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Abstract

Seizures are a common emergency in the neonatal intesive care unit (NICU) among new-
borns receiving therapeutic hypothermia for hypoxic ischemic encephalopathy. The high
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incidence of seizures in this patient population necessitates continuous electroencephalo-
graphic (EEG) monitoring to detect and treat them. Due to EEG recordings being reviewed
intermittently throughout the day, inevitable delays to seizure identification and treatment
arise. In recent years, work on neonatal seizure detection using deep learning algorithms
has started gaining momentum. These algorithms face numerous challenges: first, the
training data for such algorithms comes from individual patients, each with varying levels
of label imbalance since the seizure burden in NICU patients differs by several orders of
magnitude. Second, seizures in neonates are usually localized in a subset of EEG channels,
and performing annotations per channel is very time-consuming. Hence models which make
use of labels only per time periods, and not per channels, are preferable. In this work we
assess how different deep learning models and data balancing methods influence learning in
neonatal seizure detection in EEGs. We propose a model which provides a level of impor-
tance to each of the EEG channels - a proxy to whether a channel exhibits seizure activity
or not, and we provide a quantitative assessment of how well this mechanism works. The
model is portable to EEG devices with differing layouts without retraining, facilitating its
potential deployment across different medical centers. We also provide a first assessment
of how a deep learning model for neonatal seizure detection agrees with human rater de-
cisions - an important milestone for deployment to clinical practice. We show that high
AUC values in a deep learning model do not necessarily correspond to agreement with a
human expert, and there is still a need to further refine such algorithms for optimal seizure
discrimination.

1. Introduction

Seizures during the neonatal period are a common emergency in Neonatal Intensive Care
Units (NICU). After a perinatal hypoxic-ischemic event, 30-60% of infants develop seizures
(Kharoshankaya et al., 2016; Nash et al., 2011). Fifteen percent of infants with seizures
die and an additional 50% experience significant disability, including cerebral palsy, intel-
lectual disability, and future epilepsy (Ronen et al., 2007; Lai et al., 2013). In newborns,
clinical seizures symptoms can be extremely subtle or not exist at all, thus requiring elec-
troencephalographic (EEG) monitoring for seizure identification (Wietstock et al., 2016).
At leading and major medical centers, seizure detection currently relies on a clinical neu-
rophysiologist reviewing continuous EEG recordings at standard intervals (at our center
currently every 4-6 hours) to identify seizures in the preceding time period. Because seizure
screening occurs once every several hours, treatment delays are inevitable. This issue mo-
tivates the development of a continuous monitoring solution to decrease time to seizure
identification and treatment as timely intervention is critical for positive outcomes. Given
recent advances in automated seizure detection (Temko et al., 2011a; Ansari et al., 2019;
O’Shea et al., 2020), the goal of creating machine learning software tools to automatically
detect seizures and help clinicians to make decisions now seems more achievable than ever
(Mathieson et al., 2016a,b; Temko et al., 2015).

To study our proposed learning framework, we focus on two sources of data. Recently,
the Helsinki University Hospital has released a NICU dataset of neonatal seizures with three
distinct raters (“Helsinki dataset” from now on) (Stevenson et al., 2019). Additionally, we
have built a dataset from our own historical cache of patients, yielding 31 additional in-
dividuals, to build and evaluate the proposed methods (“Duke dataset”). Having these
two datasets allows us to evaluate methods in the context of two centers’ data and addi-



ATTENTION-BASED NETWORK FOR WEAK LABELS IN NEONATAL SEIZURE DETECTION

tionally evaluate how well the learned algorithms generalize to a new center, an important
consideration in deployment.

This application comes with several important considerations. A first issue is that the
data suffers from severe label imbalance, i.e., low proportion of seizure events, a noted
issue in training machine learning models (Johnson and Khoshgoftaar, 2019). Additionally,
the training data comes from several patients, each with highly varying levels of seizure
rates (in the Duke dataset it varies from 0.09% to 24%). We propose to address this
challenge as a group-label imbalance problem (controlling for class imbalance individually
per patient, referred in our case as ‘Patient-Class imbalance’), and explore best data sub-
sampling practices for training in this scenario.

Second, training datasets typically only provide “weak labels,” meaning that only peri-
ods of time containing seizures are labeled without specifying the EEG channel exhibiting
the seizure. However, as mentioned above, seizures in neonates are not typically whole-
brain events and are often localized to individual brain regions, meaning that the seizure
only appears in some of the measured EEG channels. Therefore, we would like a method to
help localize a seizure to specific channels. Recent work has begun to utilize weak labels in
CNNs (O’Shea et al., 2020; Ansari et al., 2019), but has yet to focus on effective localization,
applicable to the task at hand. This goal is twofold: (i) we would expect that building this
information into the method would improve performance; and (ii) downstream implemen-
tations would almost certainly require manual verification, and highlighting EEG channels
which presumably exhibit seizures could accelerate this process. We address this challenge
by building an attention-based Multi-Instance Learning (MIL) framework (Ilse et al., 2018).
The MIL framework (Kraus et al., 2016; Wang et al., 2018b) is used to handle weak labeling,
whereas the attention mechanism is used to highlight channels of interest for classification.
We go further, evaluating the highlighting done by attention mechanism through comparing
it with human per-channel seizure annotation to find out whether network “sees” the same
thing as human does.

A third critical consideration is that previous studies have shown good performance
metrics on in-house datasets (Temko and Lightbody, 2016; Tapani et al., 2019; Ansari
et al., 2019), and only one study so far evaluated the results on an external dataset (O’Shea
et al., 2020). However, in neonatal seizures, the inter-rater agreement is often relatively low
(Stevenson et al., 2015, 2019). We explore both the pure AUC from our predictive metrics,
but also evaluate how well the chosen algorithm would replicate a doctors’ analysis using a
variety of approaches and thresholds.

