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Abstract
We provide an information-theoretic framework for studying the generalization properties of ma-
chine learning algorithms. Our framework ties together existing approaches, including uniform
convergence bounds and recent methods for adaptive data analysis.

Specifically, we use Conditional Mutual Information (CMI) to quantify how well the input (i.e.,
the training data) can be recognized given the output (i.e., the trained model) of the algorithm. We
show that bounds on CMI can be obtained from VC dimension, compression schemes, differential
privacy, and other methods. We then show that bounded CMI implies various forms of generalization.

Keywords: Generalization, stability in data analysis, conditional mutual information

1. Introduction

How can we ensure that a machine learning system produces an output that generalizes to the
underlying distribution, rather than overfitting its training data? That is, how can we ensure that the
hypotheses or models that are produced are reflective of the underlying population the training data
was drawn from, rather than patterns that occur only by chance in the training data? This is perhaps
the fundamental question for the science of statistical machine learning.

A vast array of methods have been proposed to answer this question. Most notably, the theory of
uniform convergence shows that, if the output is sufficiently “simple,” then it cannot overfit too much.
A more recent line of work has used distributional stability (in the form of differential privacy) to
provide generalization guarantees that compose adaptively – that is, statistical validity is preserved
even when a dataset is reused multiple times with each analysis being influenced by prior outcomes.
Other methods for proving generalization include compression schemes and uniform stability.

Unfortunately, these different methods for providing generalization guarantees are largely dis-
connected from one another; it is, in general, not possible to compare or combine techniques. In this
paper, we provide a framework to reason about many of these these differing approaches using the
unifying language of information theory.

1.1. Background: Generalization

We consider the standard setting of statistical learning (Valiant, 1984; Haussler, 1992; Kearns et al.,
1994). There is an unknown probability distribution D over some known set Z . We have access to a
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REASONING ABOUT GENERALIZATION VIA CONDITIONAL MUTUAL INFORMATION

sample Z ∈ Zn consisting of n independent draws fromD. Informally, our goal is to learn something
about the underlying distributionD from the dataset Z. Formally, we have a function ` :W×Z → R
and our goal is to find some w∗ ∈ W that approximately minimizes `(w∗,D) := E

Z′←D
[`(w∗, Z

′)].1

Intuitively, w∗ represents some hypothesis and `(w∗,D) measures the veracity or quality of
w∗. In supervised machine learning, Z = X × Y represents pairs of feature vectors and labels
and w∗ represents a function fw∗ : X → Y that predicts the label given the features. Then ` is
a “loss function.” For example, the 0-1 loss measures the error rate of the predictor: `(w∗,D) =

P
(X,Y )←D

[fw∗(X) 6= Y ], so minimizing `(w∗,D) corresponds to finding the most accurate predictor.

However, we cannot evaluate the true loss (a.k.a. “population loss” or “risk”) `(w∗,D) since
the distribution D is unknown. Instead we can compute the empirical loss (a.k.a. “empirical risk”)
`(w∗, Z) := 1

n

∑n
i=1 `(w∗, Zi) using the sample Z. A natural learning strategy is “Empirical Risk

Minimization (ERM)” – i.e., w∗ = arg minw∈W `(w,Z). The question of generalization is thus:
How can we ensure that `(w∗, Z) ≈ `(w∗,D)?

The classical theory of uniform convergence (Vapnik and Chervonenkis, 1971) approaches
this problem by studying the class of functions F := {`(w, ·) : w ∈ W}. If we can show that
supw∈W |`(w,Z)− `(w,D)| is small with high probability for a random Z ← Dn, then the question
of generalization is answered. Such bounds can be obtained from combinatorial properties of F ,
such as its Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971; Talagrand, 1994;
Alon et al., 1997) or its fat-shattering dimension (Kearns and Schapire, 1994; Bartlett et al., 1996).

Uniform convergence makes no reference to the algorithm; it depends only on its range F .
An algorithm may generalize better than uniform convergence would suggest (Shalev-Shwartz
et al., 2009; Feldman, 2016). For example, it is common to add a regularizer to the ERM – that
is, w∗ = arg minw∈W `(w,Z) + λ‖w‖, where λ > 0 is a parameter and ‖w‖ is a measure of the
complexity ofw. Thus we explicitly consider generalization to be a property of the learning algorithm
A : Zn →W , which may or may not be randomized.

There are several ways to show that a specific algorithm A generalizes. Algorithms whose output
essentially only depends on a few of the input data points, as formalized by compression schemes
(Littlestone and Warmuth, 1986), can be shown to generalize. Uniform stability (Bousquet and
Elisseeff, 2002) entails strong generalization bounds for algorithms where changing a single input
datum does not change the loss of the algorithm too much. Similarly, differential privacy (Dwork
et al., 2006) – a distributional notion of stability – entails generalization bounds (Dwork et al., 2015b;
Bassily et al., 2016; Jung et al., 2019). In general, these various methods for proving generalization
are incompatible and incomparable. This raises the question of whether it is possible to provide a
unifying framework or language to study generalization.

