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Abstract

Modern deep learning algorithms geared towards clinical adaption usually rely on a large
amount of high fidelity labeled data. Low-resource settings pose challenges like acquiring
high fidelity data and becomes the bottleneck for developing artificial intelligence appli-
cations. Ultrasound images, stored in Digital Imaging and Communication in Medicine
(DICOM) format, have additional metadata data corresponding to ultrasound image pa-
rameters and medical exams. In this work, we leverage DICOM metadata from ultrasound
images to help learn representations of the ultrasound image. We demonstrate that the
proposed method outperforms the approaches without using metadata across a variety of
downstream tasks.
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1. Introduction

In recent years, deep learning algorithms have made foray into the clinical domain and has
emerged as a successful technique in various medical imaging applications. It has shown the
potential to automate disease detection, severity grading, and clinical diagnosis in different
domain (Hu et al., 2019; Gulshan et al., 2016; Esteva et al., 2017). However, clinically
accepted deep learning algorithms require a considerable amount of annotated data. For
example, Gulshan et al. (2016) utilizes more than 100,000 images to train and validate
the algorithm. Unfortunately, obtaining accurate annotations from clinicians is extremely
expensive, constraining supervised learning approaches in low-resource settings.

Unsupervised or semi-supervised learning provides potential solutions to alleviate the
problems by learning the data distribution without or with limited labels. Studies have
shown that unsupervised pretraining can serve as a regularization method and lead to
better generalization (Erhan et al., 2010). Recently, weakly-supervised and self-supervised
learning have also drawn significant attention with their ability to learn high-quality feature
representations. In this paper, we will explore one of the self-supervised technique, the
context encoder (Pathak et al., 2016), and use the metadata in medical imaging as the
weak labels to reinforce its capability to learn representation features.

In most of the modern medical imaging acquisition devices, such as ultrasound imag-
ing, the data is stored in DICOM (Digital Imaging and Communications in Medicine)
format. Besides the image pixel data, the DICOM headers contain the metadata, such as
the patient information, study descriptions, and the reported results. The abundant infor-
mation encoded in DICOM format provides a unique opportunity for modern deep learning
applications. Recent studies have shown that the metadata can be leveraged for series cat-
egorization using machine learning (Gauriau et al.). Nevertheless, DICOM has not been a
popular supervision target in machine learning. One major concern about DICOM is that
they are often noisy and may contain wrong tags (Gueld et al., 2002). In practice, clinical
personnel often adjust the examination protocol and imaging presets to improve the image
quality, but these changes may not be properly reflected in the DICOM tags. However,
using DICOM metadata as weak labels can help incorporation of valuable information into
the deep learning algorithm while minimizing the noise.

In this work, we investigated weakly-supervised learning using metadata and proposed
a framework build on top of the self-supervised learning method. We showed that incorpo-
rating DICOM metadata as weak labels can improve the quality of representation learning
and improve the performance of the downstream segmentation and classification tasks.

2. Related Work

2.1. Pretraining Techniques

It is usually beneficial to train a model from pretrained weights, rather than from random
initialization, especially in medical imaging field, where the labels are expensive to obtain.
(Erhan et al., 2010) There are multiple ways for pretraining. The first is transfer learning,
which first trains the model on a large amount of labeled data, and then tune the pretrained
weights for new target tasks. ImageNet-pretrained convolutional neural networks, which is
arguably the most successful transfer learning model, have boosted the growth of the modern

2



Self-Supervised Learning with DICOM metadata

deep learning applications (Deng et al., 2009). Even in medical imaging, the standard
approach is to take an existing architecture trained on ImageNet and then fine-tune on the
domain-specific data such as X-ray (Rajpurkar et al., 2017) or retinal fundus photography
(Abràmoff et al., 2016). However, given the substantial difference between the natural
images and the medical imaging, recent studies raised the questions of the precise effects of
the pretrained features and suggested that transfer learning does not always improve the
final performance (Raghu et al., 2019; Kornblith et al., 2019; He et al., 2019).

