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Abstract

We propose an algorithm to actively estimate the parameters of a linear dynamical system. Given
complete control over the system’s input, our algorithm adaptively chooses the inputs to accelerate
estimation. We show a finite time bound quantifying the estimation rate our algorithm attains and
prove matching upper and lower bounds which guarantee its asymptotic optimality, up to constants.
In addition, we show that this optimal rate is unattainable when using Gaussian noise to excite the
system, even with optimally tuned covariance, and analyze several examples where our algorithm
provably improves over rates obtained by playing noise. Our analysis critically relies on a novel
result quantifying the error in estimating the parameters of a dynamical system when arbitrary peri-
odic inputs are being played. We conclude with numerical examples that illustrate the effectiveness
of our algorithm in practice.
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1. Introduction

System identification is a fundamental problem in control theory, reinforcement learning, econo-
metrics, and time-series modeling. Given observations of the input-output behavior of a dynamical
system, system identification seeks to estimate the parameters of the system. When the governing
dynamics cannot be derived from first principles, this is an important tool for modeling the behavior
of a system, allowing for downstream analysis and engineering. In this work we focus on the sim-
plest possible dynamical system model—discrete-time, linear dynamical systems. Several recent
works Simchowitz et al. (2018); Sarkar and Rakhlin (2018) have shown sharp rates for estimating
the parameters of such systems in the passive case—where the system is driven by random noise.
Here we seek to understand active system identification—given complete control over the inputs,
how can we best excite the system to accelerate estimation? Dating back to the 1970s, significant
attention has been given to the problem of how to best excite systems for estimation Mehra (1976);
Goodwin and Payne (1977); Bombois et al. (2011) yet these works typically lack theoretical guar-
antees. To the best of our knowledge, we present the first provably correct method for active system
identification. We show finite time and asymptotic sample complexity guarantees and characterize
settings in which active input design yields performance improvements.

Formally, we consider linear dynamical systems (LDS) of the form:

Tir1 = Ay + Baug + 14 (D

where A, € R%9 is unknown, B, € R¥*P, and 7, is unobserved process noise. We choose the
input u; sequentially, observe the state x;, and wish to estimate A, from this data. For simplicity
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and ease of exposition, we assume B, is known, though all our results can be extended to the case
where B, is unknown. From an engineering perspective, assuming B, is known is a reasonable
assumption as one may have knowledge of B, from the design of the system actuation. Throughout,
we assume that p(A,) < 1 where p(A,) is the spectral radius of A,. We are interested in estimating
A, in the spectral norm, in the case where our input is constrained to have bounded energy, that is:

E [% STl ut} < ~? for some constant y.
As we will show, the fundamental quantity that determines the sample complexity of estimation
is the minimum eigenvalue of the covariates: Ay (Zthl zx) ) Optimally exciting the system

is then equivalent to maximizing this quantity subject to the input power constraints. This quantity,
however, depends on A, the parameter we wish to estimate, so cannot be optimized in practice.

Our main contribution is an algorithm which balances this tradeoff—progressively updating the
inputs as the estimates of A, improve—and finite time bounds quantifying the estimation rate it
achieves, as well as the number of samples necessary to guarantee the optimally exciting inputs
are being played. In addition, we present a lower bound and asymptotic upper bound guaranteeing
the asymptotic optimality of our algorithm. We show that playing Gaussian noise, even with an
optimally tuned covariance, is insufficient to achieve this optimal rate. Our algorithm can be seen
as an instance of adaptive E-optimal design Pronzato and Pdzman (2013).

An important piece in our analysis is a new finite-time bound on the estimation error || A, —
AHQ that holds when arbitrary periodic inputs are being played. Previous works Simchowitz et al.
(2018); Sarkar and Rakhlin (2018); Dean et al. (2018) only consider inputs that are Gaussian or state
feedback. These works emphasize obtaining bounds that scale properly with the spectral radius of
the system. Following this, we develop bounds that avoid a poor scaling with the spectral radius. To
the best of our knowledge, this is a novel result and may be of independent interest.

1.1. Related Works

A significant body of work exists on how to optimally excite dynamical systems for identification
Mehra (1976); Goodwin and Payne (1977); Jansson and Hjalmarsson (2005); Gevers et al. (2009);
Manchester (2010); Higg et al. (2013). An excellent survey of classical results can be found in
Mehra (1974) and a more recent survey in Bombois et al. (2011). Broadly speaking, earlier works
tended to focus on designing inputs so as to be optimal with respect to traditional experimental
design objectives. More recent works Hjalmarsson et al. (1996); Hildebrand and Gevers (2002);
Katselis et al. (2012) have focused on designing inputs to meet certain task-specific objectives—for
instance, identifying a system for the purpose of control.

A primary difficulty in designing inputs for identification is that the design criteria, often some
function of the Fisher Information Matrix, depend on the unknown parameters of the system. Sev-
eral different approaches have been proposed to overcome this challenge. One line of work Rojas
et al. (2007, 2011); Larsson et al. (2012); Hagg et al. (2013) performs robust experimental de-
sign and optimizes a minimax objective. More comparable to our approach are works which per-
form adaptive experimental design Lindqvist and Hjalmarsson (2001); Gerencsér and Hjalmarsson
(2005); Barenthin et al. (2005); Gerencsér et al. (2007, 2009)—alternating between estimating the
unknown parameters and designing inputs based on the current estimates.

Existing works in active system identification lack sound theoretical guarantees and too often
specialize results to single-input single-output systems. While several results guarantee asymptotic
consistency Gerencsér et al. (2007, 2009), most proposed approaches are heuristic and are validated
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only through examples. To our knowledge, no finite-time performance bounds exist. In addition,
many works seek to optimize quantities that only describe the asymptotic behavior of the system—
for instance minimizing the asymptotic variance—and it is unclear and unjustified if these are the
correct quantities to optimize for over a finite time interval. Finally, existing works do not give
precise, explicit algorithms.

Recently, considerable interest has been shown in the machine learning community towards
obtaining finite-time performance guarantees for system identification and control problems. The
latter category has primarily centered around developing finite time regret bounds for the LQR
problem with unknown dynamics Abbasi-Yadkori and Szepesvéri (2011); Dean et al. (2017, 2018);
Mania et al. (2019); Dean et al. (2019); Cohen et al. (2019). Recent results in system identification
have focused on obtaining finite time high probability bounds on the estimation error of the system’s
parameters when observing the evolution over time Tu et al. (2017); Faradonbeh et al. (2018); Hazan
et al. (2018); Hardt et al. (2018); Simchowitz et al. (2018); Sarkar and Rakhlin (2018); Oymak and
Ozay (2019); Simchowitz et al. (2019); Sarkar et al. (2019); Tsiamis and Pappas (2019). Existing
results rely on excitation from random noise to guarantee learning and do not consider the problem
of learning with arbitrary sequences of inputs or optimally choosing inputs for excitation.

In the context of the existing literature, this work can be seen as the first rigorous treatment of
active system identification and the first work to provide finite-time performance guarantees for the
problem—bridging the gap between classical approaches and modern machine learning techniques.
Indeed, our algorithm is similar to the adaptive input design approach in Lindqvist and Hjalmarsson
(2001); our work can be seen as making their algorithm more precise and providing finite-time
performance and asymptotic optimality guarantees. Our analysis framework is general enough it
could be extended to different experimental design criteria proposed in the existing literature.

1.2. Notation

We will let p(A) denote the spectral radius of A. || - ||2 denotes the spectral norm of a matrix. O( - )
hides log factors. We assume throughout that 7; ~ N(0, 21) though all results can be extended to
more general noise distributions. Let:

Ti(A) = X Zo(A)(A%) ", TP(4) = X Zo(4°B)(A4°B) "

and T'y := T'1(A,), Ff* = Ff* (A,). T'; is the expected value of xtm: when u; = 0,Vt, and Ff*
is the expected value of x;2,] when u; ~ A (O 1), 77t = 0, Vt In the case when the input is a
deterministic, periodic signal of period & and + Zf 1 u/ u; = 2, then setting n; = 0 and applying
this input on the system with parameters A and B for all ¢, we denote the steady state covariates as:

a 27rl 2nl
T}i(A,B) = lim 72T2t T = 2k22 0 (@5 I - A BUU B (7 T — A)~H
where Uy denotes the Discrete Fourier Transform of { ug }¥_,. Here (a) holds by Parseval’s Theorem.
Let I'} := I'} (A, By). I'r will denote an upper bound on the covariates: Zthl zyx] < TD7. We
will specify its precise form as needed. To aid in analyzing the transient behavior of a system, let:

B(A) == sup{||A™|2 (1/2 + p(A)/2)™" : k= 0}

B(A) is then the smallest value such that ||A*||s < B(A)(1/2 + p(A)/2)F for all k > 0, and is
always finite. We give a more thorough discussion of this parameter in Appendix A. To determine
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the optimal inputs, we will solve the following optimization problem. As we make clear in Section
2.1, the fundamental quantity that controls the sample complexity of estimation is the minimum
eigenvalue of the covariates, the quantity Opt Input maximizes:

s T
Opt Tnput (4, B, T, {m} L) i= & P u Ry Anin (72TF%(A’ B)+ 2 xtw;)

S.t. U, ..., ug € Z;LY2,U4 =0, ¢l

Here Z C [K] is the set of frequencies we are optimizing over, 71" is the time horizon we will play
the inputs for, Uy is the DFT of uy, ..., ug, and 1;172 is the set of mean-zero signals of length k£ with
average power bounded by 72. The constraint that the signal be mean zero is for technical reasons
and does not affect the results. We let U/,2 denote the same set without the constraint that the signal
be mean 0. In some cases we will overload notation, letting Opt Input(A, By, v2,Z, M) denote
OptInputy(A, By,7?,Z, {z:}1_;) but with the Zle xyx] term in the optimization replaced by
M. In addition, we will sometimes use Opt Input to refer to the maximum value of the optimiza-
tion, and sometimes to refer to the inputs attaining that maximum—it will be clear from context
which we are referring to.

2. Main Results

Algorithm 1 proceeds in epochs, successively improving its input design as its estimate of A, im-
proves. At each epoch, the input computed in the previous epoch is played (line 11), and A, esti-
mated from the data collected (line 12). Using this estimate, a set of inputs are designed to excite the
estimated system (line 15), and these inputs are played on the real system in the subsequent epoch,
yielding a new estimate of A,. This procedure continues with exponentially growing epoch length.

Algorithm 1 Active Estimation of LDS
. Input: Confidence d, input power 72, Ty (Default: Ty = 100), ko (Default: ko = 20),
FT (Default: True)

: Run LDS for Ty steps with u; ~ N(0, %2])
. Ay + argmin, 2321 |zt+1 — Ay — Baug)

“1/2 _
(Z?ﬁl .%'t-TtT) ‘ \/16 IOg % +8 log det(FTo (UZFkO 4 72F£)* /p)_l + I)
2

1
2:
3T+ Ty
4
5

6: €g < O

7: k1 < 2kg

8 u', o2 UpdateInputs(/lg, B, {1} 1,72, k1, €0, FT)
9: for: =1,2,3,...do

10: T, 31, 1, T+« T+T;

11:  Run LDS for T; steps with u, = @ + 1", ni* ~ N'(0, 1)
12: A; < argmin Zle w1 — Axy — Bowg|3

13: € 0O (thl T4, ) \/16log 5 +8logdet(I'r(o?Ty, + o2l + 92T )~ + 1)
2

14: ki—i—l — 2k;

15: @t « UpdateInputs(A;, By, {z:}l 1,72 kiy1, €, FT)

16: end for
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UpdateInputs pseudocode (full definition in Appendix A)

1: function UppaTeINeuTs(A,B, {7} 7% ke, FT)

2 Check if € small enough to plan with all frequencies, if so set Z = [k]

3 Otherwise set Z to include frequencies we can guarantee will sufficiently excite the system
4: if 'T == True: return Opt Inputy (4, B, g,Z, {z}L)

5 else: return Opt Input, (A, B, g,I, (2T + Ty)o*T'(A))

6: end function

The FT flag in UpdateInputs controls how the inputs are designed. With F'T' = True
(the finite time case), the algorithm does not take into account the expected future contribution due
to noise when designing the inputs. Results for this case are outlined in Section 2.3. With F'T =
False (the asymptotic case), the algorithm does take into account the estimated future contribution
due to noise when designing the inputs. Results for this case are outlined in Section 2.1.

2.1. Asymptotic Optimality of Algorithm 1

We show that our algorithm is asymptotically optimal—up to constants, no algorithm can estimate
A, more quickly as § — 0. We first present a lower bound for estimating linear dynamical systems
actively. We call an algorithm (¢, §)-locally-stable in A if there exists a finite time 7 such that for
allt > 7and all A’ € B(A,3¢): Par(||A; — A'||l2 < €) > 1 — 6. Here P4 is the measure induced
when the true matrix is A’, B(A, 3¢) := {A’ € R4 . ||A — A'||y < 3¢}, and A; is the estimate
obtained by the algorithm after ¢ observations. The sample complexity 7.5 is the infimum of all
times 7 satisfying the above definition. This condition was introduced in Jedra and Proutiere (2019)
and allows us to avoid trivial algorithms that simply return A; = A, for all time. Also define:

max Amin(0°Too +7°T%) := lim max Amin(0°Tyi +7°T%)
uEZ/l,Yz i—00 uEZ/{,Yg

Note that, by Lemma H.2 and Lemma H.3, this limit exists and is equal to the limit obtained by
replacing 2° with any other sequence n; — 0o as i — o0.

Theorem 2.1 Assume there exists finite k such that the input u; satisfies % Zle u;—_HusH < A2
forany s > 0. Then for (€, d) small enough, any (e, §)-locally-stable in A algorithm will have:
o%e72/8 1
3 T log .
maXyey Amin (020 + 72T% ) 2.46

Tes =

Theorem 2.2 Assume we are running Algorithm 1 with F'T = False. Then for any 6,¢ € (0,1),
there exists a deterministic 7.5 such that, for any T' > 7.5 where T is at an epoch boundary, we

have: P H/l — Ayll2 > 6] < 6, and, for small enough € and some universal constant C':

. Tes Co?e 2
lim < 5 5 .
5—0 log(1/9) maXyey Amin (02T s + 72TY)

The proof of Theorem 2.1 is given in Section G and the proof of Theorem 2.2 is given in Section
B.3. It follows that up to constant factors, Algorithm 1 is asymptotically optimal. The fundamental
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value present in both the upper and lower bound controlling the sample complexity of estimation
18 )\min(O'QFoo + WQF&), the minimum eigenvalue of the expected covariates when the input u is
being played. Optimally exciting the system for identification is then equivalent to choosing u so as
to maximize Amin(02To + 2T'L).

2.2. Suboptimality of Colored Noise

While Theorem 2.1 and Theorem 2.2 together show that the optimal performance can be attained in
the limit by periodic inputs, it may seem reasonable that one could attain a similar rate by playing the
optimal noise—setting u; ~ N (0, X*) for the optimal choice of ¥* that satisfies the expected power
constraint. We show this is false. Consider the following example. Let A, be PSD with eigenvalues
A = [A1,...,Ad], B« = I, and assume that 42> > 2. We show in the proof of Corollary 3.1 that
maXyey_ Amin (02T oo +7T% ) = © (¥?/]|1 — Al|3). In contrast, when playing u; ~ N(0, X*), as
we show in Appendix I, we will have that Apin(0%Toe + Y o0y ASE*(A%) 1) = O(¥2/|11 — Al1).
Note here that Amin(0%Too + Y o0y A°E*(A%)T) upper bounds the minimum eigenvalue of the
expected covariates when u; ~ N (0, 3*). Depending on the values of ), there is clear gap between
these quantities. For example, if A\; = 1 — 1/d for i = 1,...,d, the upper bound on the sample
complexity of our algorithm is ©(c2¢~2/(d~?)) while the lower bound on the sample complexity
when playing optimal noise is ©(c2¢2/+2), a gap of ©(d). Note that existing works on system
identification Simchowitz et al. (2018); Sarkar and Rakhlin (2018) only apply to the case when the
input is zero-mean noise and are thus insufficient to guarantee optimal rates.

2.3. Finite Time Performance of Algorithm 1

We next present our main result quantifying the finite time performance of Algorithm 1. Through-
out, we let T' = Z;:o Tj, the total time elapsed after ¢ epochs, and k(7") the value of k; after T’

steps. If T is at an epoch boundary, k(T') = kg2!08T/To+1)/log3=1 ~ O((T/T)0-63).

Theorem 2.3 (Informal) Assume that T}y is chosen sufficiently large relative to ko. Then for T
large enough, with F'I' = True, Algorithm I will achieve the following rate:

log + + d + log det (FT (02Fk(T) + %FkB(%) " I)

P ||A— A2 < Co >1-95

T Amin <02rkm + ’YQFZZ:M)

and will produce inputs satisfying E [1 /T Zthl u) ut} < ~2. Here C is a universal constant, u* is
the solution to Opt Input (7 (As, By, v, k(T),0), and Ty = I - O(B(A,)*y*T/(1 — p(Ay))?).

Note that our finite time rate critically depends on the minimum eigenvalue of the expected co-
variates. At a high level, Theorem 2.3 provides a finite sample bound on the error in the estimates
produced by Algorithm 1 and states that once T is large enough, despite lacking knowledge of the
true system parameters, Algorithm 1 will play inputs that maximize )\min(’yQI‘};). As was shown
in Section 2.1, the fundamental quantity that controls the estimation rate is )\min(a2Foo + 721“1;0)
which, in finite time, can be thought of as )\min(a2fk + WQF};). When 'y2 > o2, maximizing
Amin (72T'Y) is essentially equivalent to maximizing Amin (02 + v2I'¥). Theorem 2.3 then guar-
antees in this case that Algorithm 1 plays the inputs that best excite the system for estimation.
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The proof of this theorem is sketched in Section 4 and formally proved in Section B.1. A full
version of this result is presented as Theorem B.1 in Appendix B, where we quantify formally how
large T must be for the rate given in Theorem 2.3 to apply. Corollary 3.1 works this out explicitly
in a simplified setting. Intuitively, 7" must be large enough for the transient effects of the last input
to have dissipated, and for ¢;_; to be small enough to guarantee we are playing inputs that achieve
nearly optimal performance. The former quantity scales as O (1/(1 — p(A.))). The latter depends
on the system parameters in a complicated fashion. In the case where A, is diagonalizable with
largest and smallest magnitude eigenvalues A; and )4, respectively, and B, allows for sufficient
excitation of all modes, then when ﬁ > ﬁ, it will behave like O (1= xaD*/(1 = [A])?).

If |A\1| & |Ag| it will behave like O(1/(1 — [A1])?).

Remark 2.4 If B, is also unknown, it is still possible to run a procedure similar to Algorithm
1, choosing the inputs to improve estimation of both A, and B, simultaneously. In this case, we
minimize the same least squares objective but now over both A and B. Theorem 2.6 can be modified
to bound the error H [A* B*] — [fl B] o but the error scales instead with:

T
T T
min T T

t=1

In this setting, the optimal design is one that maximizes this minimum eigenvalue. To obtain a result
similar to Theorem 2.3, a version of Theorem 4.1 is needed to quantify how suboptimal our choice of
input may be given only estimates of A, and B,. A fairly straightforward extension of the argument
used to obtain Theorem 4.1 can be used to argue such a bound, allowing a version of Theorem 2.3
to be proved.

Remark 2.5 The update of €; in Algorithm 1 requires knowledge of the true system parameters to
compute T'p, Ty,, FEZ_ *. In practice, bootstrapped estimates of these quantities could be used. Fur-
ther, these terms only appear logarithmically and will not be the dominant terms in the expression.
Experimentally, we found that greedily designing our inputs with respect to A;, equivalent to solv-
ing UpdateInputs(fli, B, {xi 31,72, 2k(T), 0, FT), yielded better performance and did not
require any estimate of ;.

2.4. Estimating Dynamical Systems With Periodic Inputs

As was shown in Section 2.2, exciting a system with random noise is insufficient to obtain optimal
estimation rates. Relying on carefully designed periodic inputs, Algorithm 1 is able to attain this
optimal rate. Showing this critically requires bounding the estimation error when arbitrary periodic
inputs are being played. The following result quantifies this and can be thought of as a novel
extension of Simchowitz et al. (2018); Sarkar and Rakhlin (2018) to non-noise inputs. This result
may be of independent interest and is proved in Section E.

Theorem 2.6 Assume that we start from initial state xo and play input u; = Uy + 1’ where Uy is
deterministic with period k and average power 2 >0, and n* ~ N(0,021) with 2 > 0. Let T
be some value satisfying Tss = O(1/(1 — p(As))). Then as long as:

_ _ 1
T > Tys + ck (d + max {1og det(T7T% ! /~4?), log det (D7 (a?T, + agrf*)—l)} + log 5)
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we have:

log & + log det(T'p (02T, + 02T 5 +42T4)~1 + 1) +d
T Amin (02Tg + 0212 + 42T%)

P |||A— A2 > Co <36
= 1~~T a,al 2 21 B 2 .
where U'r =4 ( 7>, _qxixy +Tr(o’T'r +oylp7)(1 +1log 5)I ), ¢, C are universal constants,

and z¥ is the (deterministic) response of the system to u; = .

Note, critically, the I}, term in the denominator. This term quantifies how the estimation error
scales in terms of the interaction between the input and the system.

3. Interpreting the Results

We next present several corollaries to Theorem 2.3. Let A, = VAV for orthogonal V, real,
diagonal A > 0, and B, = I. Denote the eigenvalues of A, as \;y > Ay > ... > )Ag and
A = [A1, A2, ..., \g]. To aid in interpretability, assume that 1_&1 > 1_&2, 1_1/\(1 is small enough to

be thought of as a small constant factor, 2 > o2, and, log % > 1. We then have the following.

Corollary 3.1 (Symmetric A,) Let T},;; be some value satisfying:

- T2 ,L'Q d20_2”1 o /\”4
Tinit = O -4 , ; }>
t (max{ k3 i1ond (1= X)2" (do? ++2)(1 — M\p)4

then after T' > Tt steps, running Algorithm 1 with F'T' = True will produce an estimate satisfy-
ing, with high probability:

: ([ - [d
A— Al = fd
14~ A= (\/vufﬂul —BVT

while instead playing uy ~ N (0, 772] ) for all time, our estimate will satisfy, with high probability:

. - o2d d
A-Afp=0(T% /2
H l2 < v+ o2d T)

In the high SNR regime of v2 >> do?, the leading constant for the rate attained by Algorithm 1
all1=Allz avd
v v

behaves as compared to a leading constant of when playing u; ~ N(0, %I ). Note

that in both cases the expected average power is 2.
Now let A, and B, be block diagonal matrices where A; € R%*d; and B; € R%*Pi denote
their jth blocks. Assume that it is known that A, has this structure. For simplicity, assume v2 > o2

so that A\pin (J2I‘i + fsz‘Z*’j ) ~ Amin (nyFZ*’j ) Here Fi and Fz*’j denote the expected noise
and input covariates of the jth subsystem.

Corollary 3.2 (Block Diagonal A.) For T large enough, a version of Algorithm 1 slightly modified
to account for the block structure, will have, with high probability, when F'I' = True:

. - “ d; 1
A—Ad=0 o
14— Al > ) Voo

in k(T)
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In contrast, simply playing u; ~ N (0, p ) will, with high probability, achieve the following rate:

. . md,; 1
|A— A2 =0 max 7
i=1,..., m . B*: 2T

Intuitively, the rate obtained by Algorithm 1 scales as the average error in estimating each block,
while the rate obtained by playing u; ~ N(0, p I) scales as the error of the worst case block. Note
that while in both Corollary 3.1 and Corollary 3.2 we are comparing upper bounds, the leading
constants in these bounds are identical to those obtained in the asymptotic lower bound, Theorem
2.1, and are thus unimprovable—the improvement in upper bounds we see in performing active
estimation compared to playing noise are matched by the lower bound. Both corollaries are proved
in Section C.

It is difficult to work out analytically what the performance will be when A, is a Jordan block.
However, at an intuitive level, our algorithm should yield a large improvement over isotropic noise
as the proper excitation of a Jordan block focuses nearly all the energy on the last coordinate in the
block. This conjecture is supported by our experiments in Section 5.

