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1. Overview

A recent line of work has studied the information complexity of learning (Russo and Zou, 2016;
Raginsky et al., 2016; Alabdulmohsin, 2016; Feldman and Steinke, 2018; Bassily et al., 2018; Dwork
et al., 2015a; Rogers et al., 2016; Smith, 2017; Xu and Raginsky, 2017; Nachum and Yehudayoff,
2018; Nachum et al., 2018; Esposito et al., 2019; Bu et al., 2019, etc.). That is, we ask: How much
information does the output of a learner reveal about its input? A natural example of a quantity that
can be used to quantify the revealed information is the mutual information I(A(Z);Z) between the
output of an algorithm A and its input Z (consisting of i.i.d. samples from an unknown distribution).

Measuring the information complexity of a learning algorithm can be very informative, as it
is related to several properties or guarantees that we might wish to establish. In particular, low
information complexity entails generalization guarantees. That is, it implies that that the loss of the
output hypothesis on the input dataset is close to its loss on the distribution (Russo and Zou, 2016;
Xu and Raginsky, 2017). Conversely, overfitting entails high information complexity. Moreover,
these generalization guarantees are robust to postprocessing, thanks to the data processing inequality.

The information complexity of an algorithm is also closely related to the study of privacy.
Differential privacy (Dwork et al., 2006) has been widely-accepted as a robust guarantee that a
hypothesis or model produced by a machine learning algorithm does not reveal sensitive personal
information contained in the training data. Differential privacy is known to imply low mutual
information (McGregor et al., 2010; Bun and Steinke, 2016), as well as strong generalization
guarantees (Dwork et al., 2015b; Bassily et al., 2016; Jung et al., 2019).

The celebrated theory of uniform convergence (Vapnik and Chervonenkis, 1971) approaches
learning from a different perspective by studying the complexity of hypothesis classes. A hypoth-
esis class has the uniform convergence property if, with high probability over the drawing of an
i.i.d. dataset, all hypotheses simultaneously generalize – i.e., their loss on the dataset and on the
distribution are similar. In particular, hypothesis classes with bounded Vapnik-Chervonenkis (VC)
dimension exhibit strong uniform convergence, which implies sample-efficient PAC learning and
agnostic learning (Vapnik and Chervonenkis, 1971; Talagrand, 1994; Alon et al., 1997).

Uniform convergence (and VC dimension) make no reference to the learning algorithm itself,
instead they only depend on its range. On the other hand, information complexity is a property of
a particular algorithm, which also implies generalization. So it is natural to ask whether there is
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a bridge between VC dimension and information complexity, despite the incompatibility of their
definitions. The main question that arises is:

Do all classes with bounded VC dimension admit a learner with low information complexity?

Unfortunately, Bassily et al. (2018) showed that any proper and consistent learner for threshold
functions on an unbounded domain must have unbounded mutual information (for worst-case
distributions). In contrast, the VC dimension of threshold functions is 1, which implies strong
uniform convergence bounds even for infinite domains. So, if we restrict our learning algorithms to
the natural class of empirical risk minimizers (ERMs), and measure information complexity with
respect to mutual information, this impossibility result gives a negative answer to the question.

Recently, Steinke and Zakynthinou (2020) proposed a more refined measure of information
complexity via conditional mutual information (CMI), which, like mutual information, also implies
generalization. The authors showed that thresholds admit a proper consistent learner with constant
CMI. So, measuring the information complexity of an algorithm with respect to CMI allows us to
overcome the impossibility result of Bassily et al. (2018).

In general, Steinke and Zakynthinou (2020) showed that any hypothesis class with VC dimension
d admits an ERM with CMI O(d log n), where n is the size of the input sample. This gives a positive
answer to our question. However, the generalization guarantees that one can retrieve for this learner
via the O(d log n) CMI bound do not match the tight bounds guaranteed by uniform convergence.