While transfer learning relies on supervision from large-scale hand-labeled databases
without employing the rich information presented in the image structure, unsupervised
learning, another popular approach for pretraining, tries to build useful feature represen-
tation using the data itself (Bengio, 2012). For example, Hinton et al. (2006) presented
a greedy layerwise unsupervised pretraining methods to build representations of different
levels. Variants of the autoencoder (Baldi, 2012), such as stacked denoising autoencoder
(Vincent et al., 2010) or contractive autoencoder (Rifai et al., 2011), build the encoder in
the process of reconstructing the original image. In recent years, the generative adversarial
network also emerged as a powerful framework representation learning (Donahue et al.,
2016; Donahue and Simonyan, 2019). These methods trained a network without labels, and
the learned weights can be used either as high-level image feature inputs or as initialization
for a target downstream task.

2.2. Self-supervised learning

Self-supervised learning is a unique form of supervised learning which eliminates the de-
mand for manual labels. The key idea is to generate labels from the data itself and trains
the network in a supervised manner. Such methods, also known as pretext tasks, have
proved to be an effective technique for representation learning, and have been widely used
in natural language processing. For example, BERT(Devlin et al., 2018), one of the recent
breakthroughs in language model pretraining, was trained to predict the masked words
given the input sequences. In image-based tasks, many methods have also been proposed.
Gidaris et al. (2018) randomly rotates the images while maintaining the semantic content
unchanged, and the network was trained to predict the rotation angles. Noroozi and Favaro
(2016) formulated the pretext task as a jigsaw puzzle and pretrain the model by solving it.
Contrastive predictive coding (Oord et al., 2018) learns an encoder to encode image patches
and utilized an autoregressive decoder to predict the future vectors with a contrastive loss.
Chen et al. (2020) further improved the training techniques of contrastive learning, and had
achieved the performance close to the supervised pretraining.

In this study, we employed the context encoder(Pathak et al., 2016) as the foundation
of our proposed framework, in which the network is trained to predict the missing parts of
the images. We leave the detail descriptions of the context encoder in section 3.1.

2.3. Weakly-supervised learning

Weakly-supervised learning is another subclass of supervised learning, in which the labels
can be either inexact or inaccurate. Inexact supervision usually involves annotations at a
higher abstraction level. For example, Wang et al. (2017) and Yan et al. (2018) localize the
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disease position in Chest X-ray with image-level classes; Hu et al. (2018) shows that the
model trained on the position coordinates can improve the segmentation task.

Inaccurate supervision uses a large quantity of low quality or noisy labels. One remark-
able illustration is the work in Mahajan et al. (2018), which took advantage of billions
of Instagram hashtag for weakly-supervised pretraining to boost the ImageNet classifica-
tion. Recently, Xie et al. (2019) leverage noisy labels from a teacher-student framework and
achieved the state-of-the-art classification accuracy on ImageNet.

Inspired by these work, we propose to incorporate DICOM metadata, which has noisy
labels embedded within the medical imaging raw data, for weakly-supervised pretraining.

2.4. Adversarial Training

When training the context encoder, an adversarial loss was added to encourage realistic out-
put. Adversarial training originates from the generative adversarial network (GAN)(Radford
et al., 2015), which utilizes a discriminator network to distinguish the generative image and
the real input. Beyond the great success in image generation, it also shows a substantial im-
pact on other areas like domain adaption(Ganin et al., 2016) or adversarial attack(Tramèr
et al., 2018). In typical tasks such as semantic segmentation, adversarial training can
also boost the performance under semi-supervised(Hung et al., 2018) or unsupervised set-
tings(Chen et al., 2019a).

A standard adversarial network does not require supervision, but recent studies have
shown that the class labels can stabilize the training and improve image qualities. For
example, Brock et al. (2018) fed the labels as the generator inputs to produce high-quality
images. AC-GAN (Odena et al., 2017) used the discriminator to classify the class labels as
an auxiliary loss. Miyato and Koyama (2018) proposed a linear projection layer, which was
also employed in Lučić et al. (2019) to generate high fidelity images with a limited number
of labels.

3. Method

In this study, we proposed a new self-supervised representation learning framework, which
incorporates the DICOM metadata as weak labels to improve the training. In particular,
we employed the context encoder as the self-supervised pretext task. The overview of the
framework is demonstrated in Figure 1.

Figure 1: The proposed frame work for representation learning
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3.1. Context Encoder

The idea of the context encoder is that given an input image with intentionally masked out
areas, we train a deep learning model to reconstruct the missing part (semantic in-painting).
The network utilizes an encoder-decoder structure. The encoder encodes the image context
into a compact latent representation, and the decoder employs them to generate the missing
image content. The network is trained to minimize the mean square reconstruction loss.

