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Abstract

While deep learning has shown promise in improving the automated diagnosis of disease
based on chest X-rays, deep networks may exhibit undesirable behavior related to short-
cuts. This paper studies the case of spurious class skew in which patients with a particular
attribute are spuriously more likely to have the outcome of interest. For instance, clinical
protocols might lead to a dataset in which patients with pacemakers are disproportionately
likely to have congestive heart failure. This skew can lead to models that take shortcuts
by heavily relying on the biased attribute. We explore this problem across a number of
attributes in the context of diagnosing the cause of acute hypoxemic respiratory failure.
Applied to chest X-rays, we show that i) deep nets can accurately identify many patient
attributes including sex (AUROC = 0.96) and age (AUROC ≥ 0.90), ii) they tend to ex-
ploit correlations between such attributes and the outcome label when learning to predict a
diagnosis, leading to poor performance when such correlations do not hold in the test pop-
ulation (e.g., everyone in the test set is male), and iii) a simple transfer learning approach
is surprisingly effective at preventing the shortcut and promoting good generalization per-
formance. On the task of diagnosing congestive heart failure based on a set of chest X-rays
skewed towards older patients (age ≥ 63), the proposed approach improves generalization
over standard training from 0.66 (95% CI: 0.54-0.77) to 0.84 (95% CI: 0.73-0.92) AUROC.
While simple, the proposed approach has the potential to improve the performance of
models across populations by encouraging reliance on clinically relevant manifestations of
disease, i.e., those that a clinician would use to make a diagnosis.
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Exploiting and Preventing Shortcuts

1. Introduction

Deep convolutional neural networks (CNNs) have shown promise when applied to chest
X-ray classification tasks (Yan et al., 2013; Giger, 2018). However, such models often fail to
generalize when applied to data from new patient populations, clinical protocols, and insti-
tutions (Zech et al., 2018). In contrast, clinicians are able to adapt to differences in patient
populations (e.g., a slightly older population) when moving from one institution to another.
We hypothesize that CNNs may be exploiting features different than what a clinician would
use to make a diagnosis, in particular easily extracted features that are correlated with the
output label in the training population (e.g., the presence of an ECG lead). These features
may be useful, even in the test population from the same institution, but if the correlation
does not hold across other populations, the model may fail to generalize. The presence of
bias in training data leads to potential shortcuts. We aim to discourage the learning of
these shortcuts and instead encourage the learning of clinically relevant manifestations of
disease.

In this paper, we examine the extent to which potential biases related to age, sex, race,
body mass index (BMI), different treatments, and image preprocessing can be exploited by
CNNs. Surprisingly, we find that sensitive attributes such as age, sex, and BMI can be
learned with AUROC ≥ 0.90 using a single chest X-ray. In the context of a diagnostic task,
when these attributes appear as spurious correlations in the training data, but not in the
test data, model performance with respect to the diagnostic task of interest (e.g., diagnosing
heart failure) is substantially affected: the model relies on such correlations during training
but is unable to exploit those relationships at test time. In the presence of extreme skew
(e.g., perfect correlation between an attribute and a diagnostic task), the model often ends
up predicting the attribute rather than the task of interest.

To mitigate the use of such shortcuts during training, we show that a simple transfer
learning approach is surprisingly effective at reducing the negative effects of spurious cor-
relations in the training data. The approach first learns all of the parameters of a deep
network on an ‘unbiased’ source task (in our examples, pneumonia); this is followed by
learning only the last layer (a linear model with a few thousand parameters) on the tar-
get label with biased data (in our examples, congestive heart failure). This mimics how
a clinician might reuse common features (e.g., presence or absence of fluid in the lungs)
for different diagnoses. In addition to being simple and effective, this approach has the
benefit of not requiring knowledge of the true target class skew. While transfer learning is
a well-explored area, it is an empirically surprising result that the last layer simultaneously
has enough capacity to learn an expressive model, but not enough capacity to overfit to the
bias.

We evaluate the proposed approach on a population of patients with acute hypoxemic
respiratory failure (AHRF). Over two million patients are hospitalized with acute cardiopul-
monary conditions in the US each year, and those with AHRF are most commonly diagnosed
with one or more of the following etiologies (Laribi et al., 2019): pneumonia, chronic obstruc-
tive pulmonary disease (COPD), and congestive heart failure (CHF). However, determining
the underlying causes of AHRF can be clinically challenging, as laboratory testing (Roberts
et al., 2015; Self et al., 2017) and chest X-ray (Hagaman et al., 2009; Esayag et al., 2010)
results may be non-specific and difficult to interpret. As a result, patients often receive

2



Exploiting and Preventing Shortcuts

incorrect initial treatment (Ray et al., 2006). As chest X-ray imaging is essential for deter-
mining the diagnosis, there is potential for deep learning models trained on imaging studies
to aid clinicians in making this diagnosis. However, due to the diversity of patients that are
hospitalized for acute cardiopulmonary conditions, we require models that generalize well
across different demographics.

Generalizable Insights about Machine Learning in the Context of Healthcare

This work investigates the extent to which deep models can exploit shortcuts in chest X-
ray datasets and approaches for mitigating this behavior. Approaches that are robust to
spurious correlations will ultimately lead to improvements in the generalizability of models
across patient populations and institutions. In this work, we find that a relatively simple
method of transfer learning can be surprisingly effective in improving the generalization of
models trained on skewed datasets. Our contributions can be summarized as follows:

• we show that deep models can predict patient demographics, treatment, and even
image preprocessing steps based on a chest X-ray alone with good performance;
• we show that when training data are skewed with respect to demographics and treat-

ment, such shortcuts can be exploited, leading to biased models that generalize poorly;
and
• we present a simple, yet effective, approach for reducing, at least in part, such biases.

We apply a transfer learning approach in which we first train a deep learning model to
learn pneumonia from an unskewed dataset. Then, we use the model features to predict
congestive heart failure in a skewed dataset. This was inspired by how clinicians “transfer”
features among diagnostic tasks. For example, a clinician might look for the presence or
absence of fluid in the lungs to aid in distinguishing between congestive heart failure and
pneumonia. We find this simple approach, in which we apply a linear classifier to the features
of a CNN, works surprisingly well (especially since pneumonia can present differently than
congestive heart failure on a chest X-ray). These findings are promising, and can motivate
researchers to continue using clinician behavior to guide their development of deep learning
models.

2. Background and Related Work

2.1. Problem Setup & Definitions

We consider a supervised learning task, in which we aim to infer a patient’s diagnosis based
on a chest X-ray. We assume access to a labeled training set, and a separate held-out
test set. In this work, we focus on a type of bias that arises when training data are
skewed with respect to a particular attribute (i.e., a characteristic that divides patients
into subgroups), resulting in undesirable model performance when the model is applied
to test data that do not exhibit the same kind of skew. Skew arises when there is a
difference in class proportions among patients with and without an attribute (e.g., a greater
proportion of patients with heart failure are obese in the training data). This presents a
potential shortcut for the model. Rather than focusing on clinically relevant manifestations
of disease (e.g., an enlarged heart for diagnosing heart failure), the model may focus on

3



Exploiting and Preventing Shortcuts

irrelevant features (e.g., body fat) when estimating the probability of disease. When applied
to a new patient population without a similar relationship between the disease and attribute,
the model will generalize poorly. Note, however, that not all skew leads to models that do
not generalize. If the skew or correlation holds across populations or institutions (e.g., in
general older adults are a greater risk of pneumonia) then learning these features may be
informative and contribute to overall model performance. In this work, we focus on spurious
correlations that do not necessarily hold across populations.

