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Abstract

Alzheimer’s disease (AD) is an insidious progressive neurodegenerative disease resulting in
impaired cognition, dementia, and eventual death. At the earliest stages of the disease,
decline in multiple cognitive domains including speech and eye movements occurs, and
worsens with disease progression. Therefore, investigating speech and eye movements is
promising as a non-invasive method for early classification of AD. While related work has
investigated AD classification using speech collected during spontaneous speech tasks, no
prior research has studied the utility of eye movements and their combination with speech
for this classification task. In this paper, we present classification experiments with speech
and eye movement data collected from 68 memory clinic patients (with a diagnosis of
AD, mixed dementia, mild cognitive impairment, or subjective memory complaints) and
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73 healthy volunteers completing the Cookie Theft picture description task. We show
that eye tracking data is predictive of AD in a patient versus control classification task
(AUC = .73). Furthermore, we show that using eye tracking data for this predictive task
is complementary to using speech alone, as combining both modalities yields to the best
classification performance (AUC=.80). Our results suggest that eye tracking is a useful
modality for classification of AD, most promising when considered as an additional non-
invasive modality to speech-based classification.

1. Introduction

Dementia is a progressive neurodegenerative process resulting in impaired cognition. It
affects 47 million people worldwide, and it is one of the costliest diseases in developed
countries (Arvanitakis et al., 2019; El-Hayek et al., 2019). Although dementia may be the
end result of a number of processes, both alone or in combination, Alzheimer’s disease (AD)
is most common, contributing to approximately 60-80% of all cases.

The course of AD is insidious. Current evidence shows that pre-clinical pathological
hallmarks of AD - amyloid plaques and neurofibrillary tangles - are present years before
clinical symptoms occur (Vickers et al., 2016). Symptoms begin with subjective cognitive
concerns, or subjective memory complaints (SMC) which may progress to mild cognitive
impairment (MCI), where cognitive issues still do not impact day-to-day function. Demen-
tia is defined by the point where cognitive impairment progresses to affect independent
functioning, and progresses from mild to moderate to severe stages (Shaji et al., 2018).
The most common presentations involve memory impairment, but additional domains, in-
cluding language, visuospatial orientation, praxis (i.e. skilled movements) and personality
changes may also occur. The median course of conversion between stages is highly variable
and associated in part with a number of clinical, demographic and genetic factors. The
four-year risk of conversion from SMC to MCI was 26% and SMC to dementia 14% in a
larger meta-analysis of over 29000 individuals (Mitchell et al., 2014). There are no definitive
disease-modifying treatments for AD. Clinical trials of potential disease-modifying thera-
pies for AD have failed, in part, because neurodegeneration is too advanced at the time of
diagnosis to change the course of decline due to the irreversible destruction of key brain
pathways (Vickers et al., 2016; Sperling et al., 2014).

A successful disease-modifying drug for AD would be most likely to demonstrate an
effect in individuals who do not yet have advanced neurodegenerative changes (Reiman
et al., 2016; Sperling et al., 2014, 2011). Disease-modifying drug trials for dementia are
increasingly focused on individuals with pre-clinical and very early stage disease, when
successful therapeutics would be most likely to demonstrate an effect. However, current
screening strategies for individuals for clinical trials who have pre-clinical disease, or are
at higher risk for faster decline (and, conversely, exclusion of very low-risk individuals who
are unlikely to progress), are highly inefficient and imprecise. Current estimates for pre-AD
trial candidate screening costs are as high as $100,000 USD, while up to 80% of potential
participants may be screen failures (Kolata, 2018). Thus, there is a strong need for efficient
and accurate screening strategies to accelerate disease modifying-therapy development in
AD.

A simple, accurate and non-invasive screening tool could help to accelerate curative
treatments for AD by helping to select good trial candidates with early-stage or pre-clinical
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disease and excluding healthy individuals, who will reduce the statistical power of a clinical
trial. Machine learning models built on non-invasive patient data are obvious candidates to
be used as non-invasive screening tools.

Previous research has shown the potential of using machine learning for the classification
of AD/MCI versus healthy controls. Speech, in particular, has been extensively investigated
for non-invasive AD risk-stratification tools (Pulido et al., 2020). To this end, eye movement
data may serve as another means for risk stratification, as visuomotor impairments are
present even in the prodromal phase of AD, before robust clinical symptoms develop. Recent
work has studied the added predictive value of eye data in reading tasks alone (Biondi et al.,
2017), or both language and eye data during reading tasks (Fraser et al., 2019), leading to
promising results. However, no previous work has attempted classification of AD using eye
movements collected during spontaneous speech tasks, nor the combination of eye tracking
and language data in this context.

In this paper, we study if eye tracking data can be used for classification of AD/MCI
versus controls on a spontaneous speech task. We begin with collecting data from memory
clinic patients and healthy volunteers completing the “Cookie Theft” picture description
task while their eye movements and speech are recorded. Using this dataset, we present two
machine learning experiments. First, we investigate whether eye tracking data alone is pre-
dictive of patients versus controls. Second, we examine how classifiers based on eye tracking
alone compare to language-based classifiers, and to classifiers using both eye tracking and
language data. Our results show that eye tracking data alone can classify patients vs. con-
trols in our dataset, compared to a standard majority class baseline. We also show that eye
and language data are complementary, as combining eye and language features leads to the
best classification performances (AUC =.80) compared to classifiers built on each modality
alone. Furthermore, through an analysis of the most important features for our classifiers,
we identify features with plausible clinical correlations with AD-related language and eye
movement dysfunction.

Our main contributions are as follows: First, we build a dataset that includes eye
tracking data in addition to speech data. Second, we are the first group to study eye
tracking for classification of AD/MCI vs control using a spontaneous speech task, showing
that unobtrusively collected eye tracking data is able to discriminate between patients and
healthy controls in our dataset. Third, we are the first to show that eye tracking data is
complementary to language data for this task.