1.1.1. (UNCONDITIONAL) MUTUAL INFORMATION

A recent line of work has studied generalization using mutual information and related quantities
(Russo and Zou, 2016; Raginsky et al., 2016; Alabdulmohsin, 2016; Feldman and Steinke, 2018;
Bassily et al., 2018; Dwork et al., 2015a; Rogers et al., 2016; Smith, 2017; Xu and Raginsky, 2017;
Nachum and Yehudayoff, 2018; Nachum et al., 2018; Esposito et al., 2019; Bu et al., 2019, etc.). For
a (possibly randomized) algorithm A : Zn →W and a dataset Z ← Dn, we consider the quantity
I(A(Z);Z), which measures how much information the output A(Z) contains about its input Z.

1For simplicity, in this introduction we only consider ` to be a linear function (that is, only taking in a single element
of Z). Our methods readily extend to the more general case where ` :W ×Zm → R.
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Bounded mutual information implies generalization: If ` : W × Z → [0, 1], A : Zn → W
and Z ← Dn, then |E [`(A(Z), Z)− `(A(Z),D)]| ≤

√
2
n · I(A(Z);Z) (Russo and Zou, 2016; Xu

and Raginsky, 2017). Bounds on mutual information can be obtained from differential privacy or
from bounds on the entropy of the output of A. Specifically, if A is ε-differentially private, then
I(A(Z);Z) ≤ 1

2ε
2n (McGregor et al., 2010; Bun and Steinke, 2016). And we have the generic

bound I(A(Z);Z) ≤ H(A(Z)) ≤ log |W|.
Unfortunately, mutual information can easily be infinite even in settings where generalization

is easy to prove. Bassily, Moran, Nachum, Shafer, and Yehudayoff (Bassily et al., 2018; Nachum
et al., 2018) showed that any proper and consistent learner A for threshold functions must have
I(A(Z);Z) ≥ Ω

(
log log |Z|

n2

)
when Z ← Dn for some worst-case distribution D. The dependence

on the size of the domain Z ⊂ R is mild, but, if the domain is infinite, then the mutual information is
unbounded. In contrast, the VC dimension of threshold functions is 1, which implies strong uniform
convergence bounds even for infinite domains.

We remark that thresholds can be “embedded” into larger classes, such as higher-dimensional
linear thresholds (halfspaces) or even neural networks. Thus these negative results for unconditional
mutual information extend to those classes too. This strong negative result shows that any proper
empirical risk minimizer for thresholds must have unbounded mutual information; it is easier to show
that many specific natural algorithms and natural distributions have unbounded mutual information:
Linear regression has unbounded mutual information (even in dimension 0 with Gaussian data, which
is simply outputting the mean (Bu et al., 2019)). The most natural algorithms for thresholds have
infinite mutual information for any continuous data distribution.

The fundamental issue with the mutual information approach is that even a single data point has
infinite information content if the distribution is continuous. Meanwhile, an algorithm revealing a
single data point is not an issue for generalization.

We address the shortcomings of the mutual information approach by moving to conditional
mutual information. Our conditioning approach can be viewed as “normalizing” the information
content of each data point to one bit. That is, an algorithm that reveals one data point only has
conditional mutual information of one bit, even if the unconditional mutual information is infinite.

1.2. Our Contributions: Conditional Mutual Information (CMI)

We introduce the conditional mutual information (CMI) framework for reasoning about the general-
ization properties of machine learning algorithms. CMI is a quantitative property of an algorithm A
and a distribution D. (Note that it does not depend on the loss function of interest.)

Intuitively, CMI measures how well we can “recognize” the input (i.e., training data) given the
output (i.e., trained model) of the algorithm. Recognizing the input is formalized by considering
a “supersample” consisting of 2n independent draws from the distribution – namely the n input
data points mixed with n “ghost” data points – and measuring how well it is possible to distinguish
the true inputs from their ghosts.23 (Note that the ghost samples are entirely hypothetical – they
only exist in the analysis.) The supersample is randomly partitioned into the input and the ghost

2The so-called "ghost samples" symmetrization technique has been used to prove generalization and Rademacher
complexity bounds from VC bounds since its inception Vapnik and Chervonenkis (1971). (The name is attributed to Luc
Devroye.) This technique is an inspiration for our definition and terminology.

3This intuition for CMI should be contrasted with that for (unconditional) mutual information, which asks how much
of the input we could reconstruct from the output without the prompt of a supersample.
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samples. We then measure how much information the output reveals about this partition using mutual
information, where we take the supersample to be known (i.e., we condition on the supersample and
the unknown information is how it is partitioned).

