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Abstract
We study estimation of a gradient-sparse parameter vector θ∗ ∈ Rp, having strong gradient-sparsity
s∗ := ‖∇Gθ

∗‖0 on an underlying graph G. Given observations Z1, . . . , Zn and a smooth, convex
loss function L for which θ∗ minimizes the population risk E[L(θ;Z1, . . . , Zn)], we propose to
estimate θ∗ by a projected gradient descent algorithm that iteratively and approximately projects
gradient steps onto spaces of vectors having small gradient-sparsity over low-degree spanning trees
of G. We show that, under suitable restricted strong convexity and smoothness assumptions for the
loss, the resulting estimator achieves the squared-error risk s∗

n log(1 + p
s∗ ) up to a multiplicative

constant that is independent ofG. In contrast, previous polynomial-time algorithms have only been
shown to achieve this guarantee in more specialized settings, or under additional assumptions for
G and/or the sparsity pattern of ∇Gθ

∗. As applications of our general framework, we apply our
results to the examples of linear models and generalized linear models with random design.
Keywords: structured sparsity, changepoint models, piecewise-constant signals, compressed sens-
ing, graph signal processing, approximation algorithms

1. Introduction

We study estimation of a piecewise-constant or gradient-sparse parameter vector on a given graph.
This problem may arise in statistical changepoint detection (Killick et al., 2012; Fryzlewicz, 2014),
where an unknown vector on a line graph has a sequential changepoint structure. In image denoising
(Rudin et al., 1992) and compressed sensing (Candès et al., 2006a; Donoho, 2006), this vector may
represent a gradient-sparse image on a 2D or 3D lattice graph, as arising in medical X-rays and CT
scans. For applications of epidemic tracking and anomaly detection on general graphs and networks,
this vector may indicate regions of infected or abnormal nodes (Arias-Castro et al., 2011).

We consider the following general framework: Given observations Zn1 := (Z1, . . . , Zn) ∈ Zn
with distribution P , we seek to estimate a parameter θ∗ ∈ Rp associated to P . The coordinates of
θ∗ are identified with the vertices of a known graph G = (V,E), where the number of vertices is
|V | = p. Denoting by∇G : Rp → R|E| the discrete gradient operator

∇Gθ =
(
θi − θj : (i, j) ∈ E

)
, (1)

we assume that the gradient sparsity s∗ := ‖∇Gθ∗‖0 is small relative to the total number of edges
inG. For example, whenG is a line or lattice graph, s∗ measures the number of changepoints or the
total boundary size between the constant pieces of an image, respectively. For a given convex and
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differentiable loss function L : Rp ×Zn → R, we assume that θ∗ is related to the data distribution
P as the minimizer of the population risk,

θ∗ = arg min
θ∈Rp

EP
[
L(θ;Zn1 )

]
.

Important examples include linear and generalized linear models for Zi = (xi, yi), where θ∗ is the
vector of regression coefficients and L is the usual squared-error or negative log-likelihood loss.

Our main result implies that, under suitable restricted strong convexity and smoothness proper-
ties of the loss (Negahban et al., 2012) and subgaussian assumptions on the noise, a polynomial-time
projected gradient descent algorithm yields an estimate θ̂ which achieves the squared-error guaran-
tee

‖θ̂ − θ∗‖22 ≤ C ·
s∗

n
log
(

1 +
p

s∗

)
(2)

with high probability. Here, C > 0 is a constant independent of the graph G, and depends only on
the loss L and distribution P via their convexity, smoothness, and subgaussian constants.

Despite the simplicity of the guarantee (2) and its similarity to results for estimating coordinate-
sparse parameters θ∗ ∈ Rp, to our knowledge, our work is the first to establish this guarantee in
polynomial time for estimating gradient-sparse parameters on general graphs, including the 1D line.
In particular, (2) is not necessarily achieved by convex approaches which constrain or regularize the
`1 (total-variation) relaxation ‖∇Gθ∗‖1, for the reason that an ill-conditioned discrete gradient ma-
trix ∇G ∈ R|E|×p contributes to the restricted convexity and smoothness properties of the resulting
convex problem (Hütter and Rigollet, 2016; Fan and Guan, 2018). We discuss this further below, in
the context of related literature.

Our work instead analyzes an algorithm that iteratively and approximately computes the pro-
jected gradient update over a sequence of low-degree spanning trees T1, T2, . . . of G.1

θt ≈ arg min
θ∈Rp:‖∇Ttθ‖0≤S

‖θ − θt−1 + η · ∇L(θt−1;Zn1 )‖2 (3)

For graphsG that do not admit spanning trees of low degree, we apply an idea of Padilla et al. (2017)
and construct Tt using a combination of edges in G and additional edges representing backtracking
paths along a depth-first-search traversal of G.

Our algorithm and analysis rely on an important insight from Jain et al. (2014), which is to
perform each projection using a target sparsity-level S that is larger than the true gradient-sparsity
s∗ by a constant factor. This idea was applied in Jain et al. (2014) to provide a statistical analysis
of iterative thresholding procedures such as IHT, CoSaMP, and HTP for estimating coordinate-
sparse parameters (Blumensath and Davies, 2009; Needell and Tropp, 2009; Foucart, 2011). A key
ingredient in our proof, Lemma 8 below, is a combinatorial argument which compares the errors
of approximating any vector u by vectors uS and u∗ that are gradient-sparse over a tree, with two
different sparsity levels S and s∗. This extends a central lemma of Jain et al. (2014) from the simpler
setting of coordinate-sparsity to a setting of gradient-sparsity on trees.

1.1. Related literature

Existing literature on this and related problems is extensive, and we provide here a necessarily
partial overview.

1. Here,∇L(θt−1;Z
n
1 ) is the gradient ofL(θ;Zn1 ) with respect to θ at θt−1, and∇Ttθ is the discrete gradient operator

(1) over the edges in Tt instead of G.
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Convex approaches: Estimating a piecewise-constant vector θ∗ in both the direct-measurements
model yi = θ∗i + ei and the indirect linear model yi = x>i θ

∗ + ei has been of interest since early
work on the fused lasso (Tibshirani et al., 2005; Rinaldo, 2009) and compressed sensing (Candès
et al., 2006b,a; Donoho, 2006). A natural and commonly-used approach is to constrain or penalize
the total-variation semi-norm ‖∇Gθ∗‖1 (Rudin et al., 1992). Statistical properties of this approach
have been extensively studied, including estimation guarantees over signal classes of either bounded
variation or bounded exact gradient-sparsity (Mammen and van de Geer, 1997; Hütter and Rigollet,
2016; Sadhanala et al., 2016; Dalalyan et al., 2017; Lin et al., 2017; Ortelli and van de Geer, 2018);
exact or robust recovery guarantees in compressed sensing contexts (Needell and Ward, 2013a,b; Cai
and Xu, 2015); and correct identification of changepoints or of the discrete gradient support (Har-
chaoui and Lévy-Leduc, 2010; Sharpnack et al., 2012). Extensions to higher-order trend-filtering
methods have been proposed and studied in Kim et al. (2009); Wang et al. (2016); Sadhanala et al.
(2017); Guntuboyina et al. (2017). These works have collectively considered settings of both direct
and indirect linear measurements, for the 1D line, 2D and 3D lattices, and more general graphs.

In the above work, statistical guarantees analogous to (2) have only been obtained under restric-
tions for either G or θ∗, which we are able to remove using a non-convex approach. Hütter and
Rigollet (2016) established a guarantee analogous to (2) when certain compatibility and inverse-
scaling factors of G are O(1); a sufficient condition is that G has constant maximum degree, and
the Moore-Penrose pseudo-inverse ∇†G has constant `1 → `2 operator norm. This notably does not
include the 1D line or 2D lattice. Dalalyan et al. (2017), Lin et al. (2017), and Guntuboyina et al.
(2017) developed complementary results, showing that (2) can hold for the 1D line provided that the
s∗ changepoints of θ∗ have minimum spacing & p/(s∗+1). An extension of this to tree graphs was
proven in Ortelli and van de Geer (2018). Roughly speaking, ∇†G is an effective design matrix for
an associated sparse regression problem, and the spacing condition ensures that the active variables
in the regression model are weakly correlated, even if the full design∇†G has strong correlations.

Synthesis approach: A separate line of work focuses on the synthesis approach, which uses
a sparse representation of θ∗ in an orthonormal basis or more general dictionary. Such methods
include wavelet approaches in 1D (Daubechies, 1988; Donoho and Johnstone, 1994, 1995), curvelet
and ridgelet frames in 2D (Candès, 1998; Candès and Donoho, 2000, 2004), and tree-based wavelets
for more general graphs (Gavish et al., 2010; Sharpnack et al., 2013). Elad et al. (2007) and Nam
et al. (2013) compare and discuss differences between the synthesis and analysis approaches. Note
that in general, an s∗-gradient-sparse signal θ∗ may not admit a O(s∗)-sparse representation in an
orthonormal basis. For example, θ∗ having s∗ changepoints on the line may have up to s∗ log2 p
non-zero coefficients in the Haar wavelet basis, and (2) would be inflated by an additional log factor
using Haar wavelets.