2.2. Related Work

Recent advancements in deep learning applied to chest X-rays are due in part to the avail-
ability of large annotated chest X-ray datasets (Yan et al., 2013; Giger, 2018; Irvin et al.,
2019; Johnson et al., 2019b; Wang et al., 2017). However, the availability of data alone
does not ensure good generalization performance. Zech et al. trained CNNs on data from
two institutions and showed that they failed to generalize well to a third institution (Zech
et al., 2018). We hypothesize that this poor generalization performance is due in part to
CNNs exploiting features that may not be directly related to the underlying diagnoses (i.e.,
features a clinician would not use for diagnosis), but are only spuriously correlated (e.g., the
sex of the patient). This is just one example of the many types of biases that can arise in
machine learning. In healthcare, the concept of bias has been explored in different contexts
(Gianfrancesco et al., 2018; Rajkomar et al., 2018; Gijsberts et al., 2015; Soboczenski et al.,
2019). Most recently, Obermeyer et al. found evidence of racial bias in an algorithm widely
used in the US healthcare system, reporting that Black patients were assigned the same
level of risk as White patients, but were sicker (Obermeyer et al., 2019). In contrast, here
we focus on a type of bias that arises when there are spurious correlations in the training
data that do not necessarily hold in the test set. In this setting, a CNN may exploit these
correlations during training, but may fail when applied to the test data.

This biased behavior, which we refer to as the CNN taking a ‘shortcut’ in its prediction,
is not confined to the healthcare setting. Much work has been done on understanding when
CNNs are biased and can take shortcuts. For example, Wei et al. trained a classifier to
determine whether a video sequence is playing forward or backward, but realized that the
classifier could learn artificial cues (i.e., cues introduced during video production) rather
than real world cues (Wei et al., 2018). Similarly, Doersch et al. found that CNNs could
latch onto chromatic aberrations in still images rather than learning the desired high-level
semantics of images (Doersch et al., 2015). On the task of discovering representation flaws
caused by potential dataset bias, Zhang et al. mined latent relationships between rep-
resentations of image attributes learned by a CNN and compared them to ground-truth
attribute relationships, allowing them to spot when a CNN failed in terms of determining
non-meaningful relationships between attributes (Zhang et al., 2018). We consider potential
shortcuts in a diagnostic task based on a chest X-ray related to demographics, treatment,
and image processing, and explore approaches for preventing a CNN from exploiting those
shortcuts.

To improve generalization performance, one can resample the training data to more
closely mimic the test data. For example, Zech et al. resampled their training data to
ensure equivalent pneumonia prevalence across institutions. However, this approach is
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unlikely to scale across multiple institutions, especially in settings where the diagnostic task
prevalence is unknown a priori, or when there is not enough data to allow for resampling.
Additionally, one may only have access to a trained model, and not the underlying training
data. Thus, we explore an alternative approach to resampling based on transfer learning
(Pan and Yang, 2009). Transfer learning, and more specifically pretraining, in which one
initializes the weights of a model for the target task using data from a related source task,
has had wide success across many domains (Deng et al., 2009; Sharif Razavian et al., 2014).
In the context of medical imaging, Shin et al. successfully transferred features from a model
trained on ImageNet to the task of classifying the presence of interstitial lung disease (Shin
et al., 2016). However, if the tasks are not related, transferring from source to target can
result in negative transfer, leading to worse performance. For example, Raghu et al. showed
that on the task of diagnosing diabetic retinopathy based on images of the back of the eye,
pretraining on ImageNet did not improve performance relative to random initialization
(Raghu et al., 2019). In this work, we consider a source task that is, in part, related to the
target task but does not exhibit the same spurious correlations.

Related to transfer learning, multitask learning shares knowledge among tasks by learn-
ing tasks jointly (Caruana, 1997). Multitask learning has shown promise across a vast array
of applications including healthcare (Aguilar et al., 2019; McCann et al., 2018; Verma et al.,
2020; Wang et al., 2020; Radwan et al., 2018). For example, Kyono et al. trained a CNN
on mammograms to jointly predict both a cancer diagnosis as well as patient features from
radiological assessments known to be associated with cancer (Kyono et al., 2019). Similarly,
Suresh et al. showed that learning patient subgroups and then predicting outcomes for sep-
arate patient populations in a multitask framework led to better predictive performance of
in-hospital mortality across groups and overall (Suresh et al., 2018). In our application,
multitask learning could potentially help mitigate bias by sharing information across the
source and target tasks. However, nothing is preventing the model from not sharing infor-
mation and exploiting shortcuts in either task. Additionally, it assumes access to all labeled
training data, whereas a transfer learning approach can leverage stored parameters. Given
the difficulty of sharing data across institutions, such an approach may not be feasible.
Nonetheless, for completeness we explore a multitask setup as an alternative to the transfer
learning approach.

3. Preventing Shortcuts Using Transfer Learning

In this section, we formalize the problem of learning shortcuts from a chest X-ray. We then
present an approach that aims to mitigate the learning of these shortcuts when the target
task exhibits skew in the training data, i.e., the diagnostic outcome is highly correlated with
some clinically irrelevant attribute. This approach is based on the idea of transfer learning,
and re-uses the features learned in a source task to learn an updated model for the target
task.

3.1. Formalization and Notation

Given a chest X-ray image X ∈ Rd×d, we consider the task of predicting some target
diagnosis yt ∈ {0, 1}. We assume a convolutional neural network (CNN) f(e(X;θ); w)
is the composition of two functions: an encoder e parameterized by θ and consisting of
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interleaved convolutions and nonlinearities, as well as a linear layer parameterized by w
and consisting of an affine transformation followed by a sigmoid activation. The CNN takes
as input the chest X-ray image X and outputs the probability of the outcome of interest for
the given chest X-ray, ŷt ∈ [0, 1]. Note that vast majority of the parameters of the network
are usually in the encoder (i.e., dim(w)� dim(θ)).

Given a training set composed of n labeled chest X-rays {X(i), y
(i)
t }ni=1, we aim to learn

the parameters (i.e, θ,w) of a CNN that maps X to yt by minimizing a loss function L that
quantifies how well a prediction matches the ground truth (e.g., binary cross-entropy loss).
In addition to the input image and target output label, for each individual i, we assume

access to an unbiased source dataset {y(i)s }ni=1 that we use during training, or a model with
its parameters pretrained on an unbiased source dataset. In our analysis, we assume the
spurious correlation is modeled by a bias attribute b ∈ {0, 1} (e.g., age>63), which may be
spuriously correlated with the outcome yt, and is not typically considered clinically relevant
in diagnosing yt.

We consider a scenario in which in the training and validation data associated with the
target task yt and attribute b may be highly correlated, but this correlation does not hold
in the test data. This represents a setting where there is some skew in the training and
validation sets that is not present in the test set. Using a standard approach of training a
model to predict yt, the model could simply learn to predict b. However, we want to avoid
learning b, because it is of little clinical relevance to the task and as a result, there may
be no correlation between yt and b in the test set. We aim to develop an approach that
encourages the model to learn features that predict yt, not b.

3.2. Training Scheme & Architecture

We hypothesize that the chest X-ray features used to predict ys, the ‘unbiased’ or curated
source task, can also be used to predict yt. Thus, we consider a simple approach, in which
we first learn to predict ys. We then freeze the associated encoder parameters θ, and tune
the output layer, w, to predict the target task label yt. Since ys is not correlated with
attribute b, we anticipate that the model will not learn features associated with b; thus
eliminating the possibility of a shortcut when used in predicting yt.

Our training scheme (shown in Figure 1) is the standard transfer-learning approach
and has two stages: full training on the source task and last-layer fine tuning on the target
task. In stage 1, we pretrain a model, including all layers, to predict the source task,

or solving θ∗,w∗
s = arg minθ,w

∑
i L(f(e(X(i);θ); w), y

(i)
s ) via a standard descent method.

The optimal encoder parameters θ∗ are retained and the parameters w∗
s for the last layer

for the source task are discarded. In the second stage, we then learn the parameters of the
last layer to predict the target task while holding the parameters for the encoder constant

at θ∗, solving w∗
t = arg minw

∑
i L(f(e(Xi;θ∗); w), y

(i)
t ) by a standard descent method.

The resulting classifier is f(e(·;θ∗); w∗
t ), combining the encoder parameters learned on the

source task and the linear layer learned on the target task.
For the CNN, we use a common CNN architecture, DenseNet-121, with a final linear

layer f of size 1024. We chose DenseNet-121 because it has been shown to outperform
other CNN architectures on tasks involving chest X-rays (Irvin et al., 2019). DenseNet-121
connects each layer to every other layer in the network, as opposed to connecting each layer
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only to its subsequent layer. These connections allow for stronger feature propagation and
feature reuse, which reduce the number of parameters needed in the network.