In the rest of this manuscript, we evaluate how well our proposed methods address these
challenges in the context of the two mentioned real-world datasets. Overall, our performance
when trained on Duke dataset is excellent (AUC =~ .970), and maintains relatively high
performance when evaluated on untouched data from a different center (AUC =~ .925),
despite a change in electrode layout and device between the two centers. These results
show that there are still challenges to tackle on a universal solution, but point towards a
potential continuous monitoring framework. In addition, we evaluated our methods versus
multiple doctors, yielding algorithm-doctor agreement scores (Cohen’s x (Cohen, 1960))
only slightly lower than physician-physician inter-rater agreement.
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Technical Significance. The proposed attention-MIL framework can help localize which
channels are likely to indicate seizures, which we validate empirically. While previous
studies had considered the weak labeling problem (O’Shea et al., 2020; Ansari et al., 2019),
recovering seizure channels from weak labels can help accelerate downstream deployment
and human validation. Additionally, we explore how the group-class imbalance affects the
proposed algorithms during training. We provide additional metrics to explore how the
algorithm matches human decision making at different parameter settings; while there are
reports on matching algorithm and human performance (Temko et al., 2011b), prior studies
with neural networks have focused primarily on AUC (O’Shea et al., 2017, 2020; Ansari
et al., 2019). Finally, it is rare in the deep learning literature in this field to have a true
second dataset collected in a different context; we posit that these results help reveal the
true deployment utility of the learned algorithms.

Clinical Relevance. Intermittent review of continuous EEG recordings by a neurophys-
iologist inevitably leads to delays in seizure identification and treatment. A prior survey
of neurophysiologists and neurointensivists showed that the frequency of reviewing EEGs
varies widely: only 5% of surveyed physicians reviewed EEGs continuously, while 75% re-
viewed it two or more times per day (Gavvala et al., 2014). A similar survey demonstrated
that 50% of responders reviewed EEGs two times a day or less (Abend et al., 2010). Higher
seizure burden is independently associated with worse neurodevelopmental outcomes, both
for hypoxic ischemic encephalopathy patients (Kharoshankaya et al., 2016; Glass et al.,
2009), as well as in other pediatric critical care situations (Payne et al., 2014). In the
NICU, the paucity of clinical signs suggestive of seizure in neonates results in most (if not
all) seizures being identified on EEG after which the clinical team caring for the infant
is informed. Decreasing time to seizure identification and treatment is therefore essential
for reducing seizure burden and potentially improving clinical outcomes. The benefits of
a fully continuous monitoring system are clear, as an automated detection system could
flag potential seizures and lead to more timely seizure treatment. Such a system would
need to capture most seizures and be highly specific since systems with high false positives
are frequently ignored. A key component of this continuous monitoring system is the de-
velopment of a reliable automatic detection procedure; in this manuscript, we present a
machine learning approach to the automatic detection problem based upon datasets from
two centers.

Generalizable Insights about Machine Learning in the Context of Healthcare

Transferring models that apply to EEG data is difficult due to differences in equipment and
clinical protocols used to perform data collection. While electrodes are usually placed ac-
cording to international standards (e.g., the 10-20 placement system (American Encephalo-
graphic Society, 1994)), deployed systems differ between centers (e.g., different numbers
of electrodes), yielding different dimensionalities of data. This is a challenge when trans-
ferring models between centers, hindering real-world applicability. Therefore, we focus on
learning machine learning models that are robust to such differences, and we evaluate its
multi-center capabilities by evaluating on data from multiple centers and electrode layouts.
By comparing the automatic evaluation with doctor evaluations, we revealed the necessity
to tune thresholds to specific data sources rather than solely considering AUC. Further-
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more, for a high-stakes decision, we assert that it is critical to underpin the decision in an
interpretable manner to facilitate human review. To address this challenge, our proposed
model is agnostic to the amount of channels and highlights those channels that are likely
to exhibit seizure activity for a given timeframe. We then evaluate how our highlighting
system matches with human interpretation.

2. Cohort
2.1. Data Collection and Annotation
2.1.1. DUKE DATASET

Patients aged <30 days who received continuous EEG (cEEG) monitoring between 2012
and 2019 were first identified through the EEG database system utilized by Duke University
Medical Center (Natus NeuroWorks®). Medical records were then manually reviewed and
infants who were concurrently undergoing therapeutic hypothermia while being monitored
on EEG were selected. A total of 154 patients were identified, 45 of whom developed seizures
during cEEG monitoring, as assessed by an experienced epileptologist. After exclusion of
corrupt files, cEEG data of 31 infants with seizures were available. This study of human
subjects was approved by the Duke Health Institutional Review Board (Pro00100420).

Among 31 infants retained in the dataset, 42% (n=13) were female with a median
gestational age of 39 weeks (Inter-Quartile Range (IQR) 38-40) at time of birth. Median
time from birth to EEG placement was 9 hours (IQR 5-11). EEG recordings started at
onset or soon after initiation of therapeutic hypothermia and recordings continued until
24 hours after rewarming. There were more seizures typically in the beginning and they
decreased in frequency later in the recordings, yet entire recordings, regardless of therapeutic
hypothermia phase, were used for algorithm development and training.

An experienced epileptologist from Duke University Medical Center annotated the dataset.
Annotation for each seizure was provided in a separate table marking the beginning and
end time of the seizures with 1 second resolution. In total, the dataset contained 2320 hours
of recording with 50.81 hours of annotated seizures.

Summary of the Duke dataset is provided in Table 1 and Figure 1. Details can be found
in Appendix A.1.

Since the system is intended to monitor all at-risk individuals, it is critical to maintain
low false alarm rate. It is especially important on patients without seizures so that the sys-
tem would not get ignored by practitioners. For an additional evaluation of our algorithm
on such patients, we utilized 10 out of 154 newborns who underwent therapeutic hypother-
mia but did not develop seizures. This subset of patients had a median gestational age of
39 weeks (IQR 37-40) at time of birth and their median time from birth to EEG placement
was 9 hours (IQR 5-12), and duration of each recording was 24 hours.

