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Abstract

In Europe and North America, more homogeneous virus types and the relatively high
availability of sequencing technologies have helped transform HIV from a life-threatening
disease to a manageable chronic condition. However, modern therapies have been less
successful in managing HIV in Africa, where there is more viral heterogeneity and access to
sequencing is much less available. In this work, we present a novel mixture based approach
that uses a deep information bottleneck to transfer patterns learned from European HIV
cohorts—where genomic data is readily available—to African patients where no such data
is available. We demonstrate its utility for optimising treatments for the first time in a set
of HIV patients in Africa, and note how this approach may be applicable to many other
scenarios where a variable is measured in some population but is missing from the target
population.

1. Introduction

Human Immunodeficiency Virus (HIV) affects more than 36 million people worldwide. For-
tunately, administration of combinations of drugs known as Antiretroviral Therapy (ART),
targeting different phases of the viral replication cycle, can transform this life-threatening
virus into a manageable chronic condition. However, this requires choosing the right combi-
nations at the right time. In Europe and North America, monitoring the viral variants via
genotype resistance testing has enabled clinicians to track the rapidly mutating virus and
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apply the appropriate ART (Bogojeska et al., 2012; Deeks et al., 2013) 1. Unfortunately,
these therapies have seen lower successes in Africa. For instance, in 2018 two-thirds of
the world’s 770,000 HIV-associated deaths came from Africa (World Health Organisation,
2018). While some of these deaths are a result of a lack of treatment, 81% of people living in
Africa know their HIV status and 68% have access to ART therapy. Lack of regular access
to sequencing technologies makes it difficult to monitor the evolution of the virus and thus
appropriately target therapies; the virus also exhibits more heterogeneity in Africa.

In this work, we consider the following question: to what extent is it possible to transfer
treatment insights from a relatively homogeneous, well-measured population (e.g. cohorts
of patients in Europe or North America) to a more heterogeneous, less-measured target
population (e.g. African patients)? Addressing this question requires both understanding
when to transfer—if an African patient has a viral subtype not present in a European
population, copying a strategy that worked in Europe may not help—as well as how to
transfer in the face of very few measurements in the target population.

We answer this question using the deep Information Bottleneck principle (IB) (Tishby
and Zaslavsky, 2015; Parbhoo et al., 2020) to perform a sufficient reduction of the covariates
for inferring treatment outcomes. The IB enables us to build a discrete reference class over
patients with “complete data” during training, to which we can map patients with missing
genetic information at test time, and subsequently estimate treatment effects on the basis
of these groups. We next apply a mixture-of-experts approach to learn when the IB transfer
will be useful, and when it is better to rely on similar patients in the target population.

Many works have studied the problem of HIV therapy selection in the context of machine
learning (e.g. Bickel et al. (2008); Bogojeska (2011); Parbhoo et al. (2017)). However, to
date these have all been applied to European and North American cohorts, and rely heavily
on the availability of genotype data both at training time and at test time. In this paper,
we present for the first time an approach for reliably reasoning about the effects of a series
of interventions for HIV therapy selection in populations where genetic sequence data is
unavailable at test time—specifically, on an African population.

Generalisable Insights about Machine Learning in the Context of Health-
care

While the approach we present here is particularly important for HIV therapy selection
in the absence of genotype information at test time, there are several takeaways that may
be generalisable to a broader healthcare context. Specifically, our method may be applied
to several other contexts where there is a systematic missingness in data at test time, as
a result of the costs of performing a particular test or other restrictions. For instance,
different hospitals may have different protocols for collecting the measurements of patients
with a particular disease which may result in a systematic missingness of some variables for a
group of individuals associated with a particular hospital; alternatively, patients with health
insurance may be more likely to have certain tests performed in hospital for diagnosing
and treating their condition in comparison to patients without health insurance. In these
instances, the IB approach may be useful to compress the relevant statistics from a group of

1. Genetic sequencing has enabled at least 55 recombinant forms of HIV to be established for these popu-
lations to date (Alamos, 2020)
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individuals with complete measurements to make inferences about those patients without
these. We also see our approach as being particularly useful for evaluating the performance
of existing HIV therapy guidelines or as basis for ranking hypothetical clinical policies in
different scenarios. Such insights could lead to improvements in existing therapy guidelines
and offer better opportunities for intervention.

