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Abstract
We consider the fundamental problem of learning a single neuron x 7→ σ(w>x) in a realizable
setting, using standard gradient methods with random initialization, and under general families
of input distributions and activations. On the one hand, we show that some assumptions on both
the distribution and the activation function are necessary. On the other hand, we prove positive
guarantees under mild assumptions, which go significantly beyond those studied in the literature
so far. We also point out and study the challenges in further strengthening and generalizing our
results.

1. Introduction

In recent years, much effort has been devoted to understanding why neural networks are successfully
trained with simple, gradient-based methods, despite the inherent non-convexity of the learning
problem. However, our understanding of this is still partial at best.

In this paper, we focus on the simplest possible nonlinear neural network, composed of a single
neuron, of the form x 7→ σ(w>x), where w is the parameter vector and σ : R → R is some
fixed non-linear activation function. Moreover, we consider a realizable setting, where the inputs
are sampled from some distribution D, the target values are generated by some unknown target
neuron x 7→ σ(v>x) (possibly corrupted by independent zero-mean noise, and where we generally
assume ‖v‖ = 1 for simplicity), and we wish to train our neuron with respect to the squared loss.
Mathematically, this boils down to minimizing the following objective function:

F (w) := Ex∼D

[
1

2

(
σ(w>x)− σ(v>x)

)2
]
. (1)

For this problem, we are interested in the performance of gradient-based methods, which are the
workhorse of modern machine learning systems. These methods initialize w randomly, and proceed
by taking (generally stochastic) gradient steps w.r.t. F . If we hope to explain the success of such
methods on complicated neural networks, it seems reasonable to expect a satisfying explanation for
their convergence on single neurons.

Although the learning of single neurons was studied in a number of papers (see the related
work section below for more details), the existing analyses all suffer from one or several limita-
tions: Either they apply for a specific distribution D, which is convenient to analyze but not very
practical (such as a standard Gaussian distribution); Apply to gradient methods only with a spe-
cific initialization (rather than a standard random one); Require technical conditions on the input
distribution which are not generally easy to verify; Or require smoothness and strict monotonicity
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conditions on the activation function σ(·) (which excludes, for example, the common ReLU func-
tion σ(z) = max{0, z}). However, a bit of experimentation strongly suggests that none of these
restrictions is really necessary for standard gradient methods to succeed on this simple problem.
Thus, our understanding of this problem is probably still incomplete.

The goal of this paper is to study to what extent the limitations above can be removed, with the
following contributions:

• We begin by asking whether positive results are possible without any explicit assumptions on
the distribution D or the activation σ(·) (other than, say, bounded support for the former and
Lipschitz continuity for the latter). Although this seems reasonable at first glance, we show in
Sec. 3 that unfortunately, this is not the case: Even for the ReLU activation function, there are
bounded distributions D on which gradient descent will fail to optimize Eq. (1) with probability
exponentially close to 1. Moreover, even for D which is a standard Gaussian, there are Lipschitz
activation functions on which gradient methods will likely fail.

• Motivated by the above, we ask whether it is possible to prove positive results with mild and trans-
parent assumptions on the distribution and activation function, which does not exclude common
setups. In Sec. 4, we prove a key technical result, which implies that if the distribution D is suffi-
ciently “spread” and the activation function satisfies a weak monotonicity condition (satisfied by
ReLU and all standard activation functions), then 〈∇F (w),w− v〉 is positive in most of the do-
main. This implies that an exact gradient step with sufficiently small step size will bring us closer
to v in “most” places. Building on this result, we prove in Sec. 5 a constant-probability conver-
gence guarantee for several variants of gradient methods (gradient descent, stochastic gradient
descent, and gradient flow) with random initialization.

• In Sec. 6, we consider more specifically the case where D is any spherically symmetric distribu-
tion (which includes the standard Gaussian as a special case) and the ReLU activation function.
In this setting, we show that the convergence results can be made to hold with high probability,
due to the fact that the angle between the parameter vector and the target vector v motonically
decreases. As we discuss later on, the case of the ReLU function and a standard Gaussian distribu-
tion was also considered in Soltanolkotabi (2017); Kalan et al. (2019), but that analysis crucially
relied on initialization at the origin and a Gaussian distribution, whereas our results apply to more
generic initialization schemes and distributions.

• A natural question arising from these results is whether a high-probability result can be proved for
non-spherically symmetric distributions. We study this empirically in Subsection 6.2, and show
that perhaps surprisingly, the angle to the target function might increase rather than decrease,
already when we consider unit-variance Gaussian distributions with a non-zero mean. This sug-
gests that a fundamentally different approach would be required for a general high-probability
guarantee.

Overall, we hope our work contributes to a better understanding of the dynamics of gradient
methods on simple neural networks, and suggests some natural avenues for future research.

1.1. Related Work

First, we emphasize that learning a single target neuron is not an inherently difficult problem: In-
deed, it can be efficiently performed with minimal assumptions, using the Isotron algorithm and its
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variants (Kalai and Sastry (2009); Kakade et al. (2011)). Also, other algorithms exist for even more
complicated networks or more general settings, under certain assumptions (e.g., Goel et al. (2016);
Janzamin et al. (2015)). However, these are non-standard algorithms, whereas our focus here is on
standard, vanilla gradient methods.

For this setting, a positive result was provided in Mei et al. (2016), showing that gradient descent
on the empirical risk function 1

n

∑n
i=1(σ(x>i w) − σ(x>i v))2 (with xi sampled i.i.d. from D and

n sufficiently large) successfully yields a good approximation of v. However, the analysis requires
σ to be strictly monotonic, and to have uniformly bounded derivatives up to the third order. This
excludes standard activation functions such as the ReLU, which are neither strictly monotonic nor
differentiable. Indeed, assuming that the activation is strictly monotonic makes the analysis much
easier, as we show later on in Thm. 3.2. A related analysis under strict monotonicity conditions is
provided in Oymak and Soltanolkotabi (2018).

For the specific case of a ReLU activation function σ(·) = max{·, 0} and a standard Gaussian
input distribution, Tian (2017) proved that with constant probability, gradient flow over Eq. (1) will
asymptotically converge to the global minimum. Soltanolkotabi (2017) and Kalan et al. (2019) con-
sidered a similar setting, and proved a non-asymptotic convergence guarantee for gradient descent
or stochastic gradient descent on the empirical risk function 1

n

∑n
i=1(σ(x>i w) − σ(x>i v))2. How-

ever, that analysis crucially relied on initialization at precisely 0, as well as a certain assumption on
how the derivative of the ReLU function is computed at 0. In more details, we impose the conven-
tion that even though the ReLU function is not differentiable at 0, we take σ′(0) to be some fixed
positive number, and the gradient of the population objective F at 0 to be

Ex∼D

[
(σ(0)− σ(v>x))σ′(0)x

]
= − σ′(0) · Ex∼D

[
σ(v>x)x

]
.

Assuming σ′(0) > 0, we get that the gradient is non-zero and proportional to −Ex∼D[σ(v>x)x].
For a Gaussian distribution (and more generally, spherically symmetric distributions), this turns out
to be proportional to−v, so that an exact gradient step from 0 will lead us precisely in the direction
of the target parameter vector v. As a result, if we calculate a sufficiently precise approximation
of this direction from a random sample, we can get arbitrarily close to v in a single iteration (see
Kalan et al. (2019, Remark 1) for a discussion of this). Unfortunately, this unique behavior is
specific to initialization at 0 with a certain convention about σ′(0) (note that even locally around 0,
the gradient may not approximate v, since it is generally discontinuous around 0). Thus, although
the analysis is important and insightful, it is difficult to apply more generally.

Du et al. (2017) considered conditions under which a single ReLU convolutional filter is learn-
able with gradient methods, a special case of which is a single ReLU neuron. The paper is closely
related to our work, in the sense that they were also motivated by finding general conditions under
which positive results are attainable. Moreover, some of the techniques they employed share simi-
larities with ours (e.g., considering the gradient correlation as in Sec. 4). However, our results differ
in several aspects: First, they consider only the ReLU activation function, while we also consider
general activations. Second, their results assume a technical condition on the eigenvalues of certain
distribution-dependent matrices, with the convergence rate depending on these eigenvalues. How-
ever, the question of when might this condition hold (for general distributions) is left unclear. In
contrast, our assumptions are more transparent and have a clear geometric intuition. Third, their
results hold with constant probability, even for a standard Gaussian distribution, while we employ
a different analysis to prove high probability guarantees for general spherically symmetric distri-
butions. Finally, we also provide negative results, showing the necessity of assumptions on both
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the activation function and the input distribution, as well as suggesting which approaches might not
work for further generalizing our results.

A line of recent works established the effectiveness of gradient methods in solving non-convex
optimization problems with a strict saddle property, which implies that all near-stationary points
with nearly positive definite Hessians are close to global minima (see Jin et al. (2017); Ge et al.
(2015); Sun et al. (2015)). A relevant example is phase retrieval, which actually fits our setting
with σ(·) being the quadratic function z 7→ z2 (Sun et al. (2018)). However, these results can only
be applied to smooth problems, where the objective function is twice differentiable with Lipschitz-
continuous Hessians (excluding, for example, problems involving the ReLU activation function).
An interesting recent exception is the work of Tan and Vershynin (2019), which considered the
case σ(z) = |z|. However, their results are specific to that activation, and assumes a specific input
distribution D (uniform on a scaled origin-centered sphere). In contrast, our focus here is on more
general families of distributions and activations.

Brutzkus and Globerson (2017) show that gradient descent learns a simple convolutional net-
work with non-overlapping patches, when the inputs have a standard Gaussian distribution. Similar
to the analysis in Sec. 6 in our paper, they rely on showing that the angle between the learned pa-
rameter vector and a target vector monotonically decreases with gradient methods. However, the
network architecture studied is different than ours, and their proof heavily relies on the symmetry
of the Gaussian distribution.

Less directly related to our setting, a popular line of recent works showed how gradient methods
on highly over-parameterized neural networks can learn various target functions in polynomial time
(e.g., Allen-Zhu et al. (2019); Daniely (2017); Arora et al. (2019); Cao and Gu (2019)). However, as
pointed out in Yehudai and Shamir (2019), this type of analysis cannot be used to explain learnability
of single neurons.