2.1.2. SUBSAMPLE OF THE HELSINKI DATASET FOR CROSS-DATASET VALIDATION

To get a better understanding of the generalizability of an algorithm, it is important to
evaluate it in a variety of environments. For that purpose, we used data and annotations
from the Helsinki dataset (Stevenson et al., 2019). We selected patients that had seizures
by consensus of 3 raters (total of 39 patients, 53% (n=21) female, 41% (n=16) male, gender
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Table 1: Summary of seizure amount, duration, and total recording duration in the Duke
dataset. The dataset consists of 31 patients with continuous EEG recordings (min-
imum duration of 24 hours), which is typical of the multiple-day seizure monitoring
protocols utilized in many NICU settings.

Amount of seizures Total hours Total seizure hours Seizure rate

Total 1778 2320.00 50.81 -
Mean 57.35 74.84 1.64 2.81%
Std 71.95 35.31 2.41 4.91%

not provided for 2 patients). Median gestational age for this subsample was 39 weeks (IQR
38-40). Summary for the subsample is provided in Table 2 and Figure 1.

Table 2: Summary of seizure amount, duration, and total recording duration in a subset of
39 patients from the Helsinki dataset who had seizures by consensus.

Amount of seizures Total hours Total seizure hours Seizure rate

Total 343 60.12 10.91 -
Mean 8.80 1.54 0.28 18.60%
Std 11.2 0.71 0.38 21.09%

Number of patients
Number of patients

T S S T
N N NS ~ % YAy
SRS A SR A A G
SIS Y o o ~ N LN o
2
Seizure rate (%) Seizure rate (%)

Figure 1: Histogram of seizure rate per patient in the Duke dataset (left) and the Helsinki
dataset (right) on a log-scale. Red dotted line is prevalence of seizures over entire
dataset (2.2% for the Duke dataset, 18.1% for the Helsinki dataset)
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2.2. Data Extraction

To make results comparable with existing literature, all the data in this paper was extracted
and preprocessed with the routine outlined in (Temko et al., 2011a) using the publicly
available code from (Tapani et al., 2019).

EEG electrode setup for Duke dataset was based on the international 10-20 placement
system modified for neonates as recommended by the American Clinical Neurophysiology
Society Guidelines (Shellhaas et al., 2011; Kuratani et al., 2016). EEG recordings were
initially collected with a sampling frequency of 256Hz, using 9 electrodes. As is standard
practice, bipolar derivations (differences between time-series from neighboring electrodes)
were computed, resulting in the following 12 data channels (a.k.a. the ‘double banana’ mon-
tage): Fpl-C3, C3-01, Fp2-C4, C4-02, Fpl-T3, T3-01, Fp2-T4, T4-02, T3-C3, C3-Cz,
Cz-C4, C4-T4 . Notch filtering (at 60Hz for the Duke dataset, and at 50Hz for the Helsinki
dataset), high-pass filtering at 0.5 Hz, low-pass filtering at 16 Hz and down-sampling to
32Hz was performed. Then data for each patient was split into subsequent 8-second chunks
with 4 seconds overlap (referred from here on as epochs). Any period with data losses in
the recording (a small minority of data) was removed.

2.3. Feature Choices

For the i-th patient after preprocessing we had N, ; epochs with dimension (N, 256) where
N, is number of bipolar channels (12 for the Duke dataset, 18 for the Helsinki dataset), and
256 is the amount of timepoints per 8 seconds on 32Hz downsampled data. For the deep
learning approaches, here developed and investingated, this data format was directly used.
The Support Vector Machine approach here tested relies on human-engineered features, so
each epoch of data was converted to 55 features per channel. These features follow (Temko
et al., 2011a), and are representative of frequency domain, time domain, and information
theory based characteristics of the signals.

3. Methods

In our work we compare two novel deep learning approaches and one classical approach
(SVM), and investigate how the choice of data balancing techniques influences overall per-
formance over the algorithm. We use AUC on leave one patient out cross-validation (LOO
CV) as the main performance metric to evaluate how our performance generalizes to new
individuals. Furthermore, we explore how well best performing algorithms generalize using
cross-center validation. Specifically, we use the publicly available Helsinki dataset (Steven-
son et al., 2019) and take the best performing model on full Duke dataset and evaluate its
performance on the Helsinki dataset. We additionally assessed the performance of a pub-
licly available SVM model pre-trained on the Helsinki dataset (Temko et al., 2011a; Tapani
et al., 2019) on Duke dataset. Finally, we analyze how well one of our models can identify
seizure activity per channel using only per-epoch labels for training, and how performance
is associated with inter-rater agreement.
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3.1. Machine Learning Models
3.1.1. DEEP LEARNING MODELS

Our methods are based on the Convolutional Neural Network due to its widespread success
in signal processing task. We primarily focused on two architectures. These architectures
use a per-electrode (or per-channel) feature extractor with weights shared across all elec-
trodes. Our feature extractor is based on Inception blocks (Szegedy et al., 2015) for their
multi-scale filtering. We hypothesize that this structure might help in classification due to
the evolution of seizures in frequency. In preliminary experiments we saw an improvement
in performance of this architecture over the standard CNN filter approach. After adapting
the Inception block to one-dimensional data, our feature extractor had 8,514 trainable pa-
rameters. Additional details on the feature extractor can be found in Appendix A.2. Below,
we discuss the structure of our two proposed networks, and their visualization can be seen
in Figure 2.

In our first deep learning network (DL1), the outputs of the per-channel feature extrac-
tor are concatenated and then passed through a dense layer. Since the number and order
of channels is fixed, using a dense layer overall helps the classification since the channels
are not independent (at least because channels are bipolar derivations of raw electrode sig-
nals); however, this should be carefully addressed since seizure activity appears in different
channels for different patients.