We conjecture that it is possible to attain CMI O(d) instead, that is, to prove that for any class
with VC dimension d there exists a learner (perhaps not necessarily an ERM), which has CMI O(d).
Proving such a bound would entail tight generalization bounds for VC classes via CMI.

2. Formal definitions and problem statement

We consider the standard setting of statistical learning (Valiant, 1984; Haussler, 1992; Kearns et al.,
1994). There is an unknown probability distribution D over some known set Z . We have access to a
sample Z ∈ Zn consisting of n independent draws from D. There is a function ` :W ×Z → R and
our goal is to find some w∗ ∈ W that approximately minimizes `(w∗,D) := E

Z′←D
[`(w∗, Z

′)].

However, we cannot evaluate the true loss (a.k.a. “population loss” or “risk”) `(w∗,D) since
the distribution D is unknown. Instead we can compute the empirical loss (a.k.a. “empirical risk”)
`(w∗, Z) := 1

n

∑n
i=1 `(w∗, Zi) using the sample Z, which also leads to the natural learning strategy

of “Empirical Risk Minimization (ERM)” – i.e., w∗ = argminw∈W `(w,Z). In the supervised
machine learning setting, W is a class of functions w : X → Y (e.g., Y = {0, 1} for binary
classification). We consider the 0-1 loss ` :W × (X × Y)→ {0, 1}, `(h, (x, y)) = 0⇔ h(x) = y.

2.1. Uniform Convergence

The classical theory of uniform convergence (Vapnik and Chervonenkis, 1971) approaches the
problem of generalization in this setting by studying the class of functionsH := {`(w, ·) : w ∈ W}.
VC dimension is a property of a hypothesis class, which implies uniform convergence:

Definition 1 (Vapnik-Chervonenkis dimension, Vapnik and Chervonenkis (1971)) LetW be a
class of functions w : X → {0, 1}. The VC dimension ofW is the largest natural number d such
that there exist x1, · · · , xd ∈ X and w1, · · · , w2d ∈ W such that, for each j, k ∈ [2d] with j 6= k,
there exists some i ∈ [d] such that wj(xi) 6= wk(xi).
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Bounded VC dimension implies that, for a sample of adequate size (depending linearly on the
VC dimension), the true and empirical errors of all hypotheses will be close.

Theorem 2 (Talagrand (1994); Blumer et al. (1989)) There exist positive constants c1, c2 such
that the following holds. For every classW of functions w : X → {0, 1} of VC dimension d ≥ 1, for
every n ≥ 2d, and for every distribution D on X × {0, 1}, we have

E
Z←Dn

[
sup
w∈W

|`(w,D)− `(w,Z)|
]
≤ c1 ·

√
d

n

and

E
Z←Dn

[
sup

w∈W:`(w,Z)=0
`(w,D)

]
≤ c2 ·

d

n
· log

(n
d

)
.

2.2. Information Complexity of Learning via CMI

Intuitively, the problem with measuring information complexity via mutual information is that the
information content of a single sample is infinite if the distribution is continuous. Thus I(A(Z);Z)
is infinite if A reveals even a single input datum. Thus mutual information easily becomes unbounded
even when there is no issue for generalization.

Steinke and Zakynthinou (2020) avoid this issue by moving to conditional mutual information
(CMI). Intuitively, this “normalizes” the information content of each datum to one bit by conditioning
on a superset of the training sample. We state the formal definition:

Definition 3 (Conditional Mutual Information (CMI) of an Algorithm) Let A : Zn →W be a
randomized or deterministic algorithm. Let D be a probability distribution on Z and let Z̃ ∈ Zn×2

consist of 2n samples drawn independently from D. Let S ∈ {0, 1}n be uniformly random. Assume
S, Z̃ and A are independent. Define Z̃S ∈ Zn by (Z̃S)i = Z̃i,Si+1 for all i ∈ [n] – that is, Z̃S is the
subset of Z̃ indexed by S.

The conditional mutual information (CMI) of A with respect to D is

CMID (A) := I(A(Z̃S);S|Z̃).