DenseNet-121 Diagnostic	Prediction

𝑃(𝑦$)

Chest	
X-Ray	Input

𝑋	 ∈ ℝ*+,×*+,

𝑓(/; 𝒘)

𝑓(𝑒(𝑋);𝒘)

𝑒(/; 	𝜽)

Stage	1

DenseNet-121 Diagnostic	Prediction

𝑃(𝑦4)

Chest	
X-Ray	Input

𝑋	 ∈ ℝ*+,×*+,

𝑓(/; 𝒘′)

𝑓(𝑒(𝑋);𝒘′)

𝑒(/; 	𝜽)

Stage	2

Figure 1: Training scheme. The CNN consists of an encoder e, a DenseNet-121, followed
by a final linear layer f parameterized by w. First, we train the model to predict ys, the
curated source task. Then, we freeze the encoder parameters θ and tune weights w to
predict yt, the target task.

4. Experimental Setup

To test the ability of a simple transfer learning approach to mitigate bias, we consider a
setting in which we inject bias into a diagnostic task (i.e., we introduce potential short-
cuts). We introduce this bias through (i) resampling the data such that potential sensitive
attributes (like race) are highly correlated with the outcome, and (ii) additional image
preprocessing steps based on the label. On held-out test data, we compare the model’s
discriminative performance to the performance of a model trained directly on the biased
target task training data. In addition, we include comparisons to transfer learning with
data from MIMIC-CXR and CheXpert compared to data from our carefully curated source
task. Finally, we perform a comparison to a multitask approach and a sensitivity analysis.

4.1. Datasets.

AHRF dataset. We considered a cohort of 1,296 patients admitted to a large acute care
hospital center during 2017-2018 who developed AHRF. We analyzed chest X-rays acquired
closest to the time of AHRF onset. Each patient had a corresponding study, containing
one or more chest X-rays taken at the same time. Within each study, we considered only
frontal images as shown in Figure 2. This study was approved by the Institutional Review
Board at the University of Michigan.

Chest X-ray images were obtained from a picture archiving and communications system
in the form of digital imaging and communications in medicine files and preprocessed as
follows. Solid black borders were removed from the original images. Histogram equalization
was applied to the images to increase contrast in the images. Images were originally as large
as 2000 × 3000 pixels, but were resized such that their smaller axis was set to 512 pixels
while preserving their aspect ratio. This allowed for subsequent cropping (horizontally or
vertically) to produce a 512× 512 image.

We consider the tasks of learning to diagnose patients with congestive heart failure
(CHF) (as our target task) and pneumonia (as our source task). All patients were labeled
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by at least two clinicians after reviewing the hospital chart and X-ray images. Clinicians
assessed each patient with a scale of 1-4 for each diagnosis, with 1 being very likely and 4
being very unlikely. Scores were averaged across clinicians and thresholded at 2.5.

For each patient, we extracted several attributes that could serve as b, including body
mass index (BMI), age, sex, race, and the presence of a pacemaker. Demographic variables
were extracted from the electronic health record, while images were manually labeled for
the presence of a pacemaker. We dichotomized each variable: i) BMI ≥ 30, ii) age ≥ 63
years (the median age of our dataset), iii) sex = female, iv) race = Black, and v) pacemaker
present. In addition to these demographic and treatment variables, in a series of follow-up
experiments (Section 5.2), we inject a ‘synthetic’ bias via an image preprocessing step.
More specifically, we apply a Gaussian filter to each chest X-ray. Such filters are commonly
used to reduce noise. Here, instead of applying an identical filter to all images, we mimic
possible heterogeneity in preprocessing pipelines by varying the standard deviation of the
filters.
MIMIC-CXR and CheXpert datasets. We also considered the MIMIC-CXR and
CheXpert datasets (Johnson et al., 2019b; Goldberger et al., 2000; Johnson et al., 2019a;
Irvin et al., 2019), two large publicly available chest X-ray datasets. Similar to the AHRF
cohort, only frontal images were considered. The images are provided with 14 labels text-
mined from radiology reports, categorized as positive, negative, uncertain, and not men-
tioned. Following Irvin and Rajpurkar et al., we mapped uncertain labels to positive.

The images are also provided with several attributes that could serve as b. Specifically,
CheXpert was provided with age and sex, which we dichotomized the same way as described
above. MIMIC-CXR was provided with age, sex, insurance provider, and marital status. We
dichotomized each variable: i) age ≥ 60 years (since we were provided deciles, e.g.,“50-60”),
iii) sex = female, iv) insurance = Medicaid, and v) marital status = married.

4.2. Baselines and Proposed Approach

We compare the transfer learning approach, Last Layer M/C + A, to other approaches
(Table 1) with the goal of answering the following questions:

• Does directly training on the target diagnostic task exploit shortcuts?

• Does pretraining on data from MIMIC-CXR and CheXpert, 2 large chest X-ray
databases, prevent the exploitation of shortcuts?

• Does pretraining on a carefully curated source task, in addition to MIMIC-CXR and
CheXpert, further prevent the exploitation of shortcuts?

Before any training (and pretraining), we initialized all models on ImageNet. We refer
to each approach based on the pretraining and fine-tuning approach:

All Layers. We first consider an approach in which a model, initialized on ImageNet,
is trained by minimizing the cross-entropy loss associated with the target task labels yt.
Though we initialize on ImageNet, we refer to this approach as ‘no pretraining’ since it does
not use any domain-specific data (i.e., chest X-rays) for pretraining. Given the correlation
between b and yt, we expect that the network will learn to exploit shortcuts related to b.
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Table 1: We refer to each approach based on the pretraining and fine-tuning approach.
All Layers fine tunes all layers of an ImageNet initialized model. Second, All Layers

M/C pretrains on MIMIC-CXR and CheXpert, and then fine tunes all layers on the biased
target task. Last Layer M/C also pretrains on MIMIC-CXR and CheXpert, but fine tunes
only the last layer. Finally, Last Layer M/C + A pretrains on MIMIC-CXR and CheXpert,
the network trains to predict an unbiased, curated source task, and then tunes the last layer
on the biased target task.

Approach Description

Pretraining Fine-tuning

All Layers none* all layers
All Layers M/C MIMIC-CXR and CheXpert all layers
Last Layer M/C MIMIC-CXR and CheXpert last layer

Last Layer M/C + A MIMIC-CXR and CheXpert
followed by AHRF unbiased

source task

last layer

*note: as is common, all approaches pretrain on ImageNet.

This in turn will lead to poor generalization performance on a test set in which yt is not
correlated with b.
All Layers M/C. Second, we consider an approach in which we initialize on MIMIC-CXR
and CheXpert by pretraining on all 14 provided labels (instead of ImageNet). Initializing
on pretrained weights from large chest X-ray databases could encourage the model to learn
more clinically relevant features. However, we measured the correlation between all 14 tasks
and attributes b (Appendix Table 4) and found many of the tasks to be correlated with
attributes b. Moreover, as above, all layers are tuned on the biased training data. Thus,
there is still a significant possibility that the model will learn to take the shortcut.
Last Layer M/C. Finally, we consider a transfer learning approach that relies entirely on
the MIMIC-CXR and CheXpert datasets. Here, we initialize on MIMIC-CXR and CheXpert
by pretraining on all 14 provided labels and then, as in the proposed approach Last Layer

M/C + A, freeze all but the last layer, tuning the output layer, w by minimizing the cross-
entropy loss on the biased target task data. This is similar to the proposed approach,
but does not make use of an additional curated source task. We hypothesize that such an
approach will, in part, mitigate the use of shortcut features. However, in addition to the
correlations between the 14 MIMIC-CXR and CheXpert tasks and attributes b (Appendix
Table 4), since patients with AHRF are generally sicker than the patients found in MIMIC-
CXR and CheXpert, we hypothesize that simply pretraining on these two datasets will not
perform as well as the transfer learning approach using the curated source task dataset.