In contrast, in our second deep learning network (DL2), the output of the per-channel
feature extractor is passed through an attention-MIL layer, as outlined in Ilse et al. (2018).
We built upon this framework with the intention that channels exhibiting seizures should
be given more weight, which could both improve modeling and facilitate communication of
the results. After the attention layer, a weighted average of the features is passed through
a dense layer. Thus, this model is agnostic to channel interaction, facilitating portability to
any channel layout. This is a desired feature for a generalizable seizure detection algorithms,
since EEG setup can vary in different NICUs (Ansari et al., 2019), and such configuration
allows the model to be used in different NICUs without retraining, and also to jointly learn
from multi-center weakly labeled datasets. This is also critical in our cross-center validation,
because the two centers use different electrode layouts.

To be more specific, the attention-MIL layer in DL2 takes as an input a bag of {hy}
features (hy € R1*® in our case), k = 1...N.. (with N, the number of channels), and outputs

N
z = Z aphy,
k=1

where
exp (w' tanh Vhy ")

Z;V:CI exp (wT tanh Vi ")’

ap =

and w € REX! and V € REX® w and V are the learned weights, and L is the inner
dimension of the attention-MIL layer. For this work we selected L = 32.

Critically, attention-MIL weights can be used as a proxy for whether channels exhibit
seizure activity, and help clinicians understand “where to look at,” i.e., which channels
contributed most to the detection of seizure.
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In total, DL1 and DL2 had 27,011 and 11,683 trainable parameters respectively. In each
experiment we trained a network for 25,000 steps with a batch size of 256.

We implemented our DL models in the Keras framework (Chollet and others, 2015) with
TensorFlow GPU backend, and run them on a desktop with 6-core i7 Processor with 64Gb
of RAM and GeForce 1080 Ti GPU. Both code and pre-trained DL2 model on Duke dataset
will be made available at https://github.com/dyisaev/seizure-detection-neonates.
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Figure 2: Graphical schema of the two Deep Learning architectures studied in this paper.
DL1 model (a) , DL2 model (b). Both models share same per-channel feature
extractor module, described in Appendix A.2. Feature extractor weights are the
same for all channels.

3.1.2. CrassicaAL ML MODELS - SUPPORT VECTOR MACHINES

To compare the proposed and studied deep learning approaches with classical ML ap-
proaches, we selected a model which has shown good results in previous publications (Temko
et al., 2011a; Tapani et al., 2019; O’Shea et al., 2020). We replicated the exact procedure
of feature extraction using publicly available code (Tapani et al., 2019), training the model
and predicting seizure. The model used radial basis function SVM based on 55 features
(Temko et al., 2011a). The model trains on 55x1 features, representing 8-second recording
segment per channel. It takes advantage of strong labels, combining only data from channels
marked as ‘seizure’ in seizure samples and data from random channels from non-seizure seg-
ments during training. The model predicts seizure per-epoch if at least one channel exhibits
seizure; predictions are done per channel, smoothed with moving average of 3 consecutive
segments, and finally overall time segment prediction is done by max-pooling per-channel
predictions.
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3.2. Data Balancing Approaches

Previous literature suggests the detrimental effect of class imbalance on CNN performance
(Buda et al., 2018), and no work so far has fully explored the influence of class balanc-
ing on the classification performance in neonatal seizures. Moreover, imbalance in seizure
burden varies across patients (see Figure 1). Thus, we tested each method with 3 types
of balancing approaches: No balancing (simply subsampling all available training epochs);
Class balancing (keeping the proportion of classes (labels of seizure/non-seizure) in each
minibatch equal); Patient-Class balancing (keeping the proportion of (Patients x Classes)
partitions equal in each training minibatch). While Class balancing addresses the problem
of algorithms seeing much more negative (non-seizure) than positive (seizure) examples,
there is still a problem of algorithms seeing much more positive examples from patients
with high seizure burden in this approach. Patient-Class balancing intends to address that,
and is expected to provide better generalization.

3.3. Post-processing

We can use post-processing procedures to reduce short false positive periods and link to-
gether longer seizures, providing a slight boost to AUC. We explicitly specify in the reported
results if post-processing was used, which includes probability reweighting (to adjust for true
class prevalence in the dataset, see Appendix A.3) and transforming the outputs to improve
robustness (see Appendix A.4).

4. Results
4.1. Evaluation Approach/Study Design

We selected area under the receiver operating curve (AUC) on leave-one-patient-out (LOO)
cross-validation as a main measurement of model performance. We also explored the influ-
ence of post-processing, so we estimated performance in 2 ways. First, we assessed AUC
when prediction is evaluated on each epoch of LOO patient’s data. Second, we applied
the post-processing procedures for the best performing model with different thresholds for
computing AUC and evaluated AUC on each second of the LOO patient’s data.

For cross-center validation, we selected best performing model on Duke dataset and the
publicly available SVM model trained on the Helsinki dataset (referred as SVMr in Tapani
et al. (2019)). We computed AUC per patient on the Helsinki dataset for 39 patients that
had seizures by consensus. However, the 3 raters of the Helsinki dataset disagreed on precise
beginnings and ends of seizure periods regions, thus we used only the regions where all 3
raters agree for computing'. This is directly comparable with AUCs reported in previous
work (O’Shea et al., 2020).

We also assessed Cohen’s k (Cohen, 1960) between the proposed algorithm output and
a human rater for the Duke dataset (or a consensus of 3 raters for the Helsinki dataset), as
well as the sensitivity and specificity dependance on the selected decision threshold given
our data and algorithm.

1. We expect that this would increase the AUC over using a single rater’s labels alone.

10



ATTENTION-BASED NETWORK FOR WEAK LABELS IN NEONATAL SEIZURE DETECTION

To evaluate how well our best algorithm (trained only on patients with seizures) performs
on patients without seizures, we computed specificity and number of seizures detected on
a previously unseen set of 10 patients’ recordings from NICU of Duke University Medical
Center deemed as non-seizure by the same epileptologist who annotated the Duke dataset.
All recordings were 24 hours long. This requires selection of the decision threshold, which
we set as the probability of positive class over the entire training dataset (see Appendix A.3
for derivations).