2. Related Work

Disease progression models are important for understanding the critical steps during the
development of diseases. In the medical and machine learning literature, several approaches
have been developed for predictive modelling of progression of HIV and other diseases. Some
of these methods (e.g. Bogojeska et al. (2012); Bickel et al. (2008); Saigo et al. (2011)) try
to explain changes in a patient’s outcomes in terms of the outcomes of patients with similar
treatment histories. Overall, these approaches work well when patients exhibit significant
overlap in their treatment histories. In contrast to non-parametric approaches, several
model-based approaches have also been developed to reason about treatment effects. The
vast majority of these methods try to explain changes in a patient’s outcomes by learning
a representation of some baseline covariates, based on which dynamic predictions may be
generated, e.g HMMs, state space models Ernst et al. (2006), autoregressive models and
Gaussian Processes (Schulam and Saria, 2017). In general, these approaches can capture
model uncertainty more effectively and can perform well on outlier cases where there are few
neighbouring patient histories. Previously, approaches have been proposed for HIV therapy
selection that combine parametric and non-parametric models using variations of mixture
models e.g. Parbhoo et al. (2017, 2018). Both of these methods account have been shown
to be performant on multiple cohorts across Europe and North America, however have only
been applied to cases where complete clinical and genetic information is available.

More closely related to the work we present here, are several methods that have been
proposed for transfer learning. Among these, Künzel et al. (2019) develop a framework
for estimating heterogeneous treatment effects by jointly training neural networks with
shared weights such that important features may be re-used where necessary. Based on
the treatment effects, one may subsequently infer the optimal treatment policy. While
Künzel et al. (2019) use shared weights to transfer knowledge and reason about treatment
effects, methods such as Hidden Parameter Markov Decision Processes (HiP-MDPs) first
learn a policy directly, and subsequently adapt the policy in a robust way such that it
may be applied to a related task (Doshi-Velez and Konidaris, 2016; Killian et al., 2017).
Unfortunately however, none of these methods are applicable where a subset of patient
covariates is missing at test time. Moreover, these methods also do not explicitly optimise
for retaining the information that is relevant for predicting treatment outcomes as we require
in this context.

Recently, Parbhoo et al. (2020) proposed a Cause-Effect Information Bottleneck (CEIB)
to reason about treatment effects in high-dimensional settings where a subset of covariates
is unavailable at test time. Unlike previous approaches, this method explicitly considers the
relevance of information for predicting treatment outcomes. Here, the authors identify a
set of meaningful information using the Information Criterion (Tishby et al., 2000; Tishby
and Zaslavsky, 2015; Parbhoo et al., 2020) and transfer only the relevant information to
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cases where complete measurements are unavailable during testing such that the treatment
outcomes can still be inferred. In this paper, we adapt this framework to a multi-treatment
setting, and incorporate this knowledge into a mixture-of-experts model for reasoning about
treatment effects over heterogenous patient groups with incomplete measurements.

3. Information Transfer with Information Bottleneck

Our goal is to use a well-curated set of patients (e.g. European and North American cohort)
to inform treatments for a target patient population that (a) may have different disease
subtypes than the source population, and (b) is missing many of the measurements available
in the source population (e.g genotype information). For this, we propose a mixture-of-
experts model. Mixture models are a popular tool for representing heterogeneity among
populations to reason about treatment effects in precision medicine. Not only are they
flexible and scalable, but are especially useful for discovering latent subclasses of individuals
with particular response patterns. In doing so, policy makers or individuals seeking to
improve care could design interventions tailored explicitly to these groups.

Our core idea is the following: when trying to predict how a patient will respond to
a treatment, using a mixture-of-experts network, we first determine whether to attempt
to transfer the relevant information from the European population or to use the less-well-
curated African cohort. If our mixture-of-experts model learns that transfer is not possible,
then we follow a local strategy of, for instance, Bogojeska et al. (2012, 2010); Saigo et al.
(2011); Bickel et al. (2008) to attempt a prediction. If we choose to transfer, we apply
a variant of the Information Bottleneck (Tishby et al., 2000) that allows us to map both
cohorts into a low-dimensional space. Our overall strategy is summarised in Figure 1. In
the following, we first describe each of these prediction mechanisms and then the mixture-
of-experts that chooses between them.

3.1. Transfer in the Presence of Missing Measurements and Multiple Treat-
ments

Our transfer expert takes the form of a Cause-Effect Deep Information Bottleneck (CEIB)
(Parbhoo et al., 2020) to reason about the effects of treatments where data are missing at
test time. The original CEIB learns a sufficient covariate representation to approximate
the Average Treatment Effect (ATE) (Dawid, 2007; Guo and Dawid, 2010) during testing.
However, in general the ATE cannot be computed for multiple treatment groups as in the
HIV therapy selection task. Here, we adapt CEIB to handle missing data at test time in a
multi-treatment setting.