We now state the formal definition of CMI:

Definition 1 (Conditional Mutual Information (CMI) of an Algorithm) Let A : Zn →W be a
randomized or deterministic algorithm. Let D be a probability distribution on Z and let Z̃ ∈ Zn×2

consist of 2n samples drawn independently from D. Let S ∈ {0, 1}n be uniformly random and
independent from Z̃ and the randomness of A. Define Z̃S ∈ Zn by (Z̃S)i = Z̃i,Si+1 for all i ∈ [n] –
that is, Z̃S is the subset of Z̃ indexed by S.

The conditional mutual information (CMI) of A with respect to D is

CMID (A) := I(A(Z̃S);S|Z̃).

We remark on some basic properties of CMI. Firstly, 0 ≤ CMID (A) ≤ n · log 2 for any A and
any D.4 The case CMID (A) = 0 corresponds to the output of A being independent from its input,
such as when A is a constant function. The other extreme, CMID (A) = n · log 2, corresponds to
an algorithm that reveals all of its input, allowing arbitrary overfitting. Note that the CMI is always
finite, which is in stark contrast with unconditional mutual information. Essentially, the conditioning
normalizes the information content of each datum to one bit – an algorithm that reveals k of its input
points and reveals nothing about the other n− k inputs has a CMI of k bits.

For further intuition about the scale or units of CMI, we briefly mention how it relates to
generalization error and other notions: Our generalization bounds become non-vacuous as soon as
the CMI drops below n/2 nats. In terms of asymptotics, we obtain meaningful generalization bounds
whenever the CMI is o(n). More precisely, CMID (A) = ε2n roughly corresponds to generalization
error ε and is roughly a consequence of ε-differential privacy. We also have, for any A : Zn →W
and any D, that CMID (A) ≤ H(A(Z)) ≤ log |W|, where H(A(Z)) is the Shannon entropy (Cover
and Thomas, 2006) of the output of A on an input Z consisting of n i.i.d. draws from D.

Finally, we note that CMI composes non-adaptively, i.e., if A1, A2 : Zn →W are algorithms
(whose internal sources of randomness are independent) then CMID ((A1, A2)) ≤ CMID (A1) +
CMID (A2) for all distributions D. Moreover, CMI has the postprocessing property (as an immediate
consequence of the data processing inequality for conditional mutual information). Namely, if
A : Zn →W and B :W →W ′ are algorithms (with independent internal sources of randomness),
then CMID (B(A(·))) ≤ CMID (A) for all distributions D. This is an important robustness property
(closely related to post-hoc generalization (Cummings et al., 2016; Nissim et al., 2018)).

1.2.1. GENERALIZATION FROM CMI

The key property of CMI is, of course, that it implies generalization. Since there is no single definition
of generalization, we prove several consequences of CMI bounds.

The following theorem gives several consequences for bounded linear loss functions.

4We take log to denote the natural logarithm and, correspondingly, the units for information-theoretic quantitites are
nats, instead of bits, where 1 bit equals log 2 ≈ 0.7 nats.
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Theorem 2 Let A : Zn → W and ` : W ×Z → [0, 1]. Let D be a distribution on Z and define
`(w,D) = E

Z←D
[`(w,Z)] and `(w, z) = 1

n

∑n
i=1 `(w, zi) for all w ∈ W and z ∈ Zn. Then

∣∣∣∣ E
Z←Dn,A

[`(A(Z), Z)− `(A(Z),D)]

∣∣∣∣ ≤
√

2

n
· CMID (A), (1)

E
Z←Dn,A

[
(`(A(Z), Z)− `(A(Z),D))2

]
≤ 3 · CMID (A) + 2

n
, (2)

E
Z←Dn,A

[`(A(Z),D)] ≤ 2 · E
Z←Dn,A

[`(A(Z), Z)] +
3

n
· CMID (A). (3)

The first part of the theorem (1) is the simplest bound; it relates the expected empirical loss to the
expected true loss. The second part (2) gives a bound on the expected squared difference between
these quantities; this bound is qualitatively strictly stronger, but quantitatively weaker by (small)
constants. The final part of the theorem deals with the realizeable (or overfitted) case where the
empirical loss is zero or close to zero (sometimes this referred to as the interpolating setting); when

E
Z←Dn,A

[`(A(Z), Z)] ≈ 0 this yields a bound that is quadratically sharper than the other bounds.

We also have a result for unbounded loss functions:

Theorem 3 Let A : Zn →W and ` :W ×Z → R. Let D be a distribution on Z . Then∣∣∣∣ E
Z←Dn,A

[`(A(Z), Z)− `(A(Z),D)]

∣∣∣∣ ≤
√

8

n
· CMID (A) · E

Z′←D

[
sup
w∈W

(`(w,Z ′))2
]
. (4)

The final term in the bound (4) gives some scale for the loss function. It is necessary to make some
kind of assumption on the losses, such as bounded moments. As an application, this allows us to
derive generalization bounds for squared loss (i.e., mean squared error) or hinge loss.