Our contributions: In contrast to this first line of work on convex methods, our current work
is most closely related to a third line of literature on methods that penalize or constrain the exact
non-convex gradient-sparsity ‖∇Gθ∗‖0, rather than its convex `1 relaxation (Mumford and Shah,
1989; Boykov et al., 2001; Boysen et al., 2009; Fan and Guan, 2018). This direct method enables
theoretical guarantees that remove the spectral conditions on the graph G as well as the minimum
spacing requirements of the work alluded to above.

Our results extend those of Fan and Guan (2018), which established similar guarantees to (2)
for direct measurements yi = θ∗i + ei. Our projected gradient algorithm is similar to the proximal-
gradient method recently studied in Xu and Fan (2019), which considered indirect linear measure-
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ments yi = x>i θ
∗ + ei in a compressed sensing context. In contrast to Xu and Fan (2019), which

considered deterministic measurement errors and a restrictive RIP-type condition on the measure-
ment design, we provide guarantees in the statistical setting of random noise, with much weaker
conditions for the regression design, and for a general convex loss. These statistical guarantees
are based on a novel tree-projection algorithm that approximates the graph at every iteration. The
analysis leverages a new bound that controls the approximation error of tree projections, which is
presented in Lemma 8.

2. Tree-projected gradient descent algorithm

Our proposed algorithm, tree-projected gradient descent (tree-PGD), consists of two main steps:

1. For a specified vertex degree dmax ≥ 2 and iteration count τ ≥ 1, we construct a sequence
of trees T1, . . . , Tτ on the same vertices as G, such that each tree Tt has maximum degree
≤ dmax, and any gradient-sparse vector on G remains gradient-sparse on Tt.

2. For a specified step size η > 0 and sparsity level S > 0, we compute iterates θ1, . . . ,θτ
where each θt solves the projected gradient-descent step (3) over a discretized domain—see
(5) and (6) below.

For simplicity, we initialize the algorithm at θ0 = 0. The main tuning parameter is the projection
sparsity S, which controls the bias-variance trade-off and the gradient sparsity of the final estimate
θ̂ = θτ . The additional parameters of the algorithm are dmax, τ , η, and the discretization (5)
specified by (∆min,∆max, δ). We discuss these two steps in detail below.

For our theoretical guarantees, it is sufficient to choose dmax = 2 and to fix the same tree
in every iteration. However, we observe in Section 5 that using both larger values of dmax and a
different random tree in each iteration can yield substantially lower recovery error in practice, so we
will state our algorithm and theory to allow for these possibilities.

2.1. Tree construction

We construct a tree T on the vertices V = {1, . . . , p} by the following procedure.

1. Compute any spanning tree T̃ of G. If T̃ has maximum degree ≤ dmax, then set T = T̃ .

2. Otherwise, let ODFS be the ordering of unique vertices and edges visited in any depth-first-
search (DFS) traversal of T̃ . For each vertex v whose degree exceeds dmax in T̃ , keep its
first dmax edges in this ordering, and delete its remaining edges from T̃ . Note that the deleted
edges are between v and its children.

3. For each such deleted edge (v, w) where w is a child of v, let w′ be the vertex preceding w in
the ordering ODFS , and add to T̃ the edge (w′, w). Let T be the final tree.

This procedure is illustrated in Figure 1. We repeat this construction to obtain each tree T1, . . . , Tτ .
If G itself has maximum degree ≤ dmax, then Steps 2 and 3 above are not necessary, and the

guarantee (4) below may be trivially strengthened to ‖∇Tθ‖0 ≤ ‖∇Gθ‖0. For graphs G of larger
maximum degree, the idea in Steps 2 and 3 above and the associated guarantee (4) are drawn from
Lemma 1 of Padilla et al. (2017), which considered the case of a line graph for T (where dmax = 2).
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Figure 1: An illustration of the tree construction method. Left: Original lattice graph G. Middle:
A spanning tree T̃ of G, with vertices numbered in DFS ordering. Right: The final tree
T with dmax = 3, which changes edge (2, 16) to (15, 16), and edge (10, 14) to (13, 14),
thus replacing the two edges adjacent to the degree-4 vertices of T .

Lemma 1 Let G = (V,E) be any connected graph with p vertices, and let T be as constructed
above. Then T is a tree on V with maximum degree ≤ dmax. Furthermore, for any θ ∈ Rp,

‖∇Tθ‖0 ≤ 2‖∇Gθ‖0. (4)

The computational complexity for constructing T is O(|E|).

2.2. Projected gradient approximation

The exact minimizer of (3) is the projection of ut := θt−1 − η · ∇L(θt−1;Zn1 ) onto the space
of S-gradient-sparse vectors over Tt. This space is a union of

(
p−1
S

)
linear subspaces, and naively

iterating over these subspaces is intractable for large S. We instead propose to approximate the
projection by taking a discrete grid of values

∆ :=
{

∆min,∆min + δ,∆min + 2δ, . . . ,∆max − δ,∆max

}
(5)

and performing the minimization over θ ∈ ∆p. Thus, our tree-PGD algorithm sets

θt = arg min
θ∈∆p:‖∇Ttθ‖0≤S

‖θ − θt−1 + η · ∇L(θt−1;Zn1 )‖2 (6)

Each θt may be computed by a dynamic-programming recursion over Tt.2

In detail, fix any target vector u ∈ Rp and a tree T on the vertices {1, . . . , p}. To compute

arg min
θ∈∆p:‖∇T θ‖0≤S

‖θ − u‖2, (7)

pick any vertex o ∈ {1, . . . , p} with degree 1 in T as the root. For each vertex v of T , let Tv
be the sub-tree consisting of v and its descendants. Let |Tv| be the number of vertices in Tv and
uTv ∈ R|Tv | be the coordinates of u belonging to Tv. Define fv : ∆× {0, 1, . . . , S} → R by

fv(c, s) = min
{
‖θ − uTv‖22 : θ ∈ ∆|Tv |, ‖∇Tvθ‖0 ≤ s, θv = c

}
. (8)

These values fv(c, s) may be computed recursively from the leaves to the root, as follows.

2. For the case where Tt is a line graph, an alternative non-discretized algorithm with complexity O(p2S) is presented
in Auger and Lawrence (1989).
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1. For each leaf vertex v of T and each (c, s) ∈ ∆× {0, 1, . . . , S}, set fv(c, s) = (c− uv)2.

2. For each vertex v of T with children (w1, . . . , wk), given fw(c, s) for all w ∈ {w1, . . . , wk}
and (c, s) ∈ ∆× {0, 1, . . . , S}:

(a) For each s ∈ {0, 1, . . . , S} andw ∈ {w1, . . . , wk}, computemw(s) = minc∈∆ fw(c, s).

(b) For each (c, s) ∈ ∆ × {0, 1, . . . , S} and w ∈ {w1, . . . , wk}, compute gw(c, s) =
min{fw(c, s),mw(s− 1)}, where this is taken to be fw(c, s) if s = 0.

(c) For each (c, s) ∈ ∆× {0, 1, . . . , S}, set

fv(c, s) = (c− uv)2 + min
s1,...,sk≥0
s1+...+sk=s

(
gw1(c, s1) + . . .+ gwk(c, sk)

)
. (9)

The following then produces the vector θ which solves (7).

3. For the root vertex o, set θo = arg minc∈∆ fo(c, S) and So = S.

4. For each other vertex v, given θv and Sv: Let w1, . . . , wk be the children of v and let
s1, . . . , sk be the choices which minimized (9) for fv(θv, Sv). For each i = 1, . . . , k, if
gwi(θv, si) = fwi(θv, si), then set θwi = θv and Swi = si. If gwi(θv, si) = mwi(si− 1), then
set θwi = arg minc∈∆ fwi(c, si − 1) and Swi = si − 1.

The update θt in (6) is computed by applying this algorithm to u ≡ ut = θt−1−η ·∇L(θt−1;Zn1 ).

Lemma 2 This algorithm minimizes (7). Letting dmax be the maximum vertex degree of T and |∆|
be the cardinality of ∆, its computational complexity is O(dmaxp|∆|(S + dmax)dmax−1).