Problem Setup Suppose X = (X1, X2) := {hn} denotes a set of patient histories of
covariates and prior treatments for n = 1 . . . N . Here, each history hn consists of a complete
list of clinical and genetic features for a patient at a certain time. During training we assume
all the covariates X ∈ Rd can be observed. These correspond to, for instance, the complete
measurements of a set of patients participating in a medical study, where dimension d is
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Figure 1: Overview of our approach. Given patient data X from two cohorts, the transfer
policy πtransfer suggests a treatment on the basis of a compressed representation
of information from the European patients. The local policy πlocal finds the most
similar patients from the African cohort and suggests a treatment on the basis
of these. The mixture-of-experts determines when to follow each expert, thereby
producing a mixed policy πe of treatments T that we can evaluate to estimate
patient outcomes Y .

large 2. During testing however, we assume a portion of covariates X1 are not observed, as
a result of for instance, resource limitations or the costs associated with genotyping. Let
Y ∈ R denote the outcomes for a patient following treatment T . Our goal is to learn a
low-dimensional compressed representation Z of the relevant information in X to estimate
long-term outcomes Y for a given treatment T . Based on this, we infer a suitable treatment
policy for patients with incomplete covariate data at test time. The causal graph we consider
for our first expert is shown in Figure 2 .

X Z

Y

TFT

Figure 2: Causal graph corresponding to the proposed problem. FT denotes the interven-
tional distribution on T . The transfer expert compresses X into Z and conditions
on this with T to reason about Y .

Assumptions Throughout this section, we make the simplifying assumption that all con-
founders are measured. This is also referred to as strong ignorability. This is a fairly strong
assumption which, though untestable, is common in existing literature; in high-dimensional

2. Hereafter, we refer to this as well-curated. By well-curated we mean we have complete information with
no imputation.
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tasks though, it may be natural to assume one can measure everything that is relevant for
estimating treatment effects for a subset of the patients, and attempt to transfer this distri-
bution of information to a potentially larger set of test patients, as opposed to making more
stringent assumptions e.g about the availability of proxy confounders. We also assume that
a treatment T has not previously been applied to X. This assumption is necessary to ensure
that compression Z does not capture post-treatment variables, which may otherwise bias
predictions. In the context of HIV, for a patient this means that a particular therapy com-
bination has not been encountered before. That is, while patients can occasionally switch
back to old combinations, we make the simplifying assumption that this does not occur.
Finally, we assume that our compressed representation Z serves as a sufficient statistic for
the history for a patient, based on which we can evaluate their treatment policy.

Method We consider an extended formulation of the Information Bottleneck criterion as
in Parbhoo et al. (2020) that enables us to learn a sufficient statistic of relevant information
Z. Based on this, we can infer treatment effects Y given T for cases where some covariates
are missing at test time. The adapted IB criterion is given by

max
φ,θ,ψ,η

−Iφ(V1;X1)− Iη(V2;X2) + λIφ,θ,ψ,η(Z; (Y, T )), (1)

where V1 and V2 are compressed discrete representations of the covariates, Z = (V1, V2) is
a concatenation of V1 and V2 and I represents the mutual information parameterised by
φ, ψ, θ, and η respectively. We assume a parametric form of the conditionals qφ(v1|x),
qη(v2|x), pθ(y|t, z), pψ(t|z). Here qφ(v1|x) and qη(v2|x) serve as variational approximations
of p(v1) and p(v2) respectively. Then we have, Iφ(V1;X1) = Ep(x1)DKL(qφ(v1|x1)||p(v1))
and Iη(V2;X2) = Ep(x2)DKL(qη(v2|x2)||p(v2)). The first two terms of the criterion are op-

Figure 3: Proposed decoder architecture for our first expert.

timised using two encoder networks that compress X into discrete latent representations
V1 and V2 using the Gumbel-Softmax reparameterisation trick (Jang et al., 2016) to draw
samples Z from a categorical distribution with certain probability. The last term of the cri-
terion is optimised by a decoder architecture. Here, we introduce a different decoder model
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for reasoning about treatment effects specifically in a multi-treatment setting. Specifically,
we modify the TARNet architecture (Johansson et al., 2016) to condition on reduced co-
variate Z instead of high-dimensional X. For our decoder architecture, we use k networks
corresponding to each treatment over a set of L1 shared base layers as shown in Figure 3.
Based on sufficient covariate Z, we can then formulate the conditionals as,

pψ(t|z) = Cat(f1(z))

pθ(y|t, z) = N (µ = µ̂, ς2 = ŝ), (2)

where Cat refers to the categorical distribution of treatments. As a result, we can account
for multiple therapy combinations or treatment options for estimating treatment effects for
HIV.