To assess how well the attention-MIL mechanism of DL2 model captures seizure chan-
nels, we performed AUC analysis of attention-MIL scores on Duke dataset for seizure epochs.
We computed the AUC value between the scores and human annotation in two settings: (a)
per channel and epoch (‘Attention AUC’) - each individual channel was assigned a positive
or negative label based on the epileptologist per-electrode labels, and AUC was calculated
using the channel-specific prediction (i.e., prediction if attention only used that channel);
and (b) per epoch (‘Attention AUC per epoch’) - if at least one channel exceeding the
decision threshold in an epoch is deemed a seizure by the human rater, then we consider
the epoch as true positive, and we compute true and false positive rates. To the best of our
knowledge, this is the first quantitative assessment of how well the deep learning algorithm
trained using weak (per-epoch) labels is able to provide per-channel annotations.

4.2. Results on Machine Learning Approaches on Different Balancing
Techniques

Results of different balancing techniques and their influence on the deep learning approaches
are summarized in Table 3. To measure significance of difference between each pair of
approaches we performed Wilcoxon paired signed-rank test (Wilcoxon, 1945), see Appendix
A.5. Class Balancing approach on DL2 model outperformed all other approaches, resulting
in AUC of 0.950.

Note that the SVM approach does not operate on weak labels, and so is limited by the
availability of per-channel labels.

Table 3: Results of different balancing approaches and their influence on the performance on
Duke dataset (average AUC on leave one patient out cross-validation). Standard
deviation (SD) is shown in parentheses. Results do not include post-processing
routine.

Model | No Balancing | Class Balancing | Patient-Class Balancing
DL1 0.933 (0.055) | 0.923 (0.070) 0.911 (0.086)

DL2 0.923 (0.057) 0.950 (0.041) | 0.943 (0.051)

SVM | 0.822 (0.063) 0.772 (0.061) 0.765 (0.058)

To further explore the influence of post-processing on the results, we performed post-
processing on the best performing model (Class-balanced DL2). With post-processing the
model achieved the average AUC of 0.970 (SD: 0.033).

11
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4.3. Results on Cross-Dataset validation

The results for cross-dataset AUC presented in Table 4 were achieved including the post-
processing routine, which was the same for both datasets. The drop in performance between
datasets was less for DL2 than for SVMr, showing significant promise for DL2 to generalize
to new centers.

We note that the SVMr shows significantly higher performance than the SVM trained
on our own data. Again, the SVM does not operate on weak labels, and so is limited by the
availability of per-channel labels, which was higher in the Helsinki dataset. Additionally, the
Helsinki dataset labeled positive and negative channels on the montage (bipolar derivations)
whereas Duke dataset labeled individual electrodes that was expanded to the montage.
This difference in labeling could explain this performance difference because the algorithms
actually operate on the montage.

Table 4: Results of cross-dataset validation as measured by average AUC on per-patient
evaluation of models. FEvaluation on the same dataset is done via Leave One
Patient Out cross-validation. Uncertainties given are the SD over patients.

Model Trained On Duke dataset | Helsinki dataset

DL2 (Class balance) Duke dataset 0.970 (0.033) | 0.925 (0.099)

Pre-trained SVM (SVMr) | Helsinki dataset | 0.826 (0.117) | 0.923 (IQR 0.869-0.990) 2

4.4. Association of per-patient AUC scores with inter-rater agreement

We wanted to evaluate how well our proposed method works relative to a typical rater. To
do this, we calculated the average inter-rater agreement for each patient using Cohen’s x on
the Helsinki dataset. We then compared this value to the AUC calculated on each patient,
shown in Figure 3. It is clear from the picture that as Cohen’s k grows, both AUC grows
and variability in AUC reduces. In other words, when human raters agree with each other,
we largely agree with them. Spearman’s p correlation coefficient between average s and
AUC is 0.56 (p<0.001), showing a strong statistical relationship.

4.5. Agreement between the algorithm and a human rater

Using a threshold of 0.022 (corresponding to a .5 threshold corrected for the prevalence
in the Duke dataset), we calculated the agreement with a human rater on Duke dataset
using Cohen’s x, and our algorithm gave a median value of 0.517 with an IQR of 0.313-
0.671 on the per-patient agreement with human rater on Duke dataset. Median value
was 0.59 with an IQR of 0.119-0.769 of the agreement with a consensus of 3 raters on the
Helsinki dataset. Because these values are dependent on the chosen threshold, we wanted to
evaluate how much the choice of threshold impacts the achieved performance. We visualize
the median and IQR of Cohen’s kappa, sensitivity and specificity compared to a varying
decision threshold, in Figure 4. It is clear from the graph that optimal thresholds are

2. Reported in (Tapani et al., 2019), SD was not provided
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Figure 3: Scatterplot of average Cohen’s k of inter-rater agreement on the Helsinki dataset
vs cross-dataset AUC on patients with consensus seizures/non-seizures on the
Helsinki dataset

different for the two datasets. If we select an optimal threshold based on Cohen’s k on the
Duke dataset (green dotted vertical line, Figure 4 (top row, left image)) we get a serious
drop in sensitivity and specificity on the Helsinki dataset.

4.6. Validation on non-seizure patients

We next evaluated the false positive rate on patients where an epileptologist did not mark
any seizures. Specifically, we used 10 patients, each of which had 24-hours of non-seizure
recordings, from Duke University Medical Center. At the chosen threshold level, the al-
gorithm flagged 589 seizures, with median of 42 seizures per recording (IQR 25.5-84.5).
Median specificity per patient was 0.98 (IQR 0.94-0.99). Median duration of the detections
was 30 seconds (IQR 28-32.5), which, given that 16 seconds is a collaring length in post-
processing, provides a ‘raw’ detection length of 3-4 consecutive epochs. These results show
the importance of decision threshold selection, post-processing, and adapting the algorithm
to background noise (Temko et al., 2013). The level of false positives is, of course, related
to the seizure threshold, as can be seen more broadly in Figure 4.

