ||z — 2],

—k+1 =k+1
t=k+ 2 t=k+

(iii.a)

112



IMPROPER LEARNING FOR NON-STOCHASTIC CONTROL

To conclude, let us bound the term (7ii.a):

T k
(iii.a) < Y (28D +4L) > |l21-i — z—k—j|
t=k+1 =1
k

T
< Y (2BD+4L) Y m|Vii(z) + el

t=k+1 i=1

T
3
< kLg(28D +4L¢) > mus1 < — - kLg(28D + ALg) log(T +1).

t=k+1

Q

Hence,
T

T
D7 Fonlee) = funlz) + Y (@t m -z
t=k+1 t=k+1
T

Z ft(ze) = fe(z) + Z Zi(zy) + kLg(68D + 12Ly) log(T + 1),

(07
t=k+1 t=k+1

Lemma K.2 follows directly from combining the above with Lemma K.1.

K.3. High Probability Regret
K.3.1. HIGH PROBABILITY FOR UNARY FUNCTIONS
Our main high-probability guarantee for unary functions is as follows:

Theorem 12 Consider a sequence of functions f1, fo, ... satisfying Condtions E.1 and F.1. Then,
with step size 0y = at, the following bound holds with probability 1 — 6 for all z, € K simultae-
nously:

Z fe(ze) = fe(z) — ( Z le t||2 122||Zt Z*Hz)

t=k+1 t=k+1
kdL? + kL¢L, + kBL kL2 141 D?
«

Proof Starting from Lemma K.2, we have

2 2 T
Z fi(2) — fi(es) < W+O<Lf+k(ﬁ+Lf)Lg>log(T+ 1)+g REIE

(0%
t=k+1 t=k+1
T a T a T
+ ) Ziz) - ) - zwdi—— Y - =l
12 12
t=k+1 t=1 t=k+1

(@)

where we we recall Zy(z) := (fex — f)(ze-k) = (fir — F)(20) +(V(fe = fur) (2e—k); 2—k — 20)-
We now state a high-probability upper bound on term (i), proved in Section K.3.2 below
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Lemma K.3 (Point-wise concentration) Fixa z, € K. Then, with probability 1 — 9, the following
bound holds

T

kL? k(1 + log, (aTD?)
Z Zi(z4) — 122|]zt—z*||2<(9< >log< 5 >,

t=k+1

where log, (v) = log(x V 1).
Together with k£ < T and some algebra, the following holds probabilty 1 — § for any fixed z, € IC,

2 2 T
> Al - e D o (HAO Ll 1y 1y 8 5 e

2 «
t=k+1 t=k+1

kL? T(1+1log, (aD?)\ o w— )
#0 (M) g (TR ) S

To extend from a fixed z, to a uniform bound, we adopt a covering argument. Note that the only
terms that depend explicitly on the comparators z, are — fi(z,) and ||2; — 2]|3. We then establish
the following bound:

Claim K4 Let N denote a D /T-cover of K. Then, for ay z, € K, there exists a z € N with

T
- > (e - A+ 3 ke == ] 5 o
t=k+1
Proof [[12: — 23 — 124 — 23] = (21 — 2 (21— 2) — (21 — 2)) + (26 — 200 (20 — 22) — (20 — 2))| <
2D||z« — z||. Moreover, |fi(2) — fi(z«)| < L¢||z — 24||. From the triangle inequality, we have that
the sum in the claim is bounded by (L¢ + aD)T||z — 2|| < L¢D + aD* < L /o + aD?. [

Next, we bound the size of our covering
Claim K.5 There exists an D/T covering of N with cardinality at most (1 + 2T)%,

Proof Observe that K is contained in ball of radius D. Set ¢ = D/T. By a standard volumetric

: : d _ 2D\d _
covering argument, it follows that we can select [N < ((D + €/2)/(¢/2)) = (1 + =) =
(14 2T)4. |

Absorbing the approximation error of L?/a 4+ aD? from Claim K.4, and applying a union bound
over the cover from Claim K.4, we have with probability 1 — ¢ that

T
Z fi(ze) = fe(2) — <122H2t_2*’2+ Z H€t||2>

t=k+1 t=k+1
L2+ k L 2 T 27T)4(1 + 1 D?
2+ (5a+ £)L glog(T)JrkL log( (1+27)%(1 + log (« )>

< aD%k +

)
L2 L)L kL? 1+1 D2
< akp? 4 ML k(f = L0 L o) + 1o <+ Og;(o‘ )> .
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K.3.2. PROOF OF LEMMA K.3

For simplicity, drop the dependence on z,, and observe that, since f;, f;.; are L¢-Lipschitz, we can
bound |Z;| < 4L¢||z¢ — z4||2. Moreover, E[Z; | F;_j] = 0. We can therefore write

T T o
Y Zi= ) U7,

t=k+1 t=k+1

where we set Uy := 4L¢| 2y — 24||2 and Z; := Z;/U;. We can check that

|7t’ | J_'.t_k < las. and ]E[Zt | ft—k] = 0.