In our proofs, we make heavy use of the following lemma.

Lemma 4 (Gray 2011, Thm. 5.2.1,van Handel 2014, Lem. 4.10) Let X and Y be random vari-
ables on Ω (withX absolutely continuous with respect to Y ) and f : Ω→ R a (measurable) function.
Then

E [f(X)] ≤ D (X‖Y ) + logE
[
ef(Y )

]
.

We mostly use the lemma above as follows.

Corollary 5 Let S, S′, and Z be independent random variables where S and S′ have identical
distributions. Let A be a random function whose randomness is independent from S, S′, and Z. Let
g be a fixed function. Then

E
A,S,Z

[g(A(S,Z), S, Z)] ≤ inf
t>0

I(A(S,Z);S|Z) + E
Z

[
log E

A,S,S′,Z

[
et·g(A(S,Z),S′,Z)

]]
t

.

This follows from Lemma 4 by setting X = (A(S,Z), S, Z), Y = (A(S,Z), S′, Z), f((y, s, z)) =
t · g(y, s, z) and by the definition

I(A(S,Z);S|Z) = E
Z

[I(A(S,Z);S)] = E
Z

[
D
(
(A(S,Z), S)

∥∥(A(S,Z), S′)
)]
.
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This allows us to bound E [g(A(S,Z), S, Z)] – the object of interest – in terms of the conditional
mutual information I(A(S,Z);S|Z) and the moment generating function E

[
et·g(A(S,Z),S′,Z)

]
. Here,

we prove the first part of Theorem 2 (1), which illustrates the key steps in all of these proofs.
Proof [Proof of Theorem 2(1)] Let fz̃(w, s) = `(w, z̃s)− `(w, z̃s), where s denotes the complement
of s so that z̃s is the elements of z̃ not selected in z̃s. Let W = A(Z̃S). Let S′ be an independent
copy of S. Then

E
Z←Dn,A

[`(A(Z), Z)− `(A(Z),D)] = E
Z̃,S,A

[
`(A(Z̃S), Z̃S)− `(A(Z̃S),D)

]
= E

Z̃,S,A

[
`(A(Z̃S), Z̃S)− `(A(Z̃S), Z̃S)

]
= E

Z̃,S,A

[
fZ̃(A(Z̃S), S)

]

≤ inf
t>0

I(A(Z̃S);S|Z) + Ẽ
Z

[
log E

W,S′

[
etfZ̃(W,S′)

]]
t

(by Corollary 5)

= inf
t>0

CMID (A) + Ẽ
Z

[
log E

W

[∏n
i=1 E

S′i

[
e

t
n
(`(W,(Z̃S′ )i)−`(W,(Z̃

S′ )i))
]]]

t
(by independence)

= inf
t>0

CMID (A) + Ẽ
Z

[
log E

W

[∏n
i=1 E

S′i

[
e

t
n
(1−2S′i)(`(W,Z̃i,1)−`(W,Z̃i,2))

]]]
t

≤ inf
t>0

CMID (A) + Ẽ
Z

[
log E

W

[∏n
i=1 e

t2

2n2 (`(W,Z̃i,1)−`(W,Z̃i,2))
2
]]

t
(by Hoeffding’s Lemma)

≤ inf
t>0

CMID (A) + Ẽ
Z

[
log E

W

[∏n
i=1 e

t2

2n2

]]
t

(since ` is bounded in [0, 1])

= inf
t>0

CMID (A) + t2

2n

t
=

√
2

n
· CMID (A).

Furthermore, we are able to extend our generalization results to non-linear loss functions. As
an example application, we derive the following generalization bound for the Area Under the ROC
Curve (AUC/AUROC) statistic, which is a commonly-used non-linear statistic for measuring the
performance of a classifier. Specifically, for a classifier f : Z → R that produces a numerical
score or probability (rather than just a binary label), the AUROC is the probability that a random
positive example has a higher score than a random negative example – i.e., AUROC(f,D) :=

P
(Z+,Z−)←D2

[f(Z+) > f(Z−)|Z+ ∈ Z+, Z− /∈ Z+], where Z+ is the set of positive examples.

Theorem 6 Let D be a distribution on Z . Let Z+ ⊆ Z be the set of positive examples and assume
0 < p := E

Z←D
[Z ∈ Z+] < 1. Let A : Zn →W be a randomized algorithm (whose randomness is

independent from its input). If n ≥ O
(

1
p(1−p) log

(
1

p(1−p)

))
, then, for any ε ∈ (0, 1),

P
Z←Dn,A

[|AUROC(A(Z), Z)− AUROC(A(Z),D)| ≤ ε] ≥ 1−O
(

CMID (A)

ε2p(1− p)n

)
.
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The above bounds illustrate how we are able to derive a great variety of generalization bounds
from a single CMI bound. This versatility is a key strength of the CMI framework.