In the original context encoder paper, it is proposed that the in-painting area can be
either fixed or random blocks. Typically, models using random blocks tend to generalize
better. However, due to the nature of ultrasound images, where informative context is
located in the central region, we crop a square patch in the center of the image with a fixed
size equal to half of the image width and height.

3.2. Discriminator with Linear Projection Layer

We also added the discriminator for adversarial training to encourage realistic output. The
standard Ladv is formulated as

Ladv = max
D

Ex∈X [log(D(x)) + log(1−D(F (x̂)))] (1)

where F is the context encoder, D is the discriminator, x is original image, and x̂ is cropped
input image. (Noted that F is often denoted as G in most of the GAN literature; here we
used F to distinguish the context encoder and a regular generator.)

To incorporate the DICOM metadata, we employ a linear projection layer as proposed
in Miyato and Koyama (2018) and Lučić et al. (2019). The discriminator was decomposed
into a learned discriminator representation, D̃(x), and the representation then fed into two
different parts: (1) A classifier Crf to distinguish whether the image is real or fake; (2) A
linear project layer P , with a learned weight matrix W applied to a feature vector D̃(x)
and the encoded DICOM tags y as an input. The output of the discriminator becomes:

D(x, y) = Crf (D̃(x)) + P (D̃(x), y)

, where P (D̃(x), y) = D̃(x)
>
Wy. Also, we adopoted a hinge version of the adversarial loss.

With the above modification, the loss function for context encoder F and the discriminator
D can be rewritten as:

LD = −E(x,y)∼p(x,y)[min(0,−1 +D(x, y)))]− E(x̂,y)∼p(x,y)[min(0,−1−D(F (x̂), y))] (2)

LF = −λadv × E(x̂,y)∼p(x,y)[D(F (x̂), y)] + λrec × E(x,x̂)∼p(x)[(F (x̂)− x)2] (3)

The second term of Equation(3) is the reconstruction loss(mean square error). We
included two hyperparameters λadv and λrec to balance the two different losses.
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3.3. DICOM MetaData

We select two DICOM tags as the target since they directly relate with the image semantic
context:

• Transducer data (DICOM tag: (0018, 5010)), which indicates the probe type used
for examination. There are three different transducer probes in the dataset – SC6-1,
SL10-2, SL15-4, where S represents single crystal, C or L represents curvilinear or
linear probe geometry, and the numbers represent the ultrasound frequency band-
width in MHz. We classify the probes into two groups - linear (SL10-2, SL15-4) and
curvilinear (SC6-1).

• Study Description (DICOM tag: (0008, 1030)). The study description illustrates
the protocol when performing the ultrasound exam. For example, images of “US
BIOPSY LIVER NONFOCAL” are acquired during an ultrasound-guided liver biopsy.
Therefore, we can expect these images are predominantly liver. We identified 45
different study description in our dataset (Appendix Table A1). Due to the spurious
nature of the tags, we categorized the study series into eight different groups according
to procedure type or site, including liver, kidney, thyroid, abdomen, chest, soft tissue,
nodule,and drainage. The DICOM categorization was performed manually by a board-
certified radiologist. Each study series can belong to more than one group. For
example, the tag “US BIOPSY LIVER NONFOCAL” is mapped to two groups –
liver and abdomen. We binarized the DICOM labels in a multi-label format.

Figure 2 demonstrates some image examples of the DICOM tags.

Figure 2: Example of DICOM metadata
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4. Experiments

4.1. Dataset

Table 1: Description of the dataset

Dataset Task # of images # Train # Val # Test

Private Semantic Inpainting 12267 9814 2453 0

Private Quality Classification 3226 2548 343 335

Private Liver/Kindey Segmentation 591 391 100 100

Public Thyroid Nodule Segmentation 466 298 74 94

A retrospective database was collected from September 2018 to November 2019 after
proper approval from the Institutional Review Board. Informed consent was waived, and
HIPAA compliance was ensured. A total of 12,267 images from 1,188 unique patients
were collected. All images were acquired using Supersonic Aixplorer ultrasound machine
(SuperSonic Imagine S.A., Aix-en-Provence, France).

We evaluated the results on three different downstream tasks: (1) Quality score clas-
sification on a private dataset. (2) Liver and kindey segmentation on private dataset. (3)
Thyroid nodule segmentation on open dataset. The two private datasets were retrospec-
tively collected from the same institution. All the images were acquired using a GE Logiq
E9 ultrasound machine(GE Healthcare, Chicago, IL, USA). There is no overlap between
our pretraining dataset and the downstream evaluation dataset. The description for the
open dataset can be found in Pedraza et al. (2015). The overview of the dataset is shown
in Table 1.

