
Proceedings of Machine Learning Research vol 125:1–6, 2020 33rd Annual Conference on Learning Theory

Open Problem: Fast and Optimal Online Portfolio Selection

Tim van Erven TIM@TIMVANERVEN.NL
and Dirk van der Hoeven DIRK@DIRKVANDERHOEVEN.COM
Mathematical Institute, Leiden University, the Netherlands

Wojciech Kotłowski KOTLOW@GMAIL.COM
Poznan University of Technology, Poland

Wouter M. Koolen WMKOOLEN@CWI.NL

Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Editors: Jacob Abernethy and Shivani Agarwal

Abstract
Online portfolio selection has received much attention in the COLT community since its introduc-
tion by Cover, but all state-of-the-art methods fall short in at least one of the following ways: they
are either i) computationally infeasible; or ii) they do not guarantee optimal regret; or iii) they as-
sume the gradients are bounded, which is unnecessary and cannot be guaranteed. We are interested
in a natural follow-the-regularized-leader (FTRL) approach based on the log barrier regularizer,
which is computationally feasible. The open problem we put before the community is to formally
prove whether this approach achieves the optimal regret. Resolving this question will likely lead
to new techniques to analyse FTRL algorithms. There are also interesting technical connections to
self-concordance, which has previously been used in the context of bandit convex optimization.

1. Introduction

Online portfolio selection (Cover, 1991) may be viewed as an instance of online convex optimization
(OCO) (Hazan et al., 2016): in each of t = 1, . . . , T rounds, a learner has to make a prediction wt

in a convex domainW before observing a convex loss function ft :W → R. The goal is to obtain a
guaranteed bound on the regret RegretT =

∑T
t=1 ft(wt)−minw∈W

∑T
t=1 ft(w) that holds for any

possible sequence of loss functions ft. Online portfolio selection corresponds to the special case
that the domainW = {w ∈ Rd

+ |
∑d

i=1wi = 1} is the probability simplex and the loss functions
are restricted to be of the form ft(w) = − ln(wᵀxt) for vectors xt ∈ Rd

+. It was introduced
by Cover (1991) with the interpretation that xt,i represents the factor by which the value of an
asset i ∈ {1, . . . , d} grows in round t and wt,i represents the fraction of our capital we re-invest
in asset i in round t. The factor by which our initial capital grows over T rounds then becomes∏T

t=1w
ᵀ
t xt = e−

∑
t=1 ft(wt). An alternative interpretation in terms of mixture learning is given by

Orseau et al. (2017).
For an extensive survey of online portfolio selection we refer to Li and Hoi (2014). Here we

review only the results that are most relevant to our open problem. Cover (1991); Cover and Or-
dentlich (1996) show that the best possible guarantee on the regret is of order RegretT = O(d lnT )
and that this is achieved by choosing wt+1 as the mean of a continuous exponential weights dis-
tribution dPt+1(w) ∝ e−

∑t
s=1 fs(w)dπ(w) with Dirichlet-prior π (and learning rate η = 1). Un-

fortunately, this approach has a run-time of order O(T d), which scales exponentially in the number
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of assets d, and is therefore computationally infeasible when d exceeds, say, 3. A sampling-based
implementation by Kalai and Vempala (2002) greatly improves the run-time to Õ(T 4(T + d)d2),
but even this is still infeasible already for modest d and T .

As shown in Table 1, much faster algorithms are available, but they either do not achieve the
optimal regret or they assume that the gradients are uniformly bounded by a known bound G:
‖∇ft(wt)‖2 ≤ G, and the bounds deteriorate rapidly when G is large. Bounding the gradients
is very restrictive: we either need to (i) assume that the asset prices do not fluctuate too rapidly,
which defeats the purpose of using adversarial online learning; or (ii) we need to allocate a mini-
mum amount of capital wt,i ≥ α to each asset, which means we cannot drop any poorly performing
assets from our portfolio.