4.7. Attention Network Visualization

Finally, we evaluated the performance of the attention mechanism of the DL2 network,
which is summarized in Table 5. It is worth noting that for the Duke dataset per-channel
annotations were provided per electrode, while for the Helsinki dataset per-channel annota-
tions were provided per bipolar derivations. Thus, if an electrode was marked as ‘seizure’ in
an epoch, then we considered all bipolar derivations including that electrode as seizures. As
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Figure 4: Ranges of Cohen’s k, sensitivity, and specificity as decision threshold changes for

DL2 Class balanced model. Top row: Results on the Duke dataset LOO; Three
bottom rows: Results on the Helsinki dataset, for rater 1, rater 2, and rater 3
respectively. Red dotted vertical line - threshold corresponding to a .5 threshold
corrected for the true prevalence (Duke dataset). Green dotted vertical line -
empirical optimal threshold based on Cohen’s x in the training sample (Duke
dataset). Threshold values are provided on a log scale.
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a result of this, different electrode annotations lead to different amounts of bipolar deriva-
tions considered seizures (e.g., for Fpl two channels were marked, while for C3 four channels
were marked).

Table 5: Attention network performance of DL2 (Class balance) model on the Duke dataset
and the Helsinki dataset, as measured by averaged AUC (SD in parentheses). Com-
putation of “Attention AUC” used agreement between each thresholded score and
human annotations per channel per epoch; “Attention AUC per epoch” uses agree-
ment of at least one channel score exceeding threshold with human annotation.

Dataset Attention AUC | Attention AUC per epoch
Duke dataset 0.811 (0.096) 0.927 (0.058)
Helsinki dataset | 0.701 (0.107) 0.807 (0.167)

To provide a qualitative measure on how the attention network works, Figure 5 summa-
rizes how weights are distributed in the attention network in seizure/non-seizure samples
for one of the patients for the entire recording. We also visualize the output of the network
during the beginning and end of a seizure event in Figure 6. For this patient, all seizures
were focused on leads O1 and O2, as annotated in the Duke dataset. While the algorithm
and rater agreed on the general location of the seizure, there was disagreement on the exact
start and end location.

0.25 ---- equal probability prediction (1/12)
(DI .
st attention network
8 B predictions on
v 0,20 seizure samples
S attention network
] mmm predictions on
GC) 0.151 nonseizure samples
=
©
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Figure 5: Average attention scores across all samples for one of the patients from Duke
dataset. Ticks marked red - ground truth, provided by epileptologist (for all
seizures of this patient, epileptologist marked O1 and O2 as electrodes where
seizures are visible). Attention AUC for this patient was 0.88.
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Figure 6: (Top) Beginning of a seizure in a patient from Duke dataset. The green dotted line
marks the beginning from the epileptologist. The magenta dotted line marks the
beginning decided by network. The colored background intensity corresponds
to how much attention weight is given to each channel at each time segment.
(Bottom) End of the same seizure. The green dotted line marks the end as
labeled by the epileptologist. The network deems the whole segment as a seizure,
and most of the weight for its decision is coming from channel C3-O1, which is
also deemed the relevant channel by the epileptologist.
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4.8. Ablation study

We performed an additional ablation study to determine the impact of the attention layer
on overall prediction. We removed the attention layer and performed simple averaging of
per-channel features after the distributed feature extractor layer, with the other hyperpa-
rameters held constant. The attention layer provided marginal improvement of AUC (0.945
with ablation of attention vs 0.950 for full network). This observation indicates that classifi-
cation power of our approach comes mostly from the feature extractor selected. Regardless,
the utility of the attention layer is useful for communicating the results, as demonstrated
in Figure 6.

5. Discussion

5.1. Deep Learning Models and Balancing Strategies

It is well-established that deep learning models suffer under significant label imbalance. Few
studies on adult epilepsy explicitly took into account data imbalance (Yuan et al., 2017;
Wu et al., 2020), and most of the previous studies on data imbalance in CNN training were
focused around CNN for image classification (Johnson and Khoshgoftaar, 2019). In our
data, the seizure prevalence per patient is highly variable (from 0.08% to 24.3% in the Duke
dataset), so we hypothesized that addressing the data imbalance might be a crucial issue in
algorithm performance. However, we found only slight changes in performance due to the
varying data balancing strategies. Part of this may be due to the methods evaluated; in our
study we explore only data-level methods, comparing no balancing, class balancing (same
amount of seizures/non-seizures per batch, also known as ‘class-aware sampling’ (Shen et al.,
2016)), and Patient-Class balancing (same amount of seizures/non-seizures both per batch
and per patient in batch). The structure of features in the DL2 model (both per-channel
extracted features and weighted average of per-channel features have 48 dimensions) could
facilitate a variety of additional data-level approaches (e.g., SMOTE (Chawla et al., 2002)).

We did find highly variable performance with different neural network structures. In
our second Deep Learning model (DL2), we proposed an approach that is electrode-number
agnostic; that is, it can work on different devices and electrode layouts without retraining
the network. In this network, the class balancing approach worked the best. We hypothesize
that this is because the Patient-Class balancing over-weighted less common seizures from
low seizure-prevalence patients. However, the variability in the models shows that the
results on balancing are inconclusive.

Because the post-processing approaches are dependent on the probability estimates, we
want to have proper probability estimates. However, these balancing schemes get rid of
the class prior and must be corrected to give proper probabilistic estimates. In our case,
we have done this by post-scaling of output probabilities (Lawrence et al., 2012; Zhou and
Liu, 2006; Buda et al., 2018). This post-scaling could be combined with other calibration
approaches (e.g., Platt scaling) to get accurate probabilities.