4. Proof Sketch of Theorem 2.3

To prove Theorem 2.3, our primary upper bound on the error in the estimates of A, produced by
Algorithm 1, we first bound the error in the estimate of A, obtained at the (i — 1)th epoch, then
bound the suboptimality of the inputs computed from this estimate, and finally bound the estimation
error at the 7th epoch in terms of these inputs.

Controlling the estimation error |A;,_; — A,||; at the (i — 1)th epoch. We rely on excitation
due to noise to guarantee learning and bound ||A;_; — A, ||2. This proof is similar to those given in
Simchowitz et al. (2018); Sarkar and Rakhlin (2018) and is outlined in the appendix.

Bounding the suboptimality of the inputs. Given the estimate A;_; and past data {xt}lszjTi, and
letting 1; denote the optimal inputs on the estimated system and u; the optimal inputs on the true
system, we wish to bound:

Amin(Xiy @ 4+ T) = Amin (X, @) + T ) 2)

in terms of €;_1, as this will quantify how suboptimal our input’s response on the true system is.
Theorem 4.1 provides such a bound in terms of €;_.

Theorem 4.1 (Informal) Assuming that | A, — A;_1||s < e, then:

mln(Zt 1 "mpr) Fuz)— mlH(Zt 1 ") +F ) UGMIIIQ%EMQEL(A*’B*’U’G’I’w)

where L(A., By,U,€,T,w) is a measure of the smoothness off}gi with respect to A,.

The full version of Theorem 4.1 is stated and proved in Appendix F. At a high level, the proof
follows by upper bounding (2) in terms of the difference between I'y and I'y = I'p. (A;—1, By).
This difference can be quantified in terms of the sensitivity of I'; to changes in A, and, critically,
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does not require bounding the difference between ; and ;. The primary challenge in proving
Theorem 4.1 is in avoiding standard matrix perturbation bounds of the form:

Pin (275 ]+ T%) = Amin( S5 e + T

Depending on the structure of A, '} could be very ill-conditioned and (3) could be very loose.
We instead show that it is sufficient to bound:

< |IT%, = T2 3)

m:’:}\)/{l‘w Zt D) —|—T“ Jw — w (Zt L) + T, w‘ —max‘w L =Ti)wl @
we i ¢

for a set M guaranteed to include the eigenvectors corresponding to the minimum eigenvalues of
Zt | vl FZ’ and Zt 1 ‘) + F . Applying (4) instead of (3) with this M can save a
factor of as much as 1/(1 — p(A,)) in the ﬁnal perturbation bound.

Given this perturbation bound, we can quantify how suboptimal the inputs computed by solving
OptInput on our estimated system are. As we make precise in Appendix F, the suboptimality
depends on the frequencies our input signal contains. UpdateInputs carefully takes this into
account, only playing inputs for which it can guarantee the system will be sufficiently excited.
Ultimately, we are interested in exciting the system optimally, which requires that we have learned
the system well enough to guarantee the performance at every frequency. We quantify this in Lemma
D.1 and show that for sufficiently large 7", we will be playing inputs that attain the optimal response.
Controlling the estimation error || A; — A.||» in terms of the inputs. The final piece in the proof
involves showing that, for the inputs being played, ;, the estimation error will scale in accordance
with how these inputs excite the true system. We can decompose the error in our estimate of A, as:

14i = Aullz = (e )) ™ e/ |2
<)‘mln(zt 1$t$t) I/QH(Zt 1mt$t) 1/2Zt 1Lt H2

I e )20 2em |2 scales like O(+/d + 1og 1/5 + log T') and can be handled using
a self-normalized bound Abbasi-Yadkori et al. (201 1); Sarkar and Rakhlin (2018). The primary
difficulty is obtaining a lower bound on )\mm(zt 1xtxt /) in terms of the inputs being played. We

in fact want to show something even stronger, that Zt:T_E zx] = (T — TZ)I‘ZE, as this allows us
to quantify precisely how an input affects the covariates, and how we can adjust the input to increase
mln(Zt 174 ). The following proposition is the key piece in proving such a lower bound.

Proposition 4.2 (Informal) Consider w € S and let u; be a deterministic signal with period k.
Assuming that T, is large enough that the transient effects of the input have dissipated, we have:
Pl (wlae)? > S*kLT/kJ Tw| > 1 — e s1lT/k (%)

The proof of this proposition is given in Section E. The main technical challenge comes in handling
the interactions between the inputs and the noise. To avoid directly bounding these cross terms, we
prove that the covariates over one period of the input are, with constant probability, lower bounded
by the covariates obtained if running the system with no process noise. After enough periods, we
show that with high probability the bound (5) holds. Given this pointwise lower bound, we can
apply a similar argument to that in Simchowitz et al. (2018); Sarkar and Rakhlin (2018) to show the
estimation error bound given in Theorem 2.6.

To complete the proof of Theorem 2.3, we effectively apply Theorem 2.6 to bound the estimation
error in the ith epoch in terms of FZ;, and using the fact that ; excites the system nearly optimally,
conclude that we attain the optimal estimation rate.

10
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Ut NN(Ov“IQI/P) Ut NN(Ov“IQI/P)
—— u~N(0,5) —— u~N(0,5)
10-21 —¥— Active —¥— Active
—8— Oracle 10721 ™ —8— Oracle
5 5
T, T,
10-3 1 1073 4
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000

Iteration (T') Iteration (T')

Figure 1: A, diagonalizable by unitary matrix, Figure 2: A, and B, randomly generated, d = 5,

d = 6,p = 4, B, randomly generated p=
10-2 | u ~ N (0,9°1/p) 1021 ur ~ N (0,71 /p)
—— u ~N(0,T%) —— Active (02 = 3v%/4p)
—%— Active (known B,) —@— Active (02 =~+2/2p)
—#— Active (unknown B,) —— Active (02 =~/4p)
= —&— Oracle =103 4 —y— Active (02 =0)
5 10734 5
I~ £ Oracle
[WE] L
1074 107
0 5000 10000 15000 20000 25000 0 5000 10000 15000 20000 25000
Iteration (T") Iteration (T')
Figure 3: A, Jordan block with Figure 4: A, Jordan block with d = 4,
d=4,p(A)=09,B, =1 p(AL) = 0.9, B, = I, varying 02

5. Experimental Results

We next validate our algorithm on several examples. Additional trials are included in Section J. We
compare Algorithm 1 against three baselines: playing u; ~ N (0,721 /p), playing u; ~ N(0, %),
and playing the oracle set of inputs as computed by solving Opt Input on the true system parame-
ters. >* is the covariance yielding the optimal noise excitation and can be computed via an SDP. We
do not compare against existing works in active system identification as these works typically either
require knowledge of A, to implement, and so are not directly comparable, or propose approaches
similar enough to ours (Lindqvist and Hjalmarsson (2001)) a comparison is not relevant.

We set Ty = 100,k9 = 20. Rather than running the UpdateInputs function as stated,
we plan greedily with respect to A—we do not restrict the set of allowable frequencies and set
U + OptInputy, (/L, B, 7%/2, [kit1], {x:}1;). In every experiment we solve Opt Input from
a single random initialization and do not restart multiple times to obtain a globally optimal solution.

11
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We plot the error ||A — A, |2 against the iteration number. The solid lines show the averages over
50 trials (100 for Figure 2) and the shaded regions indicate the 10% and 90% percentiles.

Figures 1 and 2 illustrate the effectiveness of our approach as compared to exciting the system
with noise—Algorithm 1 dramatically outperforms noise-based approaches and performs nearly as
well as the optimal. Figure 3 investigates the performance of our algorithm when B, is unknown.
Here we simultaneously solve for A, and B, and use our estimate of B, when optimizing our
inputs. As can be seen, this barely affects the algorithm’s performance.

At each epoch, Algorithm 1 devotes some amount of input energy to playing random noise. Let
o2 denote the variance of this noise. By default in Algorithm 1 we set 02 = %. Figure 4 illustrates

the performance of Algorithm 1 when o2 is varied. For a given o2, all additional energy is devoted
to the sinusoidal component of the input. As this plot illustrates, noise is not needed in practice
to effectively learn and, when all energy is devoted to the sinusoidal inputs, the performance of
Algorithm 1 almost immediately matches that of the optimal.

6. Discussion

In this work we have presented an algorithm for active identification of linear dynamical systems.
We show that our algorithm achieves optimal asymptotic rates and present finite time performance
bounds quantifying how the interactions between the input and the system affect the estimation.
This work opens up several possible directions for future work.

e OptInput is nonconvex so a globally optimal solution cannot be efficiently found. In practice,
an alternating minimization approach can be used to compute a local optimum. While solving
Opt Input may be difficult, as our bounds show, the quantity being optimized is intrinsic to the
problem. Developing algorithms to efficiently solve Opt Input is an interesting future direction.

e Recent works in system identification Simchowitz et al. (2018); Sarkar and Rakhlin (2018) have
emphasized obtaining bounds that do not scale with the mixing time of the system. Our error
bounds do not scale with this quantity yet they require the transient effects of the inputs to have
decayed. This condition seems necessary to cleanly quantify the performance and design inputs,
yet may be possible to remove with a careful analysis of the transient behavior.

e This work only considers exciting the system with sinusoidal inputs. While we show this is
sufficient to achieve optimal rates, one could also imagine choosing inputs that were a function of
the current state. Dean et al. (2018) provides rates when a linear state feedback controller is used,
but does not discuss how the choice of feedback could improve estimation. It is unclear a priori
how effective it could be. At minimum, a carefully designed state feedback controller could be
used to mitigate transient effects. We leave this direction for future work.

o A recent work Gonzdilez and Rojas (2019) develops finite time bounds for estimating SISO AR(n)
systems with n > 1. Extending this to MIMO AR(n) systems and allowing for active input design
is an open problem and exciting future direction.
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Appendix A. Notation

LDS Notation

d is the state dimension

p is the input dimension

o2 is the variance of the process noise

o2 is the variance of the exploration noise (set by default to v2/(2p))
xy system state due only to deterministic input, xy, ;| = A.xy + Bauy
i system state due only to noise, z;, | = Az} + 1

A = PJP~! denotes Jordan decomposition of A

Jyo, £ = 1 , 7 is /th Jordan block of J

U (ej 3 ) denotes the Discrete Fourier Transform of {u;}¥_,
27r€

U =U(e*)

G(ei?) = (9] — A,)~!

p(A) spectral radius of A

p(A) = 1/2 4 p(A) /2

B(A, p) = sup {[|AF]2p7% = k >0}
B(A) = B(A,1/2 + p(4)/2)

(4) = [IPll2[[ P~ H]]2

Ty(A) = T4 p(4)(49)T

PP (A) = 2 (A°B)(A°B)T
T{(A) = o°T4(A) + oply" (A)

=

[y =T(As)
b b4,
] =T} (A.)
k
Iwkf do 12% Zo—il_fo—l-l xq;'rUT

271'[

EVHBH( I - Ay

27l
J Tk

PU(A, B) = S s Sig (/% 1 = A)'BU( T U
Iy = I (Ax, By)

Li i = 7Thy,
Ika — 2Fu

Hy(A, B,U,T) = Y yep(el 5 T — A)~ 1BU(eJ‘QT“)U(eJ YABH (35 ] — A)~H
['7 high probability upper bound, in PSD sense, on thl zyx)

w kC(1=p(As)?)
Tss(Ca ]{3,$0) =0 (logp(A ) log (2“16‘*%33”25( )2))

27l

48(A)|| B l2ki i
Tss(Co kit1) = O <1ogpl(jU (1082 < /8(17[))'([4 )HQZH+” + \/QT'r ( T+ L -I'7 ) (1+11og3)
- 27rl
4B(Ax)ymaxe—1, . k; 4 ||(e Fitl 1—A,)"1B.|l2
+ log ( NN,
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Active System Identification Notation

Up = Jur,...,up € RP : 25:1 U (ed?mt/k)Hy (327t < k:Q'yQ}
Lo = qup,..,u, €RP S U (2R (727 k) < k242 SRy = O}

2 u T
OptInputk(A B,”y Z, {xt}t 1) TA%u,....u €R? Amin (fy Z;FZ ECA B) + Zt 1t >
Stoup, ey uy € Uz, U™ = 0,¥0 ¢ T

=21 optInput (AB, 2/9 k] {ze} L)
ES(A’B’,YQ’]{:Z'){:Et}f:lv(S):min 256,72 Pt-Nputy, v ztt 1

27 9
79 J5-
. max flwT (e % I-A)=13lI(e % I-A)=12||BlI3
weM(A; {z} L) L€lk;)

1
e
maxer,] 5l|(e” Fi T—A)~1|2

27 2
opt Inputagry ( A,B,Y2,[2k(T)],cTT )
_ . 256(2T+T0)72 | B|12 (T) k(T)
€s(A, B,~¥%,T,8) = min G+ T 213 (

. 27d . 9
) max lwT (&' 2T 1—A)=1|13]|(’ 21T 1Ay
wEMQk(T) (A,B,é,'yz/Q),ZE[Qk(T)]

1
j 27l
maxye 2k (7)) 5l (€” 2T T-A) =1l

27r£ 27l
L(A,B,U,e,Z,w) =  max Q‘me( BT A— A IA(TF T — A—6A)"!
AR ||A|l2=1
0€[0,€]
271'@ 271'@

- BU( YU (7 F ) BH (5] — A — 5A)_Hw‘
M(A Az }y) {w eS8 2T+To Zt (wla)? < %Zle(w’—ragtﬂ

+ minwlesd71 %72max 1 ”’LU/ ( %ZI A) 1B’2}
Lelk] - e<(4||(e Tk [-A)~ 1\\2)

~ . 2 T
M(A Az}, T) = {w €S i Rem(w' @)’ < i e L (@ 20)?

2mi

+ 92 max max{ ' (/F 1~ A) B3, lo' T (eF T~ A)71BIB }}
1€

W _ d—1 . T T 10 —
Mk<A,B,<s,v2>—{wes U oy T < min max 652(A)2)( 1 — 7)1 31813

+2(1+log 3) (SALBUDL B | g KARIBIERU }

1—p(Je)? (1—p(Je)? 0) (1—p(J¢)?)

k(T) denotes value of k; for given T, if T at epoch boundary, denotes value for previous epoch

0= 2

Standard Mathematical Notation
ST ={vecR?: |ju|s =1}
|| . ||2 denotes matrix operator norm and vector 2-norm

|| . || » denotes matrix Frobenius norm
k] ={1,2,3,....k}
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Full Definition of UpdateInputs

1: function UPDATEINPUT s(A,B,{:ct};f:l,yQ,k,e,FT)

2:

3:

10:
11:
12:
13:

14:

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

// Form set of directions that may correspond to minimum eigenvalue

M(A {z} ) {w SR 2T+To Zt (whz)? < 2T+To Zt (W' wt)z‘i‘

min,, ¢ ga—1 372 max omt |’ T (e I — A)~ 1B||2}
Lelk] s e<| 4]l kF I=A)"1|2

// Check if € small enough to plan with all frequencies
if ¢ < mingegy (41\ (5T — A1 )
4 1 ||2 ll(e

Y A %e[— )713“3
and manEM(A7{xt} )ﬁe[k’] 3 (2T+T0)’y ”w (6 k I ) 2 7

(e’ k" I=A) =12

< OoptInputy(A, B,~v%/2,[k],{z:}.,) then
7T = [K]
else
// Otherwise, set L to include frequencies we can plan effectively with
T {)
for{=1,2,3,....k do
// Check if we can plan optimally with frequency ¢

- —1
it e < (EFE-HTR) and maxgepa gz eI

.27l J A1
To)V?||wT (7% I — A)~ 1H2H‘(|§ J;ZII ,i) 1]?'2 < Amin (Zt 1 Ty ) then
2
T+ T1TU/
end if
end for

end if
// Update inputs
if F'I' == True then
02+ g—;, u < OptInputy(A, B,7? — po2, T, {z:},)
else
02+ g—;, u < OptInputy (A, B,v* —po?, T, (2T + T0>O'2Fk(A))
end if
return U

26: end function

Several comments on notation are in order. First, note that 3(A, p) is the smallest value such that
| AF||s < B(A,r)pF for all k > 0. B(A, p) is finite as long as p > p(A). More generally, we can
upper bound 5(A4, p) as Tu et al. (2017):

8. p) < maxel|(zol — )7 o = mae (e’ — )7

As r is increased, 5(A, p) will decrease, but the decay rate will be slower. Note that if we set
p=p(A) =1+ 3p(A)and B(A) = B(A, L + $p(A)), we have:

1 2
_ ]0[ A 1 —9 JQI A 1
= 1A o [(pe )l = Bl (e )" ll2
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so the cumulative behavior of the transient, which corresponds to l%p, and the upper bound on
B(A, p), will each be within a factor of 2 of their optimal possible values. Throughout the appendix,
we will upper bound ||A¢||s < B(A)p(A)¢. In nearly all cases, however, the expressions obtained
that contain p(A) can be replaced with a p(A) by adding a factor of 2.

To simplify notation throughout the proofs, we will let FZ = 02T}, + UZI‘E * and f}j = 21“};.
Throughout the appendix, we will let o2 refer to the variance of the exploration noise, which is set
by default to 2 /(2p).

Appendix B. Algorithm 1 Performance Results

We first present the full version of Theorem 2.3.

Theorem B.1 (Full version of Theorem 2.3) Assume that v> > %, and:
1 26(A.)%y° 4B(A.)?d(0® +7°|| Bi|2) 2
Ty > ckoy [log = +d+dlog | —————= (1 4+ T 1+ log =
02 by 1o+ -t (20004 ) + PALIER I e
(6)
Then for any:
9 2 oh B. k(T)
T > max {2TSS (Cl)\min (0' Ty + ?Fk(T) g )
_ 2 -1
2log% + d + log det <FT (02Fk(T) + %F,ﬁ%) + I> (N
Co0 5
€s(Ax, B, ¥, T, 6)? Anin (02Fk(T) + %F’%TJ
Algorithm 1 with F'T' = True will achieve the following rate:
log 1 +d + logdet ( Tz (02T 2p8. Vg
. g6 ogde T\O k(T) + p k‘(T) +
P [||A— Al <Co >1-99

T Amin (UQFMT) + ’YQFZZ:M)

and will produce inputs satisfying E [1/T Zle utTut} < ~2. Here cy1,cy,C are universal con-

stants, u* is the solution to OptInputk(T)(A*,B*,’yQ,k(T),O), and T'p = 16%(1 +
2

T +4 (tr (20 + TTF ) (1+1og 3) 1),

Several additional remarks are in order.

Remark B.2 For Theorem B.1 to hold, Ty and ko must be set to satisfy (6). This condition is nec-
essary to guarantee that the burn-in time required by Theorem 2.6 is met at each epoch. Satisfying
this condition requires knowledge of the unknown system so, in practice, we cannot guarantee that
it will be met for some 1y, kg. However, since Algorithm I increases T; faster than k;, regardless
of how Ty, kg are set, it will eventually satisfy the burn-in condition of Theorem 2.6, and so the
conclusion of Theorem B.1 will eventually hold.
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Remark B.3 Every line in UpdateInputs, with the exceptions of solving Opt Input, is at worst
a convex program and can be solved efficiently. Computing M(A, {z;}L_,) in line 3 involves a lin-
ear search over { € [k] and the computation of a minimum eigenvalue for each £. M(A, {z:}]_,)
will be an ellipsoid. Line 7 and line 12 also involve iterating over all { € [k] and for each ¢, max-
imizing a quadratic over an ellipsoid. Since the maximization of a quadratic over an ellipsoid can
be solved via a single SVD, this step can be efficiently completed. While k is growing exponentially
with the epoch, we only call UpdateInputs once per epoch. Since the epoch length is also in-
creasing exponentially, the number of epochs is only logarithmic in T. Thus, the total number of
flops is only linear in T'. In practice, one should simply stop increasing k when a sufficiently fine
discretization of the space is reached to obtain close to optimal performance. Experimentally, we
found this worked quite well.

Remark B.4 The only constraint we place on the inputs is that their average power is bounded
by some value. This constraint allows for signals with large amplitudes, a situation which is of-
ten highly undesirable in practice. To avoid this possibility, further constraints could be added
Opt Input to guarantee that the input computed has bounded amplitude as well as power. Unfor-
tunately, amplitude constraints are non-trivial to enforce when optimizing in the frequency domain.
Further, adding this constraint would cause us to lose the guarantee of global optimality of inputs.
In practice, we have observed that the optimal inputs typically do not exhibit large spikes are other
such undesirable behavior.

Remark B.5 The restriction that p(Ay) < 1 is necessary to guarantee that the system will reach
steady-state when a new input is played. As such, all our finite time results fundamentally depend
on this assumption. A first step towards relaxing it would be proving a version of Proposition E.2
that does not require the system has reached steady state. We leave this for future work.

We also note that, in some sense, the interesting regime for active system identification is when
p(Ay) < 1. As was shown in Sarkar and Rakhlin (2018), when all modes in A, are unstable, the
system can be estimated at an exponential rate. Thus, in this case, active identification is likely
unnecessary. A more interesting regime may be when some eigenvalues of A, have magnitude
greater than 1, and some have magnitude less than 1. In this case active identification could be
used to excite the modes corresponding to the smaller eigenvalues. We leave this direction for
future work.

We next present our master theorem quantifying the performance of Algorithm 1. Algorithm 1
operates in three regimes. In the first regime, when T; is not large enough for the system to reach
steady state, we are only able to guarantee learning due to the contribution of the noise. In the
second regime, 7 is large enough for the system to reach steady state but ¢; is not small enough for
all frequencies to be playable. Finally, in the third regime, 7; is large enough to reach steady state
and all frequencies are playable, allowing us to attain the optimal performance. All three regimes
are quantified in Theorem B.6.

Theorem B.6 Assume that v> > %, and:

AB(A)?d(0* + o3| Bsl2) 2
1— p(A)? e 5)(2)

2
fﬁ(ﬁ*) T_(1+T) +

1 2
TO 2 Ck() <10g +d+d10g <(_(14))

J
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_ 2.2
Let Ty = 16 24000 (14 7)1 +4 (tr (o2FT n %F?*) (1+1log 2) 1) . Then Algorithm 1 with

FT = True will have:

(a) For any i:

log 5 + d + log det(L'r (T} )1 + 1)

P|A4; — Ao < C
H HZ_ 10 TAmin(FZi)

>1-30

(b) If:

then:

log } + d + log det(T'p(T}, + T )~! + 1)

P |||A; — A2 < Coo >1-56

where u} is the solution to Opt Inputy, (A, By, 7%, T, {xt}th_lTL)

(c) If:

1 o log £ +d+logdet(Tp(T7 )1 4+1

T; > max $ 3T (| —Amin(T}0), ki |, 3?027 o ( (kl_l) 7 )
10 ! ES(A*;B*7727T_Eaé)Q)\min(Fk. )

i—1

then:

log 1 +d + log det(Tp (I}, + T )1 + 1)

P |4 — Aufl2 < Cuo pa——

>1-99

where u; is the solution to Opt Inputy, (A, By, v, [kil, {0,

In all cases, the inputs produced will satisfy:

1 T
] e
t=1

Here Cy,Cy, C3, Cy are universal constants.

E

B.1. Proof of Theorem 2.3 and Theorem B.1

The proof of Theorem B.1 follows an event-based analysis. We define several events, show that they
all hold with high probability, and that together they imply the rate given in Theorem B.1 holds. We
outline the steps at a high level here.

We first must show that the estimate attained at the ¢ — 1th epoch is sufficiently accurate to
guarantee that we are playing inputs that achieve a response close to optimal. Defining the event &7
to be the event that €;_; is this small, Theorem B.6 shows that this holds with high probability. To
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show that the value of ¢;_; is sufficiently small to guarantee that our inputs are nearly optimal, we
must show that eg > €g. This requires controlling the covariates in a specific direction, wpi, which
we define below. Event & is the event on which this is controlled and Lemma E.7 shows that it
holds with high probability. On this event, Theorem F.1 and Lemmas D.2 and D.1 guarantee that,
given ¢;_1 this small, we will have that our inputs achieve a nearly optimal response.