The key property of CMI is, of course, that it implies generalization.

Theorem 4 (Steinke and Zakynthinou 2020, Cor. 5.2, Thm. 5.7) Let A : Zn → W , ` : W ×
Z → [0, 1], and let D be a distribution on Z . Then

E
Z←Dn,A

[`(A(Z), Z)− `(A(Z),D)] ≤
√

2

n
· CMID (A)

Furthermore, if E
Z←Dn,A

[`(A(Z), Z)] = 0, then

E
Z←Dn,A

[`(A(Z),D)] ≤ CMID (A)

n · log 2
.

For any class with bounded VC dimension, there exists an ERM with low CMI.

Theorem 5 (Steinke and Zakynthinou 2020, Thm. 4.12) Let Z = X × {0, 1} and letW = {w :
X → {0, 1}} be a hypothesis class with VC dimension d. Then, there exists an empirical risk
minimizer A : Zn →W such that CMI (A) ≤ d log n+ 2.
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2.3. Problem Statement

Theorem 5 has a log n term in the CMI bound. We conjecture that this can be removed.
We can combine Theorems 4 and 5 to obtain a generalization bound for VC classes. However,

compared to Theorem 2, this is suboptimal by the log n factor.

Conjecture 6 There exists an absolute constant c such that the following holds. For every classW
of functions w : X → {0, 1} of VC dimension d ≥ 1 and for every n ≥ d, there exists an algorithm
A : (X × {0, 1})n →W such that CMID (A) ≤ c · d for every distribution D and

∀z ∈ (X × {0, 1})n E
A
[`(A(z), z)] ≤ inf

w∈W
`(w, z) + c ·

√
d

n
.

The error we permit in Conjecture 6 corresponds to the error of uniform convergence for a
worst-case distribution (Talagrand, 1994). In other words, the empirical error is of the same order as
the generalization error.

Conjecture 6 covers the so-called agnostic setting. It may be easier to prove a result for the
realizable setting, where we assume that a consistent hypothesis exists:

Conjecture 7 There exist absolute constants c and c′ such that the following holds. For every
classW of functions w : X → {0, 1} of VC dimension d ≥ 1 and for every n ≥ d, there exists a
randomized or deterministic algorithm A : (X × {0, 1})n → W such that CMID (A) ≤ c · d for
every distribution D and, for every z ∈ (X × {0, 1})n, if there exists w ∈ W such that `(w, z) = 0,
then

E
A
[`(A(z), z)] ≤ c′ · d

n
.

Conjecture 8 Conjecture 7 holds with c′ = 0.

Steinke and Zakynthinou (2020) prove Conjecture 8 for the special case of threshold functions
on the real line.

The conjectures are stated for proper learners. However, proving them with improper learners
would be interesting. (That is, we permit the algorithm to output a function w : X → {0, 1} that
is not in the classW .) Hanneke (2016) shows that there exist improper learners that attain optimal
generalization error in the realizable setting (i.e., avoiding the logarithmic term in the second part of
Theorem 2). This may be a starting point for a proof of Conjecture 7 or 8.

3. Bounty

For a proof of Conjecture 6, we offer a US$500 prize and, for a negative resolution, US$300. For a
proof of Conjecture 8, we offer a US$250 prize. For a negative resolution to Conjecture 7, we offer a
US$200 prize. For a proof of Conjecture 7 and a disproof of Conjecture 8, there is a prize of US$100.
If only one of of Conjectures 7 and 8 is resolved and the other remains open, we offer a US$50 prize.
For a proof of Conjecture 6 or Conjecture 8 that only provides an improper learner, we will provide a
half prize, but, if this is accompanied by an impossibility result for the proper case, the full prize
amount will be awarded. For a proof of Conjecture 6 for the special case of thresholds on the real
line, we offer a prize of US$20 or, for an improper learner, US$15 (20% more if the algorithm is
efficient and an additional 20% more if it is deterministic).
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