4.2. Context Encoder Pretraining

4.2.1. Architecture

The proposed framework consists of three parts - the encoder, the decoder and the discrim-
inator. For the encoder, we employed two different existing network architecture - VGG16
with batch normalization (Simonyan and Zisserman, 2014) and Resnet-50 (He et al., 2016) as
the backbone. The decoder has four up-sampling blocks each with a 3×3 up-convolutional,
a batch normalization, and a ReLU layer. The discriminator also has four blocks, each
with a 3×3 convolutional, a batch normalization, and a LeakyReLU layer as suggested by
Radford et al. (2015).

4.2.2. Training

The dataset was split into training (80%, 9814 images) and validation set (20%, 2453 images)
randomly while ensuring that all images from the same patient were within one set. All
images were resized to an input size of 256× 384 pixels and Z-score normalized before feeding
into the network. Data augmentation was performed using random flipping, vertical and
horizontal shifting.

We update the context encoder and discriminator parameters using Adam optimizer,
minimizing LF and LD alternatively, with hyper-parameters set to β1 = 0.9, β2 = 0.999,

7



Self-Supervised Learning with DICOM metadata

batch size = 32, context encoder learning rate = 0.0001, and discriminator learning rate =
0.00001.The models were trained over 200 epochs without early stopping, and the ones with
the lowest LF on the validation set were selected for downstream evaluation. We didn’t split
a held-out test set since we presented our quantitative results on the downstream tasks.

4.3. Experiment Settings

For both encoder, VGG16 and ResNet50, we compare the following pretraining configura-
tions:

• Baseline: The encoder was randomly initialized without pretraining.

• ImageNet: The encoder was trained on ImageNet classfication.

• DCM: The encoder was trained to predict the DICOM metadata directly.

• CE: The encoder was trained with the context encoder without the DICOM metadata.

• CE + DCM: The encoder was trained using our proposed framework with DICOM
metadata.

• CE + DCM + F: The encoder was trained using our proposed framework with
DICOM metadata, and the parameters were frozen while training the downstream
tasks.

4.4. Downstream Tasks Evaluation

4.4.1. Architecture

After the model was trained, only the encoder part was fine-tuned for downstream tasks.
Downstream classification tasks using a classifier layer, consisting of a 1×1 convolutional, a
dropout, a global average pooling, and a fully connected layer, was appended followed by a
sigmoid activation function. For downstream segmentation task, we adopted an architecture
simmilar to U-Net (Ronneberger et al., 2015), where the encoder arm is modified to be the
pretrained VGG16 or ResNet. We followed an implementation similar to Iglovikov and
Shvets (2018), adding five up-convolutional blocks and skip connection to complete the
network.

4.4.2. Classification

The downstream classification task, quality score classification, is to identify an optimal
view for Morrison’s pouch - an anatomic site between the right lobe of the liver and the
right kidney. Clinically, the view is important to identify ascites and hemoperitoneum when
abnormal fluid accumulation is present. Furthermore, it is the reference view to estimate
the severity of steatosis using the hepatorenal index. Therefore, quantifying the optimal
view is crucial in an ultrasound examination. The images used in the classification task were
reviewed by a board-certified radiologist and given five different rankings as the quality score
(Figure 3). Class 0 indicates the view does not include the liver or the kidney, and should
not be used; class 1 and 2 are the correct Morrison’s pouch view, but the anatomic structure
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is not clear enough for clinical applications; class 3 and 4 are the clinically acceptable views,
and class 4 represent the optimal Morrison’s pouch view that will be used by an experienced
operator. We used the ordinal encoding for the labels. (class 0: [0,0,0,0], class 1: [1,0,0,0],
class 2: [1,1,0,0], class 3: [1,1,1,0], class 4: [1,1,1,1])

Figure 3: Quality Score classification examples.

4.4.3. Segmentation

We evaluated two different segmentation tasks. The first is to segment the kidney and liver
in B-mode ultrasound imaging. This work is related to quality score classification. A board-
certified radiologist selected the images representing optimal Morrison’s pouch view from
the institutional database and manually annotated the kidney and liver anatomy. (Figure
4(a)). The second task is thyroid nodule segmentation, including cystic nodules, adenomas
and thyroid cancers, using an open access B-mode thyroid ultrasound image dataset. An
example is shown in Figure 4(b).