Table 1: Overview of achievable trade-offs between regret and run-time
Method Regret Run-time Assumes References

Bounded Gradients

Universal Portfolio O(d ln(T )) Õ(T 4(T + d)d2) No (Cover and Ordentlich, 1996;
Kalai and Vempala, 2002)

Online Newton Step O(Gd ln(T )) O(d3T ) Yes (Agarwal et al., 2006;
Hazan et al., 2007;
Hazan and Kale, 2015)

Exponentiated Gradient O(G
√

T ln(d)) O(dT ) Yes Helmbold et al. (1998)
Gradient Descent O(G

√
dT ) O(dT ) Yes Zinkevich (2003)

Soft-Bayes O(
√

dT ln(d)) O(dT ) No Orseau et al. (2017)
Ada-BARRONS O(d2 ln4(T )) O(d2.5T 2) No Luo et al. (2018)

FTRL ? O(d2T 2) No Agarwal and Hazan (2005)

We are interested in a natural follow-the-regularized-leader algorithm, previously proposed by Agar-
wal and Hazan (2005):

wt+1 = argmin
w∈W

{ t∑
s=1

fs(w) + λ
d∑

i=1

− lnwi

}
(1)

for some λ > 0. The regularizer R(w) =
∑d

i=1− lnwi is a self-concordant barrier function
(Abernethy et al., 2008) that is the log barrier for the positive orthant (Foster et al., 2016) and has a
natural interpretation as adding d extra rounds in which x equals e1, . . . , ed.

The optimization problem (1) can be solved to machine precision in O(d2t) steps using New-
ton’s method, so a naive implementation in which we solve the optimization problem independently
for each round would already lead to a total run-time ofO(d2T 2), which is computationally feasible
for practical values of d and T . One might further hope that sharing calculations between rounds
or solving (1) approximately may lead to additional speed-ups, similar to those obtained for FTRL
with linear losses by Abernethy et al. (2008). Thus the method is computationally feasible, at least
for an interesting range of d and T . The open problem we now pose is whether it is also worst-case
optimal in terms of regret:

Open Problem: Does the FTRL algorithm (1) guarantee the optimal regret O(d log T ) without
further assumptions like bounded gradients?

Our motivation is twofold: efficient algorithms for portfolio selection (and beyond) are desirable,
and FTRL is the simplest natural candidate. In addition, our current inability to analyse it highlights
frustrating blind spots in our FTRL toolbox, which solving this problem will need to address.
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Agarwal and Hazan (2005) already prove O(G2d ln(dT )) regret when the gradients are bounded,
but we believe that the bound should not depend on G at all. It seems that the key difficulty in
analyzing the regret is to control the sum of so-called local norms of the gradients. As we will
discuss below, this is possible at least in several encouraging special cases.

2. Technical Discussion

It is convenient to reparametrize by v ∈ Rd−1
+ such that

∑d−1
i=1 vi ≤ 1, obtaining wt = Avt + b for

A =
(

I
−1ᵀ

)
, and b = ed. With some abuse of notation, we will also write ft(v) for ft(Av+ b) and

R(v) for R(Av + b). Then the criterion being minimized is

φT (v) =
T∑
t=1

ft(v) + λR(v).

As the loss is 1-exp-concave, we have ∇2ft(v) � ∇ft(v)∇ft(v)ᵀ (Bubeck, 2015, pp. 324–325).
In fact, this holds with equality in the present case:

∇ft(v) =
−Aᵀxt

(Av + b)ᵀxt
, ∇2ft(v) =

Aᵀxtx
ᵀ
tA(

(Av + b)ᵀxt

)2 = ∇ft(v)∇ft(v)ᵀ.

2.1. Regret Bounded by Local Norms via Self-concordance

We observe that both the losses ft and the regularizer R are self-concordant functions (Abernethy
et al., 2008). Assume for simplicity that λ ≥ 1, in which case φT is a sum of self-concordant
functions and hence also self-concordant. Like Abernethy et al. (2008), define the local norms
‖g‖t =

√
gᵀ∇−2φt(vt)g. The gradients are always bounded in these local norms:

‖∇ft(vt)‖2t ≤ ∇ft(vt)ᵀ(∇ft(vt)∇ft(vt)ᵀ + λ∇2R(vt))
−1∇ft(vt) ≤

1

1 + λ
, (2)

where the last inequality follows because∇2R(v) � ∇ft(v)∇ft(v)ᵀ for all v (proof omitted).

Lemma 1 For λ ≥ 1, the regret is bounded in terms of the local norms:

RegretT = O
(
λd log T +

T∑
t=1

‖∇ft(vt)‖2t
)
.