Hence, Z, is a bounded, random variable with E[Z; | F;_j] = 0 multiplied by a F;_j-measurable
non-negative term. Note that this does not quite form a martingale sequence, since Z; has mean
zero conditional on F;_g, not F;_1.

This can be adressed by a blocking argument: let ¢t;; = k + i + jk — 1 for i € [k], and
jeA{l,...,T;}, where T; := max{j : t; ; < T'}. Then, we can write

T k T;
Z Ut‘Zt:Z ZUt'ZeiJ

t=k+1 i=1 \j=1

Now, each term in the inner sum is a martingale sequence with respect to the filtration {73, ; };>1.
Moreover, Zy, | Fy, ,_, is 1-sub-Gaussian. We now invoke the a modification of Simchowitz et al.
(2018, Lemma 4.2 (b)), which follows straightforwardly from adjusting the last step of its proof

Lemma K.6 Let X, Y be two random processes. Suppose (G;)j>o is a filtration such that (X;) is
(Gj)-adapted, Yj is (Gj—1) adapted, and X; | Gj—1 is o2 subGaussian. Then, forany 0 < f_ < 3,

< log(gﬂ exp(—u?/60?)

For each i, apply the above lemma with 3_ = L/« and 84 = max{TL?D? L?/a}, X; = Zy,
andY; = Uy, ,, 0% = 1/4,and u = /3log(1/kd)/2. Then, we have Z;F;l Y7 < B4 almost surely,
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so we conclude that, with probability (1 + log(1 V oT'D?))4, the following holds for any 7 > 0

T T
. : 7 3 -
Vi : E Ui Zy,; < B-+/3log(k/0)/2 + 5 log(k/6) E UtQm,
=1

=1

3-16L2
= B_+/3log(k/d)/2 + 5 log(k/d) ZH% , — 213
T;
= f- 310g(k/6)/2 + 24L% log(k/5) Z ||Zti,j71 - Z*H%
jfl
L 12
< —H(v/3log(k/0)/2 + —log(k/4)) ZH% L~ 3

3 12 T &
< L? log(k/0) (5 -+ =) + 5 > et — 23
j=1

Therefore, with probability with probability 1 — (1 + log(aT D?))d, for any 7,71 > 0,

T kT T
Z ZtSZZZUt‘Z%'

t=k+1 i=1 j=1 j=1
3 27 T T
< 2 — 4 — — — 2
< kL?1og(k/6) <2a + = ) +3 ) N2tk — zdl3

t=k+1

T =0a/6,0 + §/(1+log(1V aTD?)), we have that with probability 1 — §

T
Z Zy — ZHZt_Z*Hz Z Zt—* Z || 2 k'_z*”Q

t=k+1 t=k+1 t k+1
< kL? log (k:(l +1og6+(aTD2)) ‘
o

K.3.3. HIGH PROBABILITY REGRET WITH MEMORY: PROOF OF THEOREM 9

Proof We reitarate the argument of Anava et al. (2015). Decompose

T
Z ft(ZtaZt—th—z,--th h ft Z* Z ft Zt — [t Z*)

t=k+1 t=k+1

T
+ Z Ji(ze, ze—1, 2e—2, - -, 2e—n) — fe(2e)-

t=k+1
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We can bound the first sum directly from Theorem 12. The second term can be bounded as follows:

T T
Z fe(ze, 21, 202, - ze-n) = fe(2e) < Le Z 100, z—1 = 2, - . o, 2e—n — 20)[|2
t=k-+1 t=k+1
T h
< Z Z |zt — 2|2
t=k+1 i=1
T h i
<SLe Y D3 Mz — 2l
t=k+1 i=1 j=1
T h i
<Le > > D mjrallgell
t=k+1 i=1 j=1
T h
<hLe Y > mjallgesl
t=k+1 i=1
T h
< hLcLg Z Zﬁt—jﬂ
t=k+1 i=1
Ll i _ h?LeLglogT
> clg N+1 S #
t=1
This establishes the desired bound. |
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