We note that although most stated bounds are on the expectation of the generalization error (or
its square), these can be converted into probability bounds via Markov’s inequality. For example,
Theorem 2(2) implies P

Z←Dn,A
[|`(A(Z), Z)− `(A(Z),D)| ≥ ε] ≤ 3·CMID(A)+2

ε2n
for all ε > 0.

However, this does not yield “high probability” bounds – that is, the failure probability decays
polynomially with the desired error bound ε, rather than exponentially.

1.2.2. OBTAINING CMI BOUNDS

We show that a variety of known methods for proving generalization fit into our framework, by
proving that they imply bounds on the CMI of the algorithm. Indeed, analysing these algorithms via
CMI, versus a direct generalization analysis, yields essentially the same bound. These connections
demonstrate the unifying nature of the CMI framework.

Compression Schemes First, we prove that, if an algorithm A : Zn → W has a compression
scheme of size k (Littlestone and Warmuth, 1986), then CMID (A) ≤ O(k · log n). Intuitively, this
is in agreement with the fact that an algorithm blatantly revealing k of the input points and nothing
about the rest would have a CMI of k bits.

Theorem 7 Let A1 : Zn → Zk have the property that A1(z) ⊂ z for all z. Let A2 : Zk →W be
arbitrary and let A : Zn →W satisfy A(z) = A2(A1(z)) for all z. Then CMID (A) ≤ O(k log n)
for all distributions D.

Proof Let K = K(z) = {i1, . . . , ik} ⊂ [n] denote the set of indices chosen by the compression
algorithm A1 on input z. We will slightly abuse notation and denote by zK ∈ Zk the subset of
z ∈ Zn given by the indices K ⊂ [n]. So A(z) = zK(z) = (zi1 , zi2 , · · · , zik) ⊂ z. For Z̃ ∈ Zn×2

consisting of 2n samples drawn independently from D and S ∈ {0, 1}n uniformly random and
independent from Z̃:

CMID (A) = I(A2(A1(Z̃S));S|Z̃) ≤ I((Z̃S)K ;S|Z̃) ≤ H(K|Z̃) ≤ H(K) ≤ k log(2n).

The first inequality follows from the data-processing inequality, the second by the definition of
mutual information on distributions over discrete domains, and the last inequality holds since the
number of possible distinct values of (Z̃S)K given Z̃ is at most

(
2n
k

)
≤ (2n)k.

Uniform Convergence & VC Dimension Next, we show a connection between uniform conver-
gence and CMI. We consider hypothesis classesW consisting of functions h : X → {0, 1} and we
consider the standard 0-1 loss ` : W × (X × {0, 1})→ {0, 1} with `(h, (x, y)) = 0⇔ h(x) = y.
Bounded VC dimension is a necessary (Vapnik and Chervonenkis, 1971) and sufficient (Talagrand,
1994) condition for uniform convergence (for worst-case distributions) and is hence a sufficient
condition for generalization. Note that CMI is a property which depends on the algorithm, whereas
the VC dimension is a property of the output space; this appears to cause an incompatibility between
the two methods. Nonetheless, we connect the two by proving that, for any VC hypothesis class,
there always exists an empirical risk minimization algorithm A : Zn →W with bounded CMI:

7



REASONING ABOUT GENERALIZATION VIA CONDITIONAL MUTUAL INFORMATION

Theorem 8 Let Z = X × {0, 1} and let H = {h : X → {0, 1}} be a hypothesis class with VC
dimension d. Then, there exists an empirical risk minimizer A : Zn → H for the 0-1 loss such that
CMID (A) ≤ O(d log n) for all distributions D.

We prove this theorem by showing that any algorithm satisfying a consistency property described
next has bounded CMI and that there always exists an empirical risk minimizer with this consis-
tency property. Intuitively, the consistency property we require says the following. Suppose the
algorithm is run on some labelled dataset (x, y) to obtain an output hypothesis h = A(x, y). If
the dataset is relabelled to be perfectly consistent with h, then the algorithm should still output h –
i.e., A(x, h(x)) = h. This should also hold if further examples are added to the dataset (where the
additional examples are also consistent with h) – i.e., A(x′, h(x′)) = h when x ⊂ x′. This is a very
natural and reasonable consistency property.

Note that it is not true that every empirical risk minimizer for a class of bounded VC dimension
has bounded CMI; if there are multiple minimizers to choose from, a pathological algorithm could
encode superfluous information about the input in its output using this choice (thus violating our
consistency property). We also remark that this bound is tight up to the log n term; combining
Theorems 8 and 2 yields generalization bounds that are tight up to this term. It is natural to ask
whether this logarithmic term can be removed. We conjecture that it can be removed by instead
considering an approximate empirical risk minimizer.