Generalizable Insights about Machine Learning in the Context of Healthcare

1. Need for contemporary, longitudinal and multimodal corpora. Most related
work is based on the Pitt corpus (“DementiaBank”), which is the largest publicly avail-
able speech corpus including individuals with AD and healthy controls. However, the
dataset lacks longitudinal data, and clinical diagnostic practices have improved since
the 1980s, when the corpus was collected in the field. We present a well-characterised
contemporary dataset that includes eye gaze data in addition to speech data. The data
collection is ongoing with scheduled 6-month follow-ups, which will constitute longi-
tudinal data. We also report that our data collection methodology is well-tolerated in
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the target population, which is essential for our goal of developing non-invasive risk
stratification tools.

2. Eye tracking as an additional data source for non-invasive risk stratifica-
tion tools. To date, language data has been the go-to approach for classification of
dementia patients and healthy controls in spontaneous speech tasks, with very promis-
ing results. We show that eye tracking can be used as an additional, complementary,
non-invasive modality for risk stratification.

3. Classification models to provide insights for disease prediction. Highly pre-
dictive features shed light on subtle dysfunction that may be difficult to clinically
detect in the earlier stages of neurodegenerative disease and may aid in enrichment of
clinical trial populations, or earlier diagnosis.

2. Related Work

2.1. Language Analysis and the DementiaBank Corpus

Previous groups have used ML algorithms and NLP techniques to develop automated clas-
sification for AD and/or MCI versus healthy controls with speech and language data. Many
of traditional and deep learning models classifying AD have been developed using the Pitt
DementiaBank corpus (Becker et al., 1994), the largest publicly available dataset incorpo-
rating speech transcripts of the Cookie Theft picture description task from 169 individuals
with a clinical diagnosis of probable or possible AD, 19 with MCI and 99 healthy controls
(aged 45-90). The corpus was collected between 1983 and 1988. Fraser et al. (2016) evalu-
ated machine learning models incorporating acoustic and linguistic features to predict AD.
With 370 custom lexical and acoustic features from the speech recordings, they achieved a
predictive accuracy of 81.96% in distinguishing individuals with AD from healthy controls.
Adding to this body of work, Field et al. (2017); Masrani (2018) proposed an approach
in which they added a novel feature group based on the clinical observation that spatial
neglect may be affected in individuals with AD (Drago et al., 2008). The authors divided
the Cookie Theft picture into halves, strips and quadrants and computed features captur-
ing the attention ratio between regions, examining the number of mentions of any given
information unit (i.e., object or action) displayed within a region of the picture. Accuracy
improved to 84.4%.

Other groups have further improved classification performance on the DementiaBank
dataset using deep learning models. Kong et al. (2019) used a hierarchical attention recur-
rent neural network model and reported best performances when the model was trained on
raw text data together with patient’s age, leading to 86.9% classification accuracy. Kar-
lekar et al. (2018), using single utterances from DementiaBank as individual data samples,
found a 91% classification accuracy with part-of-speech-tagged utterances with a CNN-RNN
model.

The Pitt corpus is limited in its lack of longitudinal data and thus is limited only to
cross-sectional classification of AD or MCI versus control. A model incorporating lexical and
acoustic information from the OPTIMA study, which included 15 individuals with autopsy-
proven MCI or mild AD and 15 age- and education-matched healthy controls, found that
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changes in connected speech at the MCI stage predicted conversion to AD, while semantic
and lexical content, in addition to syntactic complexity, declined with disease progression
(Ahmed et al., 2013).

2.2. Eye Movements

AD fundamentally alters ocular function (Molitor et al., 2015). The death of neurons,
neurofibrillary tangles and amyloid plaques affect certain cell types in the neocortex leading
to cortico-cortical disconnections. This primarily involves the temporoparietal association
areas making AD patients prone to visual, attentional, and eye movement disturbances
(Garbutt et al., 2008). Numerous studies have shown that AD patients exhibit abnormal
pro-saccadic behavior, poor performance on antisaccade tasks, slowed pupillary responses,
and impaired smooth pursuit (Molitor et al., 2015). In reading tasks, AD patients take
longer to read a text, make more fixations, are more likely to re-read words and are much
less likely to adaptively skip small and uninformative words (MacAskill and Anderson,
2016). The association between worsening visual task performance and disease progression
is not well-characterized, although one study has suggested that antisaccade performance
may predict AD severity (Crawford et al., 2005), and another that microsaccadic gaze
intrusions are associated with worsened cognitive test performance in AD (Bylsma et al.,
1995).

Recent work has shown the potential for eye movement data to be used in classification
experiments of AD. Pavisic et al. (2017) reported a 95% accuracy using hidden Markov
models that incorporated eye movement data from 36 individuals with young onset AD and
21 age-matched healthy controls. Participants performed three eye-tracking-specific tasks:
fixation stability (stare at a static point for 10 seconds without blinking), pro-saccade (direct
gaze towards a target as soon as it appears on screen), and smooth pursuit (follow a target
while it moves on screen).

Other work has used eye movements collected during reading tasks. Biondi et al. (2017)
collected data of 69 participants with probable AD (clinical impression and high-risk ApoE
genotype) and 71 age-matched controls during a reading task, and reported 87.78% clas-
sification accuracy using a deep neural network model that incorporates information de-
rived from fixations, saccades and sentence length from individuals who read high- and
low-predictable sentences and proverbs. In another reading task-based study, Fraser et al.
(2019) had 26 participants with MCI and 29 healthy volunteers read paragraphs from a
standardized reading test silently and aloud while speech, including answers to comprehen-
sion questions, and eye movements were recorded, with additional speech-only data col-
lected from the Cookie Theft Task. Best classification accuracy was 83% using a cascaded
multimodal and multi-task classification approach incorporating custom lexical, acoustic,
comprehension question-related, as well as eye tracking features related to saccades and
fixations.

2.3. Addressing the Gap in the Literature

While previous studies have achieved reasonable classification accuracy, we contribute to
the field by examining speech and simultaneous eye tracking during a picture descrip-
tion task (Cookie Theft) from a contemporary, prospectively collected and well-clinically-
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characterized cohort. There are several advantages to our approach. First, we are investi-
gating a multimodal approach to improve accuracy. Second, our task is aligned with that
used in the Pitt corpus, which has been commonly leveraged to develop AD classification
models based on speech data. Third, ours is a larger cohort (n=141) than other more con-
temporary prospective datasets examining speech or eye tracking data. Previous studies
(Fraser et al., 2019; Pavisic et al., 2017; Toth et al., 2018; Biondi et al., 2017) are limited by
small datasets, with the total number of participants in these studies ranging from 55 to 86.
Additionally, our contemporary cohort is in alignment with current clinical practice for AD
and MCI diagnosis, with a sample representative of current memory clinic populations and
controls. Studies using the DementiaBank cohort (Fraser et al., 2016; Chen et al., 2019)
achieved high accuracy but are limited by outdated dementia diagnostic criteria (Jack et al.,
2011; Falk et al., 2018).