Let us compute the total complexity of this tree-PGD algorithm, under parameter settings that
yield a rate-optimal statistical guarantee for the linear model discussed in Section 4.1. We set dmax

as a small integer and S as a constant multiple of s∗. Evaluating ∇L(θt−1;Zn1 ) in the linear model
requires two matrix-vector multiplications of complexity O(np), where n is the sample size. Let us
assume that the number of graph edges is |E| = O(p), and that the entries of θ∗ and the noise e
are both of constant order. Then Corollary 10 indicates that we may take ∆max −∆min = O(

√
p),

δ = O(
√
s∗/np), and τ = O(log np). Under these settings, the total complexity of tree-PGD is

O
((
np + p2√n(s∗)dmax−3/2

)
log np

)
. Setting dmax = 2 (i.e. taking T1, . . . , Tτ to be line graphs)

yields the lowest complexity.

3. Main theorem

We introduce the following notation which identifies gradient-sparse vectors, partitions of the ver-
tices {1, . . . , p}, and subspaces of Rp.

Definition 3 Let T be a connected graph on the vertices V = {1, . . . , p}, and let θ ∈ Rp. The
partition induced by θ over T is the partition of V whose sets are the connected components of
{(i, j) ∈ T : θi = θj} in T . For such a partition P having k sets, the subspace associated to P is
the dimension-k subspace of vectors in Rp taking a constant value over each set. The boundary of
P over T , denoted by ∂TP , is the set of edges (i, j) ∈ T where i, j belong to different sets of P .
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Thus, the sets of the partition P induced by θ over T are the “pieces” of the graph T where θ
takes a constant value. If P is induced by θ over T , and K is the associated subspace, then θ ∈ K.
Furthermore, ∂TP is exactly the edge set where∇Tθ is non-zero, and ‖∇Tθ‖0 = |∂TP|.

We introduce two properties for the loss, defined for pairs of connected graphs (T1, T2) on the
same vertices V . We will apply these to consecutive pairs of trees generated by tree-PGD.

Definition 4 (cRSC and cRSS) A differentiable function f : Rp → R satisfies cut-restricted
strong convexity (cRSC) and smoothness (cRSS) with respect to (T1, T2), at sparsity level S and with
convexity and smoothness constants α,L > 0, if the following holds: For any partitions P1,P2 of
{1, . . . , p} where |∂T1P1| ≤ S and |∂T2P2| ≤ S, and any θ1,θ2 ∈ K := K1 + K2 where K1,K2

are the subspaces associated to P1,P2,

f(θ2) ≥ f(θ1) + 〈θ2 − θ1,∇f(θ1)〉+
α

2
‖θ2 − θ1‖22, (10)

f(θ2) ≤ f(θ1) + 〈θ2 − θ1,∇f(θ1)〉+
L

2
‖θ2 − θ1‖22. (11)

Definition 5 (cPGB) A differentiable function f : Rp → R has a cut-projected gradient bound
(cPGB) of Φ(S) with respect to (T1, T2), at a point θ∗ ∈ Rp and sparsity level S, if the following
holds: For any partitions P1,P2 of {1, . . . , p} where |∂T1P1| ≤ S and |∂T2P2| ≤ S, lettingK1,K2

be their associated subspaces and PK be the orthogonal projection onto K := K1 +K2,

‖PK∇f(θ∗)‖2 ≤ Φ(S). (12)

To provide some interpretation, the below lemma gives an example for this function Φ in the
important setting where wT∇L(θ∗;Zn1 ) is subgaussian for any w ∈ K.

Lemma 6 Let S ≥ 1, let T1, T2 be trees on {1, . . . , p}, and let θ∗ ∈ Rp. Suppose, for any subspace
K as defined in Definition 5 and any w ∈ K, that w>∇L(θ∗;Zn1 ) is σ2/n-subgaussian.3 Then for
any k > 0 and a constant Ck > 0 depending only on k, with probability at least 1 − p−k, the loss
L(· ;Zn1 ) has the cPGB

Φ(S) = Ckσ
√

S
n log

(
1 + p

S

)
with respect to (T1, T2), at θ∗ and sparsity level S.

The following is our main result, which provides a deterministic estimation guarantee when
tree-PGB is applied with an appropriate choice of the projection sparsity S = κs∗. This result
yields the same type of guarantee for any choice of dmax ≥ 2 and any sequence of trees.

Theorem 7 Suppose ‖∇Gθ∗‖0 ≤ s∗, where s∗ > 0. Set S = κs∗ in tree-PGD for a constant
κ > 1. Let τ ≥ 1 and dmax ≥ 2, let T1, . . . , Tτ be the sequence of trees generated by tree-PGD,
and denote T0 = T1 and S′ = S + 2s∗ + max(

√
S, dmax). Suppose, for all 1 ≤ t ≤ τ , that

1. L(· ;Zn1 ) satisfies cRSC and cRSS with respect to (Tt−1, Tt), at sparsity level S′ and with
convexity and smoothness constants α,L > 0.

2. L(· ;Zn1 ) has the cPGB Φ(S′) with respect to (Tt−1, Tt), at the point θ∗ and sparsity level S′.

3. This means that for any t > 0, P[|w>∇L(θ∗;Zn1 )| > t] ≤ 2e−nt
2/(2σ2).
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Define

γ =

√
(dmax−1)(2s∗+

√
S+1)+1

S−2s∗−
√
S

, Γ = (1 + γ)
√

1− α
L , Λ = 1

1−Γ

(
4(1+γ)
α · Φ(S′) + δ

√
p
)
,

and suppose κ is large enough such that S >
√
S + 2s∗ and Γ < 1. Take η = 1

L , θ0 = 0,
and −∆min,∆max ≥ 1

L‖∇L(θ∗;Zn1 )‖∞ + 3‖θ∗‖2 + 2Λ in tree-PGD. Then the τ th iterate θτ of
tree-PGD satisfies

‖θτ − θ∗‖2 ≤ Γτ · ‖θ∗‖2 + Λ.

Note that since γ → 0 as κ → ∞, for any value α/L ∈ (0, 1], there is a choice of constant
κ ≡ κ(α,L) sufficiently large to ensure Γ < 1.

3.1. Proof overview

The proof of Theorem 7 adopts an induction argument. For simplicity, let us suppose here that θt
exactly minimizes (3). Then for each iteration, we wish to prove

‖θt − θ∗‖2 ≤ Γ · ‖θt−1 − θ∗‖2 + 4(1+γ)
α · Φ(S′). (13)

The proof of (13) contains two main steps. First, we construct a subspace K which contains θt
and θ∗ and write ‖θt − θ∗‖2 ≤ ‖PKut − θt‖2 + ‖PKut − θ∗‖2. Using the following key lemma,
we show that there exists such a subspace K for which ‖PKut − θt‖2 ≤ γ‖PKut − θ∗‖2, and the
vectors in K have gradient-sparsity not much larger than S + s∗.

Lemma 8 Let T be a tree on the vertices {1, . . . , p} with maximum vertex degree dmax. Let s∗ > 0
and S = κs∗, where κ > 1 and S >

√
S + s∗. Let u ∈ Rp be arbitrary, let u∗ ∈ Rp be any vector

satisfying ‖∇Tu∗‖0 ≤ s∗, and set

uS = arg min
θ∈Rp:‖∇T θ‖0≤S

‖u− θ‖2.

Denote by (KS ,K∗) the subspaces associated to the partitions induced by (uS ,u∗) over T . Then
there exists a partitionP of {1, . . . , p} with associated subspaceK, such thatK containsKS+K∗,

|∂TP| ≤ S + s∗ +
√
S, (14)

and the orthogonal projection PKu of u onto K satisfies

‖PKu− uS‖22 ≤
(dmax − 1)(s∗ +

√
S + 1) + 1

S − s∗ −
√
S

‖PKu− u∗‖22. (15)

Then, in the second step, we bound ‖PKut − θ∗‖2 by introducing v = arg minθ∈K L(θ;Zn1 ).
Using a property of the gradient mapping (Lemma 13) and the cRSC and cRSS conditions, we
show that ‖PKut−v‖2 ≤

√
1− α/L · ‖θt−1−v‖2. Applying the triangle inequality, this implies

‖PKut − θ∗‖2 ≤
√

1− α/L · ‖θt−1 − θ∗‖2 + 2‖v − θ∗‖2. Finally, we show that ‖v − θ∗‖2 ≤
(2/α)Φ(S′) using the cRSC and cPGB properties of the loss, and combining gives (13).