9



Exploiting and Preventing Shortcuts

4.3. Training Details and Evaluation

All of our code is publicly available to allow for replication1. We partitioned the data into
train, validation, and held-out test sets based on patients. Splitting by patient is important
since each patient could have more than one chest X-ray in a single study (on average,
each patient had 1.07, 3.84, and 2.95 images for AHRF, MIMIC-CXR, and CheXpert,
respectively). To generate a single prediction for each patient, we averaged the predictions
over all images in a study.
AHRF dataset training setup. We trained each model using stochastic gradient descent
with momentum and a batch size of 32. We minimized the binary cross-entropy loss.
Hyperparameters, including the learning rate (∈ {10−3, 10−2, 10−1}) and momentum (∈
{0.8, 0.9}), were selected based on the validation data, optimizing for the area under the
receiver operating characteristics curve (AUROC). To augment the training data, images in
the training set were randomly cropped to 512 on either side and augmented with random
in-plane rotations up to 15 degrees. Validation and test images were center cropped to
512× 512. We initialized models on either ImageNet or by pretraining on the MIMIC-CXR
and CheXpert datasets.
MIMIC-CXR and CheXpert datasets training setup. We applied the same pre-
processing to these data as described above. We optimized the sum of the masked binary
cross-entropy loss across labels, masking the loss for labels with a missing value. Following
Irvin et al., we used Adam with default β-parameters of β1 = 0.9, β2 = 0.999, learning rate
1×10−4, and a batch size of 16 (Irvin et al., 2019). We trained for 3 epochs with 3 different
random initializations, saving checkpoints every 4,800 batches. When pretraining for the
AHRF cohort, we combined these datasets and then selected the checkpoint that performed
the best on the CheXpert validation set, measured by average AUROC across all 14 labels.
We used the same training procedure when training models on the datasets separately.
Evaluation. Our primary quantitative measure of performance on held-out test data is
the AUROC, denoted by AUROC(ŷ, yt). We computed empirical 95% confidence intervals
using 1,000 bootstrapped samples of the held-out test set. For some experiments, we also
computed this metric considering attribute b as the ground truth to test to what extent
the model is simply predicting b, and denote this as AUROC(ŷ, b). To compare models,
we calculated statistical significance using a resampling approach, subtracting the AUROC
scores from 1,000 pairs of bootstrapped sampled of the held-out test set and report the
percent of times it falls below 0. We also visualize the part of the chest X-ray image
that the model uses to make a prediction using Gradient-weighted Class Activation Maps
(GradCAM) (Selvaraju et al., 2017). This involves taking a weighted sum of the gradient
of the final linear layer of the network and the 1024 feature maps, and then upscaling this
result to the size of the chest X-ray.

5. Experiments and Results

In the experiments that follow we seek to answer the following questions:

1. https://gitlab.eecs.umich.edu/mld3/deep-learning-applied-to-chest-x-rays-exploiting-and-preventing-
shortcuts
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• How easy is it to infer demographics (e.g., age), treatment (e.g., pacemaker), and
subtle differences in preprocessing steps (e.g., filter parameters) based on chest X-
rays? (Sections 5.1.1 & 5.2.1)

• If the training data have spurious correlations, will a CNN exploit features related to
these correlations in lieu of relying on the actual clinical presentation of disease when
making diagnostic predictions? (Sections 5.1.2 & 5.2.1)

• How effective is the presented transfer learning approach in mitigating this type of
bias and how does it compare to alternative approaches? (Section 5.1.3 & 5.2.1)

• How does the effectiveness of the proposed approach change when the source task is
no longer “unbiased”? (Section 5.2.1)

We first answer a subset these questions in the context of demographic and treatment
biases, and then in a series of follow-up experiments repeat our analyses with a synthetic
bias injected via an image preprocessing step, answering the final question.

5.1. Experiments with Demographics/Treatment Shortcuts

First, we aim to understand how easy it is to infer demographics and treatment based on
chest X-rays across datasets and the tendency of a model to exploit these features when
correlated with the outcome of interest. We then test the ability of the transfer learning
approach in mitigating the use of these features, and compare to multiple baselines.

5.1.1. Inferring Demographics and Treatment Based on Chest X-rays

To establish that shortcuts can be easily exploited by models, we first measure the extent
to which models can learn potentially sensitive or clinically irrelevant attributes (e.g., race).
Here, instead of training a model for the diagnostic tasks, we aim to learn a mapping from
the chest X-ray image to each attribute b. For the AHRF cohort, we randomly sampled
20% of the data in which no patients were missing BMI, age, sex, race, or pacemaker
information as the test set. We trained on 80% of the remaining patients and validated on
20%. We initialized these models on MIMIC-CXR and CheXpert. For the MIMIC-CXR
and CheXpert cohorts, we randomly sampled 1000 patients for both the validation and
test sets, and trained on the remaining patients. We sampled the test/validation patients
such that no patients were missing the relevant attributes. These models were initialized
on ImageNet.
Results and Discussion. Across all attributes, except for race and marital status, we
were able to train a model with good discriminative performance (Table 2). From a chest
X-ray alone, we can classify patients as female or not with nearly perfect AUROC across
all three datasets. From a clinician’s perspective, this is somewhat surprising, since it is
difficult for humans. We hypothesized that the model is picking up on the presence of breast
tissue, though the GradCAM activations show that the model looks at both breast tissue
and the scapulae. (Figure 2a vs Figure 2b). Additionally, we can learn age with AUROC
≥ 0.90 across two of the three datasets. We hypothesize that the model is picking up on
bone density (Figure 3a). In classifying patients as BMI≥30, we also achieved an AUROC
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Table 2: CNNs perform surprisingly well at inferring attributes like age and sex from chest
X-rays. The models achieve near-perfect performance on identifying sex (=F) across all
datasets and identifying age (≥ 63 for AHRF, CheXpert, ≥ 60 for MIMIC-CXR) on two
out of the three datasets. The models achieve similarly good performance on BMI and
pacemaker in AHRF. The models do worse, but above chance, on binary attributes for race
(=Black), insurance (=Medicaid), and marital status (=Married), although we suspect
these are explained by other correlations in the data. We aim to prevent a model from
using these attributes as shortcuts.

AHRF MIMIC-CXR CheXpert
Task % pos AUROC (95% CI) % pos AUROC (95% CI) % pos AUROC (95% CI)

Age 55 0.72 (0.66-0.78) 57 0.90 (0.89-0.91) 56 0.95 (0.94-0.95)
Sex 40 0.96 (0.94-0.98) 46 1.00 (1.00-1.00) 41 1.00 (1.00-1.00)
BMI 44 0.91 (0.88-0.94) – – – –
Race 9 0.66 (0.54-0.79) – – – –

Pacemaker 9 0.97 (0.91-1.00) – – – –
Insurance – – 9 0.70 (0.67-0.72) – –
Marital – – 44 0.65 (0.63-0.66) – –

≥ 0.90; this is likely due to the visible presence of body fat on a chest X-ray. Unsurprisingly,
we can also classify patients based on the presence of a pacemaker from a chest X-ray.

(a) (b)

Figure 2: When trained to predict a patient’s sex based on their chest X-ray, the model’s
GradCAM localizations focus more on breast tissue and the scapulae for female patient (a)
compared to a male patient (b).

For the MIMIC-CXR cohort, performance was worse in predicting insurance (AU-
ROC=0.70 [95% CI: 0.67-0.72]) and marital status (AUROC=0.65 [95% CI: 0.63-0.66]),
although there was a signal. We hypothesize that the model is able to extract some signal
from the images due to the presence of correlation with age (e.g., older patients are more
likely to be married or on Medicare). To test this, we calculated the AUROC of predicting
each of these attributes using age as the prediction value. Unsurprisingly, we achieved an
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AUROC of 0.58 (0.58-0.59) and 0.70 (0.69-0.70) for marital status and insurance, respec-
tively. Given this correlation, we hypothesize that the model is able to use features related
to age in making these predictions. Furthermore, the GradCAM visualization for insurance
in Figure 3b indicates that the model may be relying on features related to bone density
to make a prediction.

On the task of race in the AHRF cohort, performance was significantly worse (AU-
ROC=0.66 [95%CI 0.54-0.79]), though there is still a signal (i.e., the performance is better
than random chance). Again, we hypothesize that this may be due to the presence of a
small amount of correlation between race and other attributes in our data. Similar to above,
we tested the ability of using other attributes to predict race. We achieved an AUROC of
0.61 (0.56-0.66) using age, 0.55 (0.51-0.60) using sex, 0.52 (0.51-0.60) using BMI, and 0.47
(0.46-0.49) using pacemaker. Thus, there is at least some correlation between age and race.