3. Data Collection

3.1. The Cookie Theft Picture Description Task

The Boston Cookie Theft picture description task is a well established speech task (Good-
glass and Kaplan, 1972) (see Figure 1 in Section 4.2). It is a widely used and vali-
dated method for spontaneous speech assessment in a variety of clinical contexts, including
Alzheimer’s disease (Cummings, 2019). During the task, participants are shown the picture
and are asked to describe everything they see in the scene using as much time as they would
like.

3.2. Data Collection

Current cross-sectional data is presented, although recruitment and longitudinal follow-up
is ongoing (target recruitment 250 clinic patients and 250 controls, with six-month longi-
tudinal follow-up to 24 months). Patients were prospectively recruited from a specialized
memory clinic with a catchment of 4 million and controls were recruited from the commu-
nity, with efforts made for targeted recruitment for age and sex-matching with patients.
All participants were fluent in English, able to provide informed consent and to carry on
a spontaneous conversation, and aged 50 or older. Clinic patients had a diagnosis of sub-
jective memory complaints (SMC), MCI or mild-moderate AD, without additional active
psychiatric or neurological conditions. Diagnoses were made by expert clinicians with cog-
nitive testing clinical data, and neuroimaging and laboratory data collected as per standard
of care.

All participants gave informed consent. They completed the Montreal Cognitive Assess-
ment test (MoCA), a guideline-recommended ten-minute pen-and-paper cognitive screening
test for assisting health professionals in the diagnosis of MCI and AD (Nasreddine et al.,
2005; Gauthier et al., 2012; Cordell et al., 2013), and a demographic and medical history
questionnaire, with responses cross-checked against the clinic electronic medical record (full
results are reported in the Appendix A). During the Cookie Theft task, participants were
seated at the testing platform consisting of a computer monitor with a Logitech C922x
ProStream video/sound recorder and an infrared eye-tracker (Tobii-Pro X3-120) affixed at
the bottom of the monitor to record gaze and pupil size data. Participants then performed
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a standard 9-point eye-tracker calibration, as well as a pupil baseline collection procedure
which consisted in having the participant relax and fixate on a blank screen for 10 sec-
onds. Following successful calibration, participants performed the Cookie Theft picture
description task. As we used a non-intrusive, remote eye-tracking device that does not
restrict participants movements, they were asked to keep looking at the screen while they
performed the task, and avoid looking at the experimenter.

Following the assessment, participants were asked to complete a questionnaire to rate
their experience with the assessment. Specifically, participants were asked about the ease
of use, acceptability, and attitude towards speech and eye tracking gaze technology on a
4-point Likert scale, to determine the usefulness and scalability of the technology for routine
assessment. This was introduced midway into the study. Overall, patients’ experience with
the assessment was perceived positively. Out of the 56 patients that completed the ques-
tionnaire, 93% felt comfortable and 91% felt relaxed during the assessment. Additionally,
96% of them reported to be willing to repeat the assessment again in the future, with a
total of 93% participants willing to repeat the assessment on a monthly basis. Refer to the
Appendix B for the full responses on the experience with technology questionnaire.

3.3. Cohort Characteristics

Sixty eight memory clinic patients (34 with AD, 22 with MCI, 7 SMC, and 5 with mixed
dementia) and 73 healthy volunteers were recruited from May 2019 to March 2020. Their
demographics, clinician diagnosis, and MoCA scores are shown in Table 1.

Table 1: Demographic and clinical data. Additional data on cohort characteristics can be
found in the Appendix A

Patient Control

Total number N 68 73

Participant sex Male 34 22
Female 34 51

Age at enrollment Average 71.6 64.9
Range 52-96 50-83
Standard deviation 9.26 9.93

Expert clinician diagnosis AD 34 0
MCI 22 0
SMC 7 0
Mixed dementia† 5 0

MoCA score (0 - 30 scale) Available scores n=59 n=71
Average 20.25 27.15
Range 5-29 19-30
Standard deviation 5.44 2.73

†characteristics of AD and vascular dementia
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For this analysis, participants were grouped into “patient” or “control” categories. Par-
ticipants were coded as “patient” if they were a patient recruited from the memory clinic,
or “healthy” if they were recruited as the patient’s companion or from the community. We
chose to group these participants as this study aims to identify highly predictive speech and
eye movement features shared across each stage of the disease based on clinical characteri-
zations. Features characteristic of manifest AD that are also found in people with MCI or
SMC may predict with higher likelihood conversion to AD, and may be helpful for future
risk-stratification work.

3.4. Data Pre-Processing

Following data collection, eye and speech recordings underwent pre-processing procedures.
Speech data was either transcribed manually (111/141), or with Google Cloud speech-to-
text service1 (31/141), the latter being introduced later into the study due to institutional
contract and ethics approvals. Following automatic transcription, transcripts were manually
verified for accuracy by human transcribers. Eye tracking data was exported using the Tobii
Pro Studio software2, comprising fixations (points of gaze on the screen), saccades (quick
movements between fixations), and pupil size. Pupil size data was baseline-adjusted (Iqbal
et al., 2005) by subtracting the mean pupil size collected during the pupil baseline calibration
procedure described in Section 3.2.

4. Classification of Patients and Controls Using Eye Tracking Data

As mentioned in the introduction, one of the contributions of this paper is that we are
the first to explore the potential value of leveraging eye tracking data to detect dementia
from the Cookie Theft picture description task. As a first step in our analysis, we verify
whether just leveraging eye movements captured during the image description task can
classify patients (SMC/MCI/AD) versus healthy controls. To this end, we compare the
performance of two different feature sets, one that is task-agnostic, and one that relies on
identifying relevant areas of interest (AOI) on the Cookie Theft picture (task-specific). We
also compare the performance of these feature sets using a larger but more noisy dataset
compared to a smaller but cleaner dataset, in order to study the data quality-quantity
tradeoff. Section 4.1 describes the two feature sets we use for the analysis. Section 4.2
explains the experiment settings. Section 4.3 discusses the results.