5.2. Algorithm-rater and Inter-rater Agreement

Our results on agreement in the Duke dataset LOO setting and the Helsinki dataset indicate
that high AUC values are not enough for the deep learning seizure detection algorithm
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to be immediately transferable to clinical practice. Our algorithm reaches median 0.517
agreement with human rater on the Duke dataset and median 0.59 with consensus of 3
raters on the Helsinki dataset, as compared to 0.807 (IQR 0.540-0.913) of Cohen’s x averaged
across 3 pairs of human raters on the Helsinki dataset. We can see that agreement between
the algorithm and human raters is worse than agreement between the 3 human raters. It’s
also evident that variability on cross-dataset prediction for Cohen’s x is much higher. This
may be due to different prevalence of seizures in the Helsinki dataset compared to Duke
dataset (Stevenson et al., 2015; Vach, 2005) and the generalization error. Tapani et al.
(2019) approached the problem of agreement between algorithm and human annotation as
agreement between 3 raters (2 humans and an algorithm). They reported that Fleiss’ k
(Fleiss and Cohen, 1973) dropped if one human rater is replaced by the algorithm. The
need to search for a decision threshold, and to decide the costs of false detections and false
negatives (misses), gives an intution that cost-sensitive learning (Ling and Sheng, 2008)
may be another approach to address class imbalance, where cost can be either fixed (Wang
et al., 2018a) or learned (Khan et al., 2018).

Note that there appears to be some gain possible from personalizing the threshold,
meaning that we may need to build strategies to calibrate to individuals. This avenue could
be explored through a meta-learning approach.

In addition to the x metric, metrics that evaluate agreement on a per-event basis could
be used to further assess the clinical feasibility of the algorithm. For example, analyzing the
positive (seizure) agreements, negative (non-seizure) agreements and disagreements between
algorithm and raters, as proposed in Stevenson et al. (2015), done across entire recording
or per-hour could be used. These metrics will be addressed in future work.

5.3. Interpretability of the Results

In high-stakes decision-making, many people are rightfully wary of black-box decisions
(Rudin, 2019). In our scenario, we view this system as a support tool where any pre-
dicted positive could be reviewed more quickly. In such a scenario, it would facilitate chart
review to have the system be as descriptive as possible. While our attention-based system
does not produce interpretable filters, it can easily highlight relevant channels and time
periods for a clinician to review.

As the Attention AUC on at least one channel detected as seizure is 0.927 (SD 0.058) on
Duke dataset, we consider that this system could help decrease evaluation time. While the
system performance drops down to 0.807 (SD 0.058) when evaluated on the Helsinki dataset,
this implies that the system is still robust to true domain shifts and can be increasingly
fine-tuned. It is also important to mention that while helping to highlight the relevant
channels, attention mechanism does not add to classification power of the model, which can
be seen from ablation study.

While other approaches have considered weak labels, the system by O’Shea et al. (2020)
was an ensemble of 3 networks with prediction averaged from three outputs. While un-
doubtedly imroving performance of the model, it significantly constrains the interpretabil-
ity. Another CNN-based system (Ansari et al., 2019), while using weak labeling, did not
provide interpretations of channel importance due to network architecture.
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6. Conclusions

In this work we provided an assessment of how different models and balancing methods
influence learning in neonatal seizure detection from EEG. We proposed a model that pro-
vides a level of importance to each of the channels - a proxy to whether a channel exhibits
seizure activity or not. This model is portable to an EEG dataset with an arbitrary amount
of channels without need for adjustment or retraining, and can provide decreased checking
time for use in a secondary evaluation by a doctor. To our knowledge, we also provided
the first assessment of agreement between human raters and deep learning algorithm for
detecting neonatal seizures. The system, to date, has shown excellent AUC; however, we
do not exactly mimic doctor behaviors towards labeling, and the estimate Cohen’s k values
were comparatively low, showing room to further improve the algorithm. Future work will
attempt to increase this value by focusing on improved learning strategies, additional data
integration, and individualizing to a patient, e.g., by meta-learning.
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Appendix A.

A.1. Duke dataset Annotation summary

Patient ID  Amount of seizures Total hours Total seizure hours Seizure rate®

PT1 20 48.00 0.49 0.0102
PT101 141 93.19 3.20 0.0343
PT113 47 113.79 0.49 0.0043
PT114 45 95.71 1.30 0.0136
PT121 79 97.57 1.04 0.0107
PT130 6 104.09 0.54 0.0052
PT149 8 24.00 0.14 0.0057
PT151 2 24.00 0.10 0.0041
PT16 47 72.00 0.77 0.0107
PT2 38 48.00 0.70 0.0146
PT29 11 24.00 1.26 0.0525
PT32 2 101.22 0.24 0.0024
PT34 30 102.39 0.97 0.0094
PT37 3 85.87 0.46 0.0053
PT39 4 115.46 0.40 0.0034
PT4 333 48.00 11.70 0.2438
PT43 5 107.18 0.14 0.0013
PT47 89 116.93 3.76 0.0321
PT54 41 48.00 0.83 0.0172
PT60 151 48.00 7.16 0.1493
PT62 5 24.00 0.08 0.0035
PT67 15 24.00 0.60 0.0248
PT73 11 103.51 1.72 0.0166
PT77 58 24.00 0.98 0.0409
PT79 116 48.00 2.15 0.0448
PTS 64 48.00 0.53 0.0109
PT84 181 77.21 4.57 0.0592
PT91 10 107.74 0.10 0.0009
PT94 29 103.37 1.09 0.0105
PT95 148 128.10 1.96 0.0153
PT96 39 114.69 1.36 0.0119
Total 1778 2320.00 50.82 -

Mean 57.35 74.84 1.64 0.0281
Std 71.95 35.31 2.41 0.0491

A.2. Feature Extractor Architecture

Feature extractor was inspired by Inception network (Szegedy et al., 2015), allowing to extract
features at multiple scales. We used an architecture with two Inception blocks, shown in Figure S1.
Feature extractor had 8,514 trainable parameters in total.

3. Seizure rate =(Total amount of seizure seconds in recording)/(Total amount of seconds in recording)
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Figure S1: Schema of the feature extractor used in deep learning models. The last number
in each block is the amount of filters. Strides are equal to one if not stated
otherwise.

