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Abstract
In this work, we develop provably efficient reinforcement learning algorithms for two-player zero-
sum Markov games with simultaneous moves. We consider a family of Markov games where the
reward function and transition kernel possess a linear structure. Two settings are studied: In the
offline setting, we control both players and the goal is to find the Nash Equilibrium efficiently
by minimizing the worst-case duality gap. In the online setting, we control a single player and
play against an arbitrary opponent; the goal is to minimize the regret. For both settings, we pro-
pose an optimistic variant of the least-squares minimax value iteration algorithm. We show that
our algorithm is computationally efficient and provably achieves an Õ(

√
d3H3T ) upper bound on

the duality gap and regret, without requiring additional assumptions on the sampling model. We
highlight that our setting requires overcoming several new challenges that are absent in MDPs or
turn-based Markov games. In particular, to achieve optimism under the simultaneous-move games,
we construct both upper and lower confidence bounds of the value function, and then derive the
optimistic policy by solving a general-sum matrix game with these bounds as the payoff matrices.
As finding the Nash Equilibrium of this general-sum game is computationally hard, our algorithm
instead solves for a Coarse Correlated Equilibrium (CCE), which can be obtained efficiently via
linear programming. To our best knowledge, such a CCE-based mechanism for implementing op-
timism has not appeared in the literature and might be of interest in its own right.1

1. Introduction

Reinforcement learning is typically modeled as a Markov Decision Process (MDP), where an agent
aims to learn the optimal policy via interaction with the environment. In Multi-agent reinforcement
learning (MARL), multiple agents interact with each other and the underlying environment, and
their goal is to optimize their individual returns. This problem is often formulated as a Markov
game (Shapley, 1953), a generalization of the MDP model. Powered by function approximation
techniques such as deep neural networks, MARL has recently enjoyed tremendous empirical suc-
cesses across a variety of real-world applications, including the game of Go (Silver et al., 2016),
real-time strategy games (Vinyals et al., 2019), Texas Hold’em poker (Moravvcı́k et al., 2017;
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Brown and Sandholm, 2018), autonomous driving (Shalev-Shwartz et al., 2016), and learning com-
munication and emergent behaviors (Foerster et al., 2016; Lowe et al., 2017; Bansal et al., 2017).

In contrast to the vibrant empirical study, theoretical understanding of MARL is relatively in-
adequate. Most existing work on Markov games assumes access to either a sampling oracle or
a well-explored behavioral policy, which fails to capture the exploration-exploitation tradeoff that
is fundamental in real-world applications. Moreover, these results mostly focus on the relatively
simple turn-based setting. An exception is the work Wei et al. (2017), which extends the UCRL2
algorithm (Jaksch et al., 2010) to zero-sum simultaneous-move Markov games. However, their ap-
proach explicitly estimates the transition model and thus only works in the tabular setting. Problems
with complicated state spaces and transitions necessitate the use of function approximation archi-
tectures. In this regard, a fundamental question is left open: Can we design a provably efficient
reinforcement learning algorithm for Markov games under the function approximation setting?

In this paper, we provide an affirmative answer to this question for two-player zero-sum Markov
games with simultaneous moves and a linear structure. In particular, we study an episodic setting,
where each episode consists of H timesteps and the players act simultaneously at each timestep.
Upon reaching the H-th timestep, the episode terminates and players replay the game again by
starting a new episode. Here, the players have no knowledge of the system model (i.e., the transition
kernel) nor access to a sampling oracle that returns the next state and rewards for an arbitrary
state-action pair. Therefore, the players have to learn the system from data by playing the game
sequentially through each episode and repeatedly for multiple episodes. More specifically, we study
episodic Markov games under both the offline and online settings. In the offline setting, both players
are controlled by a central learner, and the goal is to find an approximate Nash Equilibrium of the
game, with the approximation error measured by a notion of duality gap. In the online setting,
we control one of the players and play against an opponent who implements an arbitrary policy.
Our goal is to minimize the total regret, defined as the difference between the cumulative return of
the controlled player and its optimal achievable return when the opponent plays the best response
policy. Both settings are generalizations of the regret minimization problem for MDPs.