The use of Lemma 8 is inspired by an analogous argument of Jain et al. (2014) for coordinate-
sparse parameter estimation. However, the analysis for coordinate-sparsity is simpler, due to a key
structural property that if uS and u∗ are the best (coordinate-) S-sparse and s∗-sparse approxima-
tions of u, then the sparse subspace of u∗ is contained inside that of uS . This nested subspace
structure does not hold for gradient-sparsity, and thus our proofs of both Lemma 8 and Theorem 7
follow different arguments from those of Jain et al. (2014).
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4. Examples

4.1. Gradient-Sparse Linear Regression

Consider the example of Zi = (xi, yi) satisfying a linear model

yi = x>i θ
∗ + ei (16)

for independent design vectors xi ∈ Rp and mean-zero residual errors ei. Let us write this as
y = Xθ∗+e where y = (y1, . . . , yn), e = (e1, . . . , en), and X ∈ Rn×p is the random design matrix
with rows x>i . Then θ∗ is the minimizer of E[L(θ;Zn1 )] for the squared-error loss L(θ;Zn1 ) =
1

2n‖y −Xθ‖22. The gradient of the loss is given by∇L(θ;Zn1 ) = X>(Xθ − y)/n.
We assume that

Cov(xi) = Σ, λmax(Σ) = λ1, λmin(Σ) = λp, ‖xi‖2ψ2
≤ Dλp (17)

E[ei] = 0, ‖ei‖2ψ2
≤ σ2 (18)

for constants λ1, λp, D, σ
2 > 0, where ‖ · ‖ψ2 denotes the scalar or vector subgaussian norm. Then

the cRSC, cRSS, and cPGB conditions hold according to the following proposition.

Proposition 9 Suppose (17) and (18) hold, and let S′ ≥ 1. Define

g(S′) = S′ log(1 + p
S′ ). (19)

Let T1, . . . , Tτ be the trees generated by tree-PGD, and let T0 = T1. For any k > 0, and some
constants C1, C2, C3 > 0 depending only on k and D, if

n ≥ C1g(S′)

then with probability at least 1− τ · p−k, for every 1 ≤ t ≤ τ ,

1. L(· ;Zn1 ) satisfies cRSC and cRSS with respect to (Tt−1, Tt) at sparsity level S′ and with
convexity and smoothness constants α = λp/2 and L = 3λ1/2.

2. L(· ;Zn1 ) has the cPGB Φ(S′) = C2σ
√
λ1g(S′)/n with respect to (Tt−1, Tt), at θ∗ and

sparsity level S′.

3. ‖∇L(θ∗;Zn1 )‖∞ ≤ C3σ
√

(λ1 log p)/n.

Applying this and Theorem 7, we obtain the following immediate corollary.

Corollary 10 Suppose (17) and (18) hold, and ‖∇Gθ∗‖0 ≤ s∗ and ‖θ∗‖2 ≤ c0
√
p for some

s∗ ≥ 1 and c0 > 0. Set S = c1(λ1/λp)
2s∗, η = 2/(3λ1), ω = σλ

3/2
1 /λ2

p, −∆min = ∆max =

c2(
√
p+ ω

√
(s∗ log p)/n), δ = ω

√
s∗/np, and τ = c3 log(np/ω2s∗) in tree-PGD, for sufficiently

large constants c1 > 0 depending on dmax, D and c2, c3 > 0 depending on dmax, D, c0.
Then for any k > 0 and some constants C1, C2 > 0 depending only on k, dmax, D, if n ≥

C1(λ1/λp)
2s∗ log(1 + p/s∗), then with probability at least 1− τ · p−k,

‖θτ − θ∗‖22 ≤ C2 ·
σ2λ3

1

λ4
p

· s
∗

n
log
(

1 +
p

s∗

)
.

9
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4.2. Gradient-Sparse GLM

Consider the example of Zi = (xi, yi) satisfying a generalized linear model (GLM)

P (yi|xi,θ∗, φ) = exp
{yixT

i θ
∗ − b(xT

i θ
∗)

φ

}
· h(yi, φ)

for independent design vectors xi ∈ Rp. Here φ > 0 is a constant scale parameter, and h and b
are the base measure and cumulant function of the exponential family, where E(yi|xi) = b′(x>i θ

∗).
Then θ∗ minimizes the population risk E[L(θ;Zn1 )] for the negative log-likelihood loss L(θ;Zn1 ) =
1
n

∑n
i=1

(
b(x>i θ)− yix>i θ

)
. The gradient of this loss is∇L(θ;Zn1 ) = 1

n

∑n
i=1(b′(x>i θ)− yi)xi.

Let us assume that (17) holds for the design vectors xi. Setting ei = yi − b′(x>i θ
∗), let us

assume also that for some constants αb, Lb, D1, D2 > 0 and β ∈ [1, 2],

αb
2

(x2 − x1)2 ≤ b(x2)− b(x1)− b′(x1)(x2 − x1) ≤ Lb
2

(x2 − x1)2 for all x1, x2 ∈ R, (20)

P(|ei| > ζ) ≤ D1 exp(−D2ζ
β) for all ζ > 0. (21)

Then the cRSC, cRSS, and cPGB conditions hold according to the following proposition.

Proposition 11 Suppose that (17), (20), and (21) hold. Let S′ ≥ 1 and g(S′) be as in (19). Let
T1, . . . , Tτ be the trees generated by tree-PGD, and let T0 = T1. For any k > 0 and some constants
C1, C2, C3 > 0 depending only on k,D,D1, D2, β, if n ≥ C1g(S′), then with probability at least
1− τ · p−k, for every 1 ≤ t ≤ τ ,

1. L(· ;Zn1 ) satisfies cRSC and cRSS with respect to (Tt−1, Tt) at sparsity levels S′ with convex-
ity and smoothness constants α =

αbλp
2 and L = 3Lbλ1

2 .

2. L(· ;Zn1 ) has the cPGB with respect to (Tt−1, Tt), at θ∗ and sparsity level S′.

Φ(S′) =

{
C2

√
λ1/n · g(S′)1/β if 1 < β ≤ 2

C2 log n
√
λ1/n · g(S′) if β = 1

3. ‖∇L(θ∗;Zn1 )‖∞ ≤

{
C3(log p)1/β

√
λ1/n if 1 < β ≤ 2

C3(log n)(log p)
√
λ1/n if β = 1

Under suitable settings of the tree-PGD parameters, similar to Corollary 10 and which we omit
for brevity, when n ≥ C ′s∗ log(1 + p/s∗), this yields the estimation rate

‖θτ − θ∗‖22 ≤ C ·
(s∗ log(1 + p/s∗))2/β

n

in models where 1 < β ≤ 2, and this rate with an additional (log n)2 factor in models where β = 1.
(Here, these constants C,C ′ depend on λ1, λp, D,D1, D2, β.)

We note that this result may be established under a relaxed condition (20) that only holds over a
sufficiently large bounded region for x1, x2, following a more delicate analysis and ideas of Negah-
ban et al. (2012). For simplicity, we will not pursue this direction in this work.

10
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Figure 2: Top-left: True image θ∗, with values between −0.5 (blue) and 0.9 (red). Top-middle:
Noisy image 1

nX>y, for y = Xθ∗+e with Gaussian design and noise standard deviation
σ = 1.5. Top-right: Best total-variation penalized estimate θ̂. Bottom row: Best tree-
PGD estimate θ̂ for a fixed line graph Tt in every iteration (zig-zagging vertically through
G, bottom left), a different random tree with dmax = 2 in each iteration (bottom middle),
and a different random tree with dmax = 4 in each iteration (bottom right).

5. Simulations

Theorem 7 applies for any choices of trees T1, . . . , Tτ in tree-PGD, with any maximum degree
dmax ≥ 2. We perform a small simulation study in the linear model (16) to compare the empirical
estimation accuracy of tree-PGD using different tree constructions.

We recover the image θ∗ depicted in Figure 2 on a 30 × 30 lattice graph G, using n = 500
linear measurements with xi ∼ N (0, I) and ei ∼ N (0, σ2). For σ = 1.5, a noisy image 1

nX>y =
θ∗ + ( 1

nX>X− I)θ∗ + 1
nX>e is also depicted.

Tree construction: We applied tree-PGD in two settings: First, we constructed Tt using a deter-
ministic DFS over G, fixed across all iterations. This resulted in Tt being a line graph that zig-zags
vertically through G. Second, we constructed Tt using a different spanning tree T̃t generated by
random DFS in each iteration. The DFS procedure started at a uniform random node and, at each
forward step, chose a uniform random unvisited neighbor. We tested restricting to dmax = 2 or
dmax = 3 for Tt, or letting Tt = T̃t (corresponding to dmax = 4). In all experiments, we used
τ = 80, η = 1/5, and (∆min,∆max, δ) = (−0.6, 1.0, 0.05).