4.4.4. Training

For all three downstream tasks, the images follow the same pre-processing procedure de-
scribed in section 4.2.2. The training hyper-parameters are summarized in Appendix Table
A2. Models were trained without early stopping, and the epochs with the lowest validation
loss were selected. All reported values were evaluated on the held-out test set.

Figure 4: Examples of the downstream segmentation tasks.

5. Results

5.1. Context Encoder with DICOM

The qualitative results of the context encoder with and without DICOM tags are shown in
Figure 5. We observe that trainings without DICOM tags are more prone to mode collapse
in our experiments, making it difficult to obtain optimal results. With DICOM tags, the
generated images look sharper and can resemble the actual organ texture simmilar to liver
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and kidney. Figure 5 qualitatively shows that the joined weakly-supervised training with
DICOM tags improved the prediction quality.

Figure 5: Example of semantic in-painting on various organs using the validation set

5.2. Downstream Tasks

Next, we examined whether downstream segmentation and classification can benefit from
the pretrained encoder. The results are summarized in Table 2.

The performance with pretraining improved significantly across different tasks and con-
figurations compared to the random-initialized baseline models. The pretraining from Im-
ageNet and DICOM also work fairly well however, our proposed method, context encoder
with DICOM, consistently obtained the best results. The effect of freezing the encoder
differs between the two backbone. When freezing the encoder, we are reusing the learned
features directly, and the ResNet models benefit more from this approach; when unfreezing
the encoders, we treat it as the self-supervised initialization and the VGG16 gains more
from this approach. The observation is consistent with the conclusion in (Kolesnikov et al.,
2019), i.e. quality of the representation learned in self-supervised tasks deteriorates toward
the final layers of the VGG network. In contrast, the skip connections in ResNet architec-
ture help preventing the degradation of the representation and is the best performer when
reusing the features up to the pre-logit layers.

To emphasize the impact of adding DICOM metadata, we further repeat the experiments
using a smaller data regime. We compared three configurations: CE + DCM (+F), CE,
and baseline model, but only using 5% of the data for all three tasks. The results are shown
in Figure 6; note that we only freeze the encoder for ResNet backbone given the previous
conclusion. The boxplots show that adding the metadata improved the performance in all
cases. The difference between CE + DCM (+F) and CE are statistically significant (p-value
< 0.05) in all combination, except for the quality score classification using VGG16 as the
backbone (p-value = 0.111).
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Table 2: Performance evaluation of downstream tasks undergoing pretraining. The reported
value is mean ± standard deviation on the held-out test set. The standard deviation is
derived from bootstrapping for 1000 times on the test set. Each time we sample 50% of the
test data with replacement. Best performance is highlighted in boldface. The abbreviation
of each pretraining configuration is specified in section 4.3.

Backbone Pretraining
Downstream Task

Quality Liver/Kidney Thyroid

VGG16-BN Baseline 0.558 ± 0.031 0.801 ± 0.011 0.856 ± 0.012

VGG16-BN ImageNet 0.656 ± 0.034 0.824 ± 0.008 0.876 ± 0.009

VGG16-BN DCM 0.652 ± 0.020 0.829 ± 0.008 0.859 ± 0.011

VGG16-BN CE 0.629 ± 0.022 0.816 ± 0.009 0.858 ± 0.011

VGG16-BN CE+DCM 0.657 ± 0.031 0.832 ± 0.009 0.883 ± 0.010

VGG16-BN CE+DCM+F 0.645 ± 0.035 0.826 ± 0.009 0.879 ± 0.011

RESNET50 Baseline 0.706 ± 0.029 0.765 ± 0.013 0.843 ± 0.011

RESNET50 ImageNet 0.708 ± 0.035 0.811 ± 0.014 0.849 ± 0.011

RESNET50 DCM 0.706 ± 0.028 0.753 ± 0.016 0.850 ± 0.011

RESNET50 CE 0.715 ± 0.028 0.781 ± 0.011 0.849 ± 0.010

RESNET50 CE+DCM 0.715 ± 0.024 0.807 ± 0.011 0.852 ± 0.011

RESNET50 CE+DCM+F 0.754 ± 0.024 0.814 ± 0.014 0.865 ± 0.010

Figure 6: Boxplots between the three configurations CE+DCM(+F), CE and Baseline
across two backbone architectures and three downstream tasks. CE+DCM(+F) here
denotes CE+DCM+F when we use ResNet as backbone and CE+DCM when using
VGG16.
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6. Discussion