2. Preliminaries

Notation. We use bold-faced letters to denote vectors. For a vector w, we let wi denote its i-
th coordinate. We denote [z]+ := max{0, z} to be the ReLU function. For a vector w, we let
w̄ := w

‖w‖ , and by 111 we denote the all-ones vector (1, . . . , 1). Given vectors w, v we let θ(w,v) :=

arccos
(

w>v
‖w‖‖v‖

)
= arccos(w̄>v̄) ∈ [0, π] denote the angle between w and v. We use P to denote

probability. 1(·) denotes the indicator function, for example 1(x > 0) equals 1 if x > 0 and 0
otherwise.

Target Neuron. Unless stated otherwise, we assume that the target vector v in Eq. (1) is unit
norm, ‖v‖ = 1.

Gradients. When σ(·) is differentiable, the gradient of the objective function in Eq. (1) is

∇F (w) = Ex∼D

[(
σ(w>x)− σ(v>x)

)
· σ′(w>x)x

]
(2)

When σ(·) is not differentiable, we will still assume that it is differentiable almost everywhere (up
to a finite number of points), and that in every point of non-differentiability z, there are well-defined
left and right derivatives. In that case, practical implementations of gradient methods fix σ′(z) to
be some number between its left and right derivatives (for example, for the ReLU function, σ′(0) is
defined as some number in [0, 1]). Following that convention, the expected gradient used by these
methods still corresponds to Eq. (2), and we will follow the same convention here.
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Algorithms. In our paper, we focus on the following three standard gradient methods:

• Gradient Descent: We initialize at some w0 and set a fixed learning rate η. At each iteration
t > 0, we do a single step in the negative direction of the gradient: wt+1 = wt − η∇F (wt).

• Stochastic Gradient Descent (SGD): We initialize at some w0 and set a fixed learning rate η.
At each iteration t > 0, we sample an input xt ∼ D, and calculate a stochastic gradient:

gt =
(
σ(w>t xt)− σ(v>xt)

)
· σ′(w>t xt)xt (3)

and do a single step in the negative direction of the stochastic gradient: wt+1 = wt − ηgt. Note
that here we consider SGD on the population loss, which is different from SGD on a fixed training
set. We also note that our proof techniques easily extend to mini-batch SGD, where gt is taken to
be the average of B stochastic gradients w.r.t. x1

t , . . . ,x
B
t sampled i.i.d. from D. However, for

simplicity we will focus on B = 1.

• Gradient Flow: We initialize at some w(0), and for every t > 0, we set w(t) to be the solution
of the differential equation: ẇ(t) = −∇F (w(t)). This can be thought of as a continuous form of
gradient descent, where we consider an infinitesimal learning rate. We note that strictly speaking,
gradient flow is not an algorithm. However, it approximates the behavior of gradient descent in
many cases, and has the advantage that its analysis is often simpler.

3. Assumptions on the Distribution and Activation are Necessary

The main concern of this paper is under what assumptions can a single neuron be provably learned
with gradient methods. In this section, we show that perhaps surprisingly, this is not possible unless
we make non-trivial assumptions on both the input distribution and the activation function.

3.1. Assumptions on the Input Distribution are Necessary

We begin by asking whether Eq. (1) can be minimized by gradient methods in a distribution-free
manner (with no assumptions beyond, say, bounded support), as in learning problems where the
population objective is convex. Perhaps surprisingly, we show that the answer is negative, even if
we consider specifically the ReLU activation, and a distribution supported on the unit Euclidean
ball. This is based on the following key result:

Theorem 3.1 Suppose that σ is the ReLU function (with the convention that σ′(z) = 1(z >
0)), and assume that w is sampled from a product distribution Dw (namely, each wi is sampled
independently from some distribution Di

w). Then there exists a distribution D over the inputs,
supported on {x : ‖x‖ ≤ 1}, and v with ‖v‖ = 1 such that the following holds: With probability at
least 1− exp

(
−d

4

)
over the initialization point sampled from Dw, if we run gradient flow, gradient

descent or stochastic gradient descent, then for every t > 0 we have F (wt) − infw F (w) ≥ 1
8d

(and for gradient flow, F (w(t))− infw F (w) ≥ 1
8d ).

The full proof can be found in Appendix A. Thm. 3.1 applies to any product initialization
scheme, which includes most standard initializations used in practice (e.g., the standard Xavier
initialization, see Glorot and Bengio (2010)). The theorem implies that it is impossible to prove
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positive guarantees in our setting without distributional assumptions on ths inputs. Inspecting the
construction, the source of the problem (at least for the ReLU neuron) appears to be the fact that the
distribution is supported on a small number of well-separated regions. Thus, in our positive results,
we will assume that the distribution is sufficiently “spread”, as formalized later on in Sec. 4

3.2. Assumptions on the Activation Function

We now turn to discuss the activation function, explaining why even if the activation is Lipschitz
and the input distribution D is a standard Gaussian, this is likely insufficient for positive guarantees
in our setting.

In particular, let us consider the case that σ(·) is a 1-Lipschitz periodic function. Then Theorem
3 in Shamir (2018) implies that for a large family of input distributions D on Rd (including a
standard Gaussian), if we assume that the vector v in the target neuron σ(v>x) is a uniformly
distributed unit vector, then for any fixed w,V arv(∇F (w)) ≤ O(exp(−d)). This implies that
the gradient at w is virtually independent of the underlying target vector v: In fact, it is extremely
concentrated around a fixed value which does not depend on v. Theorem 4 from Shamir (2018) goes
further and shows that for any gradient method, even an exponentially small amount of noise will
be enough to make its trajectory (after at most exp(O(d)) iterations) independent of v, in which
case it cannot possibly succeed in this setting. We note that their result is even more general as they
consider a general function f(w,x) instead of σ(〈w,x〉), so our setting can be seen as a private
case.

When considering a standard Gaussian distribution, the above argument can be easily extended
to activations σ which are periodic only in a segment of length Ω(d) around the origin. This can be
seen by extending the activation to σ̃ which is periodic on R, applying the above argument to it, and
noting that the probability mass outside of a ball of radius Ω(d) is exponentially small (for example,
see Yehudai and Shamir (2019) Proposition 4.2, where they consider an activation which is a finite
sum of ReLU functions and periodic in a segment of length O(d2)).

The above discussion motivates us to impose some condition on the activation function which
excludes periodic functions. One such mild assumptions, which we will adopt in the rest of the
paper (and corresponds to virtually all activations used in practice) is that the activation is mono-
tonically non-decreasing. Before continuing, we remark that by assuming a slight strengthening of
this assumption, namely that the function is strictly monotonically increasing, it is easy to prove a
positive guarantee, as evidenced by Thm. 3.2. However, this excludes popular activations such as
the ReLU function.

Theorem 3.2 Assume infz σ
′(z) ≥ γ > 0 for some γ > 0, and the following for some λ, c1, c2:

Σ := Ex

[
xx>

]
is positive definite with minimal eigenvalue λ > 0, Ex∼D

[
‖x‖2

]
≤ c1, and

supz σ
′(z) ≤ c2. Then starting from any point w0, after doing t iterations of gradient descent with

learning rate η < λγ2

c21c
4
2
, we have that:‖wt − v‖2 ≤ ‖w0 − v‖(1− λγ2η)t .

The proof can be found in Appendix A, and can be easily generalized to apply also to gradient
flow and SGD. The above shows that if we assume strict monotonicity of the activation, then under
very mild assumptions on the data wt will converge exponentially fast to v. We note that this
kind of analysis on strictly monotonic activations is not novel in itself (see e.g. Foster et al. (2018);
Oymak (2018)), the purpose of the theorem is merely to point out that using a strictly monotonically
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increasing function makes the analysis dramatically easier. In the rest of the paper, however, we
focus on results which only require weak monotonicity.

4. Under Mild Assumptions, the Gradient Points in a Good Direction

Motivated by the results in Sec. 3, we use the following assumptions on the distribution and activa-
tion:

Assumption 4.1 The following holds for some fixed α, β, γ > 0:

1. The distribution D satisfies the following: For any vector w 6= v, let Dw,v denote the marginal
distribution of x on the subspace spanned by w,v (as a distribution over R2). Then any such
distribution has a density function pw,v(x) such that infx:‖x‖≤α pw,v(x) ≥ β.

2. σ : R 7→ R is monotonically non-decreasing, and satisfies inf0<z<2α σ
′(z) ≥ γ.

The distributional assumption is such that in every 2-dimensional subspace, the marginal dis-
tribution is sufficiently “spread” in any direction close to the origin. For example, for a standard
Gaussian distribution, this is true for α, β = Θ(1) regardless of the dimension d (as the marginal
distribution of a standard Gaussian on the subspace is a standard 2-dimensional Gaussian). Also, for
any distribution, it can be made to hold by mixing it with a bit of a Gaussian or uniform distribution
if possible. The assumption on the activation function is very mild, and covers most activations
used in practice such as ReLU and ReLU-like functions (e.g. leaky-ReLU, Softplus), as well as
standard sigmoidal activations (for which the derivative in any bounded interval is lower bounded
by a positive constant).

With these assumptions, we prove the following key technical result, which implies that the
gradient of the objective has a positive correlation with the direction of the global minimum (at
w = v), if the angle between w and v and the norm of w are not too large:

Theorem 4.2 Under Assumptions 4.1, for any w such that ‖w‖ ≤ 2 and θ(w,v) ≤ π − δ for
some δ ∈ (0, π], it holds that 〈∇F (w),w − v〉 ≥ α4βγ2

8
√

2
sin3

(
δ
4

)
‖w − v‖2 .

The theorem implies that for suitable values of w, gradient methods (which move in the negative
gradient direction) will decrease the distance from v. When this behavior occurs, it is easy to show
that gradient methods succeed in learning the target neuron, like in the previous Thm. 3.2 for the
strictly monotonic case. The main challenge is to guarantee that the trajectory of the algorithm will
indeed never violate the theorem’s conditions, in particular that the angle between w and v indeed
remains bounded away from π (and in fact, later on we will show that such a guarantee is not always
possible).

The formal proof of the theorem can be found in Appendix B, but its intuition can be described
as follows: we want to bound below the term

〈∇F (w),w − v〉 = Ex

[(
σ(w>x)− σ(v>x)

)
· σ′(w>x) · (w>x− v>x)

]
.

Note that:
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1. Using the assumption on σ, the term inside the above expectation is nonnegative for every x. This
is because σ′(x) ≥ 0, and for any monotonically non-decreasing function f we have (f(x) −
f(y))(x− y) ≥ 0. Thus, viewing the expectation as an integral over a nonnegative function, we
can lower bound it by taking the integral over the smaller set

{
x ∈ Rd : w>x > 0, v>x > 0

}
.

Note that on this set, σ(w>x) = w>x and σ(v>x) = v>x.