4.1. Eye tracking features

In order to capture users’ eye-movement and pupil behaviour, we compute a set of sum-
mary statistics on the fixation, saccades and pupil size data, following the standard ap-
proach in related work (Toker et al., 2017, 2019; D’Mello et al., 2012; Lallé et al., 2016;
Mart́ınez-Gómez and Aizawa, 2014). We processed the eye tracking data using the Eye
Movement Data Analysis Toolkit (EMDAT3), an open source library written in Python.

1. https://cloud.google.com/speech-to-text

2. https://www.tobiipro.com/product-listing/tobii-pro-studio/

3. https://www.cs.ubc.ca/~skardan/EMDAT
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EMDAT produces a comprehensive set of eye tracking metrics specified over the entire dis-
play (task-agnostic), and over specific Areas of Interests (AOIs; task-specific). We defined
the following 13 AOIs to encode elements in the Cookie Theft picture, which are shown
in Figure 1: cookie, cookie jar, boy, girl, woman, stool, plate, dishcloth, water, window,
curtain, dishes, sink. Note that the AOIs defined for the task-specific features are analogous
to the “information units” Croisile et al. (1996) used in language analyses on the Cookie
Theft picture description task. The complete list of metrics grouped in the task-specific
and task-agnostic feature sets are described in Table 2.

Figure 1: Areas of interest (AOIs) in blue, defined over the Cookie Theft picture.

4.2. Experiment settings

Datasets: For 120 out of the 141 participants in our cohort, the calibration of the
eye-tracking device was exceptionally good (the nine points were calibrated successfully),
whereas for 12 of these participants, at least one of the calibration points was not suc-
cessfully calibrated. To estimate the impact of data quality-quantity tradeoff, we evaluate
the classifiers on the full dataset of 141 participants, called the Full dataset, as well as the
subset of 120 participants for which we have cleanest eye tracking data quality, called the
Clean dataset.
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Table 2: Features computed from the eye tracking data.

Feature set Signal component Metric

fixation(6)
count, rate
duration: sum, avg, stdev, max

Task-agnostic (E TA) saccade(22)

count, rate
distance: sum, avg, stdev, max
duration: sum, avg, stdev, max
speed: avg, stdev, min, max
absolute angle: sum, avg, stddev, rate
relative angle: sum, avg, stddev, rate

pupil size (6) avg, stdev, max, min, start, end

Task-specific (E TS)
fixations on AOIs (9)

count, rate, proportion
duration: sum, avg, stdev, max
time to first fixation, time to last fixation

transitions to AOIs (2) count, proportion
pupil size in AOI (6) avg, stdev, max, min, start, end

Classifiers: We test three different classification algorithms, Logistic Regression (LR),
Random Forest (RF), and Gaussian Naive Bayes (GNB), which reported top performances
in most closely related work Masrani (2018). We use scikit-learn, a python package for
machine learning, to perform classification.

Baseline: To see whether eye tracking features are sufficiently accurate classifiers on their
own, we use a zero rule classifier (B), which always predicts the majority class in training
data, as a baseline for comparison.

Feature sets: We compare the classification performance of classifiers using task-agnostic
(E TA) features only, task-specific features (E TS) only, and the combination of both (E).

Evaluation: We evaluate classifiers using a stratified 10-fold cross-validation approach,
which is repeated 10 times (runs) on different stratified splits to strengthen the stability
and reproducibility of the results. We report classification performance in terms of area
under the ROC curve (AUC), averaged over the 10 folds and the 10 runs. At each fold
of cross-validation, we perform correlation feature selection Hall (1999) to remove highly
pairwise correlated features (Pearson r >.85) as well as features with a very low correlation
with the outcome (Pearson r <.2).

4.3. Results

Table 3 reports the performance of classifiers using task agnostic (E TA) features alone,
task-specific (E TS) features alone, as well as the combination of both feature sets (E). To
statistically compare the classification results we run a 3-Way ANOVA with AUC as the
dependent variable and Dataset, Feature set, and Classifier as factors.

Classification performance of eye tracking features for classification. We find
a main effect of classifier on AUC scores (F(2,231) = 147.33, p<.000, η2p=.56). Pairwise
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Table 3: Performance results in terms of AUC (± sd) from the classification experiments
using the eye tracking features. Bold entries indicate highest classification perfor-
mances for each feature set. B: Zero-rule baseline, GNB: Gaussian Naive Bayes,
LR: Logistic Regression, RF: Random Forest, E TA: Task agnostic features , E TS:
Task-specific features, E: Task agnostic features + Task-specific features.

Classifier
Feature set Dataset B GNB LR RF

E TA
Clean .50 ± .00 .57 ± .05 .53 ± .04 .52 ± .04
Full .50 ± .00 .62 ± .05 .59 ± .05 .54 ± .02

E TS
Clean .50 ± .00 .70 ± .02 .70 ± .03 .70 ± .05
Full .50 ± .00 .67 ± .02 .67 ± .03 .68 ± .02

E
Clean .50 ± .00 .70 ± .02 .70 ± .03 .73 ± .04
Full .50 ± .00 .66 ± .02 .67 ± .02 .70 ± .02

contrast comparisons show a significantly4 higher AUC score for each of the classifiers (GNB,
LR, RF) compared to the baseline, with no statistically significant differences among them.
This result indicates that all three classifiers are equally good when classifying patients vs.
healthy controls from eye tracking data.

Task-agnostic vs. task-specific features. We find a main effect of Feature set on AUC
(F(3,231) = 202.43, p<.0001, η2p=.64). Pairwise contrast comparisons indicate significantly
better performance of both task-specific features (E TS) and combined features (E) as
compared to task-agnostic features (E TA), while no statistical difference was found between
E TS and E features. This result supports that encoding task-specific eye movements leads
to the best classification performance in the Cookie Theft picture description task, with no
added value provided by task-agnostic features.