In this study, we demonstrate that the performance of existing self-supervision techniques
can be consistently boosted with DICOM metadata as weak labels. Comparing to other pre-
training data sources like ImageNet, which often comprises millions of entries, our methods
achieve comparable performance with only around 10,000 images. Mahajan et al. (2018)
suggested that, while increasing the size of the pretraining dataset may be beneficial, select-
ing a label space for the source task to match that of the target task is even more fruitful.
In our experiments, the pretraining and the downstream dataset share a similar distribu-
tion; they both cover standard ultrasound examination views such as the abdominal and
thyroid scans. Our results further emphasize the benefits of pretraining from data of the
same domain. Such a method can be particularly useful in the low-resource settings where
obtaining and training large-scale annotated data is not feasible, and that leads to reducing
the gap toward building a generalized and robust medical imaging pretraining technique.

The choice of DICOM tags is crucial to the success of the application. We only exper-
imented with ultrasound images and two DICOM tags. Different image modality like CT
and MRI have their distinct metadata and would require further investigation to iden-
tify the proper candidates. Potential targets such as voxel information(pixel spacing,
Hounsfield units), study details(anatomic structure, patient orientation), or patient-level
data(demographics, diagnosis) can provide meaningful semantic information for supervised
learning. Though, some tags like study descriptions or study findings may be inconsistent
among different acquisition devices or institutions, they can still be valuable with proper
categorization by the clinical experts.

In our experiments, we focused on the advantages of DICOM metadata and only investi-
gated one self-supervised method. However, the methodology used in this paper, adding the
DICOM weak labels to the discriminator, can be generalized to other pretext tasks given
that adversarial training is often used as an auxiliary loss to many existing models. For
example, Chen et al. (2019b) extended the self-supervised rotation loss with a GAN-based
structure. Exploration of different pretext tasks will be necessary for future studies.

7. Conclusion

In this paper, we demonstrate the potential of using DICOM metadata from ultrasound
images as weak labels to improve representation learning in a self-supervised schema. The
method can have great impacts in resource-limited regions by leveraging its ability to ef-
fectively utilize the pre-existing information, curtailing the need of additional annotations
which require high skill and are expensive. The method can be extended to other medical
image modalities with DICOM tags like CT or MRI.
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Mario Lučić, Marvin Ritter, Michael Tschannen, Xiaohua Zhai, Olivier Frederic Bachem,
and Sylvain Gelly. High-fidelity image generation with fewer labels. In International
Conference on Machine Learning, 2019.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yix-
uan Li, Ashwin Bharambe, and Laurens van der Maaten. Exploring the limits of weakly
supervised pretraining. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 181–196, 2018.

Takeru Miyato and Masanori Koyama. cgans with projection discriminator. In International
Conference on Learning Representations, 2018.

Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by solving
jigsaw puzzles. In European Conference on Computer Vision, pages 69–84. Springer, 2016.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with
auxiliary classifier gans. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 2642–2651. JMLR. org, 2017.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros.
Context encoders: Feature learning by inpainting. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2536–2544, 2016.

Lina Pedraza, Carlos Vargas, Fabián Narváez, Oscar Durán, Emma Muñoz, and Eduardo
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Florian Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and
Patrick McDaniel. Ensemble adversarial training: Attacks and defenses. In Interna-
tional Conference on Learning Representations, 2018. URL https://openreview.net/

forum?id=rkZvSe-RZ.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine Man-
zagol. Stacked denoising autoencoders: Learning useful representations in a deep network
with a local denoising criterion. Journal of machine learning research, 11(Dec):3371–3408,
2010.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and Ronald M
Summers. Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-
supervised classification and localization of common thorax diseases. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 2097–2106, 2017.

Qizhe Xie, Eduard Hovy, Minh-Thang Luong, and Quoc V Le. Self-training with noisy
student improves imagenet classification. arXiv preprint arXiv:1911.04252, 2019.

Chaochao Yan, Jiawen Yao, Ruoyu Li, Zheng Xu, and Junzhou Huang. Weakly supervised
deep learning for thoracic disease classification and localization on chest x-rays. In Pro-
ceedings of the 2018 ACM International Conference on Bioinformatics, Computational
Biology, and Health Informatics, pages 103–110, 2018.