Overall, these results (for the most part) show that attributes such as demographics and
treatment are easy to infer based on a chest X-ray. Thus, in a setting where a diagnostic
task of interest is correlated with one of these attributes, a model could exploit such features
despite a lack of clinical relevance. This is especially critical in a setting where a model
exploits shortcut features that are correlated with a sensitive attribute (such as insurance,
which can be used as a proxy for socioeconomic status).

(a) (b)

Figure 3: (a) Given a chest X-ray of patient with age≥60, the model localizes around joints
and bones, suggesting that it is using bone density in its prediction. (b) When tasked to
predict insurance, the model focuses around bone edges and joints, further suggesting that
it may be using age as an indicator of insurance status.

5.1.2. Shortcuts are Easily Exploited

Now that we have established that, even with small amounts of training data (i.e., n <
1, 000), it is possible to learn a model that can classify individuals according to demographics
and treatment based on their chest X-rays, we consider the ability of a model to exploit
these features when correlated with an outcome of interest (i.e., the diagnostic task). In
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other words, to what extent will a model learn to rely on these spuriously correlated features
over clinically relevant features.

Here, we aim to learn a mapping from the chest X-ray image to our target diagnostic
task yt, CHF. For illustrative purposes, we consider the extreme case where, in each of
the training/validation sets, we introduce a 1:1 correlation between the target task label
yt and some latent attribute b (e.g., age), but no correlation in the test set. To ensure
that the models were comparable, we kept the training set sizes and the prevalence of CHF
similar (Appendix Table 5). To keep the test set consistent across all tasks, we randomly
resampled a test set (n = 111) in which CHF was not correlated with any of the potential
shortcut attributes.

In addition to the AHRF cohort, we also ran this experiment using the MIMIC-CXR and
CheXpert datasets. Since MIMIC-CXR and CheXpert do not have a CHF label, we used
pneumonia as the target diagnostic task yt. Despite the change from CHF to pneumonia, we
hypothesized that a model will still take shortcuts. To keep the test set consistent across all
tasks, we randomly resampled a test set (n = 1000) in which pneumonia was not correlated
with any of the potential shortcut attributes.

We hypothesize that in training the model to directly predict CHF or pneumonia on the
skewed data, it will exploit the shortcut features associated with the bias b and generalize
poorly when applied to the test set. To measure the extent to which the injected bias affects
performance, we compare the learned model’s performance, Skewed Training Data, to the
performance of a model trained on data that more closely mimics the test set, Unskewed
Training Data. To generate the unskewed training dataset, we subsampled the data so
that b was uncorrelated with yt. Again, to facilitate comparisons, we kept the size of the
training data similar.

Age Sex BMI Race Pacemaker Age Sex Marital Insurance Age Sex
Attribute
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AHRF: CHF MIMIC-CXR: Pneumonia CheXpert: Pneumonia

Unskewed Training Data
Skewed Training Data

Figure 4: We compare, on a dataset with no attribute skew, the performance of Unskewed
Training Data, a model trained on a dataset without attribute skew; and Skewed

Training Data, a model trained on a dataset with attribute skew. We report the AU-
ROC with error bars representing a 95% CI. In the context of age, sex, BMI, race, marital
status, and insurance, the model trained on skewed data has a substantial performance drop
compared to the model trained on unskewed data.
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Results and Discussion. Across all attributes except pacemaker, performance of the
model trained on skewed data was consistently worse compared to a model trained on
unskewed data (Figure 4). We report statistical significance in Appendix Table 6. This
suggests that, for the most part, in the presence of skew, a model will learn to exploit
shortcut features associated with attribute b. The presence of skew towards sex appears to
greatly affect performance across all three datasets (AUROC 0.81 vs 0.66, 0.78 vs 0.53, 0.82
vs 0.63 for AHRF, MIMIC-CXR, and CheXpert, respectively). As presented in Section
5.1.1, sex=female is one of the easiest attributes to learn. Thus, in the presence of skew,
the model can more easily take a shortcut to learn sex than it can to learn BMI or age.
Additionally, for age in the AHRF cohort and marital status and insurance in the MIMIC-
CXR cohort, we find that the presence of skew does not completely degrade predictive
performance of y (i.e., an AUROC of 0.5), which suggests that the model is still able
to learn some useful features of y. Notably, the model trained on the dataset skewed
towards pacemaker does not perform worse than the model trained on the unskewed dataset
(the number of positive cases is small and error bars are large). Nonetheless, the drop in
performance due to the presence of skew in the other six attributes presents an opportunity
to explore approaches that mitigate the presence of skew.

5.1.3. Learning Robust Features Using Transfer Learning

Having established that CNNs will take shortcuts if available, we explore the effectiveness
of the presented transfer learning approach in mitigating this behavior, comparing to the
alternative approaches presented in Section 4.2. Here, we aim to learn a mapping from
the input chest X-ray X to a prediction, yt, representing whether or not the patient has
CHF. We assume access to training data (or at least a trained network) for a second task,

{X(i), y
(i)
s }ni=1, that does not contain the same bias (i.e., ys is not correlated with b), or

access to the model trained on the second task and its parameters θ. We consider a source
task corresponding to diagnosing pneumonia.

Again, we measure performance in terms of AUROC on the held-out test data with re-
spect to yt (AUROC(ŷ, yt)), which answers the question “How well does the model predict
CHF?” In addition, for age, sex, and BMI, we compare to the predictive performance of b
(AUROC(ŷ, b)), which tells us “How much does the model rely on shortcuts?” When the
model takes a shortcut, we expect AUROC(ŷ, b) to be high and AUROC(ŷ, yt) to be low, and
vice-versa when the model does not take a shortcut. These results are shown in Figure 5.
Race and pacemaker are too infrequent in our dataset to calculate (AUROC(ŷ, b)), so we re-
port AUROC(ŷ, yt) in Appendix Table 7 along with 95% confidence intervals for all tests.

Results and Discussion. Across all attributes, Last Layer M/C + A yields consistently
higher AUROCs compared to All Layers (Figure 5, Appendix Table 7). Using a
paired resampling approach, differences in the context of all attributes appear significant
(Appendix Table 8). Furthermore, there is a drop in the predictive performance of
each attribute b (i.e., AUROC(ŷ, b)) compared to All Layers and All Layers M/C, and
a further drop in performance compared to Last Layer M/C when b=age. Moreover, Last
Layer M/C + A performs better than both All Layers M/C and Last Layer M/C, which
both only use MIMIC-CXR and CheXpert for initialization. We hypothesize that, since
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patients with AHRF are generally sicker, there are some differences in the dataset distri-
butions between AHRF, and MIMIC-CXR and CheXpert. Thus, retuning all layers on
the AHRF source task yields better performance on the closely related AHRF target task,
compared to retuning on MIMIC-CXR/CheXpert alone. These results suggest that i) fea-
tures used in predicting pneumonia can also be used in predicting CHF and ii) training to
learn pneumonia first, freezing the features θ of the model, and then using these features
to predict CHF mitigates, at least in part, the use of shortcuts. We also examined the
effects of tuning a varying number of denseblocks in the network (rather than just the last
layer). We found that (i) model performance decreases as the number of tuned denseblocks
increases, and (ii) model performance increases for some attributes b when we tune all layers
of the network compared to tuning three denseblocks. We suspect that, as the parameter
space increases from tuning three denseblocks to tuning all layers, the model might need
longer to train (Appendix A.1). Finally, we also compared to a multitask approach in
which a model is trained to jointly predict ys and yt, minimizing the sum of the respective
cross-entropy losses. For the majority of attributes, Last Layer M/C + A outperforms the
multitask approach, suggesting that the multitask approach, although sharing features be-
tween the unbiased source task ys and biased target task yt, still allows the model to learn
shortcut features (Appendix A.2).

Although pneumonia oftentimes presents with more textural features (e.g., fluid in the
lungs), these features appear to still be useful in predicting CHF, which presents with
more structural features (e.g., an enlarged heart). Additionally, somewhat surprisingly,
simply applying a classifier to the features of a CNN allows us to predict CHF with good
discriminative performance, while also mitigating, in part, the use of shortcuts. While the
size of the final linear layer is large (i.e., 1024), we do not find that it is enough to overfit
to shortcut features.