A.3. Post-processing: Probability Reweighting

Our derivations for adjustments of the classifier output probability given the prevalence of positive
class follow the lines of (Pozzolo et al., 2015; Elkan, 2001). We can model our sampling strategy as
follows: Let s be a Bernoulli variable defining whether an epoch is taken into the training sample
or not, y a label taking two values (1 for seizure, 0 for non-seizure), X an epoch. Then

(s|ly = i) ~ Bernoulli(5;),i = {0,1}

Also, let p(y = i) = m;.

p(s|X,y) = p(s]y) since only label is important to make a decision whether an epoch is taken
into the training subset for class balanced training. The strategy where we take equal amount of
seizures and non-seizures into the training sample can be defined as

Bomo = 171

, or
Bo _m
B1  mo

=B

If p(y = 1|z, s = 1) is the output of a classifier trained on the balanced set, then by Bayes
Theorem we can write the following:

p(s =1y = 1)p(y = 1|X)
p(s =1ly = p(y = 1|X) +p(s = 1|y = 0)p(y = 0|X)’

ply=1X,s=1)= (1)
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where p(y = 1|z) is the probability of seizure in the original unbalanced model, which we are looking
for. Let us denote p = p(y = 1|1X),ps = p(y = 1|1X,s = 1), so we can rewrite Eq. (1) as

_ pip _ P
Bip+Bo(1—p) p+B(1-p)

Ps

Rewriting the formula we get
_ Bps
S o N (2)
Bps +1—ps

The last formula gives us an adjustment of probability that should be done on the output of our
algorithm.

For later post-processing steps, we need to choose the threshold. According to Bayes decision
theory, if we deem classification cost of correct examples as 0, the threshold

p

L l10
lio+loa
Without prior knowledge, we select I, = m and lp1 = m as the threshold (Pozzolo et al.,
2015), so the threshold becomes 7 = ;. This corresponds to an operating point of 0.5 of balanced
classifier.

A.4. Post-processing: Transforming the Outputs to Improve Robustness

Post-processing was done following (Tapani et al., 2019), and took adjusted output probability per
epoch as an input (see Appendix A.3). Since annotations were done by human rater on a per-second
basis, post-processing had an upsampling step (converting per-epoch probabilities to per-second
probabilities). Since epochs were 8-seconds long with 4-seconds overlap, each epoch prediction was
transformed into 4 seconds prediction in upsampling.

The post-processing steps were as follows: a) median filtering of 3 consecutive epochs prediction
probabilities; b) upsampling per-epoch predictions back to per-second resolution; ¢) removing all
predictions labeled as ‘seizure’ which were less than 10 seconds long; d) “collaring” (extending each
seizure prediction by 8 seconds in both directions). When computing AUC, steps a) and b) were
performed before applying the decision threshold and making a binary 0/1 decision, and steps ¢)
and d) were performed each time after applying the decision threshold.

A.5. Significance Tests of Difference in Performance of DL Models

To assess the difference in performance, as measured by AUC on leave-one patient out cross-
validation, we applied Wilcoxon paired signed-rank tests each pair of models on each balancing
approach. Table S1 provides the results.

A.6. Attention-MIL Measures per Patient

In this section we provide per-patient attention-MIL performance summary on Duke dataset (Table
S2).
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Model (balancing) DL1 DL1 DL1 DL2 DL2 DL2
(None) (Class) (Patient- | (None) (Class) (Patient-
Class) Class)
DL1 (None) - 0.07454 0.00816 0.17014 0.01025 0.18919
DL1 (Class) - - 0.13132 0.86000 0.00070 0.00209
DL1 (Patient-Class) | - - - 0.58321 0.00002 0.00017
DL2 (None) - - - - 0.00004 0.00036
DL2 (Class) ; . ; ; 0.00449
(

DL2 (Patient-Class)

Table S1: p-values of Wilcoxon signed-rank tests between leave-one-patient out AUCs on
each level of balancing of each deep learning model
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Patient Attention AUC Attention AUC per epoch

PT1 0.844 0.762
PT101 0.851 0.927
PT113 0.850 0.952
PT114 0.844 0.981
PT121 0.765 0.840
PT130 0.903 0.999
PT149 0.668 0.986
PT151 0.784 0.996
PT16 0.993 0.811
PT2 0.857 0.919
PT29 0.543 0.918
PT32 0.971 0.933
PT34 0.861 0.887
PT37 0.693 0.999
PT39 0.869 0.982
PT4 0.758 0.983
PT43 0.813 0.935
PT47 0.719 0.970
PT54 0.735 0.871
PT60 0.826 0.945
PT62 0.863 0.905
PT67 0.752 0.953
PT73 0.853 0.903
PT77 0.750 0.862
PT79 0.828 0.932
PTS8 0.838 0.897
PT84 0.814 0.979
PTI1 0.974 0.997
PT94 0.643 0.886
PT95 0.833 0.891
PT96 0.851 0.943
Mean 0.811 0.927
Std 0.096 0.058

Table S2: Attention AUC scores. Computation of ‘Attention AUC’ used agreement between
each thresholded score and human annotations per channel per epoch; ‘Attention
AUC per epoch’ uses agreement of at least one channel score exceeding threshold
with human annotation.

28



	Introduction
	Cohort
	Data Collection and Annotation
	Duke dataset
	Subsample of the Helsinki Dataset for Cross-Dataset Validation

	Data Extraction
	Feature Choices

	Methods
	Machine Learning Models
	Deep Learning Models
	Classical ML Models - Support Vector Machines

	Data Balancing Approaches
	Post-processing

	Results
	Evaluation Approach/Study Design
	Results on Machine Learning Approaches on Different Balancing Techniques
	Results on Cross-Dataset validation
	Association of per-patient AUC scores with inter-rater agreement
	Agreement between the algorithm and a human rater
	Validation on non-seizure patients
	Attention Network Visualization
	Ablation study

	Discussion
	Deep Learning Models and Balancing Strategies
	Algorithm-rater and Inter-rater Agreement
	Interpretability of the Results

	Conclusions
	 
	Duke dataset Annotation summary
	Feature Extractor Architecture
	Post-processing: Probability Reweighting
	Post-processing: Transforming the Outputs to Improve Robustness
	Significance Tests of Difference in Performance of DL Models
	Attention-MIL Measures per Patient