The remaining events are needed to guarantee our estimation rate at epoch ¢ holds. Event &;
guarantees an upper bound on the covariates. £ and £ are both lower bounds on the covariates.
&> lower bounds the covariates from all epochs prior to epoch ¢ in terms of the noise and £3 lower
bounds the covariates from the ith epochs in terms of the input. The former is necessary for more
technical reasons while the latter allows us to lower bound the covariates in terms of the inputs,
which ultimately yields the rate that depends on the input response. &£ is shown to hold with high
probability by Lemma E.7 and, conditioned on the covariates being upper bounded Lemma E.3
shows that £ holds with high probability.

A slightly more subtle issue arises in showing that &5 holds with high probability. For &3 to
hold, we must have that 7" is large enough to guarantee that the system has reached steady state in
the ith epoch. Guaranteeing the steady state condition is reached requires the initial state at the start
of the epoch, x7_7;, to be bounded. Given that such a bound holds, we can guarantee, in terms of
this bound, that 7" will be sufficiently large for the system to reach steady state. Event &£ gives this
upper bound on z7_7; and Lemma D.7 shows that it holds with high probability. Given this and
the burn-in condition required by Theorem B.1, it follows that the system will have reached steady
state at epoch . This, combined with &£; holding, allows us to apply Corollary E.5 to show that &3
holds with high probability.

Event £4 next shows that the self-normalized term in the error is bounded. On the event that the
covariates are upper and lower bounded as in &1, &2, €3, £4 holds with high probability by Lemma
E.6.

Finally, we show that if all of these events hold simultaneously, the “good” event, .A, which
guarantees that the rate in Theorem B.1 holds, is always true. Since all of these events hold with
high probability, it then follows that .4 holds with high probability.

Proof Throughout we will let T = Z;:O T;, the total time that has elapsed after ¢ epochs.

Let 2" be the solution to Opt Inputy, (A, Bs, 72, k;,0) and define the following events:

log 5 +d + log det(Ir (I, +T}1)~! + 1)

A= ||A; — A.l]2 < Co

&3 =

T-T;
&y = { xta:tT > clTi_lfzi}
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—1/2 T

1 R adP Y
&y Z artxt tzl ] || < 030\/10g 5 +d + log det(I‘T(in +IE) 1 +1)

{ 2
— 28(Ax) || Bell2ki-1v . 1. 4
Es = {HxT_ T 1= p(A,) b + 4/ 2tr (FT—TZ-) 1+ o log 5
T T 5
= {Z(w;mxtﬁ < 4;(w$mxf)2 +4T (1 + log 5) wl. (o?Dp + aﬁF?*)wmin}

Er = {61'—1 < €5(A*,B*,72,T, 5)}

Let A, = PJP~! and p; denote the columns of P. Here wnjy 1S any unit norm vector such that
w_ . p; = 0 for all p; that do not correspond to the minimum eigenvalue of A.. We wish to bound
[P[.A€]. The following set of inequalities obviously holds:

PlA°] < P[A° N &) + PIET]
P[A° N & N &) + PIET] + PES]
PlA°NE NEy N Es| + PIEY] + P& N &S] + PIEF]
P[A°NE NE N E3NEs) + PIES] + P& NES] + PIEL N Ey N Es N ES] + PIES]
PlASNE NENEZNELNES) 4+ PES] + PIEL NES] + P& NE2 N Es N ES)
+ P& NENENES + PES]
<PANENENENENE NE]+PIE]+PEINE+PIEINE NE NES)
+ P& NENENEL] + PIES] + P[]
PlASNE NENENELNENENEL + PIES] + P[EL NESI + P& N E2 N Es N ES]
+ P& N & NENEL + PIES] + PI&s] + P&7]

IAIACIA A IA

By part (a) of Theorem B.6 it follows that if:
,log ++d+log det(fT(I‘q]ZFl)_1 +1)

2
(‘?S(A*vB*/V 7T 5)) )\min(rziil)

T;-1 > C%

then P[E¢] < 36. By Lemma D.7 we have that P[ES] < 6. In Lemma D.4 we proved that:

T

o= 7 Z %( LTI

which allows us to deterministically upper bound:

42( Iy +tr (r” ) (1—|—log§> 1> j4%(1+n1+4(tr (T7) <1+log§) 1)

By Lemma E.7 we then have that P[£f] < §. By Lemma E.7, P[§] < 0. Note that on the event &;
by Lemmas D.5 and D.4 the burn-in time required by Lemma E.3 will be met at the end of epoch ¢
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assuming that kg, Ty are chosen to satisfy (6). Since u;_1 is random we cannot apply Lemma E.3 to
bound this directly, however:

P& N &) = E[I{& N &5
= E[E[I{& N EFFr—1y—1, ,]]

(@) gy a _
< E |E |I Z xta:tT iclTi_lei,thxtT <TTr p |\ Fr-r—1,_,
t=T—-T;—T;_1 =1
(b)
<9
Here (a )follows sinceZtT*TTiTFT lxtzz:t = Z T soIP’[Zt i T 1a:txt 7 1Tl >

P tT 1T zx] # Ty ], and (b) follows by applylng Lemma E.3 since u;_1 is deterministic
on Fr_r—1, 4

A similar a.rgument can be applied to bound P[&; N &2 N &5 N E5]. By Corollary E.5, we will
have that P[€; N E2 N E; N ES] < 0 so long as the steady state condition required by Proposition E.2

is met for every w € S?1 where ¢T; wTI”“w > Z (wat) . That is, we need:
T'+k T'+k 2 1
Z wafZ — Z w'x bl kinf‘Z?w < k wTFZfH
7
t=T"+1 =T"+1

for all w meeting this condition. On the event &5, by Corollary D.8, this burn in time will be reached
as long as:

1
T > Tes Tr“z k;
. - (urri. i)

~ s T—T.
weSd-1 cTinF:;wZthl Hw T xt)?

Note that on the event £ and since T, increases as its first argument decreases, we have:

1
max Tss ( Tfulw k; >
weSI—1 : (TywT Ty ZTU>Zt 1 (wTZt)Q 10

11 T2
max Tos | 7o (w ' @)" ki
weSa-1 :CTinf‘::wZZZ:lTi(waiP <1OCE tzl

T,
< max s (Cl 1 Z,k1>
weSd—1 :cTwTF w>zt (wat)2 10¢ T; ‘
< Tss <C5)\min(rzi)a kz)

By Lemmas D.5 and D.4 and on the event £, assuming that kg, Ty are chosen to satisfy (6), we will
have that:

IN

1
T; > ck; <d+log5

+ logdet(fT(fZZ)_l)>
soif Tj > 3T, (C5Amm( "), k:) then:
n 1 1 i\ —1
T, > 2T, <C5/\mm(f‘ki), k) + ek d+log 5 +log det(Dr(T}) ™)
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Noting that on &1, we will have that Z xt:vt =< TT'7, we see then that the burn-in time required
by Corollary E.5 will be met if T; > 375 (C5)\min( ki)’ kl> Repeating the same calculation we

used to bound P[€; N &F] to handle the fact that u; is random, we conclude, by Corollary E.5, that
]P’[gl N&ENEN 5§] <.

By Lemma E.6, we have directly that P[€; N & N &3 N ES| < 6.

Finally, we must bound P[A° N & NE NE3NELNE; N Es N Er]. We can decompose the error
as:

14i = Aullz = (XX ) X TE|2
< XX T2(XX )2 XTE
= Anin(XX ) TV2(XXT)TVEXTE|
Ontheevent &1 NE N E3NEL N E5 N Eg N E7, we will have that:

1
(XX V2XTE|, < 030\/log 5

Furthermore, on this event, we will have that ;1 < €g(A, By,~v2,T,§) and all the conditions of
Lemma D.2 will be met so eg(Ax, By, 72, ki, {z}1_1,0) > €s(Ax, B«,¥%, T, 6). This implies that
€i-1 < es(Ax, By, 72, ki1, {:rt}f:_lT", 9) so by Lemma D.1, Z; = [k;] and:

T, ) T,
Amin (szk (A*,B*,U [k ]) + Z xt-%?) — Amin (kQHk (A*,B*,U Z Tty >‘

+d +logdet(Tp (I}, +T}0) =1 +1)

1 T-T;
< iAmm <k2Hk (A*,B*7U* [k]) Z .’Etth>
)

where U* is the solution to Opt Inputy, (A«, Bs,v2/2, [ki], {z:}7_,) and U the solution to
OptInputy,(Ai1, Bs,7?/2, [ki], {z+}]_,). Furthermore, on this event we will have that:

T (@) T-T,
Amin <Z $t$tT> > Amin ( Z xt:zrt + e T; Fm)
t=1

t=1

1 T—T; .
> 5)\min (Z -'Etm;r +02EFZZ>
t=1

.

= 5 Amin <Ti71FZi + Tzfz>
where (a) holds on &3, (b) holds given (9), (c¢) holds since the inputs u} maximize the quantity
Amin ( tT 1T xtxt + TF 1) under the power constraint, and (d) holds on &. T; = %T + %To
which implies that both 7} and T;_; are greater than %T SO:
C3

S Amin (Tia T, + T ) = eaTwin (T, + T )
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By the error decomposition above, on the event £ N E NE3NEL N E; N Eg N E7 it then follows that:

log 3 +d + log det(Dp (I, + ) =1 + 1)

|A; — Ayl]2 < Co
Tuin (T, + T )

SOP[ACﬂgl ﬁ52053ﬁ54ﬁ55ﬂ56057] =0.
Combining all of this, we have that if:

1 oot -1
s 020210g 5 +d+logdet(I'p(Iy, )™ +1)

2
(gs (A*, B*7 ’727 Tv 5)) )‘min (F2271)

i

and T} > 3T, <C5/\min(rz ), k) then:

log § +d +log det(Dp (I}, + Ij) ! + 1)

P |||A; — Aill2 < Co >1-95

To eliminate dependance on i, note that T = Z;:o 3Ty = L(3+! — 1) which implies that
i =log(2T/Ty+1)/log3 — 1, and that T; = 5T + 3Ty and T;_y = 3T + §Tp. We then have that
if: _

9 1 log  + d + log det(FT(I’Z(T)/Q)_l +1)

ST+ =Ty > C?0?
9+90_ o

2
<GS(A*7 B*? 727 T7 5)) )\min (FZ(T)/Q)

and %T + %TO > 3Tss <C5)\min(FZ(T)/2)7 k(T)/2> that:

log % +d +log det(FT(FZ(T))i1 +1)
T)\min (FZ(T) + FZZT))

P |||A; — Aslj2 < Co >1-95

B.2. Proof of Theorem B.6

Throughout we will let T' = E;‘:o T;, the total time that has elapsed after ¢ epochs.
We first note that the bound on expected power of the inputs follows directly from Lemma D.6
and by the power constraint imposed in Opt Input.
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B.2.1. PROOF OF THEOREM B.6 PART (A)

Let:

log 5 + d + log det(l_“T(FZi)_l +1)
Thnin (L7

7

A:={ ||A — A2 < Co

be the event that our desired error bound holds, and define the following events:

T
& = {Z zx, < TFT}

t=1

T
E = {Z ajtm;— b clTFZZ}

t=1

Es:

T -1/2 7
1 _
(Z aztm;r> E xm;r < 630\/10g 5 + d+ log det(I‘T(in)fl +1)
t=1 t=1
2

We wish to bound P[.A€]. The following inequalities obviously hold:

P[A°] < P[A° N &) + PIE]]
< PlA°NE N &+ P& NES] + PIET]
<P

[.Ac N&ENEN 53] —i—]P[gl N&EN Sg] + ]P’[Sl N 526] + P[gﬂ

By Lemma E.7, and since, following the proof of Lemma D.4:

e (1) (1 g 2) 1 <4 PO o (1
4j§)FTj+4t (FT) (1+1 g6>Ij4<1_p(A*))2(1+T)I+4<t (I‘T) <1_|_] g(S)I)

we have that P[£f] < §. Note that on the event £;, by Lemmas D.5 and D.4 the burn-in time
required by Lemma E.3 will be met at the end of epoch 7 assuming that kg, Tj are chosen to satisfy
(8). Therefore, by Lemma E.3, P[€; N ES] < 6.
By Lemma E.6, we have directly that P[€; N &, N ES] < 0.
Finally, to bound P[A° N & N & N &3], note that:
1Ai = Aulla = (XX )T X T Bl
< (XX (xX )X B,
= Amin (XX )T (X X)X B

On the event &1 N &y N E3, we have that:

1

e T i)
min\* g,

and:

1 _
[(XXT)"V2XTE|, < 030\/10g sHd+ log det(Cr (I )1 4 1)
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Thus:

log § +d + log det(f‘T(in)_l +1)
T)\mm(rzl)

|4; — Ail|2 < Co

so P[A° N & N & N &3] = 0. Combining everything, it follows that:

log 5 + d + log det(Cr (T} )1 + 1)
T)\min(FZ-)

7

P |||A; — Ay]]2 < Co >1-30

B.2.2. BOUNDING THE ERROR WITH RESPECT TO INPUTS

The proof of this mirrors closely the proof above but now with inputs included. Let:

log 5 +d + log det(Ir (I, +T}1)~! + 1)

A= ||A; — Al]2 < Co G
T)\min(l“zi + Fk::)

be the event that our desired error bound holds, and define the following events:

T
- {thxj < TrT}
t=1

T
52 = {Z 1’,5.%‘? t ClTPZi}

t=1

T
&z = {Z T, = CQTfZ:}

t=1

T —1/2 T
1 T ndp i
&y (Z a:txtT> E zm || < 030\/10g 5 +d + log det(PT(in + F’k‘z)—l +1)
t=1 t=1

2

26(A.) || Bullaki1v L oed
= —_T. < 2 Fn 1 —1 5
&s {HxT Tl s —— Sk T\ ( T—Ti> T %

We wish to bound P[.A¢]. The following set of inequalities hold:

A°N &+ PEY]
AN ELNE) + PlES] + PES]
A°NE NE N &+ PIET] + P& NES] + PIES]
AN E NENESNE;]) + PIET] + P& N ES] + PIE1 N Es N ES] + PES]
ASNEINENENE NES] +PES 4+ PE; NES] + P[Es N & N ES]
+ P& NENENES + PES]

2 EE=EZE

IA A IAIA

By Lemma D.7 we have that P[ES] < §. By Lemma E.7 and since:

i u; 2 B(A*)2’72 9
4jZOFTj +4tr (I7) (1 +log 5) I= 4@(1 +T)I +4 (““ (I'7) (1 + log 5) I>
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we have that P[£f] < 4. Note that on the event £1, by Lemmas D.5 and D.4 the burn-in time required
by Lemma E.3 will be met at the end of epoch i assuming that kg, Tj are chosen to satisfy (8). Since
u; is random we cannot apply Lemma E.3 to bound this directly, however:

P[&, N &S] = E[I{& N &5}
= E[E[I{& N ESHFr_n]]

T T
<E|E|I Z xtx;r iclTI‘Zi,th:p: <TCr p |Fr-1,
t=T-T; t=1

where the last inequality follows by applying Lemma E.3 since u; is deterministic on F7_7; and
noting that 7; = %T + %To.

A similar argument can be applied to bound P[€; N &5 N £S]. Note that on the event &, by
Lemmas D.5 and D.4 and assuming that kg, Tj are chosen to satisfy (8), we will have that:

1 o
T; > ck; <d + log 5T log det(FT(FZE)1)>

50 if T) > 3T (%Amin(fgj), k) then:
1 . 1 1 e
T, > 2T, EAmin(Fk;)’ ki) + ngi d + log 5 + log det(I’T(I‘kz) )

On the event &, by Corollary D.8, T, (%)\min(fzz), k,) will then be sufficiently large for the
system to reach steady state so the burn-in time required by Lemma E.4 will be met. Then repeating
the same calculation as above to handle the fact that u; are random, we get that P[; N E5 NES] < 6.
By Lemma E.6, we have directly that P[£; N &, N &3 N ES] < 6.
Finally, to bound P[A° N &1 N E N E3 N E4 N &), note that:
JAi — Adls = [(XXT) "X T B3
< IXXT) V2o (XXT) X T
= Amin (XX )T (XXT)T2XT B2

On the event &1 N &y N E3 N E4 N Es, we have that:

1
TAmin(T7, +T3)

Amin(XXT) 72 < (/M

and:

1 _ -
[(XXT)™V2XTE|, < Cga\/log s+d+ log det(Tp (T}, +Tp)~1 4 1)

Thus:

log § +d +logdet(Dp(I, +T3) =" +1)

|A; — Al < Co L
|4 — Al (T + 1)
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so PlA°NE NE NENEL N Es) = 0. Combining everything, it follows that:

log 5 +d +logdet(Ir (I, +T}1)~1 + 1)

P |||A; — Al]s < Co =
= Dhusa(T, + )

>1-50

B.2.3. PROOF OF THEOREM B.6 PART (B)

To complete the result, we must show that the inputs u;, which are computed based on our estimate
of the system A;_1, are close to the optimal inputs computed on the true system, for a specific set
of frequencies Z;. That is:

T -1 T T-T;
)\min <k;sz (A*, B*, U*aIz) + Z xtx;r> - )\min <]€;Hk’1 (A*a B*7 U>IZ) + Z xt:p:) ‘
i t=1 ( t=1

1 T T—T,
N i) * T T

S 5)\m1n (szHk‘l(A*7B*7U 7IZ) + tzl xtxt )
where U* is the solution to Opt Inputy, (Ax, Bx,v?/2,L;, {:ct}tT:]Ti) and U the solution to

. ome

OptInputy, (Az'—la B*,’y2/2,I¢, {xt}?qui). By LemmaF.9, ife;_1 < (4“(6] ki I—Al‘_l)*lug)il,
then:

j2rt ioN—1
(e FI—Ai1)" |2

2l _ 4
I 51— A) 2 < 5

and: ot 4 o
lwo' (¢ 51— A2 < gl!wT(ej’T?I —Ai))

2t
this then implies that ¢;_1 < (3||(¢’ * I — A,)~"||2)~" so, again by Lemma F.9:
27l N _ 3 27l _
L A R A 1 (GO e P
Assuming this condition is satisfied for a particular ¢, then:

=274
27 2mt TR T — A)7'B,|3
max 76i_1ﬂ,}/2”wT(63 k; I_A*)AH%H(@ — ) ||2
(" T = A) 72

wEM(Ai717{$t}z:_lTi) 4
- 274 ~
32 e e ki I — Ai_1)"'B.|2
< max e T w' (€ 5T = Ai) 1||§H( T B
wEM(A; 1 {zi},— ) (e’ I — Ai—1) 1o

Note that Opt Inputy, (A, By, v%/2,T;, {xt}tT:_lTi) > Amin (ZtT:_lTi :L"t:rtT> So linking these
together, if ¢ € Z;, then:

27l
27 j2nt PRI — A)7'BJ3
max 761__1]17;,)/2HUJT(€J kg I_A*)flug”(e . *) *H2

~ T - 27l
weM(Aiy a5 4 (o W

1 T
< 50ptInputy, (As, Bo,7*/2, T, {m ")
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;2me
Since €;_1 < (3”(@3 B [ — A,)7Y|2) 7! for all £ € Z;, we can invoke Lemma F.4 to get that:

T;
) max 256 1L(As, Bi,U €1, 1;, w)
WEM(Aifly{It}tzl Z),UGM,\{Q/Q 7

- 27l

27 2me B e ki [ — A IB,|2

< max T mye (@ F - agpl AP
wEM(Ai—1{zt},_ *)LET; ”(e] Bl — A) 72

so applying Theorem F.1 and Lemma D.3:

OptIHPUtki (A*v B*a 72/2’1-1’ {xt}zﬂ:_lTi) - OptInpuJCki (Aiflv B*a 72/2’1-1, {xt}?:_lTi)

T.
< max 27;62'71L(A*’B*3U5 eiflaziaw)
UeU 2, k3
WGM(A*7A¢—1,{2t}tT;1Ti Ii)
T;
< max 2726i—1L(A*7B*7U7 ei—lvzivw)
UGZ/{,YQ/Q kz

weM(A;_1 ,{It}$=1Ti )

1 7
< 5OptInputy, (A, Bu7?/2, T {ae ")
which is the desired conclusion.

B.2.4. PROOF OF THEOREM B.6 PART (C)

Let:
A log + + d + log det(Dp(T7 +T%)~1 + T
A= [[Ai — A2 < Co 9 (n ( kw k) )
T)\min(rki + FkZ)
log § +d +log det(Dr(T}, )~ +1)
&= €1 <Co 0 ki1

T%, 1 )\min (in,1 )

T T

2

Er = {Z(wgmxtf < 4Z(w$inzx$)2 +4T (1 + log 5) wl. (°Tr + JgFg*)wmm}
t=1 t=1

Let A, = PJP~! and p; denote the columns of P. Here wpiy, is any unit norm vector such that

w;—ﬁnpi = 0 for all p; that do not correspond to the minimum eigenvalue of A.. We can follow the
proof outlined in Section B.2.2 up to the final step, adding in the events &, £7:

PANE NENENE] SPANE NENENE NE NEL+ PIES] + PIEF]

By Lemma E.7, P[ES] < . By part (a), we will have that P[] > 1 — 36. We would like to
guarantee that €;_1 < €g(A., B, v T —1T;,6 ). On the event &, a sufficient condition to achieve
this is:

log 5 +d +logdet(Pp(I},_ )~ +1)

T;—1 > C?%0?