Obtaining CMI bounds in the case of compression schemes and VC dimension mainly reduces
to observing that these two conditions effectively restrict the output space – that is, conditioned on
the supersample Z̃, there are few possible outputsWZ̃ := {A(Z̃s) : s ∈ {0, 1}n} and we can use
the worst-case entropy bound log |WZ̃ |. In both cases, this results in a multiplicative factor of log n
in the CMI bound. This logarithmic factor could potentially be eliminated given more information
about the structure of the problem. We demonstrate two specific cases where tighter bounds can be
obtained by taking into account assumptions on the algorithm or the distribution D. First, we prove
that there exists an empirical risk minimizer which learns threshold functions in the realizable case
and has constant CMI, whereas the general result gives a bound ofO(log n). Second, we consider the
problem of learning parity functions on {0, 1}d when D is the uniform distribution. Intuitively, this
uniformity assumption onD ensures that, as the number of samples n increases, with high probability
there will be only a single consistent hypothesis. This allows us to prove that there exists an empirical
risk minimizer whose CMI decreases to zero as n increases, namely CMID (A) ≤ O(n · 2d−n).

Distributional Stability & Differential Privacy Finally, we show that distributional stability
implies CMI bounds. Differential privacy is the most well-known form of distributional stability and
its generalization properties are well-established (Dwork et al., 2015b; Bassily et al., 2016; Jung
et al., 2019).

Theorem 9 Let A : Zn → W be a randomized algorithm. Any one of the following conditions
imply that CMID (A) ≤ εn for any distribution D.

(i) A is
√

2ε-differentially private (Dwork et al., 2006).

(ii) A satisfies ε-concentrated differential privacy (Bun and Steinke, 2016).

(iii) A satisfies ε-average leave-one-out KL stability (Feldman and Steinke, 2018).
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(iv) A is ε-TV stable (Bassily et al., 2016).5

We remark that, with the exception of TV stability, all of the conditions in Theorem 9 are known
to imply bounds on (unconditional) mutual information. However, TV stability does not imply any
bounds on mutual information, so this sets CMI apart. In particular, approximate differential privacy
(a.k.a. (ε, δ)-differential privacy) implies TV stability and hence CMI bounds. Here, we prove the
last part of the theorem, that is, a bound on the CMI of TV-stable algorithms.

Theorem 10 (Theorem 9(iv), CMI of TV stable algorithms) An algorithm A : Zn → W is δ-
TV stable if, for any two data sets z, z′ ∈ Zn that differ in a single element,

dTV (A(z), A(z′)) := sup
W⊆W

P [A(z) ∈W ]− P
[
A(z′) ∈W

]
≤ δ.

If A : Zn →W is a δ-TV stable algorithm then CMID (A) ≤ δn for any distribution D over Z .

Proof Let z̃∗ = argmaxz̃∈Zn×2I(A(z̃S);S) and S ← Un. Let us denote A(z̃∗s ) by F (s) for
s ∈ {0, 1}n. Then

CMI (A) = I(A(z̃∗S);S) = I(F (S);S)

and it suffices to prove that I(F (S);S) ≤ δn for S ← Un. Let us define S<i = (S1, . . . , Si−1),
S>i = (Si+1, . . . , Sn), S−i = S<i ◦S>i and S≤i = S<i ◦Si, where x ◦ y denotes the concatenation
of x with y. By the chain rule for mutual information and by induction,

I(F (S);S) =

n∑
i=1

I(F (S);Si|S<i). (5)

By applying the chain rule on I(F (S), S>i;Si|S<i), for a fixed i ∈ [n], we get

I(F (S);Si|S<i) + I(S>i;Si|S<i, F (S)) = I(S>i;Si|S<i) + I(F (S);Si|S<i, S>i)

⇔ I(F (S);Si|S<i) = I(S>i;Si|S<i) + I(F (S);Si|S−i)− I(S>i;Si|S<i, F (S))

⇔ I(F (S);Si|S<i) = I(F (S);Si|S−i)− I(S>i;Si|S<i, F (S)) (Si, S<i, S>i are independent)

⇒ I(F (S);Si|S<i) ≤ I(F (S);Si|S−i). (I(·, ·) ≥ 0)

By inequality (5), it follows that I(F (S);S) ≤
∑n

i=1 I(F (S);Si|S−i) and it suffices to prove that

∀i ∈ [n] I(F (S);Si|S−i) ≤ δ.

For any i ∈ [n], let s∗−i = argmaxx∈{0,1}n−1I(F (S)|S−i = x;Si). Now, let us denote the random
variable F (S)|S−i = s∗−i by Fi(Si). Then, for all i ∈ [n],

I(F (S);Si|S−i) = E
s−i←Un−1

[I(F (S)|S−i = s−i;Si)] ≤ I(F (S)|S−i = s∗−i;Si) = I(Fi(Si);Si).

Therefore, it suffices to prove that, for uniformly random S,

∀i ∈ [n] I(Fi(Si);Si) ≤ δ.
5ε-TV stability is equivalent to (0, ε)-differential privacy.
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For the rest of this proof we fix an arbitrary i ∈ [n]. The relevant property of Fi implied by TV
stability is that dTV (Fi(0), Fi(1)) ≤ δ.