Results for a single experiment at σ = 1.5 are depicted in Figure 2, and average MSE across
20 experiments for varying σ are reported in Table 1. These results correspond to the best choices
S = κs∗ across a range of tested values. Estimation accuracy is substantially better using different
and random trees than using the same fixed line graph. We observe small improvements using
dmax = 3 or dmax = 4 over random line graphs with dmax = 2, especially in the higher signal-
to-noise settings. For comparison, we display in Figure 2 and Table 1 also the total-variation (TV)
regularized estimate θ̂ = arg minθ

1
2n‖y−Xθ‖22 +λ‖∇Gθ‖1 and its average MSE, corresponding

to the best choices of λ. We observe that tree-PGD, which targets the exact gradient-sparsity rather

11
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Noise std. dev. σ 1.0 1.5 2.0 2.5 3.0
Fixed line 0.0372 0.0373 0.0383 0.0388 0.0407
Random, dmax = 2 0.0005 0.0009 0.0020 0.0040 0.0058
Random, dmax = 3 0.0003 0.0008 0.0014 0.0028 0.0052
Random, dmax = 4 0.0003 0.0007 0.0013 0.0032 0.0055
Total variation 0.0006 0.0013 0.0023 0.0036 0.0052

Table 1: MSE 1
p‖θ̂ − θ∗‖22 for recovering the image of Figure 2 (under best tuning of S), averaged

across 20 independent simulations. For tree-PGD, using a different random tree Tt per
iteration yields a sizeable improvement over using a fixed line graph across all iterations,
and small improvements are observed for increasing dmax. Average MSE for the total-
variation penalized estimate is provided for comparison (under best tuning of λ).

than a convex surrogate, is more accurate in high signal-to-noise settings, and becomes less accurate
in comparison with TV as signal strength decreases. This agrees with previous observations made
in similar contexts in Hastie et al. (2017); Mazumder et al. (2017); Fan and Guan (2018).

6. Discussion

We have shown linear convergence of gradient descent with projections onto the non-convex space
of gradient-sparse vectors on a graph. Our results show that this method achieves strong statistical
guarantees in regression models, without requiring a matching between the underlying graph and
design matrix. We do this by introducing a careful comparison between gradient-sparse approxima-
tions at different sparsity levels, which generalizes previous results for coordinate-sparse vectors.

Our theory is presented in such a way that allows the approximation trees to vary at each it-
eration. However, this is not required and the tree can be fixed with dmax = 2 at the start of the
algorithm. Nevertheless, we observe experimentally that using a different random tree in each it-
eration substantially improves the practical performance. Our intuition for the improvement with
random trees is that the gradient-sparsity of the signal on the original graph G may be better cap-
tured by the average sparsity with respect to a randomly chosen sub-tree of G, than by the sparsity
with respect to any fixed sub-tree. By using a different random tree in each iteration, the algorithm
is better targeting this average sparsity. This observation will be studied in future work.

Another interesting direction for future work is to explore the connections between this work
and computationally tractable sparse linear regression problems with highly correlated designs. For
instance, some work Bühlmann et al. (2013); Dalalyan et al. (2017) discuss various ways to over-
come correlated designs. In our setting, the tree projection step enables a computationally efficient
method, and it is of interest to understand more general settings where one may overcome the cor-
related structure of the problem using a computationally efficient procedure.
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Appendix A. Correctness and complexity of algorithm

We prove Lemmas 1 and 2 on basic guarantees for the two steps of the tree-PGD algorithm.

Proof [Lemma 1] For the first statement, since dmax ≥ 2, the vertex w corresponding to each
deleted edge (v, w) must be a child of v which is not its first child in the ordering ODFS . Then its
preceding vertex w′ must be a leaf vertex of T̃ . Each such w corresponds to a different such leaf w′,
so deleting these edges (v, w) and adding (w′, w) preserves the connectedness and tree structure.
By construction, each non-leaf vertex of T̃ has degree at most dmax in T . Each leaf vertex of T̃ has
degree at most 2 ≤ dmax in T , so T has maximum degree ≤ dmax.

For the second statement, since the edges of T̃ are a subset of those of G,

‖∇T̃θ‖0 ≤ ‖∇Gθ‖0.

Let the root vertex of T be 1. For each other vertex i ≥ 2, denote its parent in T by p(i). Then

‖∇Tθ‖0 =

p∑
i=2

1{θi 6= θp(i)}. (22)

Now consider two cases: If the edge (i, p(i)) exists in T̃ , then it is a forward edge in the DFS of T̃ ,
and 1{θi 6= θp(i)} contributes to ‖∇T̃θ‖0. If (i, p(i)) is not an edge of T̃ , then p(i) is a leaf node
in T̃ , and there is path of backward edges (p1, p2, . . . , pr) in the DFS of T̃ where p1 = p(i) and
pr = i. The triangle inequality then implies

1{θi 6= θp(i)} ≤
r−1∑
j=1

1{θpj 6= θpj+1},

where each term on the right contributes to ‖∇T̃θ‖0. Applying this to each term on the right of
(22), and invoking the fundamental property that DFS visits each edge of T̃ exactly twice, we get

‖∇Tθ‖0 ≤ 2‖∇T̃θ‖0 ≤ 2‖∇Gθ‖0.

Proof [Lemma 2] It is clear that Step 1 computes (8) at the leaf vertices v. For Step 2, assume
inductively that fw(c, s) is the value (8) for all children w of v. The value gw(c, s) represents the
minimum value of ‖θ − uTw‖22, if θv = c and the gradient-sparsity of θ on Tw and the additional
edge (v, w) is at most s—we have either θw = c and gw(c, s) = fw(c, s), or θw 6= c, in which
case θw = arg minc∈∆ fw(c, s − 1) and gw(c, s) = mw(s − 1). Then (9) computes (8) at v by
partitioning the gradient-sparsity s across its k children, and summing the costs gwi(c, si) and the
additional cost (c − uv)2 for the best such partition. Thus Step 2 correctly computes (8) for each
vertex v. In particular, the minimum value for (7) is given by minc∈∆ fo(c, S). The minimizer θ is
obtained by examining the minimizing choices in Steps 1 and 2, which is carried out in Steps 3 and
4: Each θv is the value of θ at v, and each Sv is (an upper-bound for) the value of ‖∇Tvθ‖0 at the
minimizer θ.

For each vertex v, Step 1 has complexity (S + 1)|∆|, Steps 2(a) and 2(b) both have complexity
(S + 1)k|∆|, and Step 2(c) has complexity (S + 1)|∆|k

(
S+k−1
k−1

)
, as there are

(
s+k−1
k−1

)
≤
(
S+k−1
k−1

)
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partitions of s into s1, . . . , sk. Note that k ≤ dmax − 1, where this holds also for the root vertex o
because we chose it to have degree 1 in T . Then

(
S+k−1
k−1

)
= O((S + dmax)dmax−2). Storing the

relevant minimizers in Steps 1 and 2, the complexity of Steps 3 and 4 is O(1) per vertex. So the
total complexity is O(dmaxp|∆|(S + dmax)dmax−1).

Appendix B. Proof of Lemma 8

Proof Let PS be the partition of {1, . . . , p} induced by uS over T . We have |∂TPS | ≤ S. If
|∂TPS | < S, then let us arbitrarily split some vertex sets in PS along edges of T , until |∂TPS | = S.
Thus, we may assume henceforth that |∂TPS | = S.

We construct another partition P ′ of {1, . . . , p} into the (disjoint) vertex sets (V1, . . . , VB, R),
such that each set of P ′ is connected over T , and P ′ satisfies the following properties:

1. For each b = 1, . . . , B, the number of edges (i, j) in T where both i, j ∈ Vb, but i and j do
not belong to the same set of PS , is greater than or equal to s∗ +

√
κs∗.

2. B has the upper and lower bounds

S − s∗ −
√
S

(dmax − 1)(s∗ +
√
S + 1) + 1

≤ B ≤
√
S (23)

We construct this partition P ′ in the following way: Initialize T̃ = T and pick any degree-1
vertex of T as its root. Assign to each edge (i, j) of T̃ a “score” of 1 if i and j belong to the same
set of PS , and 0 otherwise. Repeat the following steps for all vertices i of T , in reverse-breadth-
first-search order (starting from a vertex i farthest from the root):

• Let T̃i be the sub-tree of T̃ rooted at i and consisting of the descendants of i in T̃ .

• If the total score of edges in T̃i is at least s∗ +
√
κs∗, then add the vertices of T̃i as a set Vb to

the partition P ′, and remove T̃i (including the edge from i to its parent) from T̃ .