2. The resulting integral depends only on dot products of x with w and v. Thus, it is enough to
consider the marginal distribution on the 2-dimensional plane spanned by w and v.

3. By the assumption on the distribution, the density function of this marginal distribution is always
at least β on any x such that ‖x‖ ≤ α. This means we can lower bound the integral above by
integrating over w with a uniform distribution on this set and multiplying by β.

In total, the expression above can be lower bounded by a certain 2-dimensional integral (with
uniform measure and with no σ terms) on the set

{
y ∈ R2 : ŵ>y > 0, v̂>y > 0, ‖y‖ ≤ α

}
where

ŵ, v̂ are the 2-dimensional vectors representing w,v on the 2-dimensional plane spanned by them.
We lower bound this integral by a term that scales with the angle θ(w,v).

Remark 4.3 (Implication on Optimization Landscape) The proof of the theorem can be shown
to imply that for the ReLU activation, under the theorem’s conditions, the only stationary point
that is not the global minimum v must be at the origin. In particular, the proof implies that any
stationary point (with ∇F (w) = 0) must be along the ray {w = −a · v : a ≥ 0}. For the ReLU
activation (which satisfies σ(z)σ′(−a · z) = 0 for any a ≥ 0 and z), the gradient at such points
equals

∇F (−a · v) = Ex

[
(σ(−av>x)− σ(v>x))σ′(−av>x)x

]
= Ex

[
(−av>x)σ′(−av>x)x

]
.

In particular, 〈∇F (−a · v),v〉 = −a · Ex

[
σ′(−av>x)(v>x)2

]
. This implies that ∇F (−a · v)

might be zero only if either a = 0 (i.e., at the origin), or v>x ≥ 0 with probability 1, which cannot
happen according to Assumption 4.1.

Remark 4.4 (Impossible to generalize to w = −c · v) Thm. 4.2 does not cover the case when w
is in the opposite direction of v, i.e. there is c > 0 such that w = −c · v. However, it is impossible
to generalize the theorem in this direction, even if the distribution is standard Gaussian and for
the ReLU activation. The reason is that in this case, using the closed form for the gradient from
Brutzkus and Globerson (2017) we get that ∇F (w) = 1

2w and in particular, gradient descent
would converge to the suboptimal stationary point at the origin.

5. Convergence with Constant Probability Under Mild Assumptions

In this section, we use Thm. 4.2 in order to show that under some assumption on the initialization
of w, gradient methods will be able to learn a single neuron with probability at least (close to) 1

2 .
Note that the loss surface of F (w) is not convex, and as explained in Remark 4.3, there may be a
stationary point at w = 0. This stationary point can cause difficulties, as it is not obvious how to
control the angle between v and w close to the origin (which is required for Thm. 4.2 to apply).
But, if we assume ‖w−v‖2 < 1 at initialization, then we are bounded away from the origin, and we
can ensure that it will remain that way throughout the optimization process. One such initialization,
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which guarantees this with at least constant probability, is a zero-mean Gaussian initialization with
small enough variance:

Lemma 5.1 Assume ‖v‖ = 1. If we sample w ∼ N
(
0, τ2I

)
for τ ≤ 1

d
√

2
then w.p > 1

2 −
1
4τd−

1.2−d we have that ‖w − v‖2 ≤ 1− 2τ2d

In order to bound each gradient step we will need these additional assumptions:

Assumption 5.2 The following holds for some positive c1, c2:

1. ‖x‖2 ≤ c1 almost surely over x ∼ D

2. σ′(z) ≤ c2 for all z ∈ R

With these assumptions, we show convergence for gradient flow, gradient descent and stochastic
gradient descent:

Theorem 5.3 Under assumptions 4.1 and 5.2 we have:

1. (Gradient Flow) Assume that ‖w(0)−v‖2 < 1. Running gradient flow, then for every time t > 0
we have

‖w(t)− v‖2 ≤ ‖w(0)− v‖2 exp(−tλ)

where λ = α4βγ2

210 .

2. (Gradient Descent) Assume that ‖w0 − v‖2 < 1. Let η ≤ λ
2c for λ = min

{
1, α

4βγ2

210

}
and

c = c2
1c

4
2. Running gradient descent with step size η, we have that for every T > 0, after T

iterations:

‖wT − v‖2 ≤ ‖w0 − v‖2
(

1− ηλ

2

)T
3. (Stochastic Gradient Descent) Let ε1, ε2, δ > 0, and assume that ‖w0 − v‖2 ≤ 1− ε1. Let η ≤

λε21ε
2
2c

2
3

60c31c
6
2 log( 2

δ )
where λ = α4βγ2

210 and c3 =
(

1
2

) λ

20c1c
2
2 −
(

1
2

) λ

18c1c
2
2 . Then w.p 1−

⌈
20c1c22 log

(
1
ε2

)
λ

⌉
δ,

after T ≥
2 log

(
1
ε2

)
λη iterations we have that: ‖wT − v‖2 ≤ ε2.

Combined with Lemma 5.1, Thm. 5.3 shows that with proper initialization, gradient flow, gra-
dient descent as well as stochastic gradient descent successfully minimize Eq. (1) with probability
(close to) 1

2 , and for the first two algorithms, the distance to v decays exponentially fast.
The full proof of the theorem can be found in Appendix C, and its intuition for gradient flow

and gradient is as described above (namely, that if ‖w− v‖ < 1, it will stay that way and ‖w− v‖
will just continue to shrink over time, using Thm. 4.2). The proof for stochastic gradient descent is
much more delicate. This is because the update at each iteration is noisy, so we need to ensure we
remain in the region where Thm. 4.2 is applicable. Here we give a short proof intuition:

1. Assume we initialized with ‖w0−v‖2 ≤ 1− ε for some ε > 0. In order for the analysis to work
we need that ‖wt − v‖ < 1 throughout the algorithm’s run. Thus, we show (using a maximal
version of Azuma’s inequality) that if η is small enough (depending on ε), and we take at most
m = O

(
1
η

)
gradient steps then w.h.p for every t = 1, . . . ,m: ‖wt − v‖2 ≤ 1− ε

2

9
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2. The next step is to show that if ‖wt−v‖2 < 1, then E
[
‖wt+1 − v‖2|wt

]
≤ (1−ηλ)‖wt−v‖2

for an appropriate λ. This is done using Thm. 4.2, as in the gradient descent case, but note that
here this only holds in expectation over the sample selected at iteration t.

3. Next, we use Azuma’s inequality again onm = O (1/η) iterations for a small enough η, to show
that w.h.p wm does not move too far away from w̃m := E[wm] where the expectation is taken
over x1, . . . ,xm. Also, we show that afterm iterations ‖w̃m−v‖2 ≤ ρ‖w0−v‖2 for a constant
ρ smaller than 1. This shows that w.h.p., after a single epoch of m iterations, ‖wm − v‖ shrinks
by a constant factor.

4. We then repeat this analysis across t epochs (each consisting of m iterations), and use a union
bound. Overall, we get that after sufficiently many iterations, with high probability, the iterates
get as close as we want to zero.

We note the optimization analysis for stochastic gradient descent is inspired by the analysis in
Shamir (2015) for the different non-convex problem of principal component analysis (PCA), which
also attempts to avoid a problematic stationary point. An interesting question for future research
is to understand to what extent the polynomial dependencies in the problem parameters can be
improved.

Remark 5.4 Our assumption on the data that ‖x‖2 ≤ c1 is made for simplicity. For the gradient
descent case, it is easy to verify that the proof only requires that the fourth moment of the data is
bounded by some constant, which ensures that the gradients of the objective function used by the
algorithm are bounded. For SGD it is enough to assume that the input distribution is sub-Gaussian.
The proof proceeds in the same manner, by using a concentration bound for martingales with sub-
Gaussian tails.

6. High-Probability Convergence

The results in the previous section hold under mild conditions, but unfortunately only guarantee a
constant probability of success. In this section, we consider the possibility of proving guarantees
which hold with high probability (arbitrarily close to 1). On the one hand, in Subsection 6.1, we
provide such a result for the ReLU activation, assuming the input distribution D is spherically
symmetric. On the other hand, in Subsection 6.2, we point out non-trivial obstacles to extending
such a result to non-spherically symmetric distributions. Overall, we believe that getting high-
probability convergence guarantees for non-spherically symmetric distributions is an interesting
avenue for future research.

6.1. Convergence for Spherically Symmetric Distributions

In this subsection, we make the following assumptions:

Assumption 6.1 Assume that:

1. x ∼ D has a spherically symmetric distribution. That is, for any orthogonal matrix A, it holds
that Ax ∼ D.

2. The activation function σ(·) is the standard ReLU function σ(z) = max{0, z}.

10
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These assumptions are significantly stronger than Assumptions 4.1, but allow us to prove a
stronger high-probability convergence result. Note that even with these assumptions the loss surface
is still not convex, and may contain a spurious stationary point (see Remark 4.3). For simplicity,
we will focus on proving the result for gradient flow. The result can then be extended to gradient
descent and stochastic gradient descent, along similar lines as in the proof of Thm. 5.3.

The proof strategy in this case is quite different from that of the constant-probability guarantee,
and relies on the following key technical result:

Lemma 6.2 If w(t) 6= 0, then ∂
∂tθ(w(t),v) ≤ 0

The lemma (which relies on the spherical symmetry of the distribution) implies that if we ini-
tialize at any point w(0) /∈ span{v}, then the angle between w(0) and v is strictly less than π, and
will remain so as long as w(t) 6= 0. As a result, we can apply Thm. 4.2 to prove that ‖w(t) − v‖
decays exponentially fast. The only potential difficulty is that w(t) may converge to the potential
stationary point at the origin (at which the angle is not well-defined), but fortunately this cannot
happen due to the following lemma:

Lemma 6.3 Let θ = θ(w(t),v) and assume that w(t) 6= 0. If ‖w(t)‖ is at most
max

{
sin(θ)+cos(θ)

2 , sin(θ)(1+cos(θ))
2

}
then ∂

∂t‖w(t)‖2 ≥ 0.

The lemma can be shown to imply that as long as θ remains bounded away from π, then ‖w(t)‖2
cannot decrease below some positive number (as its derivative is positive close enough to zero, and
‖w(t)‖2 is a continuous function of t). The proof idea of both lemmas is based on a technical
calculation, where we project the spherically symmetric distribution on the 2-dimensional subspace
spanned by w and v.