Let us denote by P0 and P1 the probability distributions of Fi(0) and Fi(1), respectively. We
denote their convex combination by P0+P1

2 . By the definition of mutual information, we have that

I(Fi(Si);Si) = E
r←U

[D (Fi(r)‖Fi(Si))] =
1

2
D (Fi(0)‖Fi(Si)) +

1

2
D (Fi(1)‖Fi(Si))

=
1

2
D

(
P0

∥∥∥∥P0 + P1

2

)
+

1

2
D

(
P1

∥∥∥∥P0 + P1

2

)
.

The quantity 1
2D
(
P0

∥∥P0+P1
2

)
+ 1

2D
(
P1

∥∥P0+P1
2

)
is known as the Jensen-Shannon divergence, de-

noted by JSD(P0‖P1) and it is known that it can be bounded by TV distance (Lin, 1991, Thm. 3):

JSD(P0‖P1) ≤ dTV (Fi(0), Fi(1)).

Now, recall that sinceA : Zn →W is δ-TV stable, F : {0, 1}n ←W is also δ-TV stable, and for any
i ∈ [n] Fi : {0, 1} → W is δ-TV stable. Thus, for all i ∈ [n], I(Fi(Si);Si) ≤ dTV (Fi(0), Fi(1)) ≤
δ, which, as we argued, suffices to conclude that CMI (A) ≤ δn.

1.3. Related Work, Limitations, & Further Work

Information Theory & Generalization Generalization is a very well-studied subject and several
connections to information theory have been made. Some of these connections are orthogonal to our
work; for example, the information bottleneck method (Tishby et al., 2000) considers the mutual
information between the input/output of the classifier (rather than the training algorithm) and various
intermediate representations internal to the classifier.

Various recent works have considered the mutual information between the input and output of the
training algorithm to derive generalization bounds; see the discussion in Section 1.1.1. This line of
work is the inspiration and starting point for our work. CMI extends this line of work. In particular,
we are able to incorporate VC dimension into our framework, whereas prior works (Bassily et al.,
2018; Nachum et al., 2018) showed that this was impossible for (unconditional) mutual information.

Other extensions of the mutual information approach have been proposed. Inspired by generic
chaining (a stochastic process theory methodology closely related to uniform convergence), Asadi
et al. (2018) consider the mutual information between the input of the algorithm and an approximation
of its output (or, rather, a sequence of increasingly tight approximations of its output). This method
provides tighter generalization bounds, but requires analysis of the geometry of the output space.

Another approach is to consider the mutual information between a single (but arbitrary) input
datum and the output (Raginsky et al., 2016; Wang et al., 2016; Bu et al., 2019; Haghifam et al.,
2020). If we consider the mutual information between a single datum and the output conditioned
on the rest of the data (i.e., I(A(Z);Zi|Z−i), where Z−i = (Z1, · · · , Zi−1, Zi+1, · · · , Zn)), then
this implies bounds on the overall mutual information (i.e., I(A(Z);Z) ≤

∑n
i=1 I(A(Z);Zi|Z−i))

(Feldman and Steinke, 2018, Lem. 3.7). If we do not condition on the rest of the data, then the reverse
inequality holds (i.e., I(A(Z);Z) ≥

∑n
i=1 I(A(Z);Zi)) (Bu et al., 2019, Eq. 17) and it is possible

to obtain sharper bounds than via the overall mutual information (Bu et al., 2019; Haghifam et al.,
2020). We believe that further exploration in this direction is warranted (in particular, by combining
this single-datum approach with our conditioning approach).

10
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Negrea et al. (2019) study the mutual information between the output of an algorithm and a
random subset of its input dataset. This is very similar to our CMI definition. This is used to
provide generalization guarantees for Stochastic Gradient Langevin Dynamics (SGLD). Overall, their
results are incomparable to ours, since they exploit the random subset method in a different manner –
they consider the “disintegrated mutual information” (in essence this is a random variable whose
expectation is the conditional mutual information and each realization is the mutual information
conditioned on a fixed value of the subset). However, their techniques can be combined with ours to
yield even tighter bounds Haghifam et al. (2020).

PAC-Bayesian bounds (McAllester, 1999) also relate information-theoretic quantities to gen-
eralization and are similar to the mutual information approach. These bounds are usually output-
dependent – that is, they give a generalization bound for a particular output hypothesis or hypothesis
distribution, rather than uniformly bounding the expected error of the algorithm. Such output-
dependent bounds may be stronger and output-independent results can be obtained by averaging over
outputs. PAC-Bayesian bounds can be used to analyze and interpret regularization. Hellström and
Durisi (2020) extend our generalization bounds for bounded loss to the PAC-Bayesian setting, as an
application of their unifying approach to deriving information-theoretic generalization bounds.