Impact of data quality-quantity tradeoff. Last, we find a significant interaction effect
between Feature set and Dataset on AUC (F(2,231) = 10.10 p<.0001, η2p=.08). Pairwise
contrast comparisons indicate that for E TA features, using the Full dataset (i.e., more
data) increases classification performance as compared to the Clean dataset. In contrast,
for E TS and E feature sets, the Clean dataset (i.e., less data but better quality) leads
to statistically better performances compared to the Full dataset. This result highlights
the importance of eye tracking data quality when considering task-specific features, which
makes sense as these features rely on accurately tracking the patient’s eyes over specific
regions on the image. In contrast, it is important to gather more data, even if noisier when
using task-agnostic features alone, because they are less reliant on specific regions of the
screen, but encode more generic eye-movement information, not directly related to the task
at hand.

Given the results reported in this Section, we select the Feature set and Dataset that led
to highest classification performance (E feature set using the Clean dataset) to move on to

4. in this paper significance is reported at p < 0.05 after applying Benjamini and Hochberg procedure to
adjust for the false discovery rate Benjamini and Hochberg (1995)
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the following analysis, which involves comparing and combining eye tracking and language
data for classification.

5. Combination and Comparison of Eye Tracking Features and Language
Features

As eye tracking features show effectiveness for classifying patients from healthy controls in
Section 4, in this Section we investigate whether eye tracking features will help classification
when combined with language-based features, which have already been proven to be effec-
tive. Specifically we evaluate multimodal classifiers that leverage eye tracking and language
features using two kinds of fusion schemes, the early fusion and late fusion. Section 5.1
introduces language features. Note that for eye tracking features, we use the E feature set
defined in Section 4.2. Section 5.2 explains the methods we use for early fusion and late
fusion. Section 5.3 explains the experimental settings, and Section 5.4 discusses the results.

5.1. Language Features

For language features, we use a comprehensive set of language features from previous work,
most notably from Fraser et al. (2016). This set contains two different sub-groups: text
and audio. The text features include part-of-speech (15), context-free-grammar rules (44),
syntactic complexity (27), vocabulary richness (4), psychologistic (5), repetitiveness (5),
and information units (40). The audio features include 172 acoustic features as in Masrani
(2018).

5.2. Fusion Models

To combine data from different modalities for our study, we explore both early fusion and
late fusion methods. These are the two kinds of fusion schemes generally used for multimodal
approaches.

For early fusion, we concatenate features from the two modes, and make a single feature
vector to learn a classifier. This approach is simple and it allows modeling interactions
among features depending on the classifier. Our early fusion model is shown in Figure 2.

The late fusion scheme combines predictions from each modality at the decision level (see
Figure 3). We use a widely established late fusion approach named “voting by averaging”, in
which predictions are made by averaging the outputs of different learning algorithms (with
heterogeneous model representations) to a single dataset (Battiti and Colla, 1994). In our
case, we use a slightly modified approach, in which we average the prediction probabilities
produced by a single learning algorithm, but applied to different data modalities, as in
Fraser et al. (2019).

5.3. Experiment Settings

In this experiment, we aim to investigate whether eye tracking features in combination with
language features outperform eye tracking features alone, as well as language features alone.

Dataset: We evaluate the multimodal models using the Clean dataset, as it was the
one for which we achieved the overall highest classification performance when using eye
tracking features only in Section 4.
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Figure 2: In the early fusion, features of the two modes are concatenated into a single
feature vector to learn a classifier.

Figure 3: In the late fusion, predictions from individual classifications are averaged at the
decision level

Classifiers: We use the same classifiers as in the previous experiment, that is, Logistic
Regression (LR), Random Forest (RF), and Gaussian Naive Bayes (GNB). In this exper-
iment, we drop the majority class baseline as we have shown that our eye-tracking-based
models statistically outperform that baseline.
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Feature sets : To see the effects of multimodal models, we compare both early fusion
(Early E+L) and late fusion (Late E+L) models against models that use features from a
single mode, i.e., models using eye tracking features only (E) and language features only
(L). Note that L corresponds to the feature set described in Section 5.2, which is a state-
of-the-art language feature set using traditional algorithms on the DementiaBank dataset,
and E corresponds to the model with highest classification performance in Section 4.

Demographics Baseline: In addition to the above, we also compare the multimodal
models to a baseline built on participants’ demographics features. Demographic features
(particularly age, sex, education, and medical history) can be obtained non-invasively, and
have shown to be predictive of dementia in previous studies (Calvin et al., 2019; Kim
et al., 2017), providing a more realistic baseline than the majority class baseline used in
Section 4. For the demographics baseline we use standard demographics characteristics,
such as sex and age (see Table 1), as well as participants’ medical history (e.g., history of
concussion, stroke etc.), level of education, and alcohol and tobacco consumption. Details
and descriptive statistics on the features included in the demographics baseline are reported
in the Appendix A (items marked with an asterisk).

Evaluation: As in Section 4, we evaluate the models using stratified 10-fold cross-
validation repeated ten times, and report classification performance in terms of AUC. We
perform the same correlation feature selection procedure as described in Section 4.

5.4. Experiment Results

Table 4 Summarises the results of the multimodal experiments. To statistically compare
the performance of the early and late fusion approaches to the performance of the single
modality models and to the demographics baseline, we run a 2-way ANOVA on the AUCs
with Classifier and Feature set as factors.

Table 4: Performance results in terms of AUC (± sd) of the classification experiments using
the multimodal models. Bold entries indicate highest classification performances
for each feature set. GNB: Gaussian Naive Bayes, LR: Logistic Regression, RF:
Random Forest, D: Demographics baseline, E: Eye tracking features, L: Language
features, Early E+L: Early fusion of E and L, Late E+L: Late fusion of E and L

Classifier
Feature set GNB LR RF

D .66 ± .01 .65 ± .02 .62 ± .03

E .70 ± .02 .70 ± .03 .73 ± .04
L .77 ± .02 .72 ± .03 .71 ± .02

Early E+L .77 ± .01 .73 ± .03 .71 ± .04

Late E+L .80± .02 .77 ± .03 .75 ± .04

The ANOVA result shows a main effect of Feature Set on AUC (F(4,135)=90.67, p<.0001,
η2p=.73). Pairwise contrast comparisons indicate that the models using eye tracking fea-
tures (E), language features (L), and a combination of those (Early E+L and Late E+L) all
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outperform the demographics baseline. This indicates that eye movements captured during
the Cookie Theft picture description task are more predictive than simple demographics
and medical history characteristics alone, and so are their combination with language data.