Using the lemmas above, we can get the following convergence guarantee:

Theorem 6.4 Assume we initialize w(0) such that 0 < ‖w(0)‖ ≤ 2, θ(w(0),v) ≤ π− ε for some
ε > 0 and that Assumption 4.1(1) holds. Then running gradient flow, for all t ≥ 0

‖w(t)− v‖2 ≤ ‖w(0)− v‖ exp(−λt)

where λ = α4β

8
√

2
sin3

(
ε
8

)
.

We now note that the assumption of the theorem holds with exponentially high probability under
standard initialization schemes. For example, if we use a Gaussian initialization w(0) ∼ N (0, 1

dI),
then by standard concentration of measure arguments, it holds w.p > 1− e−Ω(d) that θ(w(0),v) is
at most (say) 3π

4 , and w.p> 1−e−Ω(d) that ‖w(0)‖ ≤ 2. As a result, by Thm. 6.4, w.p> 1−e−Ω(d)

over the initialization we have ‖w(t) − v‖2 ≤ ‖w(0) − v‖2e−Ω(t) for all t. The full proof of the
theorem can be found in Appendix D.

Remark 6.5 If we further assume that the distribution is a standard Gaussian, then it is possible
to prove Lemma 6.2 and Lemma 6.3 in a much easier fashion. The reason is that specifically for a
standard Gaussian distribution there is a closed-form expression (without the expectation) for the
loss and the gradient, see Brutzkus and Globerson (2017), Safran and Shamir (2017). We provide
the relevant versions of the lemmas, as well as their proofs, in Subsection D.1.
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Figure 1: Gradient descent for 2-dimensional data (best viewed in color). The left figure represents
the trajectory of gradient descent over the loss surface. The red ”x” marker represents the
global minimum at w = v = (1, 0). The right figure shows the angle between w and v
as a function of the number of iterations, where the angle ranges from 0 to π. The plot
colors in the right figure correspond to the trajectory colors in the left figure.

6.2. Non-monotonic Angle Behavior

The results in the previous subsection crucially relied on the fact that at almost any point w, the
angle θ(w,v) decreases. This type of analysis was also utilized in works on related settings (e.g.,
Brutzkus and Globerson (2017)).

Based on this, it might be tempting to conjecture that this monotonically decreasing angle prop-
erty (and as a result, high-probability guarantees) can be shown to hold more generally, not just for
symmetrically spherical distributions. Perhaps surprisingly, we show empirically that this may not
be the case, already when we discuss the simple setting of unit variance Gaussian with a non-zero
mean. We emphasize that this does not necessarily mean that gradient methods will not succeed,
only that an analysis based on showing monotonic behavior of the relevant geometric quantity will
not work in general.

In particular, in Figure 1 we report the result of running gradient descent (with constant step
size η = 10−3) on our objective function F in R2, where the input distribution D is a unit-variance
Gaussian with mean at (0, 1), and our target vector is v = (1, 0). We initialize at three different
locations: w1 = (−1 1), w2 = (−1, 0.5), w3 = (−1, 0). Although the algorithm eventually
reaches the global minimum w = v, the angle between them is clearly non-monotonic, and actually
is initially increasing rather than decreasing. Even worse, the angle appears to attain every value in
(0, π], so it appears that any analysis using angle-based “safe regions” is bound to fail.

Overall, we conclude that proving a high-probability convergence guarantee for gradient meth-
ods appears to be an interesting open problem, already in the case of unit-variance, non-zero-mean
Gaussian input distributions. We leave tackling this problem to future work.
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Appendix A. Proofs from Sec. 3

Proof For each distribution Diw, let pi = P(wi > 0). We define the following dataset:

S = {xi = biei : i = 1 . . . , d}

where ei is the standard i-th unit vector, and bi = 1 if pi < 1
2 and −1 otherwise. Take D to be the

uniform distribution on S.
Informally, the proof idea is the following: With overwhelming probability, we will initialize at a

point w such that for at least Ω(d) coordinates i, it holds that σ′(w>xi) = 0, and as a result,∇F (w)
is zero on those coordinates. Based on this, we show that these coordinates will not change from
their initialized values. However, a point w with Ω(d) coordinates with this property is suboptimal
by a fixed factor, so the algorithm does not converge to an optimal solution.

More formally, using Eq. (2) and the fact that σ is the ReLU function, we get

∇F (w) =
1

d

d∑
i=1

(
σ(w>xi)− σ(v>xi)

)
· 1
(
w>xi > 0

)
xi .

In particular, for every index i for which 1
(
w>xi > 0

)
= 0 we have that (∇F (w))i = 0. Next,

we define v with vi = bi
1√
d

(note that ‖v‖ = 1). For every d/4 indices i1, . . . , id/4 for which

1
(
w>xi ≥ 0

)
= 0 we have that:

F (w) =
1

2d

d∑
i=1

(
σ(w>xi)− σ(v>xi)

)2
≥ 1

2d

∑
i∈{i1,...,id/4}

(
σ(w>xi)− σ(v>xi)

)2

=
1

2d

∑
i∈{i1,...,id/4}

σ(v>xi)
2 =

1

2d

∑
i∈{i1,...,id/4}

σ

(
b2i

1√
d

)2

=
1

8d
(4)

Denote the random variable Zi = 1
(
w>0 xi > 0

)
and Z =

∑d
i=1 Zi (for gradient flow we

denote Zi = 1
(
w(0)>xi ≥ 0

)
). It is easily verified that E[Zi] = Pr(w>0 xi > 0) = Pr(w0,ibi >

0) ≤ 1
2 . We have that Z1, . . . , Zd are independent, maxi |Zi| ≤ 1, and E[Z] =

∑d
i=1 E[Zi] ≤ d

2 .
Using Hoeffding’s inequality, we get that w.p ≥ 1− exp

(
−d

4

)
it holds that Z ≤ 3

4d, which means
that there are at least d4 indices such that Zi = 0. We condition on this event and let these indices be
i1, . . . , id/4. We will now show that for every index i ∈ {i1, . . . , id/4}, using gradient methods will
not change the i-th coordinate of wt (w(t) for gradient flow) from its initial value. Let i be such a
coordinate.

For gradient descent, we will show by induction that for every iteration twe have that 1
(
w>t xi > 0

)
=

0. The base case is true, because we conditioned on this event. Assume for t−1, then (∇F (wt−1))i =
0, which means that (wt)i = (wt−1)i−η(∇F (wt−1))i = (wt−1)i, and in particular 1

(
w>t xi > 0

)
=

1
(
w>t−1xi > 0

)
= 0. This proves that for every iteration t, the i-th coordinate of ∇F (wt) is zero,

which mean that (wt)i = (w0)i.
For stochastic gradient descent, at each iteration t we sample xt ∼ D, and define the stochastic

gradient gt as in Eq. (3). If xt 6= xi then (xt)i = 0 hence (gt)i = 0, otherwise, if xt = xi then
by (gt)i = (∇F (wt))i and by the same induction argument as in gradient descent we have that
(gt)i = 0. In both cases the i-th coordinate of the stochastic gradient is zero, hence (wt)i = (w0)i.
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For gradient flow, assume by contradiction that for some t > 0 that 1
(
w(t)>xi > 0

)
6= 0 and

let t1 be the first time that this happen. Then for all 0 < t < t1 we have that 1
(
w(t)>xi > 0

)
= 0,

and in particular (∇F (w(t)))i = 0. Hence for all 0 < t < t1 running gradient flow we get
(ẇ(t))i = (∇F (w(t)))i = 0, and in particular 1

(
w(t)>xi > 0

)
= 1

(
w(0)>xi > 0

)
= 0, a con-

tradiction to the fact that w(t) is continuous. Thus for all t > 0 we showed that 1
(
w(t)>xi > 0

)
=

0, hence (∇F (w(t)))i = 0 which shows that (w(t))i = (w(0))i.
By the conditioned event, Eq. (4) applies at initialization. Since in all the gradient methods

above the i-th coordinate of w did not change from its initial value for i ∈ {i1, . . . , id/4}, we
can apply Eq. (4) to get that for every iteration t > 0 for gradient descent or SGD we have that
F (wt) ≥ 1

8d (and for gradient flow, for every time t > 0, we have F (w(t)) ≥ 1
8d ).

We end by noting that although the distribution defined here is discrete over a finite dataset, the
same argument can also be made for a non-discrete distribution, by considering a mixture of smooth
distributions concentrated around the support points of the discrete distribution above.

Proof [Thm. 3.2] We have that:

〈∇F (w),w − v〉 = Ex

[
(σ(w>x)− σ(v>x))σ′(w>x)(w>x− v>x)

]
(∗)
= Ex

[
γ · (σ(w>x)− σ(v>x))(w>x− v>x)

]
(∗∗)
= Ex

[
γ2(w>x− v>x)2

]
= γ2(w − v)>Σ(w − v) ≥ γ2λ‖w − v‖2

where (∗) is by monotonicity of σ (hence (σ(w>x) − σ(v>x))(w>x − v>x) ≥ 0 always), and
(∗∗) is by the assumption that σ′(z) ≥ γ. Next, we bound the gradient∇F (w):

‖∇F (wt)‖2 = Ex

[(
σ(w>t x)− σ(v>x)

)2
· σ′(w>x)2x>x

]
≤ c4

2Ex

[(
w>t x− v>x

)2
· x>x

]
≤ c4

2‖wt − v‖2Ex

[
‖x‖2 · x>x

]
≤ c2

1c
4
2‖wt − v‖2.

At iteration t+ 1 we have that:

‖wt+1 − v‖2 = ‖wt − η∇F (wt)− v‖2

= ‖wt − v‖2 − 2η〈∇F (wt),wt − v〉+ η2‖∇F (wt)‖2

≤ ‖wt − v‖2 − 2γ2λη‖wt − v‖2 + η2c2
1c

4
2‖wt − v‖2

≤ ‖wt − v‖2
(
1− γ2λη

)
.

Using induction over the above proves the lemma.
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Appendix B. Proofs from Sec. 4

We will first need the following lemma:

Lemma B.1 Fix some α ≥ 0, and let a,b be two vectors in R2 such that θ(a,b) ≤ π− δ for some
δ ∈ (0, π]. Then

inf
u:‖u‖=1

∫
1a>y>01b>y>01‖y‖≤α(u>y)2dy ≥ α4

8
√

2
sin3

(
δ

4

)
.

Proof It is enough to lower bound

inf
u

inf
b:θ(a,b)≤π−δ

∫
1a>y>0,b>y>0,‖y‖≤α(ū>y)2dy .