2
<ES(A*, B, 42T — 1T, 5)> Ain (T7. )
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On the event £1NENEINE;NESNEr, by Lemma D.2, we will have that eg (A, B, 72, k;_1, {xt}?:_lTi, 9)
€s(As, By, v2, T — T;, ), so by Lemma D.1, then we will have that Z; = [k;] and that:

T; i} T T;
Amin (k Hy, (As, B, U™, [ki]) + Z mt> ~ Amin (kQHk (As, B, U, [k Z wt>‘

1 N T
S 5)\min (kQHk (A*uB*7U + Z Tty >

Vv

where U* is the solution to Opt Tnputy, (A, B, v2/2, [ki], {x:}1,"") and U the solution to
opt Inputy, (Ai_1, Bs,v%/2, [ki], {z:}1"). So it follows that on the event &1 NE NENE N
E N E7, Awill also hold, so P[A°NE NE NEsNE NENE;] =0. We can then apply part (a)

to get that, so long as T;_; meets the condition above and T; > 37T, ( )\mm( ), kz)

log + + d + log det(Tp(T). + T} )~1 + 1)

o >1-95
TAmin(T}, +T7)

|A; — Ail|2 < Co

B.3. Proof of Theorem 2.2

Proof Throughout we will let 7' = Zé‘:o T;, the total time that has elapsed after ¢ epochs.
By Lemma H.3, we know that:

hm )\mm(a Ly + I’kle)

exists and is finite, where here u™ is the set of inputs in Z/{ 2 that maximizes )\mm(a Cggoi + rv
It follows then that there exists ig such that, for all 7 > ¢y, we will have:

Ro2i)-

~ . 1
’)\min(a2rk02i + Iﬂlé(ﬂi) —C ’ < ZC*
By Corollary F.3 and Lemma F.6, for small enough € and some 71, we will have that:

1
< e
4

‘)\min(a2fk02¢ + f‘;i;zz) — )\min(O'QFk.OQi =+ f‘zozi)

forall 7 > i1, where 4 is the set of inputs in Z/_{,YQ that maximizes )\min(0'2rk02i (A )+Fz i (Ai_l, B.)),
the set of inputs computed when F'I" = False. Denote this small enough € as e, and set e, small
enough so that e, < €(As, By, 7y 7T 9) for all 7', 5, which will guarantee that we are p]aymg all
frequencies, and small enough that A;_1 has spectral radius less than 1. Note that €( A, By, 2, T, 6)

is finite and greater than 0 as 6 — 0 and 7" — co. Note also that the fact that we allow u»* to have a
DC component and do not allow @ to have a DC component does not affect the above result since,

by Lemma H.1, transfer functions are continuous in frequency. For large enough ¢, we can then
make the response of the system without DC input arbitrarily close to the response of the system
with DC input, by inputing energy at increasing lower frequencies. Combining these give that, for

all i > max{io, i1 }, we will have:

U * 1 *
Amin(0°Tpgoi + T 1) — €| < 3¢
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which implies:
c* (10)

N | —

)\mjn(0'21—‘k.02i + f‘gow) Z

Modifying the burn-in time of Theorem B.1 to:

1 5 rn -1
9 2logg +d+logdet(FT(I‘ki_1) +1)
hem {szs (erhmn (). 1) 20 EhmanlT])

Assuming this burn in time is met and:
4B(A,)?d(0? + 03] Bull2)

2ﬁ(A*)2’72 2
- pAy D@y U “°g6)>>

then by Theorem B.1, we will have that:

1
T; > ck; (log6+d+dlog<

P [HA_A*HQ > e} <6

so long as (where here we use the fact that k; = k(7)):

_ ~ -1
d + log det <FT (Clery + Ty )+ I) +logl

e>Co . —
T i (ka 4 rkm)

or equivalently:
_ RN |

d + log det (FT (Chery + Ty ) + I) +log}
62>\min (PZ(T) + PZ?T))

where u* is defined as above and here we use (10). Note that by modifying the burn-in time of

Theorem B.1, replacing €(A, By, 72, T, ) with €, by the definition of e,,, we will have the
inputs being played are optimal with the flag F'T = False, since ex, < €(Ax, By, ¥, T,6). As

T > Co? (11)

*

noted above, Apin (FZ(T) + fZ(T)> is upper bounded by a constant independent of 7" and §. Thus,

as 6 — 0, the condition (11) will force 7" — oo. This implies that for small enough J, we will have
E(T) > ko2maxtioit} 1In this case, then, we will have:

. -1
_ = n w* l
d +logdet (LT'7) +log 3 d + log det (FT <Fk(T) + Fk(T)> + [) +1log L

2
5 > (Co

C'o? " —
¢ Amin (T + i)

€

Defining 7.5 to be a solution to:

> C',02d + log det (C%ffsé) + log%
€ -

€2c*
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for small enough ¢, ¢, it then follows by Theorem B.1 that for any 7" at an epoch boundary, so long
as T' > T.s and the burn-in condition is met, we will have that:

P [HA—A*HQ > e} <

2 1
C'o?log 5

o soas 6 — 0, we will have that

The above definition of 7.5 implies that necessarily 7.5 >
Tes — 00. By definition:

Iy = 25(1;*)2722(1 +T)I+4 (tr (r7) <1 + log ?) I)
SO:

1= _ B(A*)Q'Yz . tr (Fgeé) 2
10gdet <C*FTE(;> = dlog <2c*(1—ﬁ(14*))2(1 + 7-65) + 407* 1 —+ log 5

B(A.)*? _ tr (I'%) 2
<dl 2——————— (1 dl 4 1+ log —
< 0g< c*(l—ﬁ(A*))2( + Tes) | +dlog - +log 5
where the inequality will hold for small enough . Since 7,5 — oo as & — 0, it follows that for
small enough J, we will have that:

B(A*)Q'VQ 626*

N Sl VA S = < - - =
i (2 0+ 7)) < e

Thus, for small enough ¢, we will have that:

C* -
Tes

r n
d+ dlog <4t (%) (1 —i—log?s)) —Hog%
+? (12)

1T 1
C'an + log det (;—*Em) + log 5 < O
c €

€ 2cx

So if:
n

d + dlog <4”(CI}'9 (1+log §)) +1log &

Tes = 20" 5

€2c*

we will have that for any T' > 7.5, so long as the burn-in condition is met:

P [HA_A*HQ > e} <6

We can set:
d + dlog <4t’"<f}°) (1+log §)> +log !
Tes = 2C" 0 5
€°C
and then:
Tes Co?

lim

0—0log} €

c*
It remains to show that the modified burn-in time required by Theorem B.1 is met as 6 — 0. That
is, we need to ensure that as § — 0:

logi +d+logdet(T, (T7 )™t +1)
2 B Tes ki—
mmm%%@mﬁm@“” T
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where here we have replaced T; by 7.5 by noting that T; > s> if 7.5 is at an epoch boundary, since

T, = %T + %T 0. By what we have shown and by definition of 7.5, so long as € < €5, and for small

enough §, we automatically have that:
d + log det (fw (FZi_l)_l + I) + log 3

6%0)\mjn (inil)

Tes 2 6202

To see that eventually:
Tes = 9T s (Cl Amin (FZ, )7 kz)

Note that A\pyin (le) > 0, and that the dependance in T is logarithmic in 75, and scales as log log %.
Thus, using the same argument as what we used above in (12), since 75 increases as log %, a
term linear in 75 will eventually exceed a term logarithmic in 7.5 for small enough 4, so we will
eventually have that the burn-in condition is met. Finally, we see that the condition:

26(As)%y 4B(As)?d(0? + 03] Bull2)
«)

2 2
- paye D@y U “°g6)>>

will be met eventually regardless of how kg, T are set since, as noted, 7.5 — oo as § — 0, implying

that the number of epochs will go to infinity as § — 0. Since 7; increases faster than k;, eventually
the left hand side of the above inequality will be greater than the right hand side. |

1
T; > ck; (log6+d+dlog<

Appendix C. Special Cases of Theorem B.1

Corollary C.1 (Full version of Corollary 3.1) Assume the assumptions outlined in Section 3 for
the case where A, is diagonalizable by a unitary matrix are met. Then after:

[1=AI3%E | 1I1=X3 d o2+4y2/d 1
log < T T 7(1—>\12) \/(Zzl z 1_7,\1-/ ) log 6)

7

TZ

T> cmax{g
k

0

’Ell’ax’d (1—=N)? 1—X) ’
1= L~d X
a?[I1 = A3 dlog <(1—/\1)22T +log 5> i ﬁ) +log 3 }
2 2 3

steps, Algorithm 1 will attain the following rate:

2 > | dlog (IBMEp 1 1og 150 _d ) 4]ogl

N o2||1 — A3 08 \ (1=x)2 085 2ui=1 T—x; 085
P4 A > Cy |5 5 <96
72+ 0?1 = All; T

while simply playing u; ~ N (0, %I) for all time will yield the following rate:

o2d dlog(iufﬁm+10g%2§‘:171$i)+10g% Cus

P|||A - A,
| l2>C 72 + do? T =
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C.1. Proof of Corollary 3.1 and Corollary C.1

Proof The above rate can be attained by the input:
d )
2mi
— .ay. t
Uy ;1 a;v; COoS ( 3 )

fork > O (maxi:L__.7d ﬁ) and some a; to be specified satisfying:

To see this, note that with this input we will have that:

d
Hy(Aw, B, U [K]) = Y ag (7™ — A)Tlow [ (e7/F1 — A,)~H
=1
=V | a} (e — ATV T V(e — A)TH VT
i=1
d 2

=V v

(ll 4 T
Z (e72mi/k — \;)(e—32mi/k — )\i)ezez

=1

Note that:

274

(e727/k — X)) (e 2R \) =1+ 22— )\ (e_j% + ejT>

2 22'2
:1+)\?—2)\Z~cos17:%1+)\?—2)\i(1_7;;)
AN 252
= (1A + —5— =0((1-A\))

where the last equality will hold as long as:

4)\i7T2i2 2 2\/ )\iﬂ'i
<(1-X\ <k
o S0 A) = g s
Assume that £ satisfies this, then:
d CL2
Hy(A., B., U, [k]) = O (V P v Ol VT)
i=1 t
Choosing a? = ﬁ(l — \;)?, the energy constraint will be satisfied since:
2
d ’Y2 d
2 2 2
a; = (I=X)* =~
; C = Al ; '
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and:

VIS el

=1

Hk:(A*a B, U, [k]) =0
[E\[: —>\||2

) =0 ()

. ~ 2
Thus, we will have that Amin (T%) = O (77577 ) 50 Amin (U] + %) = O (+55 + 15 )-
Since we have constructed a feasible input and Algorithm 1 constructs the optimal input on the true
system (assuming 7' is large enough), it follows that Algorithm 1 will perform at least this well.
Theorem B.1 then immediately gives that for sufficiently large 7"

ILAET 4 10g L 300 ) +lo
(1—x)2 875 2ui=11-x, )\ g5

0-2 2
T(l R A||2>

Since I'r = 2%(1 + 1) + 4 (tr (T') (1 +log %) I) and:

. dl (
1A~ Al > Co <96

= /\) >T + tr (I'7.) log 3

_ -1
log det (FT(FZ—FF%) +I>§cdlog =27

0-2 72
T - An?

11— All3 V?/d+ o d 1
< cdl — =T log —
cdog(u_)\) + Z Y o2 A2 og(S

It remains then to quantify how large 7" must be to achieve this rate. From Theorem B.1, we know
that we must have:

_ ) d + log det (f‘TFZA) + log %
r > ,k) , Co0 (13)

T > max {2TSS <110>\mm ( .
<ES(A*7 B. AT, a>> Auin (T2)

and from above we need k = O (max,;l’ d ﬁ) To achieve this condition on k, Lemma D.9

lets us lower bound k as k > fko\/T so if T > O( S max;—1,. 4
sufficiently large.
We already know that A\pip (ff) =0 (ﬁ) . In this case then, by Corollary D.8:
2

= )\ )2>, then k& will be

d
1 L B 1 Ky o2 +~2/d 1
Tos (mAmm(Fk)”f) —O(W{logl s\ T <Zl—>\i 085

(A2 i—1

o (ot =agm))

d
1 K~y o2 +~2/d 1
— | log | ———+ E — ] log =
log ﬁ L= p(4.)* (il 1-A 0
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+ log <7\/E(H11—_p)(\f*))3/2>) })

4o/ 1Y
10%(1 A \/(Zi=1 L) s )Hog (i)

<
‘ (A
I-AZE L A3 PRy
o 10%(1—p<Ai> +v<1—p<Ai>>\/<Zi LT og 5>
= = p(A)

where the first inequality holds since log ﬁ ~ 1 — p(A,) for p(A,) close to 1 and the second
holds by our lower bound on k. B

To bound és(As, Bs,v%, T, ), we must first bound My (A, By, d,72/2). We see in our case
that:

2 2 2
_ 9 ‘ a1 ~y 1 [(o°+~7/d
Mk(A*’B*vé’ry /2) - {VU} tweS Z )\2 <c Td)Q +0210g5 <1>\l2i

Note that this implies that, for any u € M (A., B, d,7?/2), denoting w; = [V T u];, we will have:

w; <ecyv1—X\ (1_7)\d+\/log(15 (%)) <c(o+7) (1—)\1)10g%

Then we will have that:

2

T/ 50 —1(2)1/.70 —1 wy
max w' (e — A, eI — A, ~ max —
we./\;lk(A*,B*,6,72/2),9€[0,27r] H ( ) ||2H( ) H2 we,/\;lk(A*,B*,(S,'yQ/Q) (1 - >\1)3
2 2
oc 4+ 1
< c——=log =
- C(l — )\1)2 8 )
Based on our choice of inputs:
;Optlnputk (A*, B, 72, [k] ,CQTFZ) >0 o+ 772
2T + Ty - 11— A3
So combining these, we can lower bound &g (A, By, 2, T, ) as
1—X1)2
és(A,, By, ¥, T,6) > O (—21)1
[1 = A[3 log 5
We can then write the burn in time from Theorem B.1 as:
1=\ 12k 1-) d  o24+2/d
T2 ;2 log< = vauie ||(1 A”f)\/(Zz 1 1_7/ )log 6)
T> -
> cmax kglmax I WER N ,
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lL=Al13
J2H1 )\H4dlog(( )2T+log52Z 1T )\>+10g5
o +9%/d (1—Xp)4 (logg)

The rate in the case where we simply play u; ~ N (0, I ) for all time follows from Theorem
2.6. |

C.2. Proof of Corollary 3.2

Proof Since ||A, — Alls = maxj—1__m||4; — Aj|j2 (assuming A has the same block diagonal
structure), to minimize the error in the estimate we want to minimize the maximum error in the
estimate of each subsystem. By Theorem B.1, once the burn-in time is reached, the estimation error
for each subsystem will behave as:

N
dj+logdet< (FZ’(JT)JFF,{:(’TJ)) +I> +log &

|A; — Ajll2 > Co
TAmin ( k(T) + Fk(T))

<96

where we let I/ denote the covariates for the jth subsystem. For simplicity assume that:
) ~ a *7 ] —_ 2 B
Nin (T + T ) = A (T ) = 722

where here we let /\mm denote the optimal response of the system to inputs with power 1, and 'yjz
the true amount of power inputed to the jth block.
Ignoring log factors, the optimal thing to do is to then set:

de _ % (14)
*,0 ,
lgAmln jQAmzn

for all £,j € [m], as this will make the estimation error equal for each subsystem, minimizing the
overall error. Meeting this constraint and the power constraint, the following condition will then be
met for any j:

*,j m 2
2 Amin de o 2 _ djy
Mg 2l = T G

7 ¢=1 "“min mm ZK 1

n’un

Given this, we then have that:

. . N |
d;j + log det (rJT (C%y + D)+ I) +log }

<96
T <
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. . . . . . 2 .
In contrast, if we simply input random noise into the system—that is, set u; ~ N(0, %I )—then in
the ¢th block we will achieve the rate:

2B N .
dj + log det (I‘Z[ (%I‘k(%) + U2F?~:(T)) + I> + log 5 .

P |||4; — Ajlla > Co . (72

. |
Lot + 0Tl )

so, with high probability, noting that by construction p > m:

~ d;m
e=0| max J

Jj=1l,..m nyT)\min (Flf(%))

To achieve the adaptive rate, Algorithm 1 can be run separately for each subsystem. After the
optimal solution for each subsystem is found, the power %2 input to each subsystem can then be
adjusted so that the empirical version of (14) is satisfied. Once the burn-in time from Theorem B.1
is met for each subsystem, our estimates of A/ will be sufficiently accurate to guarantee that (14)
will be met on the true system, and we will then achieve the optimal adaptive rate. |

Appendix D. Algorithm 1 Performance Lemmas
D.1. Quantifying When ¢;_; Small Enough for u; ~ u;
Lemma D.1 [f:
Opt Inputkprl (A*7 B*7 72/27 [ki+1]7 {$t}?=1)

eigmin{ 256 Jmt (I 9’
manEM(Ai,{mt}tT,l),EE[kHl] T7Ti+1’yQHwT(e kivi [ — A*)—1H2H(e kivi [ — A*)—1H2HB*H2

1

FEIa } =: €5(Aw, B,y ki1, {mi )21, 0)
maxee(k,, ] 5l (€ ¥+t 1 — A) 712

then Iz'-i—l = [ki-i-l] and:

2
i+1 ki+1

T T
)\min <k2+1 Hk7;+1 (A*7 B*; U 9 [kz-‘rl]) + xtxtT> - )\min ( +1 Hk7;+1 (A*7 B*J U) [k2+1]) + xtxtT> ‘
t=1 t=1

/{72

T
| T, .
< g)\min (MHki_,_l(A*v B*v U y [kz+1]) + Z-’Etfz—)
i+1 t=1

where U* is the solution to Opt Inputy,  (Ax, By, v2/2, [kiy1], {z:}1 1) and U the solution to
OptInputg,,, (Ai, Be,v?/2, [kiy1), {ze}i1).

Proof By Lemma F.9, if ¢; < (4 (e7°T — A;)~"||2) !, then:

A ~ 4. . i
("7 = A7l < 3T = 497
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this then implies that e; < (3||(e7T — A,)~!||2) ! so, again by Lemma F.9:
. . 3 -
11 = A) |2 < 5”(6]91* A2
Thus, if €; < (4(e7°T — A;)~"||2) ", we can upper bound:

. 27l

2me . JRi [ — AV 1B, 12 i omt .  ame .

hoT (@557 — Ayl L Z AT Belly T IR T AR T - A ) B
NPT — A1l

< T (@R A) T BIE T — A7 BB
s5)
Applying Lemma F.9 again, a sufficient condition for e; < (4]|(e7/T—A;) " ||2) Lise; < (5] (e 1—
) N
Assume now that €; < (maxge,, ] 5H(ejﬁl — A,)7Y|2)7L. From the analysis in the proof

of Theorem F.1, it follows that:

OptInputy,,, (As, Be,7?/2, [kis1], {z}12) — OptInputy,  (A;, By, v2/2, [kisa], {2 }iey)

T
< max %151'11(14*7 B, U, €, [kiv1],w)
wEM(Ax, As {at} ] Tit1) ki—l—l
UGM,YQ/Q
. 27h
(a) 125 2mt _ ¢ F ] — A)IB,|2
= MU A (o) T T )674€iTi+172||wT<e]kMI_A*) 1H%H( 2L : .
we #, A5 Tt fp—1,Li+1 k; _ —1
lelbi] [(e”*+1 T — Ay) 72
. 27l
®) 125 L _ 'Rt [ — A,) 1B, |2
< M(I}llag{ o )6746i11i+1’72||w—r(ejki+1[_A*) 1”%||( jﬂ ) ||2
we i ATt fr_ k; _ —1
fE[k‘i-Ht] o (et T = Au) =l

where the inequality (a) follows from Lemma F.4 (with a slight readjustment of constants) and (b)
follows from Lemma D.3. Thus, if we can guarantee that:

- 27l
125 j2mt _ e i [ — A)7IB, |2
M(gla{x . )aein+1’}’2”w—r(€jki+1[ _ A*) 1||% H( T ) HQ
we i 1Tt k; _ -1
lki) [ = A7 2 a6

1
< ioptlnputki+1 (A*7 B*7 72/27 [ki"rl]? {xt}g;l)
then it will follow that:
OptInpUtkiJrl (A*a B*7 72/27 [ki-l-l]a {xt}z;l) < QOptInputki+1 (Ala B*a ’72/27 [kH—l]v {l’t}tT:l)

Assume ¢; is small enough to satisfy this. Then, with (15), it follows that if:

256 j2xl - Ly -
max Ty w T (&R T — A3 (R T — A) 7 o] Bal3
weM(Ai{z}T) 81
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_

< ;0ptInputy, +1(A*7B*77 /2, [k z+1}7{$t}$:1)

w

then:

32 ; 2me A thLlI A lB*2
max  Zem (@ Ayl = A B
weMCin o} (@ F5 T = A) s

2 )
< JOptInputy,, (4, B, 7% /2, [kita], {xi}i=1)

so £ € Z,y1. Note that this condition will also imply that (16) holds. Combining all of this, it
follows that if:

OptInputkH(A*,B*ﬂZ/? [kita], {2e}i_y)

€ < min{ TR ,
max,,c xq | B Tiy?w (e R A OB R T — Ao B3

(Aif{mf}?zl) [ i+1
1

maxefy,,,) 5l(¢ FT - A 1II2}

then Z; 1 = [k;+1]. Finally, we see that the perturbation bound holds by applying Theorem F.1 and
our condition on ¢;, since:

T
max 2 ;+16iL(A*7B*7U76i7[ki-f—l]aw)
weM(Ax, A {ze} ], Tiv1)  Fita
UEZ/{,YQ/Q
125 j2=L _ j2zl _
< max €Ty lw' (5 T — A) 7 3II(e o T — A7 2| Ball3
weM (A, As {at}T 1 Tit1) 32
eG[ki+1]
125 e 12 IR -1 2
< max Ty w (R T — A3l T — A7) B3
weM(A; {z}E,) 32
Ee[k:i+1]

IN

1
§Opt Inputki+1 (A*7 B*7 72/27 [ki'i'l]’ {xt}?:l)

Lemma D.2 On the events that:

T
E .%tl';r = cIT]
=1

T
2
Z (w' " 2y)? Z w' T 2?4 4T <1 + log 5) w'’ (02FT + O'ZF?*) w’

t=1 t=1

1

Ay — Ajlls < :
H * 1”2 = maxser, 2||(6J0e1_ A*)flnz
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for some w' to be specified, we will have:

es(Av, Ba, 7% ki1, {mi )1, 0) > €s(Ax, B, 7, T, 6)
where:
€5(As, By,7%,T,9)

o7 )
= min{ 256(21 +To)y? 0Pt INPU k() (A*, B., %, [2K(T)], cTFZ(T)>

- 27l - 27l ’
X, s, (5 522 ey (0T (€5 T — A3 (T T — A) 1o B.3

1
maxXeeak(r)) 5l (€D 1 — A) 712

Proof From the definition of Opt Input, it is clear that:
Opt Inputkprl (A*7 B, ’727 [ki-i-l]? {xt}le) > Opt Inputqurl (A*7 B., 721 [ki+1]> CQTFZZ)

on the event Zle ) = CQTPZi. Further, conditioned on all three events assumed to hold, by
Lemma F.5, we have that:

M(A“ {xt}?:l) - Mki+1 (A*’ B, 4, 72/2)
Finally, recall that k; = k(T"). Combining all of this we have:
2 T
ES(A*7 B*7 v, ki+17 {xt}tilﬂ 6)

OptInputk‘iJrl (A*7 B*7/Y2/27 [ki‘f‘l]? {xt}?:1)

= min { 256 Jre o I 5
MY, o)t 2TV 0T (€ T — AR T — Ao Bl

1
jﬂ
max e, , ) 5| (€ i+ 1 — Ax) 72

OptInputy,,, (A*7 B, 7%, [kiv1], CTP};)

= min{ 256 I 211/ I 2
AN iy, (A Bt D telinns] SETer1r 20T (€755 T = A) 73N T — AL ol| Bl

1
jﬂ
MaXye(k;iq] 5[ (et I — Ay) L2

Lemma D.3 When calling UpdateInputs, we will always have that:

M(A, A{a} {21, T) © M(A, {a} )
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Proof Recall that:

T T

A K K

(A, {@}i=1) { 2T + Ty t:l 0= 2T+To t:l "

.4 L3 A
+ i 27 mex T T Ay
(k] : e< (4||(ef%f—4>*1llz)
and:
. T d—1 5 £ )?

A A}, I) = qw e ST =

M( {i}i=1,T) {w 2T + T & (w' 1) w eSd 12T+ Tj tzz; w xt

T, i2mi _ T, j2mi a
# P mcma(fu T (@1 - A) B (@ F T A) B

2 Z

N -1
for any ¢ € [k] satisfying € < <4||( I — A1 |]2> , by Lemma F.9, we will have that:

4 om R
ST T =47

(e 1 — A) 7Y <
om . —1
Since UpdateInputs only includes frequencies ¢ in Z if € < (4“(@927181 — A)_1||2) , it fol-
lows that:
271'7, ~1 2 271'2 ~ 1 2
mas o/ (7F T~ A) 7 B < max e @ - A B
€ Lefk] : e< (4||(ej27“17A)—1\|2>

from which it follows that M(A,, A, {z;}7,,7) € M(A, {z:}])). n

D.2. Meeting the Burn-In Time of Theorem E.1

Lemma D.4 log det(T'p(T7+T%)~1) < dlog (%(1 +T) 4 2L do ke I1B:12) (1 4 1og %))

Proof We have that [' = 4 (qu“,o + Tr(T7)(1 + log %)I) where f‘%o =z S T, Note
that:

2 =

t—1 t—1
S AT <37 AT ol < B(A)E Zp
s=0 2 s=0

BAIVIL — p(A)Y) _ BAIWE
T—p(A) 1 p(A)

which implies that:
A%t
rjay’ = ﬁ(_)A”QI
(1—p(As))
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SO:

T—1 T—1
Tr(fh) =0y Tr((A)TAL) 4 o2 (B, (AL)TALB,)
t=0 t=0
T—1 T—1
= Y AU +od D LB
=0 =0
—1 T—1
<o 1ALIE +ond Y I ALI3N B3
t=0 t=0
T—1
dZ D%+ 02 B(AL)?|| Bl l5d
t:O
~ B(A)?d(o? +05||B*||2)
=T 1A
This gives that:
= B(A)*y° B(A.)?d(0® + o7|| B|12) 2
N [ | -
T_4<2(1—p(A*))2( +T)+ = (A2 (1+log6) I
Thus:
log det(Tp(T] + T'}) 1) = log det(I'r) — log det (I, +TY)
< log det(T'7)
B(AL)? B(A:)?d(0? + 07| Bi12) 2
< —
< log det (4(2( p ) 5(1+T)+ = AA.)? (1—|—log6) I
(A:)%? 4B(A.)%d(0” + o3| Bul2) 2 )
=dlog| ——————=(1+1T)+ — 1+ log —
(et + T+ P s )

Lemma D.5  Assume that T > 16, v> > %, and:

(1+7T)+

1 26(As)?*y?
TiZCki<log5+d+dlog( BlA.)™y

4B(As)?d(0? + o3| Bs|l2) 2 >>
— (1+log =)
(1 - p(A.))? 6

1= A(A.)?

then:

2 2702 | 2
3T; > c2k; (log(lS +d+dlog < 28(4:)"y 5(1+ T+ 3T;) + 4P(A) d(0” + 0| Bull2) (1+log (25)>>

2
(1—p(As)) 1—p(As)?
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Proof Since T' = Z§:1 Tj, we will have that:

< tog 4 %(1 R FRELC L 2)
= log4 +log (%(1 +T) + 45(A*)id_(0:(z*c;§||3*llz) (1+ log §)>
so:
c2k; <10g(15 +d+ dlog ((fﬁ_(f;_‘zﬁ; (14T 43T+ 45(A*)jd£0;(;5§HB*H2) 1+ log §)>>
< 2k; <10g<15 +d+ dlog ((fﬁ_(f;lgg; 1+7)+ 4B(A*)jd£a;(z:;§||3*llz) (1 + log §)>> 2k log 4

< 2T; 4 c2k;log4
< 3T;

where the second to last inequality follows assuming that 7' > 16 and 72 > %. |

A direct corollary of Lemma D.5 and Lemma D.4 is that, assuming 7y > 16 and 'y2 >

% , then, as long as:

28(A0)%y*
(1 —p(As))?

the k; and 7T; used by Algorithm 1 will satisfy:

1
To > ckg <log -

5+d+dlog<

2 0.2 0.2 .