5.2. Experiments with Preprocessing Shortcuts

Earlier we introduced skew or bias in the data by subsampling the training sets. This
renders comparison across different levels of skew invalid, since other aspects of the training
data could affect performance. To control for this, in this section, we explore a synthetic
shortcut added through a preprocessing step. In image preprocessing, it is not uncommon to
apply some amount of filtering to reduce noise. Here, a subset of the images is filtered using
a Gaussian filter with standard deviation s1 and the remainder are filtered with a standard
deviation s2. Injecting bias in this way allows us to control the correlation between the
strength of the filter applied (i.e., b) and the target task, without changing which examples
are included in the training set.

5.2.1. Injecting Synthetic Bias Through Preprocessing

First, just as we did in Section 5.1.1, we measured the extent to which models could
learn the attributes of a Gaussian filter applied to the AHRF cohort. We defined a binary
attribute b ∈ {0, 1} that determined which filter was applied to each image. We applied a
Gaussian filter with standard deviation s1 to images when b = 1 and standard deviation
s2 to images when b = 0. Given a set of n chest X-rays {X(i), b(i)}ni=1, we consider the
task of predicting b, i.e., which Gaussian filter was applied to the image. 25% of the data
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Figure 5: Across all attributes, Last Layer M/C + A (denoted as Last M/C + A) yields
consistently higher AUROCs compared to All Layers (All) in predicting the target task.
Moreover, Last Layer M/C + A performs consistently worse in terms of the predictive per-
formance of b (AUROC(ŷ, b)) compared to All Layers and All Layers M/C (All M/C),
and further drops in performance compared to Last Layer M/C (Last M/C) when b=age.
Additionally, Last Layer M/C + A consistently outperforms All Layers M/C and Last

Layer M/C in predicting CHF. This suggests that the proposed transfer learning approach
encourages models to rely less on shortcut features and more on clinically relevant attributes
of CHF. Somewhat surprisingly, simply applying a linear classifier to the features of a CNN
allows us to predict CHF with good discriminative performance, while also mitigating, in
part, the use of shortcuts.

were filtered using s1 and the remainder were filtered using s2. We varied s1 and s2 and
measured the AUROC with respect to b (Table 3). Through an iterative approach, this
yielded an easy, moderate and difficult task based on the AUROCs (see Appendix A.3
for more detail on the tasks).

Table 3: On the easy shortcut and moderate shortcut tasks, a model can predict which
Gaussian filter was applied to a chest X-ray with good discriminative performance (similar to
the task of sex=F). However, the model struggles to differentiate between the two Gaussian
filters in the difficult shortcut task (similar to the task of insurance).

Ease of shortcut AUROC (95% CI)

difficult shortcut 0.73 (0.66 - 0.82)
moderate shortcut 0.85 (0.79 - 0.91)

easy shortcut 0.98 (0.96 - 1.00)

Second, as in Section 5.1.2, we introduce a 1:1 correlation between the bias and target
task label (i.e., Skewed Training Data) and compare the model’s performance to a model
trained on data that more closely mimics the test set (i.e., Unskewed Training Data). As
we saw previously, the presence of skew significantly affects performance when the shortcut
is ‘easy’ to learn (Figure 6, Appendix Table 9).

Third, we measured the effectiveness of the presented transfer learning approach in
preventing a model from learning the attributes of a Gaussian filter, comparing to alterna-
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tive approaches, just as we did in Section 5.1.3. Here, we aim to better understand the
effectiveness of the proposed approach while controlling for the training set across mod-
els. Again, when the model takes a shortcut, we expect AUROC(ŷ, b) to be high and
AUROC(ŷ, yt) to be low, and vice-versa when the model does not take a shortcut. Similar
to the results in Section 5.1.3, across all three shortcuts, Last Layer M/C + A (Last M/C
+ A) yields higher AUROCs compared to All Layers (All) (Figure 7, Appendix Tables
10, 11). Moreover, Last Layer M/C + A performs better than both All Layers M/C (All
M/C) and Last Layer M/C (Last M/C), with the exception of All Layers M/C for the dif-
ficult shortcut (AUROC=0.82 [95% CI: 0.75-0.87]) vs AUROC=0.83 [95% CI: 0.77-0.89])).
Finally, when measuring the predictive performance of attribute b, Last Layer M/C + A

yields consistently lower AUROCs compared to the alternative approaches, again with the
exception of All Layers M/C for the difficult shortcut.

difficult shortcut moderate shortcut easy shortcut0.5
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Skewed Training Data

Preprocessing Attribute

Figure 6: We compare the AUROC performance of a model trained on a synthetic dataset
with no attribute skew, Unskewed Training Data, to the performance of a model trained
on a synthetic dataset with attribute skew, Skewed Training Data. Error bars represent
the 95% CI. When the shortcut is easy or moderate, the model trained on data that closely
mimics the test set significantly outperforms the model trained on data that is skewed
towards the attribute.

Given this setup, we explore relaxing the assumption that our source task ys, is unbiased
with respect to attribute b. We made this extreme assumption in Section 5.1.3, but in
reality, it might not be possible to have a completely unbiased source task. Here, we explore
if a transfer learning approach still applies in settings where the source task is also biased
(in part).

Again, we aim to learn a mapping from the input chest X-ray X to a prediction for yt.
However, here, we assume the source task may have some skew (i.e., ys may be correlated
with b). We vary the amount of correlation between pneumonia (the source task) and b from
−1 to 1 in increments of 0.2. We hypothesize that, as the correlation increases (in either
direction), the CNN will increasingly exploit the shortcut associated with the Gaussian
filter when predicting pneumonia. This will then allow the target task to exploit the same
shortcut, leading to poor performance on the target task test set (i.e., lower AUROC).

On held-out test data, we compare the models’ discriminative performance to All

Layers, All Layers M/C, and Last Layer M/C. As in our previous experiments, we hy-
pothesize that pretraining on MIMIC-CXR and CheXpert, and then fine tuning the last
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Figure 7: Last Layer M/C + A (denoted as Last M/C + A) outperforms All Layers (All)
on all three synthetic datasets in predicting the target task, regardless of how difficult the
shortcut is to learn. Additionally, when the shortcut is more difficult to learn, Last Layer

M/C + A performs just as well as training on an unskewed dataset (AUROC=0.82 [95% CI:
0.75-0.87] vs 0.82 [95% CI: 0.76-0.88]). Moreover, when measuring the predictive perfor-
mance of attribute b, Last Layer M/C + A yields consistently lower AUROCs compared to
the alternative approaches when the shortcut is easy or moderate. Finally, with the excep-
tion of when the shortcut is difficult to learn, Last Layer M/C + A performs better than
All Layers M/C (All M/C) and Last Layer M/C (Last M/C), suggesting that retuning all
layers on the AHRF source task helps.

layer of the model, will partly help mitigate the use of shortcut features. However, we hy-
pothesize that fine tuning on the curated source task dataset will lead to better performance
when the correlation between the source task and attribute is low.

Results and Discussion. When we relax the assumption that the source task exhibits
no correlation between the label ys and attribute b, Last Layer M/C + A performs as well
or better than All Layers. (Figure 8). Additionally, when small amounts of skew are
introduced, in the easy shortcut and moderate shortcut setting, Last Layer M/C + A out-
performs both All Layers M/C and Last Layer M/C, again emphasizing the importance
of the domain-specific knowledge contained in the curated source task dataset. When the
shortcuts are difficult to learn, all of the models with the exception of All Layers perform
similarly, regardless of the correlation between the pneumonia label and b. Finally, when a
larger amount of skew is introduced between the pneumonia label and b (e.g., a correlation
closer to -1 or 1), model performance for both the moderate shortcut and easy shortcut
decreases significantly.