The inner infimum is attained at some b such that θ(a,b) = π − δ. This is because ū>y does not
depend on a and b, and the volume for which the indicator function inside the integral is non-zero
is smallest when the angle θ(a,b) is largest. Setting this and switching the order of the infima, we
get

inf
b:θ(a,b)=−π+δ

inf
u

∫
1a>y>01b>y>01‖y‖≤α(ū>y)2dy .

When θ(a,b) = −π+ δ, we note that the set {y ∈ R2 : a>y > 0,b>y > 0, ‖y‖ ≤ α} is simply a
“pie slice” of radial width δ out of a ball of radius α. Since the expression is invariant to rotating the
coordinates, we will consider without loss of generality the set P = {y : θ(y, e1) ≤ δ/2, ‖y‖ ≤
α}, and the expression above reduces to

inf
u

∫
y∈P

(ū>y)2dy = inf
u:‖u‖=1

∫
y∈P

(
(u1y1)2 + (u2y2)2 + 2u1u2y1y2

)
dy

(∗)
= inf

u:‖u‖=1

∫
y∈P

(
(u1y1)2 + (u2y2)2

)
dy

= inf
u1,u2:u21+u22=1

u2
1

∫
y∈P

y2
1dy + u2

2

∫
y∈P

y2
2dy

= min

{∫
y∈P

y2
1dy ,

∫
y∈P

y2
2dy

}
≥
∫
y∈P

min{y2
1, y

2
2}dy , (5)

where (∗) is from the fact that P is symmetric around the x-axis (namely, (y1, y2) ∈ P if and only
if (y1,−y2) ∈ P ).

We now note that the set P contains the two (disjoint and equally-sized) rectangular sets

P ′1 :=

[
α

2
cos

(
δ

4

)
, α cos

(
δ

4

)]
×
[
α

2
sin

(
δ

4

)
, α sin

(
δ

4

)]
and

P ′2 :=

[
α

2
cos

(
δ

4

)
, α cos

(
δ

4

)]
×
[
−α sin

(
δ

4

)
,−α

2
sin

(
δ

4

)]
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Figure 2: An illustration of the sets P, P ′1, P
′
2 for the case of α = 1, δ = π

2 . The set P , colored in
gray, is a ”pie slice” and the rectangles P ′1, P

′
2 are contained in P .

(see Figure 2 for an illustration). Therefore, we can lower bound Eq. (5) by∫
y∈P ′

1∪P ′
2

min{y2
1, y

2
2}dy =

(
min

y∈P ′
1∪P ′

2

min{y2
1, y

2
2}
)∫

y∈P ′
1∪P ′

2

1dy

=
α2

4
min

{
cos2

(
δ

4

)
, sin2

(
δ

4

)}
·
∫
y∈P ′

1∪P ′
2

1dy

=
α2

4
sin2

(
δ

4

)
·
∫
y∈P ′

1∪P ′
2

1dy ,

where we used the fact that δ4 ∈
[
0, π4

]
and therefore cos2(δ/4) ≥ sin2(δ/4). The integral is simply

the volume of P ′1 ∪ P ′2, and since P ′1 and P ′2 are disjoint and equally sized rectanges, this equals
twice the volume of P ′1, namely 2 · α2 cos

(
δ
4

)
· α2 sin

(
δ
4

)
. Plugging into the above, we get

α2

4
sin2

(
δ

4

)
· α

2

2
cos

(
δ

4

)
sin

(
δ

4

)
=

α4

8
sin3

(
δ

4

)
cos

(
δ

4

)
≥ α4

8
√

2
sin3

(
δ

4

)
,

where again we used the fact that δ/4 ∈ [0, π/4].

We now turn to prove the theorem:
Proof [Thm. 4.2]
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We have:

〈∇F (w),w − v〉 = Ex

[(
σ(w>x)− σ(v>x)

)
· σ′(w>x) · (w>x− v>x)

]
. (6)

We note that since σ is monotonically non-decreasing, then for any x, σ′(w>x) ≥ 0 and
(σ(w>x)− σ(v>))(w>x− v>x) ≥ 0. As a result, we can lower bound Eq. (6) by

Ex

[
1w>x>01v>x>0

(
σ(w>x)− σ(v>x)

)
· σ′(w>x) · (w>x− v>x)

]
≥ Ex

[
1‖x‖≤α1w>x>01v>x>0

(
σ(w>x)− σ(v>x)

)
· γ · (w>x− v>x)

]
= γ · Ex

[
1‖x‖≤α1w>x>01v>x>0

(
σ(w>x)− σ(v>x)

)
(w>x− v>x)

]
,

where we used that ‖w‖ ≤ 2, hence for ‖x‖ ≤ α we have 〈x,w〉 ≤ 2α which by our assumption
means that σ′(〈w,x〉) > γ. By the assumption that σ′(z) ≥ γ for any 0 < z < 2α, it follows that
(σ(z′) − σ(z)) · (z′ − z) ≥ γ(z′ − z)2 for any 0 < z, z′ < 2α As a result, the displayed equation
above is at least

γ2 · Ex

[
1‖x‖≤α1w>>01v>x>0(w>x− v>x)2

]
= γ2‖w − v‖2 · Ex

[
1‖x‖≤α1w>x>01v>x>0((w − v)>x)2

]
≥ γ2‖w − v‖2 · inf

u∈span{w,v},‖u‖=1
Ex

[
1‖x‖≤α1w>x>01v>x>0(u>x)2

]
Since the expression inside the expectation above depends just on inner products of x with w,v, we
can consider the marginal distribution Dw,v of x on the 2-dimensional subspace spanned by w,v
(with density function pw,v), and letting ŵ, v̂ denote the projections of w,v on that subspace, write
the above as

γ2‖w − v‖2 · inf
u∈R2,‖u‖=1

Ey∼Dw,v

[
1ŵ>y>01v̂>y>01‖y‖≤α(u>y)2

]
= γ2‖w − v‖2 · inf

u∈R2,‖u‖=1

∫
1ŵ>y>01v̂>y>01‖y‖≤α(u>y)2pw,v(y)dy

≥ βγ2‖w − v‖2 · inf
u∈R2,‖u‖=1

∫
1ŵ>y>01v̂>y>01‖y‖≤α(u>y)2dy ,

where the last step is by our assumptions (note that if w = v, the theorem statement is trivially true
by Eq. (6) which implies that the inner product is non-negative). The theorem now follows from
Lemma B.1.

Appendix C. Proofs from Sec. 5

Proof [Lemma 5.1] Fix some ε > 0 to be determined later. We have that:

P
(
‖w − v‖2 ≤ 1− ε

)
= P

(
‖w‖2 − 2〈w,v〉 ≤ −ε

)
= P

(
〈w,v〉 ≥ ‖w‖

2 + ε

2

)
.
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Since the distribution of w is spherically symmetric, we can assume w.l.o.g that v = (1, 0), so that
〈w,v〉 = w1. Thus, the above probability can be written as:

P
(
〈w,v〉 ≥ ‖w‖

2 + ε

2

)
= P

(
w1 ≥

‖w‖2 + ε

2

)
≥ P

(
w1 ≥ 2E

[
‖w‖2

])
− P

(
‖w‖2 + ε

2
≥ 2E

[
‖w‖2

])
(7)

where we used the fact that for every two random variable A,B and constant c we have that P(A ≥
B) ≥ P(A ≥ c)− P(B ≥ c). For the first term of Eq. (7), we know that E

[
‖w‖2

]
= τ2d, hence:

P
(
w1 ≥ 2E

[
‖w‖2

])
= P

(
w1 ≥ 2τ2d

)
=

1

2
− 1

2
erf
(√

2τd
)

where erf is the error function. For any 0 < z < 1 it can be easily verified that erf(z) ≥ z
3 .

Combining this and using the assumption that τ ≤ 1
d
√

2
we can bound :

P
(
w1 ≥ 2E

[
‖w‖2

])
≥ 1

2
− 1

3
√

2
τd ≥ 1

2
− 1

4
τd

For the second term of Eq. (7) take ε = 2τ2d to get:

P
(
‖w‖2 + ε

2
≥ 2E

[
‖w‖2

])
= P

(
‖w‖2 ≥ 4τ2d− ε

)
≤ P

(
‖w‖2 ≥ 2τ2d

)
≤
(
2e−1

)d/2 ≤ 1.2−d

where in the second inequality we used a standard tail bound on Chi-squared distributions. Com-
bining the above with Eq. (7) we get that:

P
(
‖w − v‖2 ≤ 1− 2τ2d

)
≥ 1

2
− 1

4
τd− 1.2−d.

C.1. Gradient Flow

Proof [Thm. 5.3(1)] First we show that at every time t0 for which ‖w(t0)− v‖ < 1 the conditions
of Thm. 4.2 hold. We have that ‖w(t0)‖ ≤ ‖w(t0) − v‖ + ‖v‖ < 2, hence ‖w(t0)‖ < 2.
Next ‖w(t0) − v‖2 < 1 and ‖v‖2 = 1 hence 〈w(t0),v〉 ≥ 1

2‖w(t0)‖2 > 0 which means that
θ(w(t0),v) < π

2 . This shows that we can use Thm. 4.2 at time t = t0 to get that:

∂

∂t
‖w(t)− v‖2 = 2〈w(t)− v,

∂

∂t
w(t)〉 = −2〈w(t)− v,∇F (w(t))〉 ≤ 0. (8)

By the assumptions of the theorem, the above holds for time t0 = 0. Assume on the way of
contradiction that for some time t > 0 we have that ‖w(t) − v‖ ≥ 1, and let t1 be the first time
that this happens. Then for every t0 < t < t1 we have that ‖w(t) − v‖ < 1. But because
‖w(t1) − v‖ ≥ 1 we have that for some time t0 < t < t1: ∂

∂t‖w(t) − v‖ > 0, a contradiction to
Eq. (8). Hence for every t ≥ 0 we have that ‖w(t)− v‖ < 1 and the conditions of Thm. 4.2 hold.
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Using Thm. 4.2 again we get that for every t > 0:

〈∇F (w(t)),w(t)− v〉 ≥ α4βγ2

8
√

2
sin
(π

8

)3
‖w(t)− v‖2 ≥ α4βγ2

210
|w(t)− v‖2.

Set λ = α4βγ2

210 , in total we have that:

∂

∂t
‖w(t)− v‖2 = −2〈∇F (w(t)),w(t)− v〉 ≤ −λ‖w(t)− v‖2 .

Using Grönwall’s inequality, this proves that for every t > 0 we get:

‖w(t)− v‖2 ≤ ‖w(0)− v‖2 exp(−λt).