Overall, our transfer expert enables learning equivalence classes among patients with
similar sufficient statistics Z. During testing where a subset of features is unavailable, we
can thus cluster those patients with incomplete measurements based on their discretised
representation Z. Adjusting λ in Eqn. 1 controls the degree of compression and allows us
to interpret our resulting predictions in terms of learnt representation Z. Once we learn
the latent representation, we build a set of statistics based on the discretisation for each
patient, {(zi, ti)}, where ti is given by the distribution of treatments for the particular
group of patients with reduced z. These define the transfer policy πtransfer. Based on these
statistics, we can evaluate the transfer policy using off-policy evaluation (see Section 4).

3.2. Predictions without Transfer: Kernel-based Learning

Our approach above enables transfer even when the target population has less measurements
than the source population, as long as there is some way to infer enough of the bottleneck
Z in the target population. However, we may not always be able to transfer: the patient
may be missing too many measurements, or the patient’s disease may be so different from
the source population that no mapping exists. In this case, we need a fallback for making
predictions. Earlier work such as Bogojeska et al. (2012) has found that kernel-based
predictors can often do well in the setting of HIV drug response prediction.3 The predictor
has the form:

Ŷn =
∑
h′n

k(hn, h
′
n)Yn, ∀h′n ∈ X. (3)

Here, k(hn, h
′
n) ≥ 0 is a kernel function satisfying

∑
h′n
k(hn, h

′
n) = 1, ∀hn ∈ X. During

training where complete measurements are available, we compare the histories of patients
within the European cohort to compute the similarity score. However at test time, where
such measurements are unavailable, the best we can do is compare the histories of patients
within the African cohort (test population). Based on this, we collect a set of statistics
corresponding to the quantile distances between each of the histories hn and h′n, their
corresponding lengths, as well as t. These define the kernel policy πlocal. We subsequently
perform off-policy evaluation using these statistics. For our specific application to HIV
therapy selection, we use a therapy history alignment kernel analogous to Bogojeska et al.
(2012).

3. We also considered other predictors, such as a parametric POMDP model as in (Parbhoo et al., 2017);
see supplement for details.
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3.3. When to Transfer: Gating Network between Experts

Our mixture-of-experts uses the properties of a patient’s health state to choose whether
or not performing a transfer of knowledge is helpful or not to reason about treatment ef-
fects. Based on this, it determines when to switch between the kernel and IB-based policies.
Specifically, our network uses the following set of input features: reduced covariate repre-
sentation z, trajectory length, quantile distances between the treatment histories, CD4+

counts and viral load measurements as well as information about the viral strain. These
quantities are available in the African cohort.

The mixture-of-experts gating function combines these features x linearly:

plocal = sigmoid(w.x) + b (4)

ptransfer = 1− plocal, (5)

where plocal and ptransfer denote the probabilities assigned to using the local cohort (with
the kernel-based expert) or attempting transfer (with our novel IB-based framework to
account for lack of sequencing data in the African cohort). We optimise the gating network
parameters to maximise patient outcomes, with our policy defined as πe = plocalπlocal +
ptransferπtransfer, and the quality of a policy πe being determined by off-policy estimators
in the next section. The optimisation is performed with gradient descent using the Adam
optimiser (Kingma and Ba, 2014).

4. Evaluation Metrics for Measuring Policy Quality

We apply a collection of off-policy evaluation (OPE) estimators in order to evaluate our
policies. Importance Sampling (IS): The classic IS estimator (Kahn and Marshall, 1953;
Rubinstein, 1981; Koller and Friedman, 2009) is given as V πe =

∑N
n=1 ρnYn, where ρ de-

notes the importance weight computed as ρn = πe(tn|hn)
πb(tn|hn) . Histories that are unlikely are

thus given a smaller weight when evaluating a policy using IS.

Weighted Importance Sampling (WIS): The standard IS estimator is prone to high vari-

ance so a weighted variant exists. Here, the value is given as V πe =
∑N

n=1 ρnYn∑N
n=1 ρn

.

Doubly Robust (DR): While the WIS estimate has a lower variance, it is biased. The
doubly robust off-policy evaluation scheme (DR) (Jiang and Li, 2015) attempts to trade off
bias and variance by coupling the IS weights with a regression estimate Q̂ of the function
V πe that is computed on a separate data set. The estimated value of treatment policy πe
is given as, V πe = V πe +

∑N
n=1 ρn(Yn − Q̂). DR works well if either the regression estimate

Q̂ or IS-weights is fairly accurate.