This terminates when the remaining tree T̃ has total score less than s∗ +
√
κs∗. Take the last set R

of P ′ to be the vertices of this remaining tree.
By construction, each set V1, . . . , VB, R is connected on T , and property 1 above holds. To

verify the bounds in property 2, note that the total score of the starting tree T̃ = T is S, and the
total score of the final tree belongs to the range [0, s∗+

√
κs∗). Each time we remove a sub-tree T̃i,

the score of T̃ decreases by at least s∗ +
√
κs∗. We claim that the score also decreases by at most

(dmax− 1)(s∗+
√
κs∗+ 1) + 1: This is because i has at most dmax− 1 children, and if T̃i has total

score ≥ (dmax − 1)(s∗ +
√
κs∗ + 1), then some sub-tree rooted at one of its children j would have

total score ≥ s∗ +
√
κs∗. (The additional +1 accounts for a possible +1 score on the edge (i, j).)

This sub-tree T̃j would have been removed under the above reverse-breadth-first-search ordering,
so this is not possible. Thus, T̃i has total score < (dmax − 1)(s∗ +

√
κs∗ + 1), verifying our claim.

Then the total number B of sub-trees removed must satisfy

S − (s∗ +
√
κs∗)

(dmax − 1)(s∗ +
√
κs∗ + 1) + 1

≤ B ≤ S

s∗ +
√
κs∗

.
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Recalling S = κs∗, this implies (23) as desired.
Now let P∗ be the partition of {1, . . . , p} induced by u∗ over T , and let P be the common

refinement of PS , P∗, and P ′ constructed above: Each edge of T which connects two different
sets of P must connect two different sets of at least one of PS , P∗, and P ′. Then the subspace K
associated to P contains KS and K∗, and furthermore

|∂TP| ≤ |∂TPS |+ |∂TP∗|+ |∂TP ′| ≤ S + s∗ +B ≤ S + s∗ +
√
S.

Here, we have used |∂TP ′| = B because P ′ consists of B + 1 connected sets over T .
For each b = 1, . . . , B, recall the set Vb ofP ′, and construct a vector vb ∈ Rp whose coordinates

are

(vb)i =

{
(u∗)i if i ∈ Vb
(PKu)i if i /∈ Vb.

That is, vb is equal to u∗ on Vb and equal to PKu outside Vb. Then

‖PKu− u∗‖22 ≥
B∑
b=1

∑
i∈Vb

|(PKu)i − (u∗)i|2 =
B∑
b=1

‖PKu− vb‖22. (24)

We claim that ‖∇Tvb‖0 ≤ S: Indeed, the edges (i, j) of T where (vb)i 6= (vb)j are contained in
the union of ∂TP∗, ∂TP ′, and the edges of ∂TPS whose endpoints both belong to the complement
of Vb. Since |∂TPS | = S, and of these S edges, at least s∗ +

√
κs∗ have both endpoints in Vb by

property 1 of our construction of P ′, this implies ‖∇Tvb‖0 ≤ s∗ +B + (S − s∗ −
√
κs∗) ≤ S.

Finally, we use this to lower-bound the right side of (24): Observe that by construction, uS and
all of the vectors vb for b = 1, . . . , B belong to the subspace K associated to P . Note that

‖u− vb‖22 ≥ ‖u− uS‖22 (25)

by optimality of uS and the condition ‖∇Tvb‖0 ≤ S shown above. So, applying the Pythagorean
identity for the projection PK and its orthogonal projection P⊥K ,

‖PKu− vb‖22 = ‖u− vb‖22 − ‖P⊥Ku‖22 ≥ ‖u− uS‖22 − ‖P⊥Ku‖22 = ‖PKu− uS‖22.

Applying this to (24), we get

‖PKu− u∗‖22 ≥ B · ‖PKu− uS‖22.

Combining this with the lower-bound on B in (23) yields the lemma.

Appendix C. Proof of Theorem 7

We first extend the result of Lemma 8 to address the discretization error in our approximate projec-
tion step (6).

Lemma 12 In the setting of Lemma 8, suppose that u and u∗ are as defined in Lemma 8, but

uS = arg min
θ∈∆p:‖∇T θ‖0≤S

‖u− θ‖2 (26)
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where the minimization is over the discrete lattice ∆ = (∆min,∆min + δ, . . . ,∆max − δ,∆max). If
[−‖u‖∞, ‖u‖∞] ⊆ [∆min,∆max], then the result of Lemma 8 still holds, with (15) replaced by

‖PKu− uS‖22 ≤
(dmax − 1)(s∗ +

√
S + 1) + 1

S − s∗ −
√
S

‖PKu− u∗‖22 + pδ2. (27)

Proof The proof is the same as Lemma 8, up until (25) where we used optimality of uS : We define
PS and construct P as in Lemma 8, using this discrete vector uS . Now let us denote by ǔS the
minimizer of (26) over Rp rather than over ∆p. Note that we do not necessarily have ǔS ∈ KS , i.e.
ǔS may have a different gradient-sparsity pattern from uS . However, since ‖∇Tvb‖0 ≤ S, we still
have the bound ‖u− vb‖22 ≥ ‖u− ǔS‖22 in place of (25), by optimality of ǔS .

Let ǔS∆ be the vector ǔS with each entry rounded to the closest value in ∆. Note that the value
of ǔS on each set of its induced partition over T is the average of the entries of u over this set: This
implies that ‖ǔS‖∞ ≤ ‖u‖∞, and also that the residual u − ǔS is orthogonal to ǔS − ǔS∆. By
the given condition on ∆min and ∆max, we have the entrywise bound ‖ǔS∆ − ǔS‖∞ ≤ δ from the
rounding. Then

‖u− vb‖22 ≥ ‖u− ǔS‖22 = ‖u− ǔS∆‖22 − ‖ǔS∆ − ǔS‖22 ≥ ‖u− ǔS∆‖22 − pδ2.

Since ǔS∆ ∈ ∆p also satisfies ‖∇T ǔS∆‖0 ≤ S, optimality of uS implies ‖u− ǔS∆‖22 ≥ ‖u− uS‖22.
Substituting above and continuing the proof as in Lemma 8, we get the bound

‖PKu− u∗‖22 ≥ B · (‖PKu− uS‖22 − pδ2),

and rearranging and applying the lower-bound for B concludes the proof as before.

The second step of the proof is carried out by the following lemma, establishing a key property
of the gradient mapping following ideas of Theorem 2.2.7 in (Nesterov, 2013).

Lemma 13 Let (T1, T2) be two trees on {1, . . . , p}. Let (P1,P2) be two partitions of {1, . . . , p},
with associated subspaces (K1,K2), such that |∂T1P1| ≤ s and |∂T2P2| ≤ s for some sparsity level
s > 0. Let K = K1 +K2, and let PK be the orthogonal projection onto K.

Let L be a loss function satisfying cRSC and cRSS with respect to (T1, T2), at sparsity level s
and with convexity and smoothness constants α,L > 0. Fix θ1 ∈ K1 and define

u = PK(θ1 −∇L(θ1)/L), v = arg min
θ∈K

L(θ).

Then

(a) ‖u− v‖2 ≤
√

1− α/L · ‖θ1 − v‖2, and

(b) ‖θ1 − v‖2 ≤ (2/α) · ‖PK∇L(θ1)‖2.

Proof Denote
g = PK∇L(θ1).

Since θ1 ∈ K, we have u = θ1 − g/L. Then

‖u− v‖22 = ‖θ1 − v − g/L‖22 = ‖θ1 − v‖22 +
1

L2
‖g‖22 −

2

L
〈g,θ1 − v〉.
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So part (a) will follow from

〈g,θ1 − v〉 ≥ 1

2L
‖g‖22 +

α

2
‖θ1 − v‖22. (28)

To show (28), observe that v ∈ K = K1 +K2, so we may apply the cRSC condition to θ1 and
v. This gives

L(v) ≥ L(θ1) + 〈∇L(θ1),v − θ1〉+
α

2
‖v − θ1‖22. (29)

Then, introducing

Q(θ) = L(θ1) + 〈∇L(θ1),θ − θ1〉+
L

2
‖θ − θ1‖22,

we get

L(v) ≥ Q(u)− L

2
‖u− θ1‖22 + 〈∇L(θ1),v − u〉+

α

2
‖v − θ1‖22.

Applying u− θ1 = −g/L and v − u ∈ K, this gives

L(v) ≥ Q(u)− 1

2L
‖g‖22 + 〈g,v − u〉+

α

2
‖v − θ1‖22

= Q(u) +
1

2L
‖g‖22 + 〈g,v − θ1〉+

α

2
‖v − θ1‖22.

Next, observe that u ∈ K = K1 +K2, so we may apply the cRSS condition to θ1 and u. This
yields L(u) ≤ Q(u). Since L(v) ≤ L(u) by optimality of v, combining these observations gives

0 ≥ 1

2L
‖g‖22 + 〈g,v − θ1〉+

α

2
‖v − θ1‖22.