C.2. Gradient Descent

Proof [Thm. 5.3(2)] Assume that ‖wt − v‖2 < 1 for some t ≥ 0, then we have that θ(wt,v) ≤ π
2 .

Thus, we can use Thm. 4.2 with δ = π
2 to get that:

‖wt+1 − v‖2 = ‖wt − η∇F (wt)− v‖2

= ‖wt − v‖2 − 2η〈∇F (wt),wt − v〉+ η2‖∇F (wt)‖2

≤ ‖wt − v‖2(1− ηλ) + η2‖∇F (wt)‖2.

Now to bound the second term of the above expression recall the definition of∇F (wt) to get:

‖∇F (wt)‖2 = Ex

[(
σ(w>t x)− σ(v>x)

)2
· σ′(w>x)2x>x

]
≤ c4

2Ex

[(
w>t x− v>x

)2
· x>x

]
≤ c4

2‖wt − v‖2Ex

[
‖x‖2 · x>x

]
≤ c2

1c
4
2‖wt − v‖2

where in the first inequality we used that σ is monotonic with bounded derivative, and in the second
inequality we used Cauchy-Schwartz. Note that by our choice of η:

1− ηλ+ η2c < 1− ηλ

2
< 1,

this proves that:

‖wt+1 − v‖2 ≤ (1− ηλ+ η2c)‖wt − v‖2 ≤
(

1− ηλ

2

)
‖wt − v‖2 (9)

and in particular ‖wt+1 − v‖ < 1. Now after T iterations we can use Eq. (9) iteratively to get that:

‖wT − v‖2 ≤
(

1− ηλ

2

)
‖wT−1 − v‖2

≤ ... ≤
(

1− ηλ

2

)T
‖w0 − v‖2 .
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C.3. Stochastic Gradient Descent

First, we prove a recursion relation similar to the one in the gradient descent step. Only here since
each gradient step is stochastic we can only prove that the recursion relation holds in expectation
over the example selected in each iteration.

Lemma C.1 Suppose that ‖wt − v‖2 ≤ 1− ε. Then

E
[
‖wt+1 − v‖2|wt

]
≤ (1− 2ηλ+ η2c)‖wt − v‖2

where c = c2
1c

4
2.

Proof We can use Thm. 4.2 with δ = π
2 to get that

E
[
‖wt+1 − v‖2|wt

]
= E

[
‖wt − ηgt − v‖2|wt

]
= ‖wt − v‖2 − 2ηE[〈gt,wt − v〉|wt] + η2E[‖gt‖2|wt]

= ‖wt − v‖2 − 2η〈∇F (wt),wt − v〉+ η2‖∇F (wt)‖2

≤ ‖wt − v‖2(1− 2ηλ) + η2‖∇F (wt)‖2 .

Now to bound the second term recall the definition of∇F (wt) to get:

‖∇F (wt)‖2 = Ex

[(
σ(w>t x)− σ(v>x)

)2
· σ′(w>x)2x>x

]
≤ c4

2Ex

[(
w>t x− v>x

)2
· x>x

]
≤ c4

2‖wt − v‖2Ex

[
‖x‖2 · x>x

]
≤ c2

1c
4
2‖wt − v‖2

where in the first inequality we used that σ is monotonic with bounded derivative, and in the second
inequality we used Cauchy-Schwartz. This proves the required bound.

The recursion relation above only works if wt is in a ”safe zone”, that is ‖wt − v‖2 ≤ 1 − ε.
Although in expectation the distance between wt and v only decrease, taking a stochastic step may
take wt+1 outside of the safe zone. The following lemma shows that if η is small enough, then
taking at most m = O(1/η) steps keeps wt in the ”safe zone” w.h.p for every t = 1, . . . ,m.

Lemma C.2 Assume that ‖w0−v‖2 ≤ 1− ε, and Let δ > 0. Then w.p > 1− δ, if η < ε2λ
3c21c

4
2 log( 1

δ )
and m ≤ 1

9ηc1c22
then for every i = 1, . . . ,m we have that ‖wi − v‖2 ≤ 1− ε

2 .

Proof Denote Xi = ‖wi − v‖2, then we have:

|Xi −Xi−1| =
∣∣‖wi − v‖2 − ‖wi−1 − v‖2

∣∣ =
∣∣‖wi−1 − ηgi−1 − v‖2 − ‖wi−1 − v‖2

∣∣
=
∣∣−2η〈gi−1,wi−1 − v〉+ η2‖gi−1‖2

∣∣ ≤ 2η|〈gi−1,wi−1 − v〉|+ η2‖gi−1‖2 (10)

We will bound the norm of the gradient at each step:

‖gi‖2 = x>i xiσ
′
(
w>i xi

)2 (
σ
(
w>i xi

)
− σ

(
v>xi

))2
≤ c2

1c
4
2‖wi − v‖2

22



LEARNING A SINGLE NEURON WITH GRADIENT METHODS

thus we can bound Eq. (10) with:

|Xi −Xi−1| ≤ ‖wi−1 − v‖2c2
1c

4
2(2η + η2) ≤ 3ηc2

1c
4
2‖wi−1 − v‖2 (11)

Denote η′ = 3ηc2
1c

4
2. Using Eq. (10) we can bound:

‖wi − v‖2 ≤ ‖wi−1 − v‖2 + η′‖wi−1 − v‖2 ≤ (1 + η′)‖wi−1 − v‖2 (12)

Thus, combining Eq. (11) and Eq. (12) we get:

|Xi −Xi−1| ≤ η′(1 + η′)‖wi−2 − v‖2

≤ ... ≤ η′(1 + η′)i−2‖w0 − v‖2 ≤ η′(1 + η′)i(1− ε)

We would like to use Azuma’s inequality onXi, but in order to prove that they are supermartingales
we need to use Lemma C.1. The problem here is that the condition of the lemma, that ‖wt −
v‖2 < 1− ε, does not necessarily holds, hence the series Xi may not be supermartingales. Instead,
we consider a dual series of random variables X̃i = min

{
Xi, 1− ε

2

}
, and prove that they are

supermartingales. First we have that:∣∣∣X̃i − X̃i−1

∣∣∣ ≤ |Xi −Xi−1| ≤ η′(1 + η′)i(1− ε).

Next, we have for every i that X̃i ≤ 1− ε
2 , thus we can use Lemma C.1 (note that the result of the

lemma does not depend on the value of ε) and choose η′ ≤ λ
c21c

4
2

to get that:

E[X̃i|wi−1] ≤ min{(1− 2η′λ+ η′2c2
1c

4
2)Xi−1, 1− ε} ≤ X̃i−1

this proves that the series X̃i are supermartingales. Now we use a maximal version of Azuma-
Hoeffding inequality (see (11)) on X̃i to show that after m iterations we have that:

P
(

sup
1≤i≤m

X̃i − X̃0 >
ε

2

)
≤ exp

(
−ε2

2
∑m

i=0 (η′(1 + η′)i(1− ε))2

)

≤ exp

 −ε2

2η′2(1− ε)2 (1+η′)2m+2−1
(1+η′)2−1


≤ exp

(
−ε2

2η′2(1− ε)2 2
(1+η′)2−1

)
≤ exp

(
−ε2(2 + η′)

4η′(1− ε)2

)
(13)

where in the second to last inequality we used that η′ ≤ 1
2m+2 to bound (1 + η′)2m+2 < 3 for every

m. Substituting the r.h.s of Eq. (13) with δ and simplifying the term we get that if η′ ≤ ε2

log( 1
δ )

then

w.p > 1− δ, for every i = 1, . . . ,m (note that X̃0 = X0):

min
{
Xi, 1−

ε

2

}
≤ X0 −

ε

2
≤ 1− ε+

ε

2
= 1− ε

2
.

In particular, the above shows that w.p > 1− δ for every i = 1, . . . ,m: Xi = ‖wi − v‖2 ≤ 1− ε
2 .

Next we show that taking a single epoch of m = O(1/η) iterations w.h.p will decrease the
distance between w and v by a constant that does not depend on the epoch length or the step size.
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Lemma C.3 Let δ > 0, take η ≤ λε21ε
2
2c

2
3

60c31c
6
2 log( 2

δ )
where c3 =

(
1
2

) λ

20c1c
2
2 −

(
1
2

) λ

18c1c
2
2 , and m = 1

9ηc1c22
.

Assume ε2 ≤ ‖w0−v‖2 ≤ 1−ε1. Then w.p 1−δ we have that ‖wm−v‖2 ≤
(

1
2

) λ

20c1c
2
2 ‖w0−v‖2.

Proof Denote w̃i = E[wi] where the expectation is over x1, . . . ,xi, and let Zi = ‖wi−w̃i‖2, then
we have that:

|Zi − Zi−1| =
∣∣∣‖wi − w̃i‖2 − ‖wi−1 − w̃i−1‖2

∣∣∣
=
∣∣∣‖wi−1 − ηgi−1 − w̃i−1 + η∇F (w̃i−1)‖2 − ‖wi−1 − w̃i−1‖2

∣∣∣
≤ 2η |〈∇F (w̃i−1)− gi−1,wi−1 − w̃i−1〉|+ η2‖F (w̃i−1)− gi−1‖2

≤ 2η‖F (w̃i−1)− gi−1‖ · ‖wi−1 − w̃i−1‖+ η2‖F (w̃i−1)− gi−1‖2

≤ 2η (‖∇F (w̃i−1)‖+ ‖gi−1‖) · (‖wi−1‖+ ‖w̃i−1‖) + η
(
‖∇F (w̃i−1)‖2 + ‖gi−1‖2

)
(14)

As in the proof of the previous lemma we can bound:

‖gi‖2 ≤ c1c
2
2‖wi − v‖2 ≤ c2

1c
4
2

where we used our assumption that ‖wi−v‖2 ≤ 1. In the same manner we can bound ‖∇F (w̃i)‖ ≤
c2

1c
4
2. Again using our assumption we have that:

‖wi‖ ≤ ‖v‖+ ‖wi − v‖ ≤ 1 + 1− ε ≤ 2

and in the same manner ‖w̃i‖ ≤ 2. In total we can bound Eq. (14) by:

|Zi − Zi−1| ≤ 16ηc2
1c

4
2

Set c3 =
(

1
2

) λ

20c1c
2
2 −

(
1
2

) λ

18c1c
2
2 , we now us Azuma’s inequality and Z0 = 0 to get that:

P (Zm ≥ ε2c3) ≤ exp

(
−ε22c2

3

256mη2c4
1c

8
2

)
Substituting the r.h.s with δ

2 we have that for :

m ≤ ε22c
2
3

512c4
1c

8
2η

2 log
(

2
δ

) (15)

then w.p > 1− δ
2 : ‖wm − w̃m‖2 ≤ ε2c3.