1
T; > ck; <log <

5+ d + log det(fTF1)>

forany I' >= 0 and all %.

D.3. Additional Lemmas
Lemma D.6 For any i and any t € [T — T;,T; — k;), the inputs generated by Algorithm 1 will

satisfy:
t+k

Proof Denote u; = iy + 7 where i is the solution to Opt Input ( Ay, By, v? —po2, I, {z:}L,)
and n* ~ N(0,021). Assume that o2 # 0. Then:

t+k
Zu us] =E

)

1 t+k
= > (@@ + 2a] i+ T “)]

s=t
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(@ 1 i 1 t+k;
a ~T T
2 S afu | ]

v os=t ¢ s=t

t+k;
w 1N
_ki;utut'i‘ 9

2

where (a) follows since @; and n{* are independent, (b) follows by our choice of o2 in Algo-
rithm 1. The final equality follows since, by construction, the inputs that are the solution to
OptInputy(As, Be,¥? — po2, T, {z;:} 1) will satisfy:

t+k

*ZU US<’Y p

for any ¢ > 0. |

Lemma D.7 After i epochs of running Algorithm 1, we will have, with probability 1 — §:

25(A:) || Bll2kiv VB 1. 4
< 2T M+ —T 1+ —log -
]2 < 1= p(A)F + r(o%ly + oyt +log 5

Proof Let z; = x} + x/"" + x]"" where x}" is the response of the system due to the sinusoidal
component of the input, z;"” is the response due to the process noise, and z}"" is the response due
to the input noise. Note that this decomposition holds by linearity. Given this, we have ||z¢||s <
[ ll2 + 1z l2 + [|#}]|2- Then:

t—1
|z |2 < ZAi_S_lB*us
s=0 2
t—1
ADBll2 Y p(A) ™ ug|la
=0
[t/ki]—2 ki(04+1)—1 t
<BAIBllz D pA)TREDNT N luglly + BADBulls D uslle
=0 s=k;{ s=([t/ki]-1)k
By construction, we will have that Zl; (?}1 |usl|3 < ki? so long as £ is large enough that

k;¢ is in epoch 7. However, since k; is doubled at each epoch, this sum will contain an integer
multiple of the period of the input regardless what the value of ¢ is, so we see that this inequality
will hold for all values of ¢. This implies that for all ¢ (since ||z||; < /n|z|2 for any z € R™),

(e+1)— i (0+1)—1
Zs kil H sH2<\/>\/ZS (M) |us||3 < kivy. So:

[t/ki]—2 ki(e+1)-1 t
BAN Bz > plA)THEDTT N uglla + BA) B2 > usle
=0 s=k;/ SZ([t/k‘i—‘—l)kJ
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[t/ki]—2

< BA)Bullzkiy D p(A)THEDT 4 BA)||B2kiy
=0

_ R S 1 (| )kz
- (A gy — P |
= B(AL)[| Bl 2kiy (A, )i 1— p(A,)k: + B(AL) || B 2kiy

p(A)*i (A1

- ‘ W‘P( «) ‘
= BAIBulshiy B i 4 B(A | Bellakiy

B(A) || B ll2kiy

+ B(AL) || Bll2kiy

1= p(A)h
< 28(A)||Bll2kiy
1— p(As)k

where the last inequality holds since if ¢ is divisible by k;, k;[t/k;] —t+1 = 1so w% <

1, and if ¢ is not divisible by k;, k;[t/ki] —t + 1 < ki(t/ki +1) —t + 1 = k; + 1, and since

ki[t/k;] —t + 1is an integer, it follows that W’m <1

By definition:
t—1 t—1
Il + el = || D2 AL ||+ || AT B
s=0 2 s=0 2
where 175 ~ N(0, 0I) and either n* = 0 or n* ~ N(0, %I). Note that:
t—1 2 o
> ATl =0T AT A7
s=0 2
where:
7o
i t—1  pt—2 ~ n
A=[AD AL AT, =
Mt—1
Noting that Eij" AT A7j = o2Tr(T';), we can then apply the Hanson-Wright inequality to get:
P |7 AT A — 02T (Ty)| > t} <2exp | —cmin ~t2 - f -
N ot AT A3 02| AT Ay
Setting t = IAT AL log 4 the right hand side becomes:
gl = CHATAHQ g(S g .

exp —% logé < o

|ATAZ —0) — 2
. . . AT A2 . - .
where the inequality follows since AT ‘5 > 1. So, with probability at least 1 — §/2, we will have:

Ez

o*|ATA 4

27P|2 < 2T (1) + S 0
=271 < o2r(r) + Ll g
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1 4
< o?Tr(Iy) <1 + p log 5)

where the inequality holds since |ATA|2 < |ATA||oTr(ATA) = ||AT A||2Tr(T;). Denoting
ATA =UAUT, we see this is true since:

n n
|ATA||% =Tr(ATAAT A) = Tr(A?) = Z M < <max/\i> > xi=|ATA|Tr(AT A)
(2
i=1 i=1
A similar calculation reveals that with probability at least 1 — 6/2:

2 1 4
nu)2 < LBy (14 2 log =
o8 < ZTr(ef) (1+ ¢ log 5

Corollary D.8 After i epochs of running Algorithm 1, on the event that:

BA) I B ll2kiv 72 g 1. 4
< 2T Ty 4+ T/ 1+ —log -
|22 < 1= p(A)F + r|o?ly + oyt +_log 5

we will have:

1 B(AL)||By|2kis1y B 1ol
TSS 7k’L 9 T < 21 2T 2F F * 1 71 =
(¢, kit1 xTZ)_maX{ﬂog i* ( ( 1= p(A,)F + r T+2 + - log s
g = )
< H—lc 1_ *)2)>>

)| Bs |]2kl+w B 1, 4

- 2T 2r F . —log —

log - ,11 ( ( p(A)kit T\ + L+ c ©8 o

;2L
AB(A)yymaxey ., [[(€75+1 ] — A) 1B, }

CVEip1v/1— p(As)?

where T is the amount of time elapsed after i epochs.

+ log = TSS(C? ki+1)

Proof From Lemma E.10, we have:

| A 1 kir1¢(1 — p(AL)?)
TSS(gvlirl’:UTi) - {2logﬁ(A*) o (2”xT gy Z—HH B(A*) )

1 i+1<\/1_7A*2

lo

= g =
log p(Ae) 7 \ dflay — 25 ™ |A(A) Shiprw T w
1 2]lwr — x> I38(AL)?
= max log — )
{210g,-)(,£*) ( kmC(l — p(As)?)
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R o 2B8(AL) / z+1wa}::;w
og

log@ ki+1Cy/1 — p(As)

ss,i+1 .

where xr is the state at the start of the ¢ + 1th epoch, and x| is the initial state of the steady
state response of the system to the inputs played at the 7 + 1th epoch. From Lemma D.7, since the
noise term will be 0, we can deterministically upper bound:

||x587i+1H < 28(A) || Bsll2kiv1y
" L= p(A)F

and also:
2B(As) || B2k 7’ B 1, 4
< 2T 2r —I72 ) (14 —log =
|zrl2 < 1= p(A)F + r| o Ty + ol T + - log s
2B(As)[|Bll2ki+1y Y2 g 1. 4
2T T —I72 ) (14 —log =
(AR T r(o®0r + o T7 +~ log
so:

/ 4B(A4) || Bell2kit1y 72 1, 4
880+ i+ 2 I 1B - =*
ler — |2 < 1= p(A)fn +4/2Tr | o°T'r + 2pFT 1+ - log 5

it follows then that:
B(A) B ll2kit1vy v g 1. 4
21o 2T 2T —I'7* 1+ —log —
2log = A ( ( 1—p<A*)kz‘+1 + r{o T+2p T +C 085
+ 10 < — )) ’
kiv1¢( 1 - p(As)?)
|| Bell2kit1y o2 B, 1 4
( ( (A, )kz+1 +4/2Tr FT—i— o F 1+Elog5
l+1wTFkillw
z+1<\/ 1-

Finally, we must upper bound kinTF Z“w Upper bounding this over all w € S%! is equivalent
to bounding:

Tss(C, ki, xTi) < max {

1
A*

+ log

k kit
ss u ss 1 4 27l - 27l
Z Uit1, ir1,ss T . Z( eFr ] — A, ) 1B, U( Fit1 )U(ej i+l )HBH( ]k”lf A )
=1 2 =1

2
z+1

1 j2ml
< ( max (e’ — A,)7'B, Hz)ZZHU Rien)|13

kz_l,_l l=1,..., k)i+1

j 2me
<o o (€T — 4B 13)

=1,...ki+1
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Lemma D.9 After ¢ epochs, we will have that:

\/ik‘o\/f

g > Y20
2 To

Proof After the ith epoch, we will have that:
T = Z 3Ty = 3@+1 1)Tp

Solving this for ¢ gives:
log ( 2T+Th )

_BUn )
' logS
Thus: o
o 220
ki = 2ko = 21g<1ogT§>k0 ko (27 + Ty 8?1

Noting that log 2/ log 3 & 0.63, we can lower bound this as:

1k 2 k
ki > 5?0\/2T+T0 > i—of

0

Appendix E. Estimation of Linear Dynamical Systems with Periodic Inputs

Theorem E.1 (Full version of Theorem 2.6) Assume that we start from some initial state xo and
we are playing some input uy = ty+n}* where iy is deterministic with period k and n* ~ N(0, o2 1).
Then as long as:

_ _ 1
T > ck (d + log det(DpI] 1) + log 6> (17)

we will have that:

. 161log L + 8log det(f‘TI‘Z*1 + 1)+ 16dlogh
|A — Ayll2 > C’o\/ 9 <36 (18)
TAmin(T})
and if:
1 ~ - _ _ 1
T > 2T, <m)\min(F}€‘),k,wo) +c'k <d+ max{log det(T'7(T'}) '), log det(T'7 T} Y} + log 5
(19)
then:
) 16log 4= + 8log det(T'y (I} + T¥)~L + I) + 16dlog 5
1A= Ao > Clory | 10108 35 T 8logdetlTr(Ty + )78 + 1) +16dlog5 | _ o5 o)
T)\min(FZ +T)

where Ty = 4 (f‘% o +Tr(Th)(1+ log %)I) and c,c’,C,C" are universal constants.
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Note that T, <1—1()Amin(f7,g), k, x0> in (19) can be replaced with T (c”)\min(FZ), k, SL‘()), which
may be helpful if our system is not controllable, in which case it’s possible )\min(f};) = 0. An

example of this argument can be found in the proof of Theorem 2.3.

E.1. Proof of Theorem 2.6 and Theorem E.1

Proof Define the following events:

161og 3 + 8log det(I'r(I'])~! + I) + 16dlog 5
Thmin(T)

A=< [A— A2 < c'o—\/

T
& = {Z zir) < TFT}

t=1

T
Ey = {Z xta:;r > clTFZ}

t=1

Es:

T —1/2 p
1 _
<Z xtx;) mej < 030\/10g5 + d + logdet(Tp(T})~1 + 1)
t=1 t=1
2

(18) follows directly from bounding P[.A§]. The following clearly holds:
PlAT] < P[A] N & + PET]
< PATN & N&E]+ P& N &S]+ PIET]
<PATNE NENES] +PIE NE NES]+ PIE NES] + PIET]
By Lemma E.7, we will have that P[Ef] < §. If (17) holds the burn in time required by Lemma E.3
will be met, so by Lemma E.3, P[£§ N &;] < ¢. Similarly, by Lemma E.6, P[E{ N & N &) < 0. To
bound ]P’[Af N & N &2 N E;), note that we can decompose the error of the least squares estimate as:
1A = Adllz = (XX T)T'XT By
< XX (xX )X B,
— (XX )2 (XX T) 2K By

On the event &1 N &y N E3, we will have that:

1
Apin( XXV V2 < oo o
( ) - ClT)\min(PZ)

- -
I(XXT)2XT R, < cga\/log 5 T+ logdet(Tr(I'y) = + 1)

Combining these it follows that on this event:

. 16log + + 8log det(Tp(T'7)~1 + I) + 16dlog 5
A~ Al < ¢l 0085 T Bl et Ta) - 1)+ 10dlog
TAmin(T'))
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so P[Af N & N Ey N Es] = 0. It follows then that P[LAS] < 3§ which proves (18).
To show (20), define the following events:

A= LIA— A< Clo 161og § + 8logdet(I'p(I'} + T%)~1 + I) + 16dlog 5
. " B T)\min(rz + f%)

T
Ey = {Z xtactT - @Tf}i}

t=1

T -2 7
1 _ -
Es = <Z xm?) Z x| < 030\/log 5 +d +logdet(Dp(L) +T¢)~L + 1)
t=1 t=1
2

Our goal now is to bound P[A§]. Similar to the above, we have:

PlAS] < P[A5 N &1 + PIET]
<PASNE NENEY +PIEINES]+ P& NES] + PIET]
<PASNE NENENE] +PE NE NELNEE] + P& NES]+ P& NES] + PIET]

As before, we have that P[] < § and, assuming (19) holds, P[&; N ES] < 4. If (19) holds, by
Corollary E.11 the burn in condition required by Lemma E.4 will be met so we will also have that
P[&; N ES] < 5. By Lemma E.6 and the error decomposition of | A — A.||» used above, we have
that P[E; N & NELNES] < 6 and PLAS N E NE2NELN Es) = 0. Thus, P[AS] < 46 from which
(20) follows directly.

|

E.2. Lower Bounds on Covariates and Self-Normalized Bounds

The following proposition is crucial to proving a high probability bound on the error in the presence
of non-random inputs.

Proposition E.2 (Full version of Proposition 4.2) Consider any w € S* ! and let z; evolve

according to the dynamical system (1). Let u; be a deterministic periodic signal and k be an integer
u,8S

multiple of its period. Let x,"" denote the steady state response of the system to this input and let
k—l( T u,ss
w

=) 4 x,°°%)2. Assume that Ty is chosen large enough so that, for any T > 0:
Tss+T+k o
Y. i —w's )’ —a < o 1)
t=Tss+T+1
where:
1 T+k
T, = T Z i
t=T+1
Then we will have that:
T55+T 2 B 9
P [ Yo (w'm)? < SlkLT/kaTsz] < sk (22)
t:Tss+1
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Proof We first note that, since our system is linear, the output of the system due to the input, =},
will contain only the frequencies present in the input, u;, with possibly some phase shift. Thus, the
period of the periodic part of our output will be identical to that of the input once the system is in
steady state.

Let:

— — a1 (U n R I 71 T~u
2= W AT =W (e F T )y S W Ty~ W BT 1)k ke

Note that Zle tik+t = 0 forany j = 0,1,2,....

Let:
k k
— 2 2
Bj =1 [Z Teri Z 1Y :ujk+i]
i=1 i=1
for some c; to be specified, where [ is the indicator function. Then ZZ 1% 2 2 <01 Zle ,u?k H) B;.

Let S = |T'/k] and c3 be some constant to be specified. Then:

P

Zzt <czzut] <P i <clz,%ﬂ> B < CQZM

t=1 7=0 =1

(23)

T S—1 k
< }\n% exp {—)\CQ Z ,uf} E |expq A Z <01 Z u?kﬂ-) B
<
t=1 j=0 i=1

where the last inequality is simply Chernoff’s bound. To compute the expectation, we will use the
tower property. To do so, it will be convenient to first calculate the conditional expectation of ;.
Letting F; denote the o-field generated by ng, ..., N1, +jk, We have that:

k
2 2
Dy =2 a0 Y il F

k
E[Bj|Fj] =P |)
Li=1 i=1
- ) .
_ o T..m Tzu 2 .
=PI (“Jk’ﬂ TW T ks T W ffTssﬂk:) > 01y Ml
Li=1 i=1
[ & i—1 2 k
_ T i—s—1 T At ..M T=u 2
=P Z Hijkti + W Z Al Nys+jk+s T W A*xTSS+jk tw T ] 2a Z :ujk:-i-z“j:j
i=1 s=0 =1

where the last equality follows since:

i1
0 _ pi o i—s—1 ,
Tpyggiri = AT+ D AT T ks
5=0

.« . . T Z 77 T,u e . .
Note that, conditioned on the F, w A*:UTSS ik and w Ty, 4 are deterministic. Further, since 7,

is mean 0, w " Zl ! Al=s— 177Tss+jk+z‘ will simply be a linear combination of mean 0 Gaussians and
so will itself be a mean 0 Gaussian. This implies that Plw ! >>'_{ AL* "y iy > 0] = 1/2.
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Since we have constructed ¢ in such a way as to be mean zero over a block of length &, for any
fixed a:

k k k k k
Z(Mjk+z‘ +a)? = Z Whri +a Z fjkti + a® = Z Wi +a” > Z T
i=1 i=1 i=1 i=1

i=1
In particular then:

k

k
Z(Nijri + wTAka’T]]“Ss—i-jk + wa%gs+jk)2‘]:j > Z /‘azkH‘]:j 24
i=1 i=1

which implies:

[k i—1 2 k
T i—s—1 T gi .1 T-u 2
P Z Hjk+i +w ZA* Nystjhts T W ALty o +w Tr, | 2a Zlujk+i’}—j
i=1 5=0 i=1
[k i—1 2
T i—s—1 T pi M T=u
>P Z Hijk+i + W Z A Nystjhts T W ALy o+ W Tp, g
i=1 s=0
k
T A1 ..M T-u 2
> cl Z(Mjk—i—i +w Ay Lt w T )
i=1
k ) i—1
T gi .1 T-u T i—s—1
2P (”J‘k+i+“’ Arq g T w 33T55+jk) R D DR e e
i=1 s=0
T A1 ..M T-u T At ..M T-u
+w A*:’“"Tssﬂ'k +w szerjk’ > )ujkﬂ- +w A*szs+jk +w :cTserjk’]
k
T At .1 Tzu 2| .
>l Z(Njk—i—i tw Alzg gt w T )| F
i=1
(@1/2 —¢
P12-a
1—¢

where the last inequality follows by a reverse Markov inequality which states that, for any random
variable Z supported in [0, 1] almost surely and with E[Z] > p € (0,1), forall ¢t € [0, p], P[Z >
t] > ’f—:i Simchowitz et al. (2018). Noting that, since the noise is 0 mean Gaussian, we have:

i—1
2 K3
o T At .10 T=u o T i—s—1 . T At ..M
E Z (Wfﬂ tw Azp g +w szm‘k) I [ Hjk+i + W E :A* NMastjhts W ALl o
i=1 s=0
T-u o T pi M Txu .
+w szs+jk‘ > ‘:“Jkﬂ +w Ay L+ w szs—&—jk‘ ] | Fj
k 9 i—1
_ o T At ..M Tzu o T i—s—1 ) T pi ..M
= Z (lhkﬂ +w A*szs+jk +w szs+jk> P |jkti +w Z A NTystjhts + W A*szsﬂ‘k
i=1 s=0
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T=u o T At 1 Tu .
tw szsﬂ'k‘ 2 ’ﬂak+z+w T szs+]'k‘ |fa]

k
2
T A ..M T=u
2 (Njkﬂ‘ tw A*xTSSJrjk tw $T55+jk)
i=1

l\DM—A

From this (a) follows by simple manipulations. Since we can choose ¢; as we wish, we set it equal

to ¢; = 1/4 and conclude that:

1
E[B;|F;] > 5

w

Returning to (23), we can now use this result to bound the expectation. Note that:

S—1 k S—1 k
E |exp{ A Z (cl Z N?k-s—i) B; =E |E [exp{ A Z (cl Z N?k—s—i) Bj p |Fs—1
j=0 i=1 j=0 i=1
S—2 k k
=E [exp{ A Z (Cl Z M?Hi) B; o E [eXP {A (Cl Z /‘L%S—l)k;-i,-i) BSl} \f51]
§=0 i=1

=1

Then by what we just proved and applying Hoeffding’s Lemma, since A < 0, we have:
k \ k 32 k 2
E lexp {A <Cl > M?Sl)k+i) BS—l} \}—5—1] Sexpq g <01 > M%smm‘) t3 (Cl ZM%Sl)kH)
i=1 i=1 i=1

Repeating this procedure condition on each F;, we get:

S—1 k = j2 571 k 2
E |exp { A Z (01 ZM?I@+@') B <e 3 Z (Cl Z H;kﬂ) + K Z <Cl Z szkJri)
5=0 i=1 §=0 i=1 §=0 i=1
and so:
T T ) 5= 2 51 k 2
P [Z <) Mt] < lnf exp { Acz Zﬂt } 3 > (Cl > Mgk+z> t3 > (Cl > N?kﬂ‘)
t=1 t=1 §=0 i=1 5=0 i=1

A2 i i
= )1\2% exp{ A (7 — 62) 2 (Z Mﬂcﬂ) + ] Z (Cl Zu?k+i)

i=1 §=0 i=1
2
< 2((4 — o) T35 S s
=P 5-1 ko9 2
Z =0 <Cl Dz Njk+z‘>
2
S—1 <k
o (Ej:l) Dz M?kﬂ')

2
S—1 k
ijo (Zi:l H?kﬂ‘)

= exp
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where the final inequality follows from choosing the optimal A < 0 (and assuming ¢y chosen such
that ¢1 /3 — ¢y is positive) and the final equality uses C' = 2(c1/3 — c2)?/c2. By our assumption on
the power (21), we will have that 2% 115),4; = a + a; for some || < a/10. Thus:

2 2
S—1 vk 5-1
(ijo Die1 p’?k-‘,—i) (ijo a+ 0‘]’)
exp{ —C o . 5 ¢ =€xXpq — ZSil( )
> =0 (Zi:l p’?k—‘,—i) j=0 T
2
(375 9/100)
Sexp —CU5

> l(11/10)2a2

81
= exp { —C 121 S }
where the inequality holds from maximizing this expression over «;.
Recalling that S = |T'/k|, we conclude that:

T T 81
P Zzt e Zﬂt < exp —CELT/]‘?J
t=1 t=1

It remains then to write this in form of (22). Plugging in our definitions of y; and z;, we have that
the above is equivalent to:

[ Tss+T T
P Z (w'z)? < e Z (wa%SSH - wTi*%SSHt/kile:k)Q < Ot LT/k]
Lt=Tss+1 t=1
[ TytT \T/k]k ,
Sl Y <G Y (wla,) | <o O
[ t=Tss+1 t=1
O p S (0 Tap? < 2 Tf —CBL|T/k
Lt=1

where (a) holds by our assumption on the power (21) and (b) follows by Parseval’s Theorem.
Choosing co to balance the constants, we get that:

Tss+T 2 _ 9
P L—TZ+1(Mt)2 < g kLT/k JwTr;;w] < ¢ s lT/k]

which completes the proof. |

Lemma E.3 Assume that our system is driven by some input uy = Uy +n;' where Uy is deterministic
and nf* ~ N(0,021). Then on the event that:

T
Z l‘tl';r <TTr
t=1
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for some T'r, choosing k so that:

2 1
T > %700]{ <2d 10g(200/3) + log det(T7I ) + log 5) (25)

we will have with probability less than J:

77
Z z] 25600 T

Proof Take some s > 0, then:
wTuvH_t|]-"S ~N (wTAi;US + me;‘H,a w' Ti_sw + 0' TFB* )

where z,, is the state obtained by driving the system with the input in the absence of noise,
which is deterministic conditioned on F;. Given this, we have that x4, satisfies the (2k, 0°T, +
agff *,3/20)-BMSB condition, as defined in Simchowitz et al. (2018). The proof of this closely
mirrors the proof of Proposition 3.1 of Simchowitz et al. (2018). The primary difference is that the
mean of wTa:5+t|]:5 differs from that of the signal considered in Simchowitz et al. (2018), but this
does not affect the argument and, as such, we omit it here. We can then apply Proposition 2.5 of
Simchowitz et al. (2018) to get that:

w Tt
8

T 2, T
k|T/k r 2
P[Z( Tan)? < |T/k|p*w kw] Se_LT/llist
t=1

where here p = 3/ 20. Following the proof of Theorem 2.4 of Simchowitz et al. (2018), let T be a
1/4-net in the norm TT'7 of {w : k|T/k]p*w ' T}w/8 = 1}. By Lemma 4.1 of Simchowitz et al.