High Probability Generalization The generalization implied by CMI (Section 1.2.1) does not
yield “high probability” guarantees – that is, to guarantee failure probability δ, the error tolerance
must grow polynomially in 1/δ, whereas polylogarithmic growth would be desireable. This is an
inherent limitation of the CMI framework – mutual information is an expectation and is thus not very
sensitive to low-probability failures. In particular, an algorithm that does something “good” (e.g.,
output a fixed hypothesis) with probability 1 − p and something “bad” (e.g., output a hypothesis
entirely overfitted to the dataset) with probability p has CMI ≈ pn. Due to this sort of pathological
example, CMI bounds cannot guarantee a failure probability lower than CMI/n.

An interesting direction for further work would be to extend the CMI framework so that it
yields high probability bounds. This would require moving from conditional mutual information
to something like approximate max information (Rogers et al., 2016) or Rényi mutual information
(Esposito et al., 2020). However, we note that it is almost always possible to obtain high probability
guarantees by repetition to amplify the success probability.

Loss Stability/Uniform Stability A long line of work (Rogers and Wagner, 1978; Devroye and
Wagner, 1979; Bousquet and Elisseeff, 2002; Feldman and Vondrák, 2019; Dagan and Feldman,
2019, etc.) has proven generalization bounds by showing that various algorithms have the property
that their loss changes very little if a single input datum is replaced or removed. This is a very
beautiful and well-developed theory that provides a unifying framework for generalization. Uniform
stability (one of the strongest and most well-studied variants of loss stability) has the advantage that
it readily yields high probability generalization bounds.

However, one limitation of the loss stability approach is that the loss function is an integral part
of the definition, whereas CMI and distributional stability notions do not depend on the loss function.
Thus loss stability lacks the postprocessing robustness property and does not yield the same variety
of generalization bounds as CMI does. Loss stability is typically defined for deterministic algorithms
and randomized algorithms must be “derandomized” (such as by taking their expectation) to satisfy
the definition. This is somewhat awkward and, arguably, the CMI framework is more elegant when
handling randomized algorithms.

11
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It is of course natural to ask whether loss stability and CMI can be unified in some way. We
propose a variant of CMI (Evaluated CMI or eCMI) that takes the loss function into account and
allows us to translate between the notions.

Adaptive Composition When a single dataset is analyzed multiple times and each analysis is
informed by the outcome of earlier analyses, generalization may fail even if each individual step
generalizes well. This phenomenon led to the study of generalization in adaptive data analysis (Hardt
and Ullman, 2014; Dwork et al., 2015b; Steinke and Ullman, 2015; Dwork et al., 2015a; Bassily
et al., 2016, etc.). In particular, differential privacy provides a method for guaranteeing generalization
that composes adaptively – that is, running a sequence of algorithms, each of which is differentially
private, on a single dataset results in a differentially private final output, even if each algorithm is
given access to the output of previous algorithms. Also, the recent work of Ligett and Shenfeld
(2019) introduced Local Statistical Stability, a notion based on the statistical distance between the
prior distribution over the database elements and their posterior distribution conditioned on the output
of the algorithm, which composes adaptively and yields high probability bounds.

Unfortunately, CMI does not compose adaptively. A challenge for further work is to fully
integrate adaptive composition into some variant of the CMI framework. Towards this direction,
we consider a variant of CMI (Universal CMI or uCMI) that does compose adaptively. This notion
extends CMI by considering a worst-case supersample Z̃ and worst-case distribution over S but we
can still show that we can obtain useful uCMI bounds from some of the notions we have tied into our
framework.

More CMI bounds An immediate direction for further work is to improve our CMI bounds and
to prove entirely new generalization bounds for algorithms such as stochastic convex optimization
or even non-convex gradient methods. The value of the CMI framework will be demonstrated if it
yields new insights, such as entirely new generalization results or simplifications of known bounds.

Notably, Haghifam et al. (2020) recently showed that the generalization bounds based on CMI
are tighter than those based on mutual information. Moreover, by combining CMI with the idea of
“disintegrated mutual information” (Negrea et al., 2019) and the single-datum mutual information
approach (Bu et al., 2019), they give yet tighter bounds, which are later applied to yield improved
generalization bounds for a Langevin dynamics algorithm. We believe that further exploration of the
combination of these ideas with our conditioning approach is warranted.

Hellström and Durisi (2020) extended our average generalization bounds to the PAC-Bayes and
single-draw settings, giving both data-independent and data-dependent bounds. These results are
established as an application of their unifying approach to proving generalization bounds, which is
based on an exponential inequality in terms of the information density between the output and the
input. The authors also explore the effect of the conditioning approach to other measures, obtaining
bounds in terms of the conditional versions of α-mutual information, Rényi divergence, and maximal
leakage (the latter being tighter than the bound of its unconditional counterpart, in some cases).
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