5. Experiments

Baselines We compare the performance of our proposed approach against several base-
lines: Two of the baselines did not involve any transfer namely (i) a kernel policy and (ii) an
IB policy, both trained and evaluated on only the African cohort. Since (i) and (ii) do not
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make use of the transfer mechanism, we refer to these as local experts. We further compare
our approach against (iii) a kernel expert from Section 3.2, (iv) an IB transfer expert from
Section 3.1 and (v) the mixture-of-experts approach from Parbhoo et al. (2017), all of which
are trained on the EuResist cohort and evaluated on the African cohort. We view these
as experts that use some notion of knowledge transfer to reason about treatment effects.
Unlike the baselines, our proposed approach is a mixture of a local expert and a transfer
expert.

Training Details The mixture-of-experts approach we consider for baseline (v) relies on
a POMDP model as one of the experts. Here, we consider a POMDP model of 20 patient
states and Gaussian emission probabilities, where the number of states is chosen using the
Bayesian Information Criterion and the discount factor is fixed at γ = 0.98. The IB expert
for (iv) is trained using six 5-dimensional Gaussian mixture components where compres-
sion parameter λ = 5.8, based on which we may analyse the cluster compositions. These
parameters are selected by examining the mutual information curve of I(Z; (T, Y )) against
I(Z;X) and selecting the value where the information curve saturates as the compression
changes, or where a sufficient covariate representation is available. For the kernel approach
we use the history alignment kernel from Bogojeska et al. (2012). The details about this
kernel can be found in the supplement.

5.1. Results and Analysis

Locally-trained baselines perform worse than current practice; transfer-based
baselines barely reach the level of current practice. Table 6 shows the OPE results
of our approach in comparison to the baselines we considered. We include the evaluation
over three different OPE methods that have different bias-variance tradeoffs. Additional
results based on training and testing the approach on the EuResist cohort and African
cohorts individually can be found in the supplement. For comparison purposes, we also
include the value of the behaviour policy as the first row of the Table 6. Based on these
results, we notice a few things. First, methods that do not use any transfer mechanism
tend to perform poorly and have higher variance. This is unsurprising considering the lack
of NGS data available for these patients, as well as the size of the African cohort which is
significantly smaller than the EuResist data.

Next, each of the methods involving some form of knowledge transfer perform this
transfer in different ways: the kernel maps patient histories from the African cohort to
histories in the European cohort and uses this as a statistic to reason about treatment
effects; in contrast, the mixture-of-experts learns a partition of the space of patients, and
conditions on this representation to infer treatment outcomes; the IB performs a sufficient
reduction of the covariate in order to reason about treatment effects. As a result, each
of these approaches may capture different kinds of information about how to perform the
knowledge transfer which ultimately produces the performance differences observed.

Mixing local and transfer-based policies achieves high rewards. The combination
of a local kernel expert and a transfer IB expert outperforms all the baselines considered, as
it is able to capture both (i) how to perform a transfer of relevant information via learning
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Type Method DR IS WIS

Behaviour Policy 5.02 +− 1.18

Local Kernel 3.56 +− 1.42 1.27 +− 1.14 1.80 +− 1.07
CEIB 3.29 +− 1.13 3.80 +− 2.41 3.76 +− 2.19

Transfer Kernel 4.17 +−1.4 4.18 +−1.20 4.16 +−1.71
CEIB 6.29 +− 0.14 5.17 +− 0.38 5.27 +− 0.29

Mixture-of-Experts 5.28 +− 0.37 3.42 +−1.39 4.81 +− 1.25

Local + Transfer Ours 8.96 +− 0.39 10.64 +− 1.2 10.62 +−1.67

Table 1: Off-policy evaluation using importance sampling, weighted importance sampling
and doubly robust methods for different therapy selection models across the
African cohort. Overall, combining a local expert with an expert that performs a
transfer of the distribution of relevant covariate information for cases where data
are missing, produces the best outcomes.

a sufficiently reduced covariate representation and (ii) when such a transfer is necessary in
the face of few measurements via the gating network. We discuss both (i) and (ii) in more
detail below.
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Figure 4: Illustration of the proportion of HIV patients in each cluster according to their
subtype. Only the most frequently occurring subtypes in each cluster are shown.
A, B, C denote the respective subtype, while R denotes a recombinant subtype.
The clusters differ in their composition by subtype. In particular, cluster (c)
shows an enrichment of information in the Subtype C group as well as those
patients with recombinant forms from the African cohort. These patients are
likely to vary from