(2018), |T| < 2dlog(10/p) + log det(fTFZ_l). Then by Lemma 4.1 of Simchowitz et al. (2018)
we have:

T
[th:ﬁ: b kLT/kJ k Z tl“t <TTr

t=1

Tk 2 TFU T B
lﬂweT z LRI 7 o <0
t=1

< exp (—“me + 2d1og(10/p) + log det(fTFZ‘1>>

() Tp? e
< exp (— 3647; + 2d1og(10/p) + log det(I'rI} 1))

where (a) holds if T > 4k, which is true by (25), and (b) holds by (25). Lower bounding

271
kLT/lfép L >- T i and plugging in p = 3/20 completes the result. [
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Lemma E.4 Let u; be a deterministic input with period k and let Ts be the time such that condition
(21) in Proposition E.2 is met for all w € S*~1. On the event that:

T
Z xtx;r <TTr
t=1

for some L'y, then as long as:
. 1
T > 2T + 54k <2dlog(45/2) + log det(Dp(I'%) 1) 4 log 6) (26)
with probability less than 6:
T
1 -
T u
— 1T
D wal % 1T
t=1
Proof The proof of this follows Simchowitz et al. (2018) closely but replacing Proposition 2.5 of

Simchowitz et al. (2018) with our Proposition E.2.
By Proposition E.2 we will have that:

d T
P [;(uﬁazt)? < S%kL(T - Tss)/k:Jwa“}iw] <P [ZT: (wlay)? < ;TH(T ) kT

S 8_8% I_(T_Tss)/kj
Following the proof of Theorem 2.4 of Simchowitz et al. (2018), let 7 be a 1/4-net in the norm
TTr of {w L 2k|T/k|w  Thw /81 = 1}. By Lemma D.1 of Simchowitz et al. (2018), we have

that | 7| < 2dlog(45/2) +log det(T'7(T'¢)~1). Then by Lemma 4.1 of Simchowitz et al. (2018) we
have:

T ~ T
k(T —Tss)/ k| TY _
P Z:cta:: b L a1 )/E] k,thx;r <TTr
t=1 t=1
- T ~ T
2k (T — Tss) /R |w T _
<P|FweT : Z(wT$t)2 < L( 81/ Jw kw,2$t$: <TTr
L t=1 t=1
- T ~ T
2k (T — Tys) /e |w T _
<P|FweT : Z (wTact)2 < L 81/ Jw kw,thx;r <TTt
L t=Tss t=1
21(T — Tgs) /K L
< exp —M + 2d1og(45/2) 4 log det(Tp(T%) 1
81 k

T — Tss = T —
< exp <_(54k) + 2d1log(45/2) + log det(I'r(I'}) 1))

where (a) holds so long as T > Ty, + 4k, which will be true by (26), and (b) holds by (26). The
following holds by T' > Ts + 4k and by (26):

KT - To)/k)T} (T =TTy | 7T
81 - 54 — 108
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which completes the result. n

Corollary E.5 Let:

1

— -1, L
W {wGS T

~ 1
Tw' Tw > 2wTMw}

where M = 0. Let us be a deterministic input with period k and let Ty be the time such that
condition (21) in Proposition E.2 is met for all w € W. On the event that:

T
Z a:txtT <TTr
t=1

for some T'r, then as long as:

_ 1 - 1
T > 2T,s + b4k <2d10g(45/2) + logdet((I'r + TM)(FZ)_l) + log 5) (27)

with probability less than §:

ZT . 1, e 1
t=1

Proof The proof of this result is very similar to that of Lemma E.4. For any w € S~ nw¢:

T

1 ~ 1

w' (Z xtx;r + M> w>w' Mw> ﬁTwTFZw + inMw (28)
t=1

For any w € W, by Proposition E.2, given the definition of Tz, we will have that:

T

T
P [;(wat)Q < S%krt(T - Tss)/kaTf“};‘w] <P [ZT: (wla)? < ;TH(T ) k] Tl

< e—g%LT/k‘J

Following the proof of Theorem 2.4 of Simchowitz et al. (2018), let 7 be a 1/4-net in the norm
TTr+ M of {w L 2k T/k|w Tl /81 = 1}. By Lemma D.1 of Simchowitz et al. (2018), |T] <

2dlog(45/2) + log det((T'r + %M)(f}é)_l) Then by Lemma 4.1of Simchowitz et al. (2018) we
have:

T T
1 - 1 _
P [§ zyx, + M Y mTF}; + 5 M, > ] XTTp
t=1 t=1

(@) T 2 . T _
<P|TweTnW : Te)? < —Tw' ' TVw — w' Muw, I <1T
< [ weT ;(w xt) 108 w Tjw—w Mw ;l’tl‘t <TTr
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() T % | (T — Th) /K |w T Tw 4 _
<P [Elw eTNWw: Z(wat)2 < L( 81/ J k= _ wTMw,th:rtT <TT'r

t=1 t=1

T ad T
2k (T — Tss) /e |w T _
<P [Elw eTnNW: g (w'x)? < L( 81/ Jw kw, g zz] < TTp

t=Tss t=1

exp <_ 2 KT — TSS)/kJ

IN

= + 2dlog(45/2) + log det((Tr + ;M)(TZ)‘l))

IN

exp <_(T5_4]?s) + 2d1og(45/2) + log det((T'r + ;M)(f}é)‘l)>
<

where (a) holds by (28) and (b) and the final inequalities hold so long as T' > Ts + 4k and (27)
holds, since in that case we will have that k| (T — Tss)/k] /81 > (T — Tss)/54 > T'/108. [

Lemma E.6 Assume that x; is generated from some input v = Uy + n;* where Uy is Fy—1 mea-
surable and n* ~ N'(0,021). On the event that V. = Z;f:l zyx] = V_, we will have that, with
probability less than 0:

—1/2 T
1

Z:ctn;r > 0\/1610g(S + 8log det(Vi V! + 1) + 16dlog 5

t=1 )

=

Proof Note that Proposition 8.2 of Sarkar and Rakhlin (2018) applies even when «; is driven by an
input @; which is changing over time, since we choose ; to be F;_1 measurable, so x; is still F;_
measurable. Therefore, for any deterministic V' > 0:

T -1/2 p
1
l<2xt1::+V> metT >0 810g5+410gdet<<2xtxt>\/ 1+I>+8dlog5
t=1 t=1

2

with probability less than 6.
On the event that V. > Zle zyx] = V_, we will have:

l\DM—*

T T T -1 -1
Z A ) Z T = (Z rex) + V) (Z Ty )
t=1 t=1 t=1

Choosing V' = V_ and using this inequality gives:

-1/2 o
1
Zwtn;r > a\/1610g 5 + 8logdet(V, V= 4 1) + 16dlog 5
t=1
2

6

with probability less than 0. n
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E.3. Upper Bounds on Covariates

Lemma E.7 Assume u; = iy + n}* for some deterministic iy, nj* ~ N(0,021), and for any initial
state, then with probability at least 1 — §:

T
~ 2
thafj =4T < To+tr (O'ZFT + 031“5*) <1 + log 5) I)
t=1

and for any w, with probability at least 1 — §:

T
~ 2
> (wla)? <4Tw’ ( o+ (UQFT + oir$*> (1 + log 5>> w
t=1
Proof We note that:

T

+
—l— ~ u ~ u

E T, = E (;U?+x? +;13?) (mf—i—m? —|—:U?)
t=1 t=

[y

(a.s.) T o aT o nuT n nT
= 42[%@} ‘)z, +aiz) }

Where here we let 2 denote the response of the system to the deterministic part of the input and

u . AR .
x; the response due to the random part of the input. The term Zthl xyzy  1is then deterministic.

Following Proposition 8.4 of Sarkar and Rakhlin (2018), we can bound the second and third terms
each with probability 1 — §/2 as:

- ot T 2 (S B 2 2 B 2
Z x, xy <otr Z Iy 1+ log 5 <To,tr <FT ) 1+ log 5
t=1 2 t=0

T T—1 5 5
ZSE?:B?T < otr Z T, <1 + log ) < To’tr (T'r) <1 + log >
t=1 t=0 0 0

Combining these bounds gives the result.
For the second inequality, following the same argument as in the proof of Proposition 8.4 of
Sarkar and Rakhlin (2018), we obtain:

T NI
Z(wTac?)Z < <1 + log 5) Z w' Tyw

t=1

2

combining this with the above gives the result. |

Lemma E.8 Assume that the input u; satisfies, for some k and any s > 0:
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then
T T
" 1 , , , , 4B(AL)2 k22
S atal” = 3 Gl UE UG+ T (gg[lg; ||G(e]9)||2>
t=1 t=1
5(A*)k72\/f 70|12
e I
- SA)F otk 1G(e”)]2

Proof Denote ; = Zt. Then:

T
ngxt i ZG J9t ]91& U(ejet)HG(ejet)H
t=1 t 1 2
T 1 I
= Z eﬂ% €J9r)H -7 Z G(eﬁt)U(eﬁt)U(eJ@t)Hg(eJ@t)H
t=1 t=1 2
T
Z

[( X (el) — (ejef)U(ejat))U(ejet)HG(ejef)H—i—G(ejGt)U(ejef)(X(ejef)—G(ejet)U(ej‘%))H

+(X(e™) = Gle™Ue™) ) (X (%) — G(ejef)U(ejet)>H]

2

IA
=l
M=

t=1

T
IX(e7) = G(e/™)U (2™)]I3 + % DX (%) = GE™U ()2l Ge™)U (7|2
t=1

@ 4 = [GE™BBA) KA | 4§~ G H2ﬁ DL TP
ST; T Z A Gl

4B(AL)% k2 4B8(A kY
< (1£p()A*)k’)2 <9g[10a§<] ‘G(eﬁ)Hz) 1_(/)(131*),6 (é)g[loagi] |G( 639 Hz) Z 1U( 6]915 NE

where (a) uses Lemma E.12. Since ||z||; < y/nljz||2 for any € R", we will have, by Parseval’s
Theorem and our assumption on u;:

T T
S NUE)l2 < VT | Y U3 = VT | T ufu < VT/T?? = T2y
t=1 t=1 t=1

SO:

A, 2k2 2 Ak 1 T
g o 1CI8) + 72 (s 16@IB) 7 D101

p( 0€[0,27]

t=1
AB(A )R J 4B(A)ky*VT ]
SRR <9e[oa§] Iete 9>“2) TS (ge[oa;c] [ee 9)||2)

Thus:

Zwt ey ZG (U (U (") G
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I
2

T
wouT 1 0, 0 0\ H (0N H
—TZ_:G@J YU (")U (e )" G (™)

T

) ) 4 A* 2/{‘2 2
Z G("U(")U (") G + m (gg[lggc ||G(eﬂ9>|r%> I

max ||G<ef9>u2)

0€[0,2x]

48(A)ky 2T
T (

Lemma E.9 Assume that we are running Algorithm 1 and that we started from initial condition
g = 0. Let A, = PJP™! be the Jordan decomposition of A, and consider some w € S*1
such that ||w' Py(jyme)lla = 0 except for j = {. Here n(j) and (j) denote the start and stop
indices of the jth Jordan block (so in particular, if J; is the jth Jordan block, we have that J; =
[J }n( V(i) () m(s))- Assume that T'is chosen to be within epoch i. Then, after T’ steps:

T —1y2 2 2 2,2
T i 12 2 [P~ I3 P31 B«ll38(Je) v ki

E w'x < 3T; max |lw' (e’ — A, B.l|5 + 16 - —

t:1( t) ’7 0(0,27] H ( ) ||2|| ||2 (1 — p(Jg)2k0)(1 — ,O(Jé)2)

Proof Adopting the notation used in Algorithm 1, let 7; denote the length of the ¢th epoch. Denote
T; = Z =0 T be the start time of the +th epoch.
Followmg the analysis used in Section E.4, we can break up the response into its steady state
and transient components and write:
Ty = 2l + AL — o)
fort € [T; + 1,T; + T;], where ;" denotes the steady state response of the system at time # to the
inputs used at epoch 7. We then have:

T; T;
Z(wTaﬁ%Hf = Z(wafSi +w' Al (x7, — z5%))?
t=1 t=1
T;
S2Z wagsl +QZ TAt . ss,))Q
t=1
T;

<9 U}Tﬂffsl +4Z TAt +4Z TAt SSI
1

t=

Note that: B
-1 -1
= § :A*Ti_s_lB*us, z)’ = § A7 1B,
s=1 S=—00

where, relying on the periodicity of us, we let us = uzy, 1, for negative s. So:
-1

-1 2
( TAt Ssz) — ( Z U)TAi_S_lB*uS> < Z HwTAi—s—lB*us”%

S§=—00 S§=—00
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-1
S lw P BIPTBL 3

S=—00

IN

—1
T —5— _
> " Pagaw 31 I31P Bull3lus 3

S=—00

IN

-1
IPIBIP BN BAZAI® D A(J0)* > 2 us]3

S=—00

00 i —
< [PIIPH B BABAT) 50> D p(Te)™ Y [lusll3
7=0 s=0

IN

o0
< || PIBIIP~ Y311 B:138(Je)? prﬂZ o)
J

= IPIBIP 3B 138070 (J*”Qt
B Y WARE
Repeating this calculation:
T;—1 B 2
(whALa)? = [ > wl A" B,
s=1
T;—1 B
< IPTHBIBAE Y llw " PITH E ug13
s=1
T;—1

— T Tz —s—1
<PHBIBAE D lw Pagmo 3177 I3 sl

i—1
< ||P7HBIPI3IB.358(e)? Zﬁ(%)”’“t‘%_?llusll%
s=1

T.
i—1 # k;
< IPHBIPIBIBA38(T)* D ) T2 =2k =2 N )12
7=0 z:O s=0
T:
i—1 k; -1 ~ ~
<|PHBIPIBIBAZB(T) D > kyp(Jg)> 22— 2h==2
7=0 2=0
= 1P~ 31 P13 B.IBB(Je) 220 ( ”Zk 7 T2tk —2m -2 1 = U™
N 2o o072 kil 1= p(Je)2s
—1i2 2 2 2 Jé Qt -
= [P [Pl B«l[28(Je) ™ 1= p(Jo%o Z j
P(Je)Qt

—1)2( p||2 2 2,2 ‘
< [P RIPI2I Bell25(Je) ™y T ()

66



ACTIVE LEARNING FOR IDENTIFICATION OF LINEAR DYNAMICAL SYSTEMS

where the last inequality follows since k; = 2k;_1. Therefore:

& & p(J)*
TAt ssz < P 2 P—l 2 B* 2 J Qki 2 4
H( < ZH 151[P 3| B |l28(Je) iy T
HPH | P31 B 1138(Je)* vk
(1= p(Je)?ki) (1 = p(Je)?)
and:
T; T;
i = J 2t
> (T Al < 301 BIPIBIB B P

— 5 ],)2ko
— 1 — p(Jg)*o

IIP HIBIPIZ B 58( ) >y ki
(1= p(Je)?0) (1 = p(Je)?)

Finally, by Parseval’s Theorem:

Tz
7, 0 0
wlay™)? = 2 Z\Iw (e’ — A) T BU()]3
t:l Z 0€Z;
< T mae [T (%1 — 4) 7 B B3
€1;

Combining this, we have:

[P~ 311 PII31IB:l138(Je)*vk;
(1= p(Je)*3) (1 — p(Je)?)

T
> (w'af) <Z<2Tn ma [T (71 = A) 73] + 4
t=1 7=0

+4IIP‘lII%HPllgllB*II%ﬁ(Je)Qvaj)

(1= p(Je)*0)(1 = p(Je)?)

; P~ 1|| P31 B 1138 (Je)**k;
<2 m 97 — A)7?|B. § T+§ 8” 2
HE[Oagir}fy ||w (6 || H H2 J@ 2k0)< (Jf) )

- P HPH B33k,
<3T ]HI_A* —1712 B* 2 ].6H 2 2 *112 1
B e = AR 416 eyt — ()

E.4. Transients

Consider the response of a system to a deterministic, periodic, zero-mean input u; starting from
some initial state zj at ¢ = 0 (here the mean is taken over a full period). We can break up the
response 1nto the steady state response, z3°, and the transient response, zi": z¥ = x{ + zi".
Precisely, z;° is the response of the system if the input u; has been on for all time in the past and,
to attain the des1red response, we can set:
w_ Jog—xi® fort <0 g — xf® fort <0
b { Aty fort >0 {Ai(xg —xf®) fort >0
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With these definitions, we will have:

u __ . tr 8s __ IL‘g fOI'tSO
Ty =X + T —{xfs_i_Ai(xg_xgs) fort >0

Assume that p(A,) < 1, we will have that limy_, ||z} — z7%||2 = 0.
Take k to be an integer multiple of the period of the input and note that, by linearity, k£ will also
be an integer multiple of the period of z{°.

Lemma E.10 Using the definitions above, let:

10g< kC(1 = p(AL)?) )
2log p(A.) - \2l|o — x§*]38(A.)2 )
L k¢V/1 = p(AL)?

log p(A.) 4| z8 — 288 ||2B( A/ kw  Thw

Then if T' > Tss(C, k, x), we will have that:

Tss(C, k,xf) :=max {

T/ +k—1
E (w'z)? — kw T%w
t=T"

<¢

1
z

Proof Note first that kw ' [fw = Zle (w"z$%)2. By what we have above:

T/ +k—1
Z (w'z)? — kw ' T%w
t=T"
T/ +k—1 ) )
= Z (wT:L’fS +w' AL(xp — x88)> — kw Tw
t=T"
T +k—-1 T +k—1 9 T'+k—1
= Z (wTﬁs) + Z <wTAi(mg - m88)> +2 Z <waf5> (wTAi(:L'g - x85)> — kw Tw
t=T" t=T" t=T"
T/ +k—1 ,  T+k-1
= Z (wTAi(acg — xSS)) +2 Z (wafs) (wTAi(xg — x35))‘
t=T" t=T"
T'+k—1 9 T'+k-1 T'+k-1
< > (whAl@h o) 2| > @) Y (T Al - o)’
t=T" t=T" t=T"
T/ +k—1 ) T/ +k—1
= Z (wTAi(xg — xés)) + 24/ kw T w Z (wT AL (28 — z5))?
t=T" t=T"
T/ +k—1 T/+k—1
<l — a3 3o AL + 2l — 2oy ke TTwy | > ALS
t=T" t=T"
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o
—_

< llaf — 28 136(A0)° (AT Y~ p(A)* + 2||2f — o l28(A)p(A)T \ kw T T

2 — 35|28(A)25(A)2T 2llal — 23t 28(A)kw T Tiwp(A) "
< 0 0 112 +

it
o

- 1- p(A*)2 1— p(Ay)?
@ K, K
2 2
=k(
where (a) holds by our assumption on 7”. [ |

Corollary E.11 Under the same assumptions as Lemma E. 10, we will have that:

1 T +k—1
z Z (w'zt —w' 7% — kw ' Tw| < ¢
t=T"
where:
T/+k 1
)
k Z t
t=T"
Proof As before, we have:
T +k—1
Z (w'zl — w72 — kw T¢w
t=T"
T +k—1 5 T +k—1
T At/ ss T-u T T At T =u\2
< Z (w Al (zg — xp°) —w x) +2¢/kw ' T}w Z (w'AL(zf — 2§°) —w'z%)
t=T" t=T"

Since, by assumption u; is zero-mean, it follows that z{° is zero-mean. Thus, the only non-zero
mean component of x} is that due to the transient so:

T’+k 1

k Z TAt I'SS) _ ’U]T
t=T"

u

Kl

from which it follows that w T A% (2% — x5%) — w ' Z" is a zero-mean signal. Denoting X" (e’?) the
DFT of 2! overt = T",...,T" + k — 1, by Parseval’s Theorem, we will have that:

T/ 4k—1 , k-l "
ﬂ'
E (wTAi(xg —zp’) — wTi*“> = g wHXtT( )X”(ej ) w
t=T" =1

where, crucially, since w " AL (x4 —x§*)—w ' 7% is zero-mean, we only sum over frequencies starting

atf = 2% (that is, we do not sum over the DC component). Thus:

Tkt 2l 2ne H
Z (wTAi(xg —zp%) —wT:E“> ZwHX”(eJ )X ) w
t=T" /=1
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<ZwHX” )Xtr(ejT) w

T’Jrkfl

2
= Y (wh Al — )
t=T"
Thus:
T +k—1 T’+I<: 1
Z (wTAi(mg — ) —w'z ) kwT T w (wT AL (2% — 25°) — wT zv)?
t=T" t= T’
T +k—1 9 T’+k 1
< Z (wTAi(xg — x88)> + 24/ kw T T¥w (wT AL (28 — 25))
t=T" t= T’
< k¢
where the last inequality follows since we have assumed Lemma E.10 holds. |

Lemma E.12 Assume that the input u; satisfies, for some k and any s > 0:

k
L T 2
T Z Ug st <Y
t=1

then:
1X (e7?) — G(eZ)U ()2 < Zice 1)””—)( 4‘*2)/&( )

where X (eje) denotes the response of the noiseless system running for T’ steps when the input
U(e’?) is applied.

Proof Note that:

‘ T—1 T-1t-1
X(eje) _ Z e ]Gtxt At s— 1 ]HtB Us
=0 t=0 s=0
—1T-s-1 T—1 /T—s—1
_ Z Z efje(tJrerl)AiB*us _ Z ( Z e—I0(t+1) gt ) e gesB g
s=0 t=0 s=0 t=0
and:
G(e) = (T - A)'B.=> e #TVAIB,, U(e) =) e iy
s=0 t=0
Thus:

IX(e”) = G(e”*)U (e)]|2 =

T—-1 /T—s—1 T-1 oo
6_39(t+1)Ai e—jﬁsB*uS - § : § :6 jO(t+1) At e—jﬁsB*us

s=0 t=0 2
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T-1 [e'S)
— ( Z 67]9 t+1 >6j9$B*us
s=0 \t=T-s
(

2
T— 00 ' '

_ Z —j0(T—s AT szejﬁ(tJrl)Ai) eij@SB*us
s=0 t=0 2
T—1

— (6 7O(T— s)AT sG(ejﬁ))e jOs
s=0 2

T—-1
_ —gGTZAT SG(€]9)
s=0 2
T-1
0 _
<G ll2 Y AL * |2l us
s=0

T-1

< |G(e”)]28(A Z )T lusl2

s=

_ 2G(e)[l28(A )kv
B 1- ﬁ(A*)k

where the last inequality follows from the proof of Lemma D.7.