Rearranging yields (28), which establishes part (a).
For part (b), let us again apply (29) and the optimality condition L(v) ≤ L(θ1) to get

0 ≥ 〈∇L(θ1),v − θ1〉+
α

2
‖v − θ1‖22

= 〈g,v − θ1〉+
α

2
‖v − θ1‖22

≥ −‖g‖2 · ‖v − θ1‖2 +
α

2
‖v − θ1‖22.

Rearranging yields part (b).

Proof [Theorem 7] Let ut = θt−1 − 1
L∇L(θt−1;Zn1 ). We claim by induction that

[−‖ut‖∞, ‖ut‖∞] ⊆ [∆min,∆max] (30)

and

‖θt − θ∗‖2 ≤ Γ · ‖θt−1 − θ∗‖2 +
4(1 + γ)

α
· Φ(S′) + δ

√
p (31)

for each t = 1, . . . , τ .
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To start the induction, first observe that for every t ∈ {1, . . . , τ}, the following holds: Fix any
i ∈ {1, . . . , p} and let K = Kt−1 +K∗+ span(ei) where (Kt−1,K

∗) are the subspaces associated
to the partitions induced by (θt−1,θ

∗) over Tt−1, and span(ei) is the 1-dimensional span of the ith

standard basis vector ei. If P is the partition associated toK, then |∂Tt−1P| ≤ S+2s∗+dmax ≤ S′
because ‖∇Tt−1θt−1‖0 ≤ S, ‖∇Tt−1θ

∗‖0 ≤ 2s∗ by Lemma 1, and ‖∇Tt−1ei‖0 ≤ dmax. Applying
the cRSS property for L with respect to (Tt−1, Tt), we get that the loss L(· ;Zn1 ) is L-strongly-
smooth restricted to K, meaning for all u,v ∈ K,

L(u;Zn1 ) ≤ L(v;Zn1 ) + 〈∇L(v),u− v〉+
L

2
‖u− v‖22.

Then applying Eq. (2.1.8) of (Nesterov, 2013) to the loss L(· ;Zn1 ) restricted to K, we have for all
u,v ∈ K that

‖PK∇L(u;Zn1 )−PK∇L(v;Zn1 )‖2 ≤ L‖u− v‖2,

where PK is the orthogonal projection onto K. In particular,∣∣〈ei,∇L(θt−1;Zn1 )−∇L(θ∗;Zn1 )〉
∣∣ ≤ L‖θt−1 − θ∗‖2.

This holds for each standard basis vector ei, so

1

L
‖∇L(θt−1;Zn1 )‖∞ ≤

1

L
‖∇L(θ∗;Zn1 )‖∞ + ‖θt−1 − θ∗‖2. (32)

Then (30) holds for t = 1 by the initialization θ0 = 0 and the given conditions for ∆min,∆max.
Suppose by induction that (30) holds for t. We apply Lemma 12 to T = Tt, u∗ = θ∗, and

u = ut. Note that by Lemma 1, ‖∇Tθ∗‖0 ≤ 2s∗. Then by the definition of the update (6), we
have uS = θt in Lemma 12. Denote by P2 the partition guaranteed by Lemma 12, with associated
subspace K2. Then the lemma guarantees that

|∂TtP2| ≤ S + 2s∗ +
√
S ≤ S′,

and furthermore
‖PK2ut − θt‖2 ≤ γ · ‖PK2ut − θ∗‖2 + δ

√
p.

This bound implies

‖θt − θ∗‖2 ≤ ‖θt −PK2ut‖2 + ‖PK2ut − θ∗‖2 ≤ (1 + γ)‖PK2ut − θ∗‖2 + δ
√
p. (33)

Next, let us apply Lemma 13: Take (T1, T2) in Lemma 13 to be (Tt−1, Tt). Take P1 to be the
common refinement of the partitions induced by θt−1 and θ∗ over Tt−1, and let P2 be as above.
Then |∂Tt−1P1| ≤ S + 2s∗ < S′ and |∂TtP2| ≤ S′, so the cRSC and cRSS conditions required in
Lemma 13 are satisfied. Let K1,K2 be the associated subspaces, and set K = K1 +K2 and

v = arg min
θ∈K

L(θ;Zn1 ).

First, we take θ1 to be θt−1, and apply Lemma 13(a) with u = PKut. This gives

‖PKut − v‖2 ≤
√

1− α

L
· ‖θt−1 − v‖2. (34)
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Note that ‖PK2ut − θ∗‖2 ≤ ‖PKut − θ∗‖2 because θ∗ ∈ K2 ⊆ K. Applying this and (34) to
(33),

‖θt − θ∗‖2 ≤ (1 + γ)‖PKut − θ∗‖2 + δ
√
p

≤ (1 + γ)

(√
1− α

L
· ‖θt−1 − v‖2 + ‖v − θ∗‖2

)
+ δ
√
p

≤ (1 + γ)

(√
1− α

L
· ‖θt−1 − θ∗‖2 + 2‖v − θ∗‖2

)
+ δ
√
p. (35)

Now, let us apply Lemma 13(b) with θ1 being θ∗. This gives

‖v − θ∗‖2 ≤ (2/α)‖PK∇L(θ∗;Zn1 )‖2 ≤ (2/α)Φ(S′),

the second bound holding by the cPGB assumption. Applying this to (35) establishes (31) at the
iterate t.

We may apply (31) recursively for 1, . . . , t, using θ0 = 0 and 1 + Γ + Γ2 + . . . = 1/(1 − Γ),
to get

‖θt − θ∗‖2 ≤ Γt · ‖θ∗‖2 +
1

1− Γ

(
4(1 + γ)

α
· Φ(S′) + δ

√
p

)
= Γt · ‖θ∗‖2 + Λ. (36)

In particular,
‖θt‖2 ≤ 2‖θ∗‖2 + Λ.

Then, applying also (32),

‖ut+1‖∞ ≤ ‖θt‖∞ +
1

L
‖∇L(θ∗;Zn1 )‖∞ + ‖θt − θ∗‖∞

≤ 1

L
‖∇L(θ∗;Zn1 )‖∞ + 3‖θ∗‖2 + 2Λ.

Then the given condition for ∆min,∆max implies that (30) holds for iteration t+ 1, completing the
induction. Finally, the theorem follows by applying (36) at t = τ .

Appendix D. Proofs for cRSC, cRSS, and cPGB

Proof [Lemma 6] Note that there are
(
p−1
S

)
different partitionsP1 of V = {1, . . . , p}with |∂T1P1| =

S, and similarly for P2, because each such partition corresponds to cutting S of the p− 1 edges of
T1. Let g(S) = S log(1 + p/S). Then there are at most

(
p−1
S

)
·
(
p−1
S

)
≤ e2g(S) different combina-

tions of (K1,K2), and hence at most this many subspaces K. Taking a union bound over all such
K gives, for any ζ > 0,

P(max
K
‖PK∇L(θ∗;Zn1 )‖2 ≥ ζ) ≤ e2g(S) ·max

K
P(‖PK∇L(θ∗;Zn1 )‖2 ≥ ζ).

Note that the dimension of K is less than the sum of dimensions of K1 and K2, which is at most
2(S + 1). Applying a covering net argument, we may find a 1/2-net N1/2 for the set {v ∈ K :
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‖v‖2 = 1} of cardinality at most 52S+2. Thus,

P(‖PK∇L(θ∗;Zn1 )‖2 ≥ ζ) ≤ P(2 max
v∈N1/2

|v>∇L(θ∗;Zn1 )| ≥ ζ)

≤ 52S+2 · max
v∈N1/2

P(2|v>∇L(θ∗;Zn1 )| ≥ ζ).

Applying the subgaussian assumption on v>∇L(θ∗;Zn1 ), we get

P(max
K
‖PK∇L(θ∗;Zn1 )‖2 ≥ ζ) ≤ e2g(S) · 52S+2 · 2e−nζ2/8σ2

.

Then for any k > 0 and some constant Ck > 0 depending only on k, setting ζ =
√
Ckσ2g(S)/n

and applying g(S) ≥ log(1 + p), we get

P(max
K
‖PK∇L(θ∗;Zn1 )‖2 ≥

√
Ckσ2g(S)/n) ≤ p−k.

Proof [Proposition 9] We will consider a fixed t, and then apply a union bound over 1 ≤ t ≤ τ .
For cRSC and cRSS, note that L(θ;Zn1 ) = 1

2n‖y − Xθ‖22 for the linear model, which gives
L(θ2;Zn1 )−L(θ1;Zn1 )− 〈θ2− θ1,∇L(θ1;Zn1 )〉 = 1

2n‖X(θ1− θ2)‖22. Then the cRSC and cRSS
bounds will hold as long as

sup
K

sup
u∈K:‖u‖2=1

1

n
‖Xu‖22 ≤ 3λ1/2 and inf

K
inf

u∈K:‖u‖2=1

1

n
‖Xu‖22 ≥ λp/2, (37)

where the supremum and infimum are over all subspaces K = K1 + K2 as in Definition 4. This
property (37) is invariant under a common rescaling of X>X, λ1, and λp, so we may assume that
λp = 1.