Overall, these results suggest that we can partly relax the assumption that our source
task ys is not correlated with attribute b. This may explain why pretraining or transfer
learning with the MIMIC-CXR/CheXpert data offers some improvement over All Layers,
despite no guarantee that the data do not exhibit any skew.
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Figure 8: When we relax the assumption that the source task ys is not skewed towards the
synthetic attribute b, Last Layer M/C + A consistently outperforms All Layers. Error
bars represent the 95% CI. Additionally, when small amounts of skew are introduced, for
the easy shortcut and moderate shortcut datasets, the model outperforms both All Layers

and Last Layer M/C . However, when the shortcuts are more difficult to learn (difficult
shortcut), we do not see improvements over All Layers M/C, and only marginal improve-
ments over Last Layer M/C. Finally, when too much skew is introduced, model performance
for both the moderate shortcut and easy shortcut degrades close to that of All Layers.

6. Conclusion

This work explores the extent to which deep nets can exploit undesirable ‘shortcuts’ in
diagnostic tasks involving chest X-rays and potential solutions for mitigating such behavior.
We demonstrated that deep learning models can learn demographic features such as age
and BMI, as well as subtle differences in image preprocessing steps, from chest X-rays with
high discriminative performance. Additionally, we showed that in the presence of spurious
correlations, deep learning models can exploit potential shortcuts associated with biased
attributes rather than learning clinically relevant features, leading to poor generalizability.
We investigated a simple transfer learning approach based on pretraining and fine-tuning
only the output layer of a DenseNet to mitigate the use of these shortcuts. We showed that
this approach could, in part, produce models with improved generalization performance
despite training on skewed data.

We note some important limitations of our work. First, we only considered a subset
of attributes for which we had data. The number of attributes that can lead to skew in
datasets can go far beyond what is presented in this work. Additionally, we considered these
attributes separately in each of our experiments. It would be beneficial to test the ability
of the proposed approach to mitigate the effect of multiple sources of skew. Finally, this
approach relies on the idea that features for one diagnostic task can be reused for another
diagnostic task. However, not all diagnoses necessarily share similar features. Despite these
limitations, our results suggest that the transportability of features in diagnostic tasks has
the potential to mitigate the use of shortcut features in the presence of bias, leading to
better generalizability across populations.
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Appendix A.

Table 4: Spearman’s correlation between the 14 tasks in MIMIC-CXR and CheXpert
and attributes b (after mapping uncertain labels to positive, all No Finding labels were
positive in MIMIC-CXR). We tested for statistical significance with a Bonferroni correction
for multiple hypotheses (* representing statistical significance at p-value < α = 0.001).
With the exceptions of No Finding in MIMIC-CXR and Pneumothorax in both datasets,
all tasks were significantly correlated with age. Additionally, many were correlated with
sex, insurance, or marital status in either dataset.

Task Age Sex Insurance Marital Status
MIMIC-CXR CheXpert MIMIC-CXR CheXpert MIMIC-CXR MIMIC-CXR

No Finding – −0.06∗ – −0.01 – –
Enlarged Cardiomediastinum 0.20∗ 0.20∗ −0.02 −0.03∗ −0.07∗ 0.02

Cardiomegaly 0.22∗ 0.19∗ 0.01 0.00 −0.06∗ 0.00
Airspace Opacity 0.05∗ 0.08∗ −0.01 0.00 0.00 0.01

Lung Lesion 0.07∗ 0.08∗ −0.02 0.02 −0.02 −0.01
Edema 0.18∗ 0.08∗ 0.00 0.03∗ −0.02 −0.02

Consolidation 0.09∗ 0.13∗ −0.07∗ −0.01 −0.04∗ 0.04∗

Pneumonia 0.10∗ 0.04∗ −0.06∗ 0.00 0.00 −0.01
Atelectasis 0.05∗ 0.04∗ 0.00 −0.01 −0.01 0.01

Pneumothorax 0.00 0.01 −0.03∗ −0.01 −0.01 0.02
Pleural Effusion 0.24∗ 0.18∗ −0.02∗ 0.01 −0.07∗ 0.02∗

Pleural Other 0.12∗ 0.09∗ −0.06 −0.04 −0.05 −0.02
Fracture 0.09∗ 0.16∗ −0.04 −0.04∗ −0.05 0.01

Support Devices 0.06∗ 0.02∗ −0.01 0.02∗ 0.01 0.00

Table 5: We resampled the unskewed training set such that it was comparable in size to the
skewed training set. To mimic the test set distribution, there was no correlation between
yt and each attribute in the unskewed training set. On the other hand, there was a 1:1
correlation between yt and each attribute in the skewed training set.

Dataset Attribute Unskewed Training Set Skewed Training Set
N Train (%) N Valid (%) N Train (%) N Valid (%)

AHRF

Age 508 (0.21) 129 (0.26) 528 (0.26) 139 (0.19)
Sex 457 (0.10) 114 (0.10) 479 (0.13) 127 (0.10)
BMI 477 (0.10) 119 (0.12) 488 (0.12) 127 (0.13)
Race 644 (0.02) 157 (0.03) 679 (0.01) 177 (0.02)

Pacemaker 785 (0.06) 192 (0.07) 757 (0.05) 195 (0.06)

MIMIC-CXR

Age 14225 (0.57) 1000 (0.55) 16458 (0.46) 1000 (0.47)
Sex 14859 (0.52) 1000 (0.52) 16641 (0.46) 1000 (0.48)

Marital 9573 (0.45) 1000 (0.46) 10891 (0.47) 1000 (0.43)
Insurance 1009 (0.53) 1000 (0.51) 1201 (0.46) 1000 (0.49)

CheXpert
Age 7060 (0.89) 1000 (0.87) 7835 (0.90) 1000 (0.89)
Sex 5702 (0.84) 1000 (0.85) 6412 (0.90) 1000 (0.90)
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Table 6: Statistical significance of the improvement in performance of the model trained
on an unskewed dataset versus a model trained on a skewed dataset. The model trained on
the unskewed dataset performs significantly better for five of the seven attributes.

Task p-value
AHRF MIMIC-CXR CheXpert

Age 0.20 0.00 0.00
Sex 0.02 0.00 0.00
BMI 0.03 – –
Race 0.00 – –

Pacemaker 0.70 – –
Insurance – 0.00
Marital – 0.00 –

Table 7: Across all attributes, Last Layer M/C + A yields consistently higher AUROCs
compared to All Layers. Furthermore, there is a drop in the predictive performance of
each attribute b (i.e., AUROC(ŷ, b)) compared to All Layers and All Layers M/C, and
a further drop in performance compared to Last Layer M/C when b=age. This suggests
that the proposed transfer learning approach encourages models to rely less on shortcut
features an more on clinically relevant attributes of CHF. Additionally, the models trained
using the AHRF source task dataset (Last Layer M/C + A) show consistent improvements
in performance (with the exception of race) over just using MIMIC-CXR and CheXpert
during pretraining (All Layers M/C and Last Layers M/C). Somewhat surprisingly, sim-
ply applying a classifier to the features of a CNN allows us to predict CHF with good
discriminative performance, while also mitigating, in part, the use of shortcuts.

Approach CHF AUROC (95% CI)
Age Sex BMI Race Pacemaker

All Layers 0.66 (0.54-0.77) 0.59 (0.46-0.70) 0.55 (0.41-0.69) 0.60 (0.48-0.73) 0.55 (0.42-0.67)
All Layers M/C 0.71 (0.59-0.82) 0.71 (0.59-0.82) 0.61 (0.49-0.73) 0.78 (0.67-0.87) 0.81 (0.70-0.89
Last Layer M/C 0.78 (0.67-0.87) 0.72 (0.62-0.82) 0.74 (0.62-0.84) 0.82 (0.73-0.90) 0.82 (0.73-0.90)

Last Layer M/C + A 0.84 (0.73-0.92) 0.73 (0.62-0.83) 0.78 (0.66-0.87) 0.82 (0.72-0.89) 0.86 (0.78-0.92)

Approach AUROC(ŷ, b) (95% CI)
Age Sex BMI

All Layers 0.81 (0.71-0.89) 0.92 (0.86-0.96) 0.81 (0.73-0.89)
All Layers M/C 0.79 (0.69-0.87) 0.87 (0.79-0.93) 0.81 (0.72-0.88)
Last Layer M/C 0.77 (0.67-0.85) 0.79 (0.70-0.87) 0.74 (0.65-0.83)