Appendix F. Optimal Design Perturbation Bounds

Throughout this section we assume we are running Algorithm 1 and that 7 is the elapsed time after
1 epochs. We will let k& = k; to simplify expressions. We will also often simplify notation by writing
27”

0; == 2 and U; :=U(e? ).
Let:

Hk(A, B, U, I) — Z(ejQﬂ'i/kI _ A)71BU(€j2ﬂ'i/k)U(ej27ri/k)HBH(ej27ri/kI _ A)*H
€L
where Z C [k].
Formally, for some k, the optimization problem we wish to solve is:

maXy,,...,u, €ERP Amin <2T]:;TO Hk(A7 Bv U7 I) + Zthl xtmj)
optInputy(A, B,7*, I, {ze}icy) = st S5 U(e27/k)HU (e8270/k) < k242,
U(elm/h) = 0,90 ¢ T, Sy ur =0

where 2 is simply some value constraining the power of our input signal and U (e’ 2mt/k ) denotes

the DFT of uq, ..., ug, the time domain signal. Note that the normalization QTI%TO of Zthl xtxtT is

due to the fact that, by Parseval’s Theorem:

T; T 1 k
Z xgxiﬂ' _ ?Z% ZXu(eJZﬂz/k)Xu(eﬂm/k)H
=1
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assuming that u; has period k and that we are in steady state. Further, by the update rule of Algo-
rithm 1, T = Y/20 3'Tp = 4(3' — 1)Ty = 3T; — 1Ty so T; = 2T + Ty, which is the expected
amount of time we will play these inputs for.

It is worth noting that the constraint Z?:l U(ed?mt/R)Hy (e327t/k) < k242 is equivalent, by
Parseval’s Theorem, to the constraint:

k
> ulur <9
t=1

We will denote the optimal set of inputs on the true system as «* and the optimal set of inputs
on the estimated system as 7 (that is, 7 is the solution to Opt Tnput (A, B, v2, T, {z/}1_))).
Our main perturbation result is as follows.

S

Theorem F.1 (Full version of Theorem 4.1) Assuming that | A, — A2 < €, then we will have

that:
1 < 1 RN
" T ) {
Amin <k2 Hi(Aey Boy U T) + 5 ;xtazt ) — Amin (kQHk(A*, BoUD+ gr oy ;xm ) ‘
2
< max —GL(A*,B*,U,E,I, w)
Ueld 2 k2

wEM(A* 7AA»{xt}tT=1 7I)

where {x,}I_, is generated from a system wzthparameter Ay, U* is the solution to Opt Tnputy(As, By, v, T, {z} 1),
U is the solution to Opt Input (A, By, 72, T, {x:}L_,), and:

T
(wT:vt)z
t=1

” k2
T — -1 . M
M(A*a A7 {xt}t:17I) = {'U) esS : o+ TO

2 T
< jeiI_A* 713*2 2 j9¢I_Ale*2
< min 7 maxmax{|u’ e ) Billz, [[w" (e ) H2}+2T+T 2 (w' " a)?

L(As, B.,U,¢,T,w)

= max 2 Zw—r(ejei[ — A, —0A)TIA(%T — A, — SA)TIBLU UM BHE (3% — A, — 6A)H
5€[0,¢], AcRIxd o
[All2=1

Remark F.2 As we will show in the proof of Theorem F.1, the set M(A*, A, {z}L |, T) is guaran-
teed to contain the eigenvectors of =5 2T+T° H(A, B,,U*, )—i-zt | wewy and 2T+T° Hy(As, B.,U,T)+
thl xyx] corresponding to their minimum eigenvalues. Restricting to a max over this set is suffi-
cient to bound the difference in the minimum eigenvalues and avoids computing L(A., B, U, €,Z,w)
for the worst case w—the w corresponding to the most easily excited directions.

The max of L(Ax, B, U, €,L,w) over all w € S will scale roughly as max;er ||(e/% 1 —
A,)||3. However, in some situations, as we show in Corollary 3.1, the max over M(A,, A, {z:}T_,, T)
will scale only as max;ez ||(e7% 1 — A,)||%. The reason for this is that, assuming a large enough gap
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between the largest and smallest eigenvalues of A., M(Ay, A, {x;}I_,, T) will not include vectors
corresponding to the subspace spanned by the eigenvectors corresponding to the largest eigenval-
ues, as these will be sufficiently excited by noise to make Zthl (w'x¢)? large. In that case one can

show that for all w € M(Ax, A, {z;}T_,,T), ||[(e7%T — A) " Hwl||y = O(|| (7% T — A*)_lHé/Q).

F.1. Proof of Theorem 4.1 and Theorem F.1

Proof Throughout, to shorten notation, let £ = QTk%TO Note that:

T T
Amin (ng(A*, B, U"T)+ > xtxj> — Amin <£Hk(A*, B.,U,T) + th;pj) ‘
t=1 t=1

T

T
wa,u- " <§Hk(A*,B*, U 1)+ chtxtT) WAL =Wy (fHk(A*7B*7 U,T)+ Zfﬂ'txtT> Wy, i
t=1 t=1

where wa, v+, w, g are the eigenvectors corresponding to the minimum eigenvalues of the ma-
trices {Hy(Ax, B.,U*,T) + EtT:l zx) and EHy(A,, B,,U,T) + EL zyx], respectively. We
wish to show that:

T

T
wA*,U*T <€Hk(A*7B*7U*)I) + thx;) wA*,U* - wA*JA]T <§Hk(A*7B*7U7I) + Z.’Et.’ﬂ;) wA*7U
t=1 t=1

)

for some choice of §. To show this, we will first show that:

T T
wa,ve <€Hk(A*,B*,U*,I) +Z$t$:) wa, s — min w' <€Hk(AaB*7U’Z) +Z$t$3> wi <

d—1
=1 wes =1

Denote w Al the solution of the above minimization. Denote also w AU the eigenvector corre-
sponding to the minimum eigenvalue of £ Hy (A, B,, U*, T) + Zthl zx/ . Thenif forall U € U

T T
wA*,UT <§Hk(fl, B, UT)+ wa?) Wy o wA*,UT (ng(A*,B*, UTZT)+ thx;) Wy gl < 5!
t=1

t=1
(29)
and:

T T
wAU*T <§Hk(fl, B, UT)+ wa?) W4 e — wA,U*T (ng(A*,B*,U,I) + thx;) W4 17 <
=1 t=1

(30)
the above will follow. To see this, assume that:
T T
wig (éHAA, B, U,T)+) ww/ > wi =0 > wa, v <§Hk<A*, B, U D)+ auw] ) wa, v
t=1 t=1

then:

T
wAﬁT (ng(fl, B,,U,T) + Zx@j) Wi~ 5
t=1
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T
> wA*,U*T (SH]C(A*J B*7 U*7I) + thx;,r> wA*,U*
t=1

(a) . T
t=1

(®) L 4
> wA*,UT (ng(A,B*,U,I) + ZZL‘{/Z’I) wA*,U — 5’

t=1

(e)
ZwAU <£Hk(A B*,UI +thxt>wAU Y
t=1

where (a) follows by optimality of U*, (b) follows by our assumption (29) and (c) follows since
w 4 r corresponds to the minimum eigenvalue of £ Hj, (A B, U ,I) + Zt Lz, . This is clearly a
contradiction, which implies that:

T

T
wig' <5Hk<21, B, UI)+ > waz/ > wj =0 Swa, - (&Hk<A*, B, U*T)+ ) wuw) ) WA, U
t=1

t=1

We can repeat this argument identically in the opposite direction:

T

wa, U <§Hk(A*, B.,U*T)+ > wum/ ) wa, v- — 8
t=1
T

- <§Hk(21, B.,UT)+ Y wa] ) wiH

t=1

T
Z wA’U*T <§Hk(147 B*) U*7I) + Z%&%’?) wA’U*
t=1

T
= wA’U*T (ng(A*; B, U*,I) + ZQ?@TI) Wiy~ — o'
t=1

T
> wa, e <§Hk(A*,B*7 U 7)+ thl’;> wa, g — 6

t=1
which is another contradiction. Combining these, it follows then that:
T T
’u}A*,U*T (fHk(A*, B,, U*,I) + Z LL'ﬂL'I) WA, U* — wA,UT (fHk(A, B,, U,I) + Zﬂﬁtl';) Wip
t=1 t=1
(31)

<

We now return to bounding the difference assuming (29) and (30) hold:

T T
Amin (5Hk<A*, B.,UT)+ Y aw ) — Amin <5Hk<A*, B.,UI)+ > wuaf ) ‘
t=1

t=1

T T
wa, v <£Hk<A*, B, UT)+ Y ax) ) WA U — Wy (5Hk<A*, B, U,I)+ Y mux/ ) W, 0

t=1 t=1
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First, assume that:

T
A, B*,(j,I) + thmtT

T
E 1'151}:

wa, <§Hk(A*7B*7U*;I) + ) WA, U 2 wA*,UT <§Hk( ) Wy o
t=1 t=1
then:
T T
wa,Ue (§Hk<A*, B, UST)+ > ww ) WAL =Wy <§Hk(A*, B,U,I)+ Y mux/ ) wy, o
t=1 t=1
T T
< wa,o- " (§Hk(A*, B, UYT)+ > ww! ) WAL — W <§Hk(A, B, U,I)+ Y max/ ) WAL 7
t=1 t=1
T T
+ wA*,UT (ng(A, B.,U,T)+ Z:z:gvj) Wy, wA*,UT (ng(A*, B.,U,T)+ waj) Wy iy
t=1 t=1
T T
< ZUA*’U*T <§Hk(A*, B,, U*jI) + Z%t%:) WA, U* — wA7UT <§Hk(A, B, U,I) + th:E;r) Wi
t=1 t=1
T T
+lw, o <§Hk(A, B.,U,TI) + thxj> Wy g wa (ng(A*, B, U,TI)+ thxj> WL G
t=1 t=1
<20

where the final inequality follows by (29) and (31). Assume instead that:

wA*,U*T (ng(A*v B*7 U*,I) +

then:

T T
wa, e <§Hk(A*,B*,U*,I) + ZwtxtT) WAL = Wy ({Hk(A*,B*,U,I) + Zwtﬂ) Wy,
t=1 t=1
T T
< |wau-" (fHk(A*,B*, U T)+ Y ma] ) WAL — WA <§Hk<A,B*, U.7)+ Zm?) WA
t=1 t=1
T T
+ wA,UT <£Hk(A, B.,U,T)+ Z:rﬁj) WA~ wA*7UT <§Hk(A*, B,,U,TI)+ ngcj) Wy
=1 t=1
T T
<+ wA,UT <€Hk(A, B, U,T) + thl‘:) Wi~ wA*,UT <§Hk(A*, B, U,T) + me?) Wy 7
=1 t=1

where the final equality follows by

T

)+

wig' <€Hk(/1, B.,U,T
t=1

T

E 1’,51'?

t=1

T
A, B, [7,1') + Zaﬁtwj
t=1

) wa, v < wA*ﬁT <§Hk(

) Wy, o

(31). If we assume that:

"L’t.’ﬂ;r

T
A., B, U,T)+ Z zpx]
t=1

) wig Zwy ol (€Hk(

) Wy, U
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then:

T T
wA’UT <§Hk(fl,B*, U,T)+ wa?) w4 — wA*,(A]T <§Hk(A*,B*, U,T)+ me?) Wy o
t=1 t=1

<

T T
wA*f]T (ng(fl,B*, U,T)+ waj) Wy g~ wA*ﬁT (fHk(A*,B*, U,T)+ waj) Wy,

t=1 t=1

<

where the final equality follows by (29). Otherwise:

T T
wA’UT (ng(fl,B*, [7,1') + Z:}:ﬁtj) w4 — wA*,UT (ng(A*,B*, ﬁ,I) + Z:}:ﬂ?) Wy g

<

T T
wA,UT (ng(fl,B*, U,T)+ waj) w4 — wa, e <§Hk(A*,B*, U*T)+ me?) wa, U

t=1 t=1
<d

where the first inequality holds since U* are the optimal inputs and the final equality follows by
(31). Combining these, we conclude that:

T T
Amin <§Hk(A*7 B, U* + thx;r> — Amin <§Hk(A*7 By, U7I) + thx;>
t=1

t=1

< 24

To get a bound of the form:

T T
T (ng(A*,B*,U,I) + thxj> w—w' <5Hk(21, B.,U,T)+ thxj> w

t=1 t=1

<

and guarantee (29) and (30) hold we can apply Lemma F.7 which states that:

T T
T <§Hk(A*,B*, U,T)+ thxj> w—w' (ng(A,B*, UT)+ th:pj> w
t=1 t=1

We want to guarantee that such a condition holds for w ; AU and w, o In practice we cannot
determine what these are exactly since this requires knowledge of A,. Thus, instead, we will find a
set M(Ay, A, {x;}T_|, T) which is guaranteed to contain them. Setting:

< ¢eL(A,, By, U,e, T, 0)

T T
N _ . T
M(A, A {x} 1, T) = {w eS8t Z(w—razt)z < i (w' " z)?
t=1 t=1
+ (27 + To)y* maxmax{||w’' (/%1 — A) 7 B3, u' " (/1 - A)ﬂB*H%}}

this will be satisfied. To see why, note that

in (27 + Tp)y? %1 — A,)7IB, %1 — A)7'B, )2
_min (27 + To)y* maxmax{]|(e )" B3, (e ) ||2}+;w zt)
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upper bounds

T
Amin (ng(A*, B.,UTI) + Y maz/ )
t=1
and

T
)\min (ng(Aa B*, Ua I) + th$;>

t=1
forallU € U72, so if

T
Z (w'z)? > min (2T+Tp)~> maIxmax{H(eﬁZI A 7B, (% T—A) B, ||2}+Z (w' a:t )2

1
=1 w'esd =1

then w cannot possibly correspond to the minimum eigenvalue of either

T
EH(Av, Bo,UT) + > ayx/
t=1

T
ng(Aa B*7 U7I) + thx:

Thus, to conclude, we will have that:

T T
Amin (ng(A*, B, UST)+ > wumf ) — Amin <§Hk(A*, B, U,I)+ Y max/ )
t=1

t=1

IN

max 2¢eL(Ay, By, U, ¢, Z,w)
UEU,YQ

weEM(Ax ,A,{xt}thl )

F.2. Perturbation Lemmas

Corollary E.3  Assuming that | A.— Al|y < e and that the largest Jordan block of A, has dimension
q, we will have that, for small enough e:

2T + Ty . 2T + Ty
‘)\min (kQHk(A*,BmU ;I) + M) — Amin (/{:2
2T + Ty
2 7}{2

Hy(A,,B,,U,T) +M)'

< max

B vel esd-1 ) EL(A*’B*’ U7€7-,Za w) + ||M — M”Q
42w

where here U™ is the solution to Opt Inputy, (A*, B.,v?,T, M) and U is the solution to
OptInputy (121, B.,v%, T, M)
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Proof The proof of this result follows identically the proof of Theorem F.1 except now instead of
showing:

<

T T

oT + T4 M+ Ty -

w' (,ﬂgon(A*,B*,U,I) +) xta:tT> w—w' (kQOHk(A,B*,U,I) + gﬁtfc;) w
t=1 t=1

we must show:

2T + Ty
-
(5

2T + Ty

Hk(A*,B*, U,I) + M> w — wT (k’sz(A’ By, U7I) + M) ’UJ' < ¢

for some ¢’. Note that:

2T + 1T 2T + 1T . .
w" <k—gOHk(A*,B*,U,I) +M> w—wT (;;()Hk(A, B,.UT) +M> w‘
OT + T4 ) A
< % ‘WTHk(A*,B*,U,I)w —w ' Hy(A, B*,U,I)w‘ + HM _ MH2

By Lemma F.7 we can upper bound:
’wTHk(A*, B.,U,T)w — w' Hy(A, B,, U, I)w’ < eL(A., B, U, e, T,w)
Given this, the rest of the proof of Theorem F.1 follows identically now. |

It is not clear in general how large L(A., B,, U, ¢,Z,w) is and how it scales with e. The follow-
ing lemma provides an interpretable upper bound on L(A,, By, U, €,Z,w) when € is small enough.

Lemma F.4 Assume that U has period k. Then as long as:

1

e < -
~ max;er al|(e3% T — Ao

for some a > 1, then:

max  L(A., By, U, e, T, w)

wGM,UGUyz
= max  2]) w' (4T A, —FA)TTA(IH T — A, — §'A) T BUUIBE (T — A — 5 A)
wEM,UGZ/LYz el

5'€[0,e,|A]2=1

’ ' 0 — A7 B3
< 9 2 2, T geiI_A*—1 2 l(e . * 12
S weﬂﬁiﬁez (a—l) ko7 llw (e )2 (€30 T — AL)=L|
Proof
max | w' (/T — A, — FA)TIASHT - A, — § AT BLUUS B (%1 — A, - 6'A) Hw
wEM,UGUyz et

8'€0,e], | All2=1
< e ZI JwT (2T — Ay — 8'A)H|o|| (79T — Ay — 6 A BUUIBE (%] — A, — 6 A)"Huwl|,
5'€f0,el|All2=1 '
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< max (max |wT(e%T — A, — A7 |o|| (7% — A, — ' A) B, ||o|| BE (7% T — A, — 6’A)Hw\|2)
weMUEU 5\ i€
5,6[075]7”AH2:1
‘ZUiHUi
€T
< max k22w’ (70T — A, — 8 A) 7Y |o|| (7% — Ay — 8 A) B, ||o|| BE (7% T — A, — ' A) )|,

- weMIET
§'€[0.¢],[|Allz=1

where the final inequality holds since, by Parseval’s Theorem:

T k
1. 1 1T1¢.
Tt—glut Ut:TE% i:EIU,L' UZ

S0: 1 i}
qujut < 72 — ZUiHUZ- < k272
t=1 i=1
By Lemma F.8 and our condition on € we have that:
(/9T — Ay = 6A) 7" =) (4T — A)TTOA(T — A) T
s=0
Thus:

Bax }k272HwT(ej9iI — A, — N 7Yo||(e7%T — A, — 8 A)TIB,||o|| BE (3% T — A, — ' A) P,
weM, 8’ €[0,e

|All2=1,i€T
= ma A% lw ' (%1 — A7t SA%T — A)1)S
werseod ( ) 70( ( )7)
HAHQZI,iEI §= 2
. (€j9iI—A*)_1 Z(é‘/A(ejGiI_A*)—l)sB*
s=0 9
. (X> .
: wT(eJGiI—A*)_l Z(5’A(ej9q_A*)—l)sB*
s=0 9
< a E2~2 T jeiI_A**l §'A jeiI—A**ls
= wersend (Hw (e ) H2z_;)”( (e )7 ) 2
|All2=1,i€T 5=

: (H(equ — A) M2 YA T - A*)l)SB*\b)
s=0

s=0

- (HwT(eﬁ"I = A) 2 Y IO AT ~ A*)_l)sB*!b)

[e.e]
< E2~2 T(pilif — AL s(ed0 T — ANL|S
< max k% (nw (@1 = A 3 el = A7
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: (II(@MI —A) 2D e (T — AT (e T - A*)_13*|2>
s=0

: (HwT(ejeif— A) 2D el T — A)THST I T - A*)_IB*|!2>
s=0
If:

1
€ < -
- maxieIaH(eﬂeiI — A*)_1H2

then this can be upper bounded as:

- o
< 2 2 Tty — A1 — 1. %7~ A)T'B as
e k%) (|w (e ) ”2; el R MG ) *||2s§:; @
. 39T — A7 Byl <= 1
(yw (e )2 [(e%T — A)~ |2 ;“s

o [[(e7T — A)"'B. |3

3
a 2,211, T (,70; —1
< 9T — A .
= weMier <a— 1) Kyl (e 7 | (ed% T — Ay)=1|2

To get deterministic bounds on the algorithm performance, it is helpful to deterministically
upper bound M (A, A, {z;}1_,). The following lemma provides such a bound.

Lemma F.5 Assume that A, = PJP™! is the Jordan decomposition of A, let J; denote the (th
Jordan block, and assume A, has v Jordan blocks. On the event that:

T
ZaztxtT > cIT]
=1

and.:

2
St <G oo i)

for some w' to be specified, and if:

1
= o 2 (@9 T — A1
then:
M(Ax, A {2}, T) C My(As, B, 6,77
and:

M(A {2, }) € Mi(As, Bi,5,7%)
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where:

T ; _
ﬂwTka < %ﬁeéﬁloag]@y IPH311PI311(e?1 — Jo) 1311 B3
1 —1112 2 2 2.2
) <1+1 ) (HP 13 ||PH2/3(J£) (UZJF%HB*\Q)) +16”P H72”P||2?J\B*H257(J£) 27 }
55 p(Je) (1= p(Je)? ) (1 = p(Je)?)

and here k is the frequency discretization at the epoch with end-time T.

Mk(A*)B*v(s)ryQ) = {U) € Sd_l :

Proof By definition:

M(A*,A {xt}? 17I
d—1 kQ a 2 kQ a 2
= S : <
{wé 2T—|—T0t:1w$t —wesd 12T+T0;w xt)
+ k7 maxmax{|u’ (T — A) T B ' (7T — A>—1B*||%}}
(S

T 1 T

_ gd-1 . 1T N2
{we 2T+Toz;w ) _wesd12T+TOZ(w 1)
+ 7% max max{[jw’' (7T — AT B3, [lu' (7% ~ A>—1B*||%}}

By Lemma F.8 and our condition on €, we have that:

(0.9)
max ||w’ (ejeil— A)7'B, |2 = max w'’ Z(ejei[—A*)_I(CSA(EjGiI—A*)_I)SB
€L 1€L
s=0 2
oo
< 0 — AN S|(e%T — A)7H5IB
r?eaIwa (e %) H2§)6 (e )3 1Bx |2
= 1
< max||w’ (¢ )7 ll2l| Bx H28 .
= max 2|jw’ (/T — A,) 72| Bel2
1€T
By assumption:
T T
Z al u 2 1T 2 27 B« ’
w’ xt Zw )% 44T l—i—logg w (UPT—I—UUFT)’UJ
t=1 t=1

Lemma E.9 implies that, assuming we choose w’ such that Hw Poym( )H2 = 0 for j # ¢ and that

T chosen such that it is within epoch i:

/T u) i 12 2 [P~ BIPIN B3B8 (Je) 2k
g (w' x 2 < 3Tv? max ||Jw' (7T — A, B.||53+ 16 = -
P X 7 0€[0,27) " ) IRNB (L= p(Je)*0)(1 — p(Je)?)
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Following the computation from Lemma F.11 and noting that:
" (& — A)THE < [Pl P(T — )73
and that the inverse of a block diagonal matrix is equal to the matrix formed from each of the blocks

inverted individually, we then have that:

jGI_A*—12< P—12P2 jHI_J—12
(" (1 = )7 < [PFIPIS max 1T~ )73

)

In addition, Lemma F.11, gives that:

T-1

T T
w Trw' = [lw' " A5
s=0

T-1
<|[PHBIPI38(J)* Y AT
s=0

P3N PII56(Je)?
— p(Jp)?
/TFg*w/

and a similar calculation holds for w
Combining everything gives:

T
07 -1 2 1Ty it Ay—1 2 1 1T N2
Jn r{leazxmax{Hw (T — A)T' BB, T (71 — A) B*Hz}+2T+T Z(w t)

(a)
< minmax 3y?||P71|3 ||w'TP(€j91 )3 1B 3
telr) i€l

1 HPHHWMMQHH+U%&@)
ot (‘” 5)( p(J0)? )

L [PHEIPIZN BalI38(e)* ki
(1= p(Je)*0)(1 = p(Je)?)

+ 342 Gn[loax [|w’ (€j91—A) 51| Bx H2+16
€

< 672 P~ T P(edT — 7)) 2| B.
?611[1{]10»’151[1035(71’] ’VH HQHW (e )~ H2|| ”2

I EPIEU0? + oD | 4L 1P BIPIEI 350
w2 (11085 ( o R (e i o

< 6+2|| P12 P 07 — J) 731 Bs |3
—?éﬁeé?(?iﬁ YIPH31IPII5 (e e) 1211 Bll3

os2) (LIPG04 oHIRIDY | 1qlIP LPIRIE 1300
”(*‘1 5)( (70)? )*‘6< P(J0%0) (1 — p(J1)?)