Furthermore, pairwise contrast comparisons indicate that Late E+L significantly out-
performs the language data alone L, which in turn outperforms the model using eye tracking
data alone E. Early E+L, on the contrary, does not statistically outperform the state of the
art L model. These results indicate that 1) eye and language modalities are complemen-
tary, as combining eye and language features lead to the best classification performances; 2)
this is only achieved using late fusion methodology, while simply concatenating the features
(Early E+L) does not outperform the language-only (L). Possible reasons for late fusion’s
better synergy between different modalities are discussed in Section 6. We also tried adding
the demographics features D to the multimodal models Early E+L and Late E+L, but this
did not lead to statistically improved classification performance.

In addition, the ANOVA result shows a main effect of classifier on AUC (F(2,135)=25.43,
p<.0001, η2p=.57). Pairwise contrast comparisons indicate that overall, GNB statistically
outperformed both LR and RF, while no statistical difference was found between LR and
RF. One possible explanation is that GNB has been shown to perform comparably well for
relatively smaller datasets, compared to other algorithms such as LR and RF (Mitchell,
1997).

6. Further Insights on the Classification Experiments

In order to provide further insights from our classification experiments, we look into which
are the most predictive features used by the best performing classifier (GNB). GNB classi-
fiers estimate P (class | data) by learning conditional probabilities of each feature given a
class, P (feature | class), under the conditional independence assumption of features. As a
result, we can obtain P (feature | class) from a trained model using GNB (Mitchell, 1997).
We assume that highly discriminative classification features have separate distributions be-
tween the classes (patient and control). A feature is considered to be discriminative when
the difference in means is large, relative to the variance of the distributions. As a way to
estimate discrimination power, we use the following measure, which is also used in Linear
Discriminant Analysis (LDA) (Belhumeur et al., 1997):

d =

∣∣∣∣∣∣ µHC − µP√
σ2HC + σ2P

∣∣∣∣∣∣
, where µHC is the mean for healthy controls, µP is the mean for patients, σ2HC is the

variance for healthy controls, and σ2P is the variance for patients.
We train GNB on the whole dataset using the features in the early fusion model

(Early E+L), as well as the features from each individual mode (E and L) used in the
late fusion model (Late E+L). Table 5 shows the top 10 ranked features for each model.
For each feature on the table, we report whether the mean values in the patient group are
higher (+) or smaller (-) than in the control group. Note that some language features are
not easy to interpret (e.g., frequency-related audio features). Thus, for simplicity, we only
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specify language features related to information units (see Section 5), which are analogous
to the eye tracking AOI features (see Section 4).

Table 5: Top 10 most important features for Eye and Language, as well as for concatenation
of these modalities. Features with higher mean values in the patient group and
control group are labeled as (+) and (-) respectively.

Feature Set Top 10 important features

E

number of transitions to other AOIs: dish to window (+),
window to girl (+), window to plate (+), jar to curtain (+),
boy to cookie (-), window to window (-), sink to girl (-),
cookie to girl (-),
proportion of fixations on AOI: cookie jar (+)
saccade absolute angle: stdev (+)

L 8 acoustic features, 2 text features, 0 information unit related features

Early E+L
8 acoustic features,
2 information unit features: number of mentions to water overflowing (-),
mentioning girl at least once (-)

Classification performance of early vs. late fusion In Section 5.3 we reported that
combining eye tracking (E) and language (L) features led to improved performance only
when using late fusion (Late E+L), while simply concatenating the features (Early E+L)
did not outperform the language-only (L) model. By examining the top 10 ranked features
for Early E+L (Table 5-bottom), we observe that there are only features from the language
modality. This reveals that in this case early fusion overweighs language as the strongest
modality. On the contrary, late fusion by combining the classification outputs from individ-
ual modes at the decision level, is able to better integrate the modalities in a complementary
way.

Observations for clinical insights from eye tracking data. To investigate how the
eye tracking model (E) performs, we turn our attention toward eye tracking features (Table
5-top). The best eye tracking features are related to information units (elements specific to
the Cookie Theft image), confirming the importance of task-specific features for prediction
discussed in Section 4.3. In particular, highly predictive features characteristic of patients
involve transitions between different AOIs representing information units of the picture
(dish to window, window to girl, jar to curtain), as if patients are jumping back and forth
between different elements. Patients also have a higher proportion of visits to the cookie jar.
In contrast, controls show more transitions within the window. Healthy controls also have
more transitions to the girl (sink to girl, and cookie to girl), which is further supplemented
by more mentions of the girl by controls (Table 5-bottom) .

Note that there were no significant differences between the time patients (Mean =
69.83s) and healthy controls (Mean = 82.01s) spent completing the task (t (107.2) = -1.26,
p= .056). Interestingly however, most top eye tracking features are related to the total count
of transitions between information units, within the span of the task. This means that while
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both groups look at the image for the same duration, they process the information in the
image in different ways.

Observations for clinical insights from eye tracking and language data. To
gain insight about the differences in information-processing strategies between patients and
healthy controls, we look at the top-ranked features for models E (Table 5-top) and E+L
(Table 5-bottom) since they both include information unit-related features. We found that
healthy controls speak more references to information units than patients, despite both
groups spending similar amounts of time on the task. Healthy controls also described the
water overflowing more than patients, even though none of the top eye-movement related
features involved water. Both healthy controls and patients may be observing the water
and the rest of the image in a similar way, with only the controls actually mentioning
information units or describing the water.

The discussion of the clinical implications from the above observations is provided in
the following section.

7. Discussion

With the goal of developing an accurate, non-invasive screening tool for AD clinical trials,
we presented an analysis of eye movements and speech recordings on a prospectively well-
phenotyped multimodal corpus based on the established Cookie Theft picture description
task. A limitation of similar cohorts (i.e. DementiaBank) is that the participant data
phenotyping is limited, providing only diagnostic codes assigned to each sample. Collecting
more comprehensive medical history, cognitive testing results, demographic and imaging
data allows our cohort to be even more useful for investigating classification of pre-clinical
dementia, MCI and AD and is helpful in determining whether the cohort derived to train
the algorithm is reflective of the clinical target population.