Fixing any such subspace K, note that the dimension of K is upper bounded by 2S′ + 2. Let
PK be the orthogonal projection onto K, and write PK = QKQ>K , where QK has orthonormal
columns spanning K. Then XQK also has independent rows x>i QK , where ‖Q>Kxi‖2ψ2

≤ D and
Cov[Q>Kxi] = QT

KΣQK . Applying Eq. (5.25) of Vershynin (2010) to XQK , for any ζ > 0 and
some constants C3, C4 > 0 depending only on D,

P

[∥∥∥∥ 1

n
Q>KX>XQK −Q>KΣQK

∥∥∥∥
op

≥ max(ω, ω2)

]
≤ 2e−C3ζ2 , ω ≡ C4

√
S′ + ζ√
n

.

Recall g(S′) = S′ log(1+ p
S′ ). Note that there are at most

(
p−1
S′

)
·
(
p−1
S′

)
≤ e2g(S′) different subspaces

K. Taking a union bound over K, and noting that any u ∈ K may be represented as u = QKv for
such K, this yields

P

[
sup
K

sup
u∈K:‖u‖2=1

∣∣∣∣ 1nuTXTXu− uTΣu

∣∣∣∣ ≥ max(ω, ω2)

]
≤ 2e2g(S′)−C3ζ2

When ‖u‖2 = 1, uTΣu ∈ [λp, λ1]. It follows, with probability at least 1−2e2g(S′)−C3ζ2 and under
our scaling λp = 1, that

sup
K

sup
u∈K:‖u‖2=1

1

n
‖Xu‖22 ≤ λ1 + max(ω, ω2),
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and

inf
K

inf
u∈K:‖u‖2=1

1

n
‖Xu‖22 ≥ (1−max(ω, ω2))+.

Then, for any k > 0 and some constants C1, C5 > 0 depending only on k,D, assuming n ≥
C1g(S′) and setting ζ =

√
C5g(S′), (37) holds with probability at least 1 − 2e−kg(S

′). Applying
g(S′) ≥ log p, this probability is at least 1− 2p−k.

For cPGB, it follows from the first part of the proof that with probability at least 1 − 2p−k,
‖Xu‖22/n2 ≤ 3λ1/2n for every such subspace K and every u ∈ K. Applying Lemma 5.9 of
Vershynin (2010) and the assumption ‖ei‖2ψ2

≤ σ2, conditional on X and this event, uTX>e/n

is a subgaussian random variable with subgaussian parameter C6λ1σ
2/n, where C6 > 0 is some

absolute constant. Noting that ∇L(θ∗;Zn1 ) = −X>e/n and applying Lemma 6, L has the cPGB
Φ(S′) = C2σ

√
λ1g(S′)/n with probability at least 1− 3p−k.

The bound for ‖∇L(θ∗;Zn1 )‖∞ = ‖X>e/n‖∞ follows from similarly noting that with proba-
bility at least 1− 2p−k, ‖Xu‖22/n2 ≤ 3λ1/2n for each standard basis vector u ∈ Rp. Conditional
on X and this event, uTX>e/n is subgaussian with parameter C6λ1σ

2/n for every standard basis
vector u. Then the bound for ‖X>e/n‖∞ follows from the subgaussian tail bound and a union
bound over all such u. Finally, applying a union bound over 1 ≤ t ≤ τ completes the proof.

Proof [Proposition 11] Similar to the proof of Proposition 9, we consider fixed t and then apply a
union bound over 1 ≤ t ≤ τ .

For cRSC and cRSS, note that L(θ;Zn1 ) = 1
n

∑n
i=1(b(x>i θ)− yix>i θ), which gives

L(θ2;Zn1 )− L(θ1;Zn1 )− 〈θ2 − θ1,∇L(θ1;Zn1 )〉

=
1

n

n∑
i=1

(b(xT
i θ2)− b(xT

i θ1)− b′(xT
i θ1)xTi (θ2 − θ1)).

Applying the assumption on b,

αb
2n
‖X(θ2 − θ1)‖22 ≤ L(θ2;Zn1 )− L(θ1;Zn1 )− 〈θ2 − θ1,∇L(θ1;Zn1 )〉 ≤ Lb

2n
‖X(θ2 − θ1)‖22.

Then cRSC and cRSS hold for (Tt−1, Tt) with probability 1−2p−k, by (37) and the same argument
as Proposition 9.

For cPGB, note that ∇L(θ∗;Zn1 ) = − 1
n

∑n
i=1 xiei = −XTe/n where e = (e1, . . . , en).

Similar to the proof of Proposition 9, we condition on X and the probability 1− 2e−kg(S
′) event E

that 1
n‖Xu‖22 ≤ 3λ1/2 for every K = K1 + K2 and every u ∈ K. Then similar to the proof of

Lemma 6, we get for any ζ > 0

P(sup
K
‖PKXTe‖2/

√
n > ζ)

≤ e2g(S′) · 52S′+2 ·
(

sup
w:‖w‖2=1

P({2|wTXTe|/
√
n ≥ ζ} ∩ E) + 2e−kg(S

′)
)
.

Note that (21) implies Var(ei) ≤ C3 where C3 > 0 is some constant depending only on D1, D2, β.
If 1 < β ≤ 2, applying Lemma 14,

P(sup
K
‖PKXTe‖2/

√
n > ζ) ≤ e2g(S′) · 52S′+2 ·

(
2e−ζ

β/(C4
√
λ1)β + 2e−kg(S

′)
)
,

25



TREE-PROJECTED GRADIENT DESCENT

where C4 > 0 is some constant depending only on D1, D2, β. Then for any k > 0 and some
constant C2 > 0 depending only on k,D,D1, D2, β, setting ζ = C2

√
λ1 · g(S′)1/β and applying

g(S′) ≥ log p, we have

P(sup
K
‖PKXTe‖2/n > C2

√
λ1/n · g(S′)1/β) ≤ p−k.

If β = 1, applying Lemma 14, we get

P(sup
K
‖PKXTe‖2/n > C2

√
λ1/n log n · g(S′)) ≤ p−k.

The bound for ‖∇L(θ∗;Zn1 )‖∞ = ‖X>e/n‖∞ is similar to the proof of Proposition 9. Note
that with probability at least 1− 2p−k, ‖Xui‖22/n ≤ 3λ1/2 for each standard basis vector ui ∈ Rp
with 1 ≤ i ≤ p. We condition on X and this event E ′ and get for any ζ > 0

P( max
1≤i≤p

|uiXTe|/
√
n > ζ) ≤ p ·

(
max
1≤i≤p

P({|uiXTe|/
√
n > ζ} ∩ E ′) + 2p−k

)
.

Similarly, if 1 < β ≤ 2, applying Lemma 14, for any k > 0 and some constant C3 depending only
on k,D,D1, D2, β, we get

P( max
1≤i≤p

|uiXTe|/n > C3(log p)1/β
√
λ1/n) ≤ p−k.

If β = 1, applying Lemma 14, we get

P( max
1≤i≤p

|uiXTe|/n > C3(log n)(log p)
√
λ1/n) ≤ p−k.

Finally, applying the union bound over 1 ≤ t ≤ τ completes the proof.

Appendix E. Auxilliary Lemma

The following lemma comes from (Huang et al., 2008, Lemma 1).

Lemma 14 Suppose X1, . . . , Xn are i.i.d. random variables with EXi = 0 and Var(Xi) = σ2.
Further suppose, for 1 ≤ d ≤ 2 and certain constants C1, C2 > 0, their tail probabilities satisfy

P(|Xi| ≥ ζ) ≤ C1 exp(−C2ζ
d),

for all ζ > 0. Let c1, . . . , cn be constants satisfying
∑n

i=1 ci ≤M2 and W =
∑n

i=1 ciXi. Then we
have

‖W‖ψd ≤
{

KdM{σ + C3}, 1 < d ≤ 2
K1M{σ + C4 log n}, d = 1

where Kd is a positive constant depending only on d, C3 is some positive constant depending only
on C1, C2, d and C4 is some positive constant depending only on C1, C2. Consequently,

P(|W | > ζ) ≤
{

2 exp{−(ζ/(KdM(σ + C3)))d}, 1 < d ≤ 2
2 exp{−ζ/(K1M(σ + C4 log n))}. d = 1
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