Proof sketch: Let v∗ ∈ argminv
∑T

t=1 ft(v). Then

RegretT = φT (vT+1)− λR(v1)−
T∑
t=1

ft(v
∗) +

T∑
t=1

(
φt(vt)− φt(vt+1)

)
.

The result follows by bounding φT (vT+1) ≤ φT
(
(1− 1

2T )v
∗+ 1

2T v1
)
≤ λR(v1)+

∑T
t=1 ft(v

∗)+
λd log(2T )+ 1 and using (2.16) of Nemirovski (2004) for the self-concordant function φt to bound
φt(vt)−φt(vt+1) ≤ C‖∇φt(vt)‖2t = C‖∇ft(vt)‖2t for a suitable constant C > 0 that can be made
independent of λ for λ ≥ 1. Here the fact that ∇φt(vt) = ∇ft(vt) followed because φt(vt) =
ft(vt) + φt−1(vt) and vt minimizes φt−1 in the interior ofW .
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Combining Lemma 1 with (2), we immediately see that the regret is bounded by

RegretT = O(
√
dT log T ) for λ ≈

√
T

d log T ,

but if we hope to get the optimal rate, we need to use constant λ, so this is what we will assume
from now on. Below we list several promising corollaries of Lemma 1.

2.2. Assuming Bounded Gradients

Suppose that, for some reason, the gradients with respect to w (not v!) are bounded: ‖∇ft(wt)‖2 =
‖ −xt

wᵀ
t xt
‖2 ≤ G. Then, abbreviating yt = Aᵀxt/‖xt‖2, we can use that ∇2ft(vt) � Aᵀxtx

ᵀ
tA

‖xt‖2∞
�

Aᵀxtx
ᵀ
tA

‖xt‖22
= yty

ᵀ
t to get

T∑
t=1

‖∇ft(vt)‖2t ≤ G2
T∑
t=1

‖yt‖2t ≤ G2
T∑
t=1

yᵀ
t

( t∑
s=1

ysy
ᵀ
s + λAᵀA

)−1
yt = O

(
G2d log T

)
,

where the last step follows analogously to Hazan et al. (2007, Lemma 11) and using that det(AᵀA) = d
by Sylvester’s determinant theorem. This gives the optimal rate if G is small.

2.3. Source Coding and xt in Finite Set

We call the case that xt ∈ {e1, . . . , ed} the source coding setting. This case is easy to analyse,
because wt has a simple closed-form solution that coincides with Cover’s universal portfolio algo-
rithm. More generally, let us assume that xt takes values in some finite set X of size k, so k = d in
the source coding setting, and let nt(x) denote the number of times that xs = x for s ≤ t. Then

T∑
t=1

‖∇ft(vt)‖2t ≤
T∑
t=1

∇ft(vt)ᵀ
(
nt(xt)∇ft(vt)∇ft(vt)ᵀ + λ∇2R(vt)

)−1∇ft(vt)
≤

T∑
t=1

1

nt(xt) + λ
=
∑
x∈X

nT (x)∑
j=1

1

j + λ
= O

( ∑
x∈X

log nT (x)
)
= O

(
k log T

)
.

In particular, algorithm (1) achieves the optimal rate in the source coding setting.

2.4. A (Suboptimal) General Bound without Bounded Gradients

Since R(v) is a barrier, it should be the case that wt,i ≥ C/t for some constant C > 0. We
may therefore cover the effective domain of wt by m = O((log T )d) sets B1, . . . , Bm such that
wᵀx ≤ 2uᵀx for all w,u ∈ Bi. It follows that

T∑
t=1

‖∇ft(vt)‖2t ≤
m∑
i=1

∑
t:vt∈Bi

∇ft(vt)ᵀ
( ∑
s≤t:vs∈Bi

∇fs(vt)∇fs(vt)ᵀ + λ∇2R(vt)
)−1∇ft(vt)

≤ 4

m∑
i=1

∑
t:wt∈Bi

∇ft(vt)ᵀ
( ∑
s≤t:ws∈Bi

∇fs(vs)∇fs(vs)ᵀ + λAᵀA
)−1∇ft(vt)

= O(md log T ) = O
(
d(log T )d+1

)
,

where the first equality follows like Lemma 11 of Hazan et al. (2007) with ‖∇ft(vt)‖ ≤ t/C. This
of course has wildly suboptimal dependence in d, but shows near-optimal regret for very small d.
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