For the first time, we analyzed multimodal data captured during the Cookie Theft
picture description task. Multimodal data (i.e. language and eye tracking) is promising
in dementia as its pathology involves the decline of multiple different cognitive domains.
Capturing multiple domains increases the likelihood of detecting an at-risk individual. We
found that this methodology of data collection is feasible and well-tolerated in the target
population, with a large majority of participants feeling comfortable and relaxed during the
assessment. Furthermore, as risk-stratification tools would likely involve multiple assess-
ments longitudinally, it is reassuring that a majority of memory clinic patients were willing
to repeat the assessment again in the future, as often as on a monthly basis.

Our experimental results are promising for the goal of developing a non-invasive risk
stratification tool, as we demonstrate that an additional novel non-invasive data modality
(eye tracking) can be used to classify patients in our cohort. Specifically we show that
models using eye tracking features alone were discriminative in our dataset, reaching a
peak performance of AUC = .73. Eye-tracking technology is becoming more cost effective
and accessible (Tobii, 2017), suggesting that reliable eye tracking data may be ubiquitously
available in the coming years. To this end, we investigated data quality-quantity tradeoff,
and its impact on the predictive performance of eye tracking data. As the most predictive
features in this task were related to task-specific elements in the picture, and given the rel-
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atively small dataset size, our analysis suggests that under these circumstances, prioritizing
data quality over quantity is more useful for accurate classification.

Most importantly, we showed that this modality is complementary to language, which
is the most well studied modality for this classification task. In fact, the highest perfor-
mance from language features on our dataset was improved from .77 to .80 AUC when
including eye-movement-related information. These are encouraging results as, beyond the
specifics of the increment in performance, it demonstrates that collecting simultaneously
different modalities can lead to improved classification of AD/MCI/SMC vs. healthy con-
trols. Further it uses data collected from non-invasive (in comparison to blood or cerebral
spinal fluid-derived markers), modalities that do not make use of advanced neuroimaging
(such as resource-intensive positron emission tomography (PET), single photon-emission
CT (SPECT) or MRI), do not require expert interpretation in clinical context (such as
laboratory biomarkers or neuroimaging), and pose essentially no risk to patients.

As we discussed in Section 6, in our study the majority of highly predictive gaze fea-
tures were related to transitions between information units, while time spent on the task
remained similar between groups. A higher proportion of transitions in the AD group may
be attributed to impaired visuospatial processing and poorer short-term or working memory
in the patient group, or poorer executive function. Patients may be transitioning more to
information units, as they are not recalling what they had just looked at; in part they may
also have a less organized approach to assessing the picture. This correlates with previous
studies finding that individuals with AD have impaired visuospatial short-term memory,
detectable in delayed reproduction tasks (Liang et al., 2016) and visual paired comparison
tasks (Zola et al., 2013). While these tasks both specifically test for memory, our fea-
tures may be inadvertently detecting impairments in visuospatial memory. “Misbinding”
of features between items (eg. mixing up characteristics between items) is proposed as the
mechanism for impair working visual and verbal memory in AD (Zokaei and Husain, 2019).
Early deficits in executive dysfunction (Guarino et al., 2018) have also been increasingly
well-described in AD.

Further, when comparing the top language features in patients and controls, controls
spoke more about information units overall despite both groups looking at the picture for a
similar duration. Alzheimer’s patients commonly develop logopenic-type progressive apha-
sia: gradual language impairments characterized by word-finding difficulty, word-retrieval
pauses, and loss of fluency (Mesulam et al., 2014). Eye movement patterns similar to healthy
controls with discrepancies in information unit mentions may be attributed to progressive
dysphasia and word-finding difficulties. This insight would not be possible in a single-mode
assessment, and warrants future investigation.

7.1. Limitations

This paper provides proof-of-concept that eye tracking features are effective, independently
discriminative, and complementary to well-researched language features. We used existing
speech analysis algorithms in our study as the goal of solely achieving better performance,
while desirable, was secondary to the aim of evaluating the utility of eye tracking. For this
reason, and given our limited dataset, we did not pursue fine tuning hyper-parameters nor
did we explore more advanced feature selection.
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Weighing the trade-off between data quality and quantity for eye tracking features in
Section 4, we discussed that for our dataset, data quality seems to be more important
than quantity. However, while this could be informative for future research, we need to be
cautious in generalizing these findings, as both the “Full” and “Clean” datasets are relatively
not that large. With a dataset orders of magnitude larger, a high quantity of data could
overcome poorer quality data. As our data collection is ongoing, and the dataset grows in
size, we will be studying how this trade-off changes.

The technology we used for eye tracking is not sufficiently sensitive to characterize
differences in microsaccadic eye movements, which may also be discriminative between
patients and healthy controls. However, to capture these high resolution eye movements,
head movements need to be restricted using a chin rest (e.g., EyeLink 10005), which is
uncomfortable and poorly tolerated by elderly subjects. Our approach is a more feasible
eye tracking data collection procedure for this population, and our results show that this
approach is predictive, and at the same time is accepted by the target population.

While our memory clinic patient cohort is well-characterized - with expert diagnosis,
test scores, clinical neuroimaging, and laboratory data - our healthy control cohort currently
lacks a similar validation, making it possible that some “healthy” controls may in fact have
undiagnosed neurodegenerative issues. Incorporating neuroimaging (3D volumetric MRI)
and polygenic hazard risk-stratification(Tan et al., 2017) for healthy controls should increase
our confidence that our controls are in fact healthy. Furthermore, despite clinician diagnosis
being based on the most updated neuroimaging, biochemical, clinical, and cognitive testing
criteria, they can still be incorrect. In fact, a large post-mortem histopathological study
found that AD is often misdiagnosed, with diagnostic sensitivity ranging from 70.9% to
87.3%, and diagnostic specificity ranging from 44.3% to 70.8% (Beach et al., 2012), intro-
ducing some uncertainty into our analysis. This limitation is not specific to our investigation
alone, as many other dementia trials and studies rely primarily on expert clinical diagnosis.
As diagnostic tools and technology evolve, the diagnostic accuracy of patients in our cohort
should only increase. We are also continuing targeted recruitment to ensure optimal age-
and sex-matching between controls and patients.