Last Layer M/C + A 0.73 (0.63-0.83) 0.84 (0.76-0.92) 0.75 (0.66-0.83)
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Table 8: Statistical significance of the improvement in performance of Last Layer M/C +

A over All Layers. Last Layer M/C + A performs significant better over All Layers for
all attributes.

p-value

Age 0.00
Sex 0.00
BMI 0.00
Race 0.00

Pacemaker 0.00

Table 9: Statistical significance of the improvement in performance of the model trained on
an unskewed dataset versus a model trained on a skewed dataset. The model trained on
the unskewed dataset performs significantly better for two of the three tasks.

p-value

difficult shortcut 0.23
moderate shortcut 0.00

easy shortcut 0.01
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Table 10: Last Layer M/C + A outperforms All Layers on all 3 synthetic datasets, re-
gardless of how difficult the shortcut is to learn. Moreover, Last Layer M/C + A performs
consistently worse in terms of the predictive performance of b (AUROC(ŷ, b)). This suggests
that the proposed transfer learning approach encourages models to rely less on shortcut fea-
tures an more on clinically relevant attributes of CHF. Additionally, Last Layer M/C + A

does not outperform training on an unskewed dataset when the shortcuts are easier to learn,
i.e. moderate shortcut and easy shortcut. However, when the shortcut is more difficult to
learn, Last Layer M/C + A performs just as well as training on an unskewed dataset (AU-
ROC=0.82 [95% CI: 0.75-0.87] vs 0.82 [95% CI: 0.76-0.88]). Finally, Last Layer M/C + A

performs better than both All Layers M/C and Last Layer M/C, suggesting that retun-
ing all layers on the AHRF source task incorporates more domain-specific knowledge into
pretraining, before training on the biased target task.

Approach CHF AUROC (95% CI)
difficult shortcut moderate shortcut easy shortcut

All Layers 0.62 (0.54 - 0.70) 0.51 (0.43 - 0.60) 0.53 (0.45 - 0.62)
All Layers M/C 0.83 (0.77 - 0.89) 0.64 (0.55 - 0.73) 0.59 (0.51 - 0.67)
Last Layer M/C 0.78 (0.71 - 0.84) 0.68 (0.59 - 0.76) 0.65 (0.58 - 0.73)

Last Layer M/C + A 0.82 (0.75 - 0.87) 0.74 (0.66 - 0.81) 0.69 (0.61 - 0.76)

Unskewed ————————— 0.82 (0.76 - 0.88)—————————

Approach AUROC(ŷ, b) (95% CI)
difficult shortcut moderate shortcut easy shortcut

All Layers 0.82 (0.75-0.87) 0.74 (0.66-0.81) 0.69 (0.61-0.76)
All Layers M/C 0.81 (0.75-0.87) 0.66 (0.57-0.74) 0.64 (0.55-0.71)
Last Layer M/C 0.73 (0.65-0.79) 0.63 (0.53-0.72) 0.54 (0.45-0.62)

Last Layer M/C + A 0.67 (0.59-0.75) 0.47 (0.37-0.55) 0.54 (0.46-0.62)

Table 11: Statistical significance of the improvement in performance of All Layers vs.
Last Layer M/C + A on the synthetic datasets. The transfer learning approach performs
significantly better for the easy shortcut.

p-value

difficult shortcut 0.77
moderate shortcut 0.24

easy shortcut 0.00
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A.1. Sensitivity Analysis

We performed a sensitivity analysis of Last Layer M/C + A in which, after pretraining on
MIMIC-CXR and CheXpert and then the unbiased source task ys, we tuned more layers of
the network (instead of just the last layer) when learning to predict yt. If yt is spuriously
correlated with some attribute b, we hypothesize that tuning more layers on the target task
will allow the model to learn shortcut features related to b, leading to poor generalization
performance on the test set in which yt is not correlated with b. We use the same DenseNet-
121 architecture as presented in Section 3.2, and vary the number of denseblocks tuned
from the end of the network to the beginning, increasing from 0 denseblocks (i.e., Last

Layer M/C + A) to all denseblocks (i.e., training the whole network).

Results and Discussion. As expected, model performance decreases as the number of
tuned denseblocks increases (Figure 9). However, model performance increases for some
attributes b when we tune all layers of the network compared to tuning three denseblocks.
We suspect that, as the parameter space increases from tuning three denseblocks to tuning
all layers, the model might need longer to train. For example, we compared the training
and validation AUROC performance between training three denseblocks and tuning all
layers for moderate shortcut (Figure 10). Compared to tuning three denseblocks, training
performance for tuning all layers takes longer to fit to the training data. Moreover, there is
a bigger gap between training and validation performance when tuning all layers compared
to tuning three denseblocks, suggesting that training the model for longer might encourage
the model to fit to the data better.

0 1 2 3 all
0.4

0.6

0.8

1.0

AU
RO

C

Age
Sex
BMI

Race
Pacemaker

0 1 2 3 all

difficult shortcut
moderate shortcut
easy shortcut

Denseblocks Tuned
Figure 9: Model performance decreases as the number of trained denseblocks increases.
However, model performance increases for some attributes b when we tune all layers of the
network compared to tuning three denseblocks. We suspect that, as the parameter space
increases from tuning three denseblocks to tuning all layers, the model might need longer
to train.
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Figure 10: When comparing the training and validation AUROC performance of training
three denseblocks to tuning all layers for moderate shortcut, training performance for tuning
all layers takes longer to fit to the training data. Moreover, there is a bigger gap between
training and validation performance when tuning all layers compared to tuning three dense-
blocks. This suggests that training all layers for longer might encourage the model to fit
to the data better, and thus learn more shortcuts, leading to a decrease in generalization
performance on the unbiased test set.
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A.2. Multitask Approach

We considered an approach based on multitask learning in which a model is trained to
jointly predict ys and yt, minimizing the sum of the respective cross-entropy losses. We
hypothesize that jointly training a model to predict ys and yt may mitigate the use of
shortcut features and perform similarly to the transfer learning approach. Since ŷs and
ŷt share a feature space, the model will be forced to learn features that are beneficial in
predicting both outcomes. And, since ys is not correlated with attribute b, the model cannot
use shortcuts in predicting ys. These ‘clinically relevant’ features can then also be used in
predicting yt. However, we note that the model may benefit from learning some features
that are relevant for ys and others that are relevant for yt, i.e., those features that are
relevant for b. Additionally, this approach requires labels yt and ys at training time, which
is not always possible. In contrast, the presented transfer learning approach does not rely
on access to the training data for the source task, but only the associated model. In this
alternate approach, we use the same DenseNet-121 architecture as presented in Section 3.2.

Results and Discussion. Across five out of eight attributes, Last Layer M/C + A out-
performs Multitask. This suggests that the multitask approach, although sharing features
between the unbiased source task ys and biased target task yt, still allows the model to
learn shortcut features (Table 12).

Table 12: Across five out of eight attributes, Last Layer M/C + A outperforms the mul-
titask approach. This suggests that the multitask approach, although sharing features
between the unbiased source task ys and biased target task yt, allows the model to learn
shortcut features.

Task CHF AUROC (95% CI)
Last Layer M/C + A Multitask

Age 0.84 (0.73-0.92) 0.76 (0.64-0.86)
Sex 0.73 (0.62-0.83) 0.65 (0.52-0.77)
BMI 0.78 (0.66-0.87) 0.70 (0.59-0.81)
Race 0.82 (0.72-0.89) 0.82 (0.74-0.90)

Pacemaker 0.86 (0.78-0.92) 0.87 (0.79-0.93)
difficult shortcut 0.82 (0.75-0.87) 0.84 (0.79-0.89)

moderate shortcut 0.74 (0.66-0.81) 0.69 (0.60-0.78)
easy shortcut 0.69 (0.61-0.76) 0.58 (0.50-0.67)
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A.3. Gaussian Filter Tasks

We applied a Gaussian filter with standard deviation s1 to images with b = 1 and standard
deviation s2 to images with b = 0. By varying the strength of the filters, we changed how
easily the model could learn shortcuts related each task. We defined the difficult shortcut
as s1 = 0.3 and s2 = 0.4, moderate shortcut as s1 = 0.1 and s2 = 0.2, and easy shortcut as
s1 = 0.4 and s2 = 0.5.
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