Take m = 1
9ηc1c22

, by taking η ≤ λε21ε
2
2c

2
3

60c31c
6
2 log( 2

δ )
we have that Eq. (15) is satisfied and 1 − ηλ +

η2c ≤ 1 − ηλ
2 . Finally, using Lemma C.2 with δ

2 and using a union bound, we get that after m
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iterations w.p > 1− δ:

‖wm − v‖2 ≤ ‖w̃m − v‖2 + ‖wm − w̃m‖2

≤
(
1− ηλ+ η2c

)m ‖w0 − v‖2 + ε2c3

≤
(

1− ηλ

2

)m
‖w0 − v‖2 +

((
1

2

) λ

20c1c
2
2 −

(
1

2

) λ

18c1c
2
2

)
‖w0 − v‖2

≤

((
1− ηλ

2

) 2
λη

) λ

18c1c
2
2

‖w0 − v‖2 +

((
1

2

) λ

20c1c
2
2 −

(
1

2

) λ

18c1c
2
2

)
‖w0 − v‖2

≤
(

1

2

) λ

18c1c
2
2 ‖w0 − v‖2 +

((
1

2

) λ

20c1c
2
2 −

(
1

2

) λ

18c1c
2
2

)
‖w0 − v‖2

≤
(

1

2

) λ

20c1c
2
2 ‖w0 − v‖2

where in the second to last inequality we used that (1 + x)
1
x ≤ 1

2 for 0 ≤ x ≤ 1.

Now we are ready to prove the main theorem, by taking enough epochs with m iterations, and
applying union bound:
Proof [Thm. 5.3(3)] We use Lemma C.3 to get that after m = 1

9ηc1c22
iterations we have w.p 1− δ

‖wm − v‖2 ≤
(

1

2

) λ

20c1c
2
2 ‖w0 − v‖2.

Using the above iteratively for t epochs and applying union bound, we have that after T = t · m
iterations w.p 1− tδ:

‖wt·m − v‖2 ≤
(

1

2

) tλ

20c1c
2
2 ‖w0 − v‖2 ≤

(
1

2

) tλ

20c1c
2
2 .

Setting t =

⌈
20c1c22 log

(
1
ε2

)
λ

⌉
we have w.p > 1 −

⌈
20c1c22 log

(
1
ε2

)
λ

⌉
δ, after T = t ·m =

2 log
(

1
ε2

)
λη

iterations we have:

‖wT − v‖2 ≤
(

1

2

) tλ

20c1c
2
2 ≤ ε2

Appendix D. Proofs from Sec. 6

In the proofs of this section, we follow the convention that for the ReLU function σ(·), it holds that
σ′(z) = 1(z ≥ 0) (and in particular, that σ′(0) = 1). However, the same proofs will hold assuming
any other value of σ′(0) in [0, 1].

25



LEARNING A SINGLE NEURON WITH GRADIENT METHODS

Proof [Lemma 6.2] Using the chain rule and the lemma assumption that ‖w(t)‖ > 0 (hence the
angle expression is well-defined), we have

∂

∂t
θ(w(t),v) =

∂

∂t
arccos

(
w(t)>v̄

‖w(t)‖

)

= − 1√
1−

(
w(t)>v̄
‖w(t)‖

)2
·

‖w(t)‖v̄ − (w(t)>v̄) w(t)
‖w(t)‖

‖w(t)‖2

> (−∇F (w(t)))

=
1√

1− (w̄(t)>v̄)
2
·
(
v̄ − (w̄(t)>v̄)w̄(t)

‖w(t)‖

)>
∇F (w(t)) .

Thus, it is enough to show that:(
v − (w̄(t)>v)

‖w(t)‖
w(t)

)>
∇F (w(t)) ≤ 0.

We fix w = w(t), and denote a = w̄>v
‖w‖ . Plugging in the definition of ∇F (w), we want to show

that
Ex

[(
σ(w>x)− σ(v>x)

)
· σ′(w>x) · (v>x− aw>x)

]
≤ 0 .

Using the assumption that σ is ReLU, the above can be rewritten as

Ex

[(
σ(w>x)− σ(v>x)

)
· (v>x− aw>x) · 1(w>x ≥ 0)

]
≤ 0 . (16)

We now note that the expression above depends only on inner products of x with w,v, so we can
rewrite the inequality as

Ey∼Dw,v

[(
σ(ŵ>y)− σ(v̂>y)

)
· (v̂>y − aŵ>y) · 1(ŵ>y ≥ 0)

]
≤ 0 ,

where Dw,v is the marginal distribution of x on the 2-dimensional subspace span{w,v}, and
ŵ, v̂ ∈ R2 are the representations of w,v in that subspace. Moreover, by the spherical symme-
try of the distribution, the expression above is invariant to rotating the coordinate frame, so we can

assume without loss of generality that ŵ = ‖w‖
(

1
0

)
, in which case the above reduces to

Ey∼Dw,v

[(
‖w‖

(
1
0

)>
y − σ(v̂>y)

)
·

(
v̂>y − 〈w̄,v〉

(
1
0

)>
y

)
· 1(y1 > 0)

]
≤ 0 .

Denote g(y) =

(
‖w‖

(
1
0

)>
y − σ(v̂>y)

)
·

(
v̂>y − 〈w̄,v〉

(
1
0

)>
y

)
, so that the inequality

above is
Ey∼Dw,v [ g(y) · 1(y1 > 0)] ≤ 0 . (17)

The function g(y) can be simplified as:

g(y) = (‖w‖y1 − σ(y1v̂1 + y2v̂2)) · (y1v̂1 + y2v̂2 − v̂1y1) = (‖w‖y1 − σ(y1v̂1 + y2v̂2)) · y2v̂2 ,
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where we used the fact that 〈w̄,v〉 = 〈 1
‖w‖ŵ, v̂〉 = v1.

We now perform a case analysis to justify Eq. (17), depending on the value of a (which by
definition, equals w̄>v

‖w‖ = w>v
‖w‖2 = ŵ>v̂

‖w‖2 = v̂1
‖w‖ ). In all the cases we assume y1 > 0, otherwise the

expression in the expectation is zero.

• 0 ≤ a ≤ 1: In this case v̂1 ≥ 0, and also 〈w̄,v〉 ≤ ‖w‖. Assume w.l.o.g that v̂2 ≥ 0 (the

other case is similar), and for y =

(
y1

y2

)
denote ỹ =

(
y1

−y2

)
. If y2 < 0 then g(y) ≤ 0, on

the other hand if y2 > 0 then we can rewrite:

g(y) = y2v̂2 · (y1(‖w‖ − v̂1)− y2v̂2) = y2v̂2 · (y1(‖w‖ − 〈w̄,v〉)− y2v̂2),

where we have two cases:

1. if y1(‖w‖ − 〈w̄,v〉) > y2v̂2 then |g(ỹ)| ≥ g(y) and also g(ỹ) ≤ 0

2. If y1(‖w‖ − 〈w̄,v〉) ≤ y2v̂2 then g(y) ≤ 0.

We showed that for every y ∈ R2 either g(y) ≤ 0 or there is a unique ỹ ∈ R2 with the
same norm as y such that g(ỹ) ≤ 0 and |g(ỹ)| ≥ g(y). Since D has a spherical symmetric
distribution this shows that Eq. (17) holds for these values of a.

• a ≤ 0: In this case v̂1 ≤ 0, we also assume w.l.o.g that v̂2 ≥ 0 (the other case is similar).
Here for every y with y2 ≤ 0 we have that:

g(y) = (‖w‖y1 − σ(y1v̂1 + y2v̂2)) · y2v̂2 = ‖w‖y1 · y2v̂2 ≤ 0,

because y1 ≥ 0. On the other hand, if y2 ≥ 0 we have two cases:

1. If also v̂1y1 + v̂2y2 ≤ 0 then g(y) = ‖w‖y1 · y2v̂2 ≥ 0, and then g(ỹ) = −g(y).

2. If v̂1y1 + v̂2y2 ≥ 0 then g(y) = (‖w‖y1 − v̂1y1 − v̂2y2) · y2v̂2. If g(y) ≥ 0, then
g(ỹ) ≤ 0 and also |g(ỹ)| ≥ g(y).

Hence we proved that for every y with y1 > 0 either g(y) ≤ 0 or there is ỹ with |g(ỹ)| ≥
g(y) and g(ỹ) ≤ 0. Since D has a spherical symmetric distribution this shows that Eq. (17)
holds for these values of a.

• a ≥ 1: In this case v̂1 ≥ 0 and 〈ŵ,v〉 ≥ ‖w‖. Assume w.l.o.g that v̂2 ≥ 0 (the other case is
similar). If y2 > 0 then

g(y) = (y1(‖w‖ − v̂1)− y2v̂2) · y2v̂2 ≤ 0.

If y2 < 0 then we have two case:

1. y1v̂1 + y2v̂2 ≤ 0, then g(y) = ‖w‖y1 · y2v̂2 < 0

2. y1v̂2 + y2v̂2 > 0, in which case if g(y) > 0 then g(ỹ) < 0 and g(ỹ) ≥ g(y).