Eye movement, pupillary and speech changes can occur with a number of neurological
conditions. Though the characteristics of these changes tend to differ clinically between
dementia types (i.e., AD versus lewy body dementia, frontotemporal dementia, etc., which
are due to different pathologies and would require different disease-modifying therapies),
there may be some overlap with regards to changes in speech and eye-movement/pupil
changes. Future work with recruitment of patients with these diagnoses is required to
determine if our platform may discriminate between these different pathologies.

Finally, although our current methods report lower classification performances than
in some other studies distinguishing AD/MCI from healthy controls, they have not been
validated in larger, contemporary and well-characterized corpora and their results may in
part be to particular characteristics of their training sets.

5. https://www.sr-research.com/eyelink-1000-plus/
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7.2. Future Work

Recruitment for this study is still ongoing, and the study cohort is increasing in size. Par-
ticipants have also agreed to complete follow-up assessments every 6-months over two years,
to track disease progression, speech, and language changes over time. Reassessing individ-
uals to identify those with progressive cognitive decline (shift of at least one category from
control>SMC>MCI>mild AD>moderate AD) will allow us to identify features predictive
of cognitive decline, with the goal of risk-stratifying individuals.

Future assessments with our cohort will include comparing the discriminative ability of
our approach to distinguish disease stages (e.g., SMC versus MCI versus AD), and, once
genetic and MRI data is fully collected from our healthy controls, assessing classification ac-
curacy for high-risk pre-clinical (totally asymptomatic) individuals currently characterized
as healthy controls. We are currently also welcoming controls with a lower age inclusion cri-
teria (> 19 years old), which will be helpful in that future work will also enable comparisons
with young pre-clinical individuals carrying high-risk genes for young-onset AD.

Lastly, as our cohort size increases, we will focus more on technical improvements of the
machine learning models to more effectively leverage eye tracking and language features,
including new multimodal feature design, as well as representation learning algorithms and
neural network approaches, in order to improve classification performance.
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Appendix A. Cohort Characteristics

Full dataset Clean dataset
Patient Control Patient Control

Total number of participants N 68 73 58 62
*Participant sex Available data (n) 68 73 58 62

Male 34 22 27 19
Female 34 51 31 43

*Age at enrollment Average 71.6 64.9 71.8 64.6
Range 52-96 50-83 52-96 50-83
Standard deviation 9.26 9.93 9.28 9.98

*Total years of education Available data (n) 67 72 58 62
Average 14.8 15 14.5 14.9
Range 9-23 12-20 9-23 12-20
Standard deviation 3.36 2.25 3.15 2.23

*Medical history Available data (n) 66 73 56 62
Previous stroke 7 2 6 2
Parkinsons disease 0 0 0 0
Other neurological diagnosis 0 2 0 2
History of major depression 6 8 5 7
Other psychiatric condition 5 8 4 7
Previous concussion 18 17 14 15
Hypertension 27 22 22 18
Hyperlipidemia 15 17 13 14
Epilepsy 1 1 1 0
HIV positive 1 1 1 1
REM sleep disorder 2 0 2 0
Sleep impaired 28 22 18 23
Family history of dementia 35 33 32 29

*Tobacco & alcohol intake Available data (n) 65 72 55 61
Currently smoking 3 7 4 5
Formerly smoked 24 27 23 21
≥ 4 alcoholic drinks a week 13 16 12 14
2-4 alcoholic drinks a week 17 17 12 16
≤ 2-4 alcoholic drinks week 15 24 13 19
Never drinks alcohol 20 15 18 12

Expert clinician diagnosis Available data (n) 68 73 58 62
AD 34 0 31 0
MCI 22 0 17 0
SMC 7 0 6 0
Mixed Dementia† 5 0 4 0

Cookie Theft task Available data (n) 68 73 58 62
completion time (secs.) Average 67.4 86.1 69.8 82.0

Range 19-257 12-357 19-258 20-357
Standard deviation 40.2 67.0 41.9 62.5

Functional dependency Available data (n) 66 73 56 62
Independent 48 72 39 61
Dependent 18 1 17 1

Sleep routine (h/night) Available data (n) 68 73 58 62
Average 7.6 7 7.7 7.0
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Range 3-12 3-11 5-12 3-11
Standard deviation 1.54 1.33 1.55 1.34

MoCA test results (0-30 scale) Available data (n) 59 71 50 60
Average 20.25 27.15 20.2 27.1
Range 5-29 19-30 5-29 19-30
Standard deviation 5.44 2.73 5.51 2.72

ApoE status Available data (n) 29 0 28 0
e2e3 1 - 1 -
e3e3 9 - 9 -
e3e4 16 - 16 -
e4e3 1 - 1 -
e4e4 2 - 1 -

Subjective memory complaint Available data (n) 45 41 38 33
(0-13 scale) Average 6.42 2.32 6.37 2.15

Range 0-13 0-7 0-13 0-7
Standard deviation 3.19 1.60 3.19 1.63

First language learned Available data (n) 66 73 56 62
English 58 60 50 50
Other 8 13 6 12

Preferred language to speak Available data (n) 67 72 57 61
English 63 69 54 58
Other 4 3 3 3

Self-identified origin(s) Available data (n) 67 73 57 62
North American Indigenous 6 0 6 0
Other North American 29 26 25 26
European 41 46 41 39
Caribbean 1 0 1 0
Latin America 1 0 1 0
African 1 1 1 1
Middle Eastern 1 1 1 1
South Asian 1 1 1 0
East Asian 3 6 2 5
Other 1 3 1 2

†characteristics of AD and vascular dementia

* features comprising the demographics baseline

27



Non-Invasive Classification of Alzheimer’s Disease Using Eye Tracking and Language

Appendix B. Experience with the Technology Questionnaire

Experience with the Technology Patient (N=56) Control (N=56)

Was comfortable during the assessment 93% 95%

Had privacy concerns using this technology 5% 2%

Was relaxed during the assessment 91% 98%

Was engaged and interested during the assessment 93% 98%

Willing to repeat the assessment on a yearly basis 94% 96%

Willing to repeat the assessment on a monthly basis 42% 50%

Willing to repeat the assessment on a weekly basis 16% 16%

Willing to repeat the assessment on a daily basis 2% 9%
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