Appendix A.

Table A1: The full list of the DICOM Study Descriptions and the corresponding encoding

Study Descriptions Encoding

US BIOPSY LIVER NONFOCAL liver,abdomen

US BIOPSY LIVER FOCAL liver,abdomen

US LYMPH NODE BIOPSY soft tissue,nodule

US BIOPSY KIDNEY NONFOCAL (EITHER SIDE) kidney,abdomen

US PARACENTESIS THERAPEUTIC abdomen,drainage

US BIOPSY TRANSPLANTED KIDNEY kidney,abdomen

US PARACENTESIS DIAGNOSTIC AND THERAPEUTIC abdomen,drainage

US THYROID BIOPSY thyroid,nodule

US PARACENTESIS DIAGNOSTIC abdomen,drainage

US THORACENTESIS DIAGNOSTIC AND THERAPEUTIC chest,drainage

US THYROID ASPIRATION/FNA thyroid,nodule

US DRAINAGE INTERVENTION NOT OTHERWISE SPECIFIED soft tissue,drainage

US DRAINAGE ABDOMEN abdomen,drainage

US DRAINAGE GALLBLADDER (CHOLECYSTOSTOMY) abdomen,drainage

US THORACENTESIS THERAPEUTIC (RIGHT) chest,drainage
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Study Descriptions Encoding

US THORACENTESIS THERAPEUTIC (LEFT) chest,drainage

US BIOPSY MESENTERY abdomen,drainage,soft tissue

US NECK SOFT TISSUE BIOPSY soft tissue,nodule

US DRAINAGE CATHETER PLACEMENT soft tissue,drainage

US DRAINAGE PELVIS abdomen,drainage

US SOFT TISSUE BIOPSY soft tissue,nodule

US BIOPSY KIDNEY NONFOCAL (LEFT) kidney,abdomen

US CHEST TUBE PLACEMENT (RIGHT) chest,drainage

US BIOPSY NOT OTHERWISE SPECIFIED soft tissue,nodule,drainage

US ABDOMINAL PELVIC BIOPSY NOT OTHERWISE SPECIFIED soft tissue,nodule,drainage

US CHEST TUBE PLACEMENT (LEFT) chest,drainage

CT BIOPSY LIVER FOCAL liver,abdomen

US BIOPSY KIDNEY FOCAL (LEFT) liver,abdomen

US ASPIRATION ABDOMINAL COLLECTION abdomen,drainage

CT LYMPH NODE BIOPSY soft tissue,nodule

US DRAINAGE LIVER liver,drainage,abdomen

US BIOPSY RETROPERITONEUM abdomen

US LYMPH NODE ASPIRATION/FNA soft tissue,nodule,drainage

US SOFT TISSUE ASPIRATION soft tissue,drainage

US ASPIRATION PELVIS abdomen,drainage

US THORACENTESIS DIAGNOSTIC (RIGHT) chest,drainage

US THORACENTESIS DIAGNOSTIC (LEFT) chest,drainage

US DRAINAGE KIDNEY/PARARENAL (RIGHT) abdomen,kidney,drainage

US HEAD/NECK INTERVENTION NOT OTHERWISE SPECIFIED soft tissue

US BIOPSY KIDNEY FOCAL (RIGHT) kidney,abdomen

CT ABDOMINAL PELVIC BIOPSY NOT OTHERWISE SPECIFIED abdomen

US DRAINAGE KIDNEY/PARARENAL (LEFT) kidney,abdomen

IR PARACENTESIS (THERAPEUTIC) abdomen,drainage

US PSEUDOANEURYSM THROMBIN INJECTION soft tissue,nodule

Table A2: Training Details for the Downstream Tasks

Quality Score Liver/Kidney Segmentation Thyroid Segmentation

Optimizer Adam ((β1 = 0.9, β2 = 0.999)) Adam ((β1 = 0.9, β2 = 0.999)) Adam ((β1 = 0.9, β2 = 0.999))

Batch Size 4 8 8

Training Epochs 300 500 500

Loss Function Weighted Binary CrossEntropy Soft Dice loss Soft Dice Loss

Learning Rate
VGG16:0.00005 VGG16: 0.0001 VGG16: 0.0001

RESNET: 0.00005 RESNET:0.00005 RESNET:0.0001
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