Hence for every y with y1 > 0 either g(y) < 0 or there is ỹ with g(ỹ) < 0 and g(ỹ) ≥ g(y).
This shows that Eq. (17) holds for these values of a.
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Proof [Lemma 6.3] By our assumption w(t) 6= 0, hence the gradient of the objective is well-defined
and we have that

∂

∂t
‖w(t)‖2 = −w(t)>∇F (w(t)) = Ex

[(
σ(v>x)− σ(w(t)>x)

)
σ′(w(t)>x)w(t)>x

]
. (18)

Fix w = w(t). Using the assumption that σ is the ReLU function we can rewrite Eq. (18) as:

Ex

[(
σ(v>x)−w>x

)
·w>x · 1(w>x ≥ 0)

]
. (19)

Since the function inside the expectation in Eq. (19) depends only on the inner product of x with w
and v, we can consider the marginal distribution Dw,v on the 2-dimensional subspace span{w,v},
we also denote ŵ, v̂ ∈ R2 as the representations of w,v on this 2-dimensional subspace. We can
now rewrite Eq. (19) as:

Ey∼Dw,v

[(
σ(v̂>y)− ŵ>y

)
· ŵ>y · 1(ŵ>y ≥ 0)

]
. (20)

Note that the function inside the expectation in Eq. (20) is homogeneous with respect to the norm of
y. Also, by our assumptionD is a spherically symmetric distribution, hence alsoDw,v is spherically
symmetric. Thus, in order to prove that Eq. (20) is non-negative, it is enough to consider the
conditional distribution Dw,y,1 of y on the set {y : ‖y‖ = 1}. Since Dw,v,1 (as a distribution on
R2) is still spherically symmetric, it is invariant to a rotation of the coordinate system, so we can

assume w.l.o.g that ŵ = ‖w‖
(

1
0

)
. Overall, in order to prove that Eq. (20) is non-negative it is

enough to show that:

Ey∼Dw,v,1 [(σ(v̂1y1 + v̂2y2)− ‖w‖y1)1(y1 ≥ 0) · y1‖w‖] ≥ 0 . (21)

Since D is spherically symmetrical and the function inside Eq. (21), the marginal distribution
Dw,v,1 is actually a uniform distribution on {y ∈ R2 : ‖y‖ = 1}. Thus, in order to show that
Eq. (21) is non-negative, we can divide it by ‖w‖ (which is positive), and show that the following
integral is non-negative:∫ 1

0

(
σ

(
v1y1 + v2

√
1− y2

1

)
− ‖w‖y1

)
y1 +

(
σ

(
v1y1 − v2

√
1− y2

1

)
− ‖w‖y1

)
y1dy1

=

∫ 1

0
y1

(
σ

(
v1y1 + v2

√
1− y2

1

)
+ σ

(
v1y1 − v2

√
1− y2

1

))
− 2‖w‖y2

1dy1,

where we wrote y2 = ±
√

1− y2
1 since ‖y‖ = 1. We can assume w.l.o.g that v2 ≥ 0 (the other

direction is similar) and write v2 =
√

1− v2
1 , and thus it is enough to prove that:∫ 1

0
y1σ

(
v1y1 +

√
(1− y2

1)(1− v2
1)

)
− 2‖w‖y2

1dy1 ≥ 0 . (22)

Denote θ = θ(w,v), since 〈w̄,v〉 = 〈 ˆ̄w, v̂〉 = v1 then v1 = cos(θ) and
√

1− v2
1 = sin(θ). Now

we split into cases for the different values of v1:
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• v1 ≥ 0: In this case, if 0 ≤ y1 ≤ 1 then v1y1 +
√

(1− y2
1)(1− v2

1) ≥ 0, hence the integral
in Eq. (22) can be calculated as:∫ 1

0
y1

(
v1y1 +

√
(1− y2

1)(1− v2
1)

)
− 2‖w‖y2

1dy1 =
v1

3
+

√
1− v2

1

3
− 2‖w‖

3
. (23)

Thus, the above term is non-negative if:

‖w‖ ≤ v1 +
√

1− v2
1

2
=

sin(θ) + cos(θ)

2
.

• v1 ≤ 0: In this case, if 0 ≤ y1 ≤
√

1− v2
1 then v1y1 +

√
(1− y2

1)(1− v2
1) ≥ 0, and if√

1− v2
1 < y1 ≤ 1 then v1y1 +

√
(1− y2

1)(1− v2
1) ≤ 0. Thus, the integral in Eq. (22) can

be calculated as:∫ √1−v21

0
y1

(
v1y1 +

√
(1− y2

1)(1− v2
1)

)
− 2‖w‖y2

1dy1 −
∫ 1

√
1−v21

2‖w‖y2
1dy1

=− 2‖w‖
3

+
v3

1

√
1− v2

1

3
+
v1

(√
1− v2

1

)3

3
+

√
1− v2

1

3

=− 2‖w‖
3

+

√
1− v2

1(1 + v1)

3
.

Thus, the above term is non-negative if:

‖w‖ ≤
√

1− v2
1(1 + v1)

2
=

sin(θ)(1 + cos(θ))

2

Proof [Thm. 6.4] Assume we initialized with θ(w(0),v) ≤ π − ε and 0 < ‖w(0)‖ ≤ 2. First we
will show that w(t) 6= 0 for all t > 0. Assume on the way of contradiction that for some t > 0 we
have w(t) = 0, and let t1 be the first time for which it happens. For t0 = 0 we know that w(t0) 6= 0,
and also that for all t ∈ [t0, t1], w(t) 6= 0 and the gradient of the objective is well defined. Hence by
Lemma 6.2 we know that θ(w(t),v) ≤ π−ε for all t ∈ [t0, t1], because the angle can only decrease
unless w(t) = 0. But, by Lemma 6.3 we know that if ‖w(t)‖ ≤ max

{
sin(ε)−cos(ε)

2 , sin(ε)(1−cos(ε))
2

}
then ∂

∂t‖w(t)‖ ≥ 0. In particular, for ε ∈ (0, π] and for all t0 ≤ t < t1, we have that ‖w(t)‖ is

bounded below by max
{

sin(ε)−cos(ε)
2 , sin(ε)(1−cos(ε))

2

}
> 0, a contradiction to w(t1) = 0. This

shows that for all t > 0 we have that w(t) 6= 0, hence by Lemma 6.2 we know that for every t > 0
we will have θ(w(t),v) ≤ π − ε.

Now we can use Thm. 4.2 (where γ = 1 because of Assumption 6.1(3)) to get:

〈∇F (w(t)),w(t)− v〉 ≥ α4β

8
√

2
sin
( ε

8

)3
‖w(t)− v‖2.

Set λ = α4β

8
√

2
sin
(
ε
8

)3, as explained above for all t > 0, ∇F (w(t)) is continuous since w(t) 6= 0

and we have that:
∂

∂t
‖w(t)− v‖2 = 2〈w(t)− v,

∂

∂t
w(t)〉 = −2〈w(t)− v,∇F (w(t))〉 ≤ −λ‖w(t)− v‖2,

29



LEARNING A SINGLE NEURON WITH GRADIENT METHODS

Using Grönwall’s inequality, this proves that for every t > 0 we get:

‖w(t)− v‖2 ≤ ‖w(0)− v‖2 exp(−λt).

D.1. Standard Gaussian Distribution

In this subsection we assume that D = N (0, I), and that σ is the ReLU function.

Lemma D.1 If w(t) 6= 0, then ∂
∂tθ(w(t),v) ≤ 0

Proof Similar to the proof of Lemma 6.2, it is enough to prove that(
v̄ − (w̄(t)>v̄)w̄(t)

)>
∇F (w(t)) ≤ 0 , (24)

where we used that ‖w(t)‖ > 0 hence the angle expression is differentiable. In the standard Gaus-
sian case,∇F (w(t)) has a closed-form expression (see (3), (20)), namely

∇F (w) =
1

2
w − 1

2π
(‖v‖ sin(θ(w,v))w̄ + (π − θ(w,v)v)) . (25)

Multiplying this by
(
v̄ − (w̄(t)>v̄)w̄(t)

)
, and noting that this vector is orthogonal to w(t) (as it is

simply the component of v̄ orthogonal to w̄(t), we get that(
v̄ − (w̄(t)>v̄)w̄(t)

)>
∇F (w(t)) =

(
v̄ − (w̄(t)>v̄)w̄(t)

)>(
−π − θ(w(t),v)

2π
v

)
= − π − θ(w(t),v)

2π

(
v̄>v − (w̄(t)>v̄)(w̄(t)>v)

)
= − π − θ(w(t),v)

2π

(
‖v‖ − ‖v‖(w̄(t)>v̄)2

)
= − π − θ(w(t),v)

2π

(
1− (w̄(t)>v̄)2

)
‖v‖ .

Since θ(w(t),v) ∈ [−π, π] and w̄(t)>v̄ ∈ [−1, 1], it follows that this expression is non-negative,
establishing Eq. (24) and hence the lemma.

Lemma D.2 Let θ(w(t),v) = π − α and assume that w(t) 6= 0. If ‖w(t)‖ ≤ ‖v‖
π4 α

3, then
∂
∂t‖w(t)‖2 ≥ 0

Proof
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Using the closed-form expression for∇F (w) (see Eq. (25)), we have

∂

∂t
‖w(t)‖2 = w(t)>

∂

∂t
w(t) = −w(t)>∇F (w(t))

= − ‖w(t)‖2

2
+

1

2π

(
‖v‖‖w(t)‖ sin(θ(w(t),v)) + (π − θ(w(t),v)w(t)>v)

)
=
‖w(t)‖‖v‖

2π

(
sin(θ(w(t),v)) + (π − θ(w(t),v))w̄(t)>v̄ − π‖w(t)‖

‖v‖

)
=
‖w(t)‖‖v‖

2

(
sin(θ(w(t),v)) + (π − θ(w(t),v)) cos(θ(w(t),v))− π‖w(t)‖

‖v‖

)

The expression sin(θ)+(π−θ) cos(θ) can be easily verified to be strictly monotonically decreasing
in θ ∈ (0, π), and equal 0 at θ = π. Therefore, if θ ≤ π−α, then the expression above can be lower
bounded by

‖w(t)‖‖v‖
2

(
sin(π − α) + α cos(π − α)− π‖w(t)‖

‖v‖

)
=
‖w(t)‖‖v‖

2

(
sin(α)− α cos(α)− π‖w(t)‖

‖v‖

)
. (26)

To slightly simplify this expression, we will now argue that

sin(α)− α cos(α) ≥
(α
π

)3
∀α ∈ [0, π] . (27)

Assuming this inequality holds, we get that Eq. (26) is at least

‖w(t)‖‖v‖
2

((α
π

)3
− π‖w(t)‖

‖v‖

)
,

which is non-negative as long as ‖w(t)‖ ≤ ‖v‖α3/π4, proving the lemma. It only remains to
establish Eq. (27). We consider two cases:

• If α ∈ [0, π/2], then by a Taylor expansion of sin(α), cos(α) around 0, we have that sin(α)−
α cos(α) is at least

α− α3

3!
− α

(
1− α2

2!
+
α4

4!

)
= α3

(
1

2!
− 1

3!
− α2

4!

)
≥ α3

(
1

2!
− 1

3!
− (π/2)2

4!

)
,

which is at least α3/5.

• If α ∈
[
π
2 , π

]
, it is easily verified via differentiation that sin(α)−α cos(α) ≥ sin(α) is mono-

tonically increasing in α. Therefore, it can be lower bounded by sin(π/2)−(π/2) cos(π/2) =
1 ≥ α3/π3.

Combining the two cases, Eq. (27) follows.
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