Furthermore, to incorporate function approximation, we consider Markov games with a linear
structure, motivated by the linear MDP model recently studied in Jin et al. (2019). In particular, we
assume that both the transition kernel and the reward admit a d-dimensional linear representation in
a known feature mapping, which can be potentially nonlinear in its inputs. For both the online and
offline settings, we propose the first provably efficient reinforcement learning algorithm without
additional assumptions on the sampling model. Our algorithm is an Optimistic version of Min-
imax Value Iteration (OMNI-VI) with least squares estimation—a model-free approach—which
constructs upper confidence bounds of the optimal action-value function to promote exploration.
We show that the OMNI-VI algorithm is computationally efficient, and it provably achieves an
Õ(

√
d3H3T ) regret in the online setting and a similar duality gap guarantee in the offline setting,

where Õ omits logarithmic terms. Note that the bounds do not depend on the cardinalities of the
state and action spaces, which can be very large or even infinite. When specialized to MDPs, our
results recover the regret bounds established in Jin et al. (2019) and are thus near-optimal.

We emphasize that the Markov game model poses several new and fundamental challenges
that are absent in MDPs and arise due to subtle game-theoretic considerations. Addressing these
challenges require several new ideas, which we summarize as follows.

1. Optimism via General-Sum Games. In the offline simultaneous-move setting, implement-
ing the optimism principle for both players requires constructing both upper and lower confi-
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dence bounds (UCB and LCB) for the optimal value function of the game. Doing so neces-
sitates as an algorithmic subroutine of finding the solution of a general-sum (matrix) game
where the two players’ payoff functions correspond to the upper and lower bounds for the
action-value (or Q) functions of the original Markov game, even though the latter is zero-sum
to begin with. This stands in sharp contrast of turn-based games (Hansen et al., 2013; Jia
et al., 2019; Sidford et al., 2019), in which each turn only involves constructing an UCB for
one player.

2. Using Correlated Equilibrium. Finding the Nash equilibrium (NE) of a general-sum matrix
game, however, is computationally hard in general (Daskalakis et al., 2009; Chen et al., 2009).
Our second critical observation is that it suffices to find a Coarse Correlated Equilibrium
(CCE) (Moulin and Vial, 1978) of the game. Originally developed in algorithmic game theory,
CCE is a tractable notion of equilibrium that strictly generalizes NE. In contrast to NE, a
CCE can be found efficiently even for general-sum games (Papadimitriou and Roughgarden,
2008). Moreover, our analysis shows that using any CCE of the matrix general-sum game are
sufficient for ensuring optimism for the original Markov game.

3. Concentration and Game Stability. The last challenge is more technical, arising in the
analysis of the algorithm where we need to establish certain uniform concentration bounds
for the CCEs. As we elaborate later, the CCEs of a general-sum game are unstable (i.e., not
Lipschitz) with respect to the payoff matrices. Therefore, standard approaches for proving
uniform concentration, such as covering/ε-net arguments, fail fundamentally. We overcome
this issue by carefully stabilizing the algorithm, for which we make use of an ε-net in the
algorithm. Moreover, we show that this can be done in a computationally efficient way.

We discuss the above points in greater details after formally describing our algorithms. Note that
our regret and duality gap bounds also imply polynomial sample complexity (or PAC) guarantees
for learning the NEs of Markov games. Moreover, as turn-based games can be viewed as a special
case of simultaneous games, where at each state the reward and transition kernel only depend on the
action of one of the players, our algorithms and guarantees readily apply to the turn-based setting.
To our best knowledge, our algorithm is the first provably efficient method for two-player zero-sum
Markov games with simultaneous moves under the function approximation setting.