Assume that 3(Jx)p(Jx) < B(J;)p(J;) forall i # k, and let w’ be some vector such that Hw’TP ()7
0 for i # k. Note that (a) will also upper bound:

2

T
4 . ~
i — J0i T _ -1 2
wesi1 37 rf?x”w N = AR 2T—|—T ZH“’ )’
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the upper bound in the membership condition of M (A, {z;}L_,).
Finally, given our assumption that Zthl zx] - cTI‘Z, we will have that:

T
Z (w'z)? > cTwTFZw
t=1

and the result follows. |

Finally, for Theorem 2.2, it is necessary to quantify how close I';(A,) is to I';(A). This is
quantified below.

Lemma F.6 Let q be the dimension of the largest Jordan block of A,. Then if Hfl — Ayl2 < ¢ for
small enough e, where at least p(Ay) + {/2k(Ax)e < 1, we have:

ZAS O o

5=0

128|/(e7°1 — A.) M3

max

(1= (v a2+ vmmff

Proof We first compute the directional derivate of 3.°_f A%(A2)T with respect to A, in direction
A:

t—1
DYy AuA)T
s=0
> em0(As + 6A) (A +64)°) T — S5 AS(AD)T
§—0 |5|
6300} AL I (ADTAT (AT 4 a0 (00 ALAALTY) (49T + 0(8?)
6—0 ](5|

_ ZASZ Aé TAT As {— 1 T"_Z(ZAiAAiZl) (Ai)T

s=1 =0 =0

Thus:

‘ZAS (A5)T ZAS

2

t—1 /s—1
S A HiaX ZA’SZ Ale TAT(AIS e 1)T + Z (Z A/KAA/S—Z—1> (A/S)T ||A* _ AH2
A ||A| Ij;’||1<e s=b =0 s=1 \/=0 2
t—1 s—1 , ,
< max 2 A A 1A, | €
(A’:HA*—AIHQSE ;;;H 2]l A™ [l ( i
t—1 s—1
S 2 B Al Al 2s—0—1 Al
(A’ A <e Z:uz% ) p(AN"
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26(A")°p(A")
= <A/:Arfla§/z<e (1 = p(A)?)? > ‘
We can upper bound 3(A’) as

AN < 2/|(ed91 — A1
B(A") gg[loa;] (e )2

Writing A" = A,+dAford € [0,¢]and ||Afl2 = 1, by LemmaE.8, if € <

= maxgeo,2n 2/[(e70T—AL) 72"

max (/T — A, = 6A) |2 = max ([T — A7) (6A(T - 4)7h)°

0€[0,27] 0€l0,27]

s=0 2
1% -1 s 0 —1ys 1% 1
< o NPT = A7 Do U@ = A7 < e 16T = A0 Y 5
= max 2[(e”T — A) 72
0€[0,27]
By Lemma F.10 we will have that:
A" < p(Ay) + /26(Ay)e
A A,H2<€( ) < p(As) (4+)
Combining these we have that:
28(A")3p(A 128 (77 — A) 713
(A A=A o (ﬁ( )(ff() ))>GS oclo 2 e -~ N7 |
1| As— A7 € €[0,27
= (1 - <1/2+p(A*)/2+ {‘/2/1(/1*)6/2) )
|

F.3. Additional Lemmas
Lemma F.7 If|A — A|s < ¢, then for any w € S

)wTHk(A, B,U,T)w —w' Hy(A, B,U,T)w| < eL(A, B,U,¢,T,w)

where:

L(A,B,U,e,T,w)

= max 2> w (T - A—-5A)TTA(T — A—5A) ' BUUF B (T — A - 5A)H
5€[0,¢],AcREx e
1A]l2=1

w' Hy(A, B,U, T)w — wTHk(/l, B,U,I)w|, we calculate the directional deriva-

tive of w ' Hy, (A, B,U,T)w with respect to A and use this to bound the Lipschitz constant of the
function w ' Hy, (A, B, U, T)w. The directional derivative is given by:

T T
Dlw” Hy(A, B,U, Z)u][A] = lim = Hk(A”A’B’UvI');T w' Hy(A, B,U,T)w
_>
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Lemma F.8 gives that, for small enough §:

(T —A—6A)" = i(ejel — A)TY AT — A7)
s=0

SO:
w' Hy(A+0A,B,U, T)w=w" (Z(eﬁq — A=A IBUUE B (%] — A — 5A)H> w
€L
=w' (Z(eﬂ’q — A 'BUU B (1% 1 - A)H> w
i€l

+ 206w’ (Z(eﬂ’q — A)7TA%T — A)TIBUUE B (9% T — A)H> w
i€
+ 0(6?)

and thus:

o w' Hi,(A+6A, B, U, T)w —w' Hy(A, B,U,T)w
6—0 |(5‘

=2uw' (Z(eﬂ’il — A)7IA@% T — AT BUUR B (99T — A)H> w
1€T
Given our assumption that | A—A||s < e, we can bound the difference |w " Hy (A, B, U,T)w — w' Hy(A, B,U, T)w

by bounding the Lipschitz constant of w ' Hy (A, B,U,Z)w over the domain {A + A : § €
[0,¢], A € R¥™4 ||A|ls = 1}. Since a Lipschitz function is upper bounded by the derivative, this
then gives that:

w' Hy(A, B,U,T)w — w' Hy(A, B,U,T)w

< max 2> w' (T~ A—A)TTA( T — A~ 6A) ' BUUY BY (/T — A—5A) Tw
5€[0,¢],AcR4xd P
1A]l2=1
lA = All

<eL(A,B,U,e,I,w)

1 .
Lemma F.S FO}’(; < m

(T —A—o5A)"! = i(ejel — A) YA T — A7)
s=0
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Proof To see that this is true, we can simply multiply the right hand side above by (e//T — A —6A)
and observe that the result is /. We wish to show that:

(i(eﬁf — A) YA T — A)_1)5> (T —A—6A) =1

s=0

Consider, for fixed n:

(zn:(eﬁf — A) YA T — A)1)5> (/T — A—6A) —

s=0 2

— |1 =51 — A+ f:(eﬁf — A (6A(ej91' - A)_1>s

— |1 = 5(e1 — A)1A + zn: 50T — A)—l( <5A(ej91 - A)—l)

s=1
= |7 = 571 — 4 (5A(6j91 - A)fl)n A= IHQ

< (1 — 4) g+

Since § < W, we can make 61| (€797 — A) 1|53 arbitrarily small by making n large.
Thus, for any € > 0, we can find an N such that for alln > N:

H (zn:(eﬁf — A Y AT — A)1)5> (/T — A—6A) —
s=0

2

This implies that:

lim (i(eﬁ[ — A)THOAT - A)1)5> (7T — A —6A)

S

0
— (i (7T — A) Y (SA(T — A)~ )>(eﬂ‘91—A—5A)
I

Lemma F.9 [f:
1

—All, < :
|A— Al < 2@ — A1

for some a > 1, then:

. Ao a . .
(&1 = A < (1 = 4) 7

and: ' R a '
JwT (T — A)7|5 < ﬁ\\wT(eﬁf —A) 72
a—
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Proof Denote A = A + §A for some ||Allz = 1 and § < m. By Lemma F.8:
[(ePT—A—6A) Mo = || (T — A) T (AT — A)71)°
s=0 2

< (T =AM 2 D NGAET = AT l2 < (T = A) 7MY 6T - A3
s=0 s=0
) _ =1 a ; _
< T =AM e ) = (T = A7

a’ a—1
s=0

For the second inequality, we can simply multiply the first term in the expression by w ' and we see
that the result holds. |

Lemma F.10 Assume that ||A — Al|y < € for some small enough €. Denote by p(A) the spectral
radius of A. Let A = PJP~! be the Jordan decomposition of A. Then if J is diagonal, we will
have that:

A~

p(A) < p(A) + K(A)e

where k(A) = |P|2||P~t||2. If J is not diagonal then, letting n be the dimension of its largest
Jordan block:
p(A) < p(A) + V/2k(A)e

Proof Let A = PJP~! be the Jordan decomposition of A. Assume that A = A + §A where
6 € [0,¢] and [|All2 = 1. Let u be the eigenvalue of A with largest magnitude and assume that y is
not an eigenvalue of A (otherwise we are trivially done). Since p is an eigenvalue of A, following a
standard proof of the Bauer-Fike Theorem we have:
0 = det(A+ 6A — pI) = det(P~1) det(A + 6A — puI) det(P)

=det(P (A + 6A — puI)P) = det(J + 6P 'AP — ul)

=det(J — pl) det(8(J — pl)*P7IAP + 1)
Since by assumption  is not an eigenvalue of A, det(J — pl) # 0, which implies that —1 is an
eigenvalue of §(J — uI)~1 P=YAP. Since the spectral norm upper bounds all eigenvalues:

1< ||6(] — uI) P APy
<8 = D)7 H2I P 2] P2

s0: )
< k(A) (32)
1] = uD) =2
If J is diagonal, then ||(J — pul) |2 = m Denoting ¢* = argmin; [A;(A) — pl, we
then have:

[Air(A) = pl < K(A)0 = |p| < [Xi-(A)] + K(A)d < p(A) + K(A)e
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where the implication follows by the reverse triangle inequality.
If J is not diagonal, then J — uJ will be a Jordan form with eigenvalues A; — . In particular
then we have:

jl Q ... 0 ()\1 — ,u)In(l) + Dn(l) 0
Jopl = 0 J.z . 0 _ 0 (Ao — )1, '( )+ Dy2)
0 0 ... Jg 0 0 s eI

where J; is the ith Jordan block of J — 1, n(7) is the dimension of the ith Jordan block, and:

010 ...0
001 ...0
Dp=1: i 1 . (| eRY"
000 ... 1
0 0 0 ... 0

Since the inverse of a block diagonal matrix is simply formed by inverting each block, we can
calculate (J — pI)~! by calculating the inverse of each block (\; — 1)Ly + Dy individually.
Note that each block is invertible since we have assumed that 4 is not an eigenvalue of A. By Taylor
expanding, and the fact that D,,(; is nilpotent, we have:

n(i

=

(N = W) Ini) + D)) Dr)
e:l )\ - ,U ®©
SO:
M—n(l) 1 =1 |
S WD”( 1) o 0 e 0
n 1 -1
(J—pul) ' = 0 2=t T Pney - X
: ' e 1 pe
- 0 0 - Zgzl mDn(k)-

Since eigenvalues are continuous functions of the entries of a matrix Horn and Johnson (2012), for
small enough &, we will have that |y — A;| < 1/2 for some ¢. If this holds then:

n(i)—1

1— |\ — pfO-1 1
I D
=1 N—n] N—nl

Since:
n(i)—1 n(i)—1

pr— n(i) -
ZI ul" =i = ul ;IM—NIZ

it follows that:

n(z)

1
Z A — M|£ P\z‘ — p[n@
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Then:

1
I(J = D)2 = max |I> (7DH

)\ n(3)
=Lk || = Ai — 1) ,
n(1) 1
< —— _||ptt
=2 — I\ — pul H ONP

n(i) 1
= max T
i=Lk = |\ — plf

1
< max 2——
ig=l...k |\ — M|"(])

Combining this with (32) and denoting ¢*, j* the indices at which the above maximum is achieved,
we get that:

Nir = "0 < 26(A)5 = [N — g < "O/2R(A)5
—> |p] < [Nir] + "U/26(A)S
= |ul < p(A) + "UY/2k(A)d

Lemma F.11 Let A = PJP~! be the Jordan decomposition of A. Assume that A has r Jordan
blocks and denote by n(i) and nu(i) the start and stop indices of the ith Jordan block (so in particular,
if Ji is the ith Jordan block, we have that J; = [J]n(i)m(i).n(i)m(i)) Let Pij to denote [p;, ..., pj],
the matrix with columns equal to the ith to jth columns of P. Then:

w74 < 27, D | Py | 60207
=1
Proof We have:
lw" A%z = T PT Pz < JlwT PIll Pl = [ prs - w pal || (1P,

127,

Since, for nonnegative a, b, va + b < v/a + /b (by virtue of the fact that a + b < (v/a + Vb)? =
a 4 b+ 2y/aV/b), it then follows that:

= H {[w—rpl, o ,prﬁ(l)]Jf, cey [pr@(r)7 . ,prﬁ(r)]Jf}

H [[prl, R prﬁ(l)]Jf, ce [prﬂ(T), R prﬁ(T)]Jf}

‘2 < Z H [prQ(i)a SRR prﬁ(Z)]Jf 9
i=1

T l
= Z Hw Pﬂ(i):ﬁ(i)‘]i
i=1

2
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< ; HwTP@u):ﬁ(i)
< Z; HwTPn(z’)zmn

B(J:)p(Ji)

Appendix G. Lower Bound

We base our analysis off the lower bound presented in Jedra and Proutiere (2019). A slight modifi-
cation of their analysis to our situation yields the following result.

Theorem G.1 For any matrix A, for all e > 0,0 € (0,1), the sample complexity 7.5 of any
(€, 0)-locally-stable algorithm in A, satisfies:

Tes 2 1
mln Z xtxt = 72 1 2 45

Proof The proof of this result is essentially identical to the proof of Theorem 1 in Jedra and
Proutiere (2019) and we omit it here. |

Denoting z¥ the response of the system due to the input and x} the response due to the noise,
we can write:

T
E l‘tl': =
t=1

T
T T a.s. T T
[xfx? + x)x) +33t —}—xtx? } <2 E [w?:nf + x)x) }
t=1 t=1

T
m1n < [Z ZB?$?T + $?$?T]> > >\min (E

so, Theorem G.1 gives that:

Tes T
w ul
mln § Ty Ty + SC?CC? = mm

G.1. Proof of Theorem 2.1

[M]=

Thus:

g

Tes

w ul
E Ly Ty

Tes§ 1
+ZU2F,5) > - 21 5 (33)

Proof Since (33) holds for all input sequences u;, and since we wish to minimize the lower bound,
we will have in particular:

Tes
max Amin g rix
ueY,

Tes 1
2
+Zaft>_421 i
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Since z}* is deterministic conditioned on u;, maximizing Amin (E [>-7<) o} ] + 3018 0?Ty) is
equivalent to maximizing Amin ( ) a4 oy azft). For any input u satisfying the power

constraint given in the statement of Theorem 2.1, by Lemma E.S8:

Tes Tes
T 2
Amin E xixyd + E o°Ty
t=1 t=1

Tes ) ) 4,8 A* 2k2 2

(A*)k’VZ Tes 9 2 =
G(e? r
1—p(A)k 96[02 ]H (¢l +ZJ !

t=1

Note that the term ?15 S G U (79U (e79)H G (ed%)H + 377 02T is scaling as 7.5 since
Iy >~ I. Thus, for large enough 7, since the left hand side is only scaling as /7¢s:

46(A)°k>y” j AB(ANY*/Tes j
(1= p(A)k)? (eénoag] G 9)”2> I+ == p(AL)E (ee[oag |G (e 6)|2>

Tes Ted

< 7ZG ]9t JHt)U( 70t HG ]9t +202Ft

so, for large enough 7:

Tes 2,22
)\min< 1 S G U (1)U (1) H G () H + AB(A)K" < max \|G(€]9)|I2)

5 = (1 = p(AL)F)? \vefo,2n]
(A*)k72 \V Tes =
— (A eg[loagi] IG()3 ) I+ ZO’QFt

1 Tes Tes
mm( ZG (YU (1)U (7)1 G () + Zam

For small enough ¢, 7.5 will be sufficiently large for this to hold. We have then that:

Tes Tes
max 2)\mm< ZG ejet ejet)U(ejet HG’ ejet + ZU%})

UEMVQ
Tes ) 1
+2 o) 2 > 7o

Tes

u ul
E Ty Ty
t=1

> max Amin (E

UEZ/{WQ

By Lemma H.2, we know that:

lim max )\mm(a Ly + F ;) = max )\min(O'QFoo + f‘go)

1—00 uEL{ 2 ueuwz

exists and, further, that:

Tes Tes
J9t J9t 70t \H ]Bt 2 <
Urrelax )\mm< ZG e (U ()7 G(e —|—tz;0 Ft> J&a{x )\mm(Ta;O' Foo—l—Tagf )
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for all 7.5. Thus, for small enough ¢, we will have that:

o? 1

7-66 Z — log
maXuey 8€2 Amin (UQFoo + Fgo) 2.49

|
Appendix H. Additional Lemmas
Lemma H.1 Assume that p(A) < 1. Then for any 01,02, we will have that:
I = ) = @1 =)o < (e 167 = 4) 20 ) o0~ o
0€[0,27]
so it follows that (e7°T — A)~1 is Lipschitz continuous in 6.
Proof Noting that, since we assume p(A) < 1, using the identity that (I + A)~! =71 — A+ A% —
A? + ..., we have:
(1 — A)~t = (e_jel +eI20A 43042 4 )
Thus:
oo
]9[ A e 1 -7 f+1)9A€
a8 =2 i+
=0
For any matrix A with p(A) < 1 we have:
(I +2A+3A%2 +443 + VI - AP’ =T+ A+ A2+ A3+ )T -A) =1
— (I+24+3A%2 4443+ . ) t=(1T-4)2
which implies:
—j(+1)e IV AL = — e N (04 1) (e A) = —je T — e 0 A)?
=0
So the Lipschitz constant of (77 — A)~! is bounded by:
max | = jeI(T — A < max (€1 — 4) 3
9€[0,27) 9€[0,2n)
from which the result follows directly. |

Lemma H.2 For any sequences of integers n;, m; such that lim;_,c n; = lim;_oc m; = 00, we
will have that:

*

)

assuming the limit of each exists. Further, for any finite j, we will have:

lim )\mm("u’:) = hm )\min(
j—o0

1—00

*

Amin(Fly ) < Tim Ain(T,)
1—>00
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Proof Assume the opposite, that there exists some sequence of integers n;, m; satisfying the above
condition such that 1im; o0 Amin(I'sy;) > 1m0 Amin(T'ly,). By the definition of a limit, this
implies that there exists some finite 7g such that for any ¢« > 79, we will have that Amm(fgj) >
)\mm(F ) for all 5. For any ¢ € [n;,], note that we can make:

RR))

Nig m i

arbitrarily small for large enough j (since m; — oo and by proper choice of £(;j)). By Lemma H.1,
this implies that we can make:

- 274 .27l(g)

(€m0l — Ay — (& ™ T— A)”

2

z()

arbitrarily small. Thus, for large enough j, we can snnply set the inputs at positions -+~ identical

to those at positions - L for each ¢, and make )\min( ) arbitrarily close to Apin (T T“; ) while still

meeting the fea51b111ty constralnt on the input. This contradicts the fact that lim;_,~ )\mm(F“ ) >
lim;j o0 Amm(I‘ ) which implies that lim;_, )\mm(I‘“f) = lim; 00 )\mm(F:‘;j).
To see that:
Amin(T) < Hm Apin (T2

1—>00

assume that this is not the case, that there exists some finite 5 such that )\mm( ) > lim; g )\min (f‘“* ).
Then using the same argument as above, we can make )\mm( ) arbitrarily close t0 Apin (T ) for
large enough ¢, which contradicts the fact that )\mm( ) > limy;_yoo /\mm(f‘“* ). [ |

Lemma H.3 For any integer kqy and finite input power budget ~?,

lim max A o, i + T i
1—00 ueu 2 mln( ko2 ko2 )

exists and is finite.

Proof Note that MaXyey Amin (02 Choi + I'“ ) will be bounded for all 4 assuming our system

ko 2i)
is stable and the power of the inputs is constrained. Further, note that MaXyey/ /\min(U2Fk02i +

u
Fk 20

maxueuvz Amin (02T ko2i +f‘}:02]- ) are a superset of those optimized over to obtain maxyey(_ Amin (02T ko2i T

u
Pk 2t

) < maxyeyy Amin (02T ko2t T fzom) for ¢ < j since the frequencies optimized over to obtain

), and since I'y 9 =< f‘kOQj. By the monotone convergence theorem, this implies that:

%
1&% urggxg )‘mln(O' Fk021 + I\16021) =c

exists and is finite. |
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Appendix I. Suboptimality of Colored Noise

First, note that satisfying the power constraint in this setting is equivalent to Tr(X) < 2. Under
this constraint, the optimal noise covariance can be obtained by solving:

max Amin ( ZAt (AD)T + f:AiB*zBI(Ai)T>
t=0
st. Tr(X) < 72
In our setting, with 42 > &2, solving this is approximately equivalent to solving:
1;12:3{ Amin (tz; AtEAt>
s.t. Tr(X) < ~2
where © = V' XV. Let &* be the optimal diagonal solution, and note that, in this case, we will

have:
2
Z APS*AY =

1- /\
Zz 11— )\2k
To see this, note that for any diagonal 3 with ith element %’ :

k 2 2k
At _%(1_>‘z')
ZAEA] e

i

The optimal solution will clearly be the solution that balances the energy in every diagonal element,
that is:
A=) A=A
1= 1=

for all ¢, j € [d], so combining this constraint with the trace constraint yields:

d
’7]2(1_)‘§k)2 11—\ —’)/2:>’YQ_ _)‘2 7’
_\2 22k J 2k 1-)2
1 >\.7 =1 1 )\'L )\ Zz 11— )\2k

and thus the jth diagonal element will be:

d 1-X2
Ei:l 1-A2k

Consider now some other matrix A that is not necessarily diagonal. Note then that:

k k k
Amin (Z AE A)At> = Amin (Z APSAT ) AfAAt)

t=0 t=0 t=0
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) k
v
= )‘min 7d 1_)\? I+ Z AtAAt
i=1 m t=0

2 k
_ Y ) t t
= < o+ i <ZA AA )

D1 1-22F t=0

For ©* + A to be in the constraint set, we must have that Tr(f)* +A) =72 4+Tr(A) <+ =
Tr(A) < 0. To have that:

’YQ - t t ’72

d 1-X2
2i—1 1-22F t=0 i=1 172k

we must have that Zf:o AtA A is positive definite. However, this is not possible since the diagonal
elements of Zf:o APAA? are the sum of non-negative scalings of the diagonal elements of A,
and since A must have at least one non-positive element on the diagonal to meet the constraint
Tr(A) <0, it follows that Zf:o A'AA! has at least one non-positive diagonal element. Since the

diagonal elements of every positive definite matrix are positive, Zf:o A!AA? cannot be positive
definite, so we cannot increase the value of A\y;n (Zf:o At(i* + A)At). By convexity of the
constraint set, it follows that the directional derivative in the direction of any other point in our
constraint set is negative. Since this is a concave function, it follows that >* is optimal.

Thus, the optimal noise will yield a covariance with minimum eigenvalue d772. For k

1-22

. 2

=172k
K2

sufficiently large, we have that:

2 2
S — (7)
sd_ 1% [

i=1 T_x2F
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Appendix J. Additional Experimental Results

10724
g
1073 J
0 5000 10000 15000 20000 25000
0 5000 10000 15000 20000 25000 Iteration (T)
Iteration (T')
Figure 6: A, diagonalizable by a unitary matrix
Figure 5: A, Jordan block with d = 4, and has given spectral radius, p = 4 and B,
p(Ay) = 0.9, B, randomly generated with randomly generated. Dotted lines illustrate the
specified value of p performance of u; ~ N'(0,v21 /p) for each value

of p

Figure 5 illustrates how the shape of B can influence the effectiveness of active system identifica-
tion. With p = 1, it is not possible to control the direction of the input, which can greatly reduce the
effectiveness of input design. Interestingly, for all p > 1, the performance is roughly the same—
increasing p beyond 2 does not provide a large gain in the effectiveness of input design.

Figure 6 plots how the estimation rate depends on the spectral radius. Here the performance
of our algorithm is plotted as the solid line and the performance of of isotropic noise as the dotted
line. As our theory predicts, systems with a larger spectral radius are easier to estimate. Further, as
Corollary 3.1 states, the gap between our algorithm and isotropic noise increases as p increases—for
p = 0.2 there is almost no gain in designing inputs actively but as p increases the gains of active
input design also increase.
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