1.1. Related Work

There is a large body of literature on applying reinforcement learning methods to stochastic games.
Under the tabular setting, the work in Littman (1994, 2001a,b); Greenwald et al. (2003); Hu and
Wellman (2003); Grau-Moya et al. (2018) extends the Q-learning algorithm to zero/general-sum
Markov games, and that in Perolat et al. (2018); Srinivasan et al. (2018) extends the actor-critic
algorithm. Most of their convergence guarantees are asymptotic and rely on access to a sampling
oracle. Particularly related to us is the work in Sidford et al. (2019), which proposes a variance-
reduced minimax Q-learning algorithm with near-optimal sample complexity. The theoretical re-
sults therein also require a sampling oracle, and they focus turn-based games, a special case of
simultaneous-move games. The work in Lagoudakis and Parr (2012); Perolat et al. (2015); Pérolat
et al. (2016b,a,c); Yang et al. (2019) applies function approximation techniques to value-iteration
methods and establishes finite-time convergence to the NEs of two-player zero-sum Markov games.
Their results are based on the framework of fitted value-iteration (Munos and Szepesvári, 2008)
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and the availability of a well-explored behavioral policy. The recent work in Jia et al. (2019) stud-
ies turn-based zero-sum Markov games, where the transition model is assumed to be embedded in
some d-dimensional feature space, extending the MDP model proposed by Yang and Wang (2019b).
In summary, all of the work above either assumes a sampling oracle or a well explored behavioral
policy for drawing transitions, therefore effectively bypassing the exploration issue.

Our work builds on a line of research on provably efficient methods for MDPs without additional
assumptions on the sampling model. Most of the existing work focus on the tabular setting; see e.g.,
Strehl et al. (2006); Jaksch et al. (2010); Osband et al. (2014); Osband and Van Roy (2016); Azar
et al. (2017); Dann et al. (2017); Agrawal and Jia (2017); Jin et al. (2018); Russo (2019). Under the
function approximation setting, sample-efficient algorithms have been proposed using linear func-
tion approximators (Abbasi-Yadkori et al., 2019a,b; Jin et al., 2019; Yang and Wang, 2019a; Zanette
et al., 2019; Du et al., 2019b; Cai et al., 2019; Wang et al., 2019), as well as nonlinear ones (Wen and
Van Roy, 2017; Jiang et al., 2017; Dann et al., 2018; Du et al., 2019b; Dong et al., 2019; Du et al.,
2019a). Among these results, our work is most related to Jin et al. (2019); Zanette et al. (2019); Cai
et al. (2019), which consider linear MDP models and propose optimistic and randomized variants of
least-squares value iteration (LSVI) as well as optimistic variants of proximal policy optimization
(Schulman et al., 2017). Our linear Markov game model generalizes the MDP model considered in
these papers, and our OMNI-VI algorithm can be viewed as a generalization of the optimistic LSVI
method proposed in Jin et al. (2019). As mentioned before, the game structures in our problem
pose fundamental challenges that are absent in MDPs, and thus their algorithms cannot be trivially
extended to our game setting.

Finally, we remark that work on provably sample efficient RL methods for Markov games is
quite scarce. The only comparable work we are aware of is Wei et al. (2017), which proposes a
model-based algorithm by extending the UCRL2 algorithm (Jaksch et al., 2010) for tabular MDPs
to the game setting. Similarly to our work, they also consider both the online and offline settings.
On the other hand, they only consider tabular setting, which is a special case of our linear model.
Moreover, their model-based algorithm explicitly estimates the Markov transition kernel and relies
on the complicated technique of Extended Value Iteration, whose computational cost is quite high
as it requires augmenting the state/action spaces. In comparison, our algorithm is model-free in
the sense that it directly estimates the value functions; moreover, the computational cost of our
algorithm only depends on the dimension d of the feature and not the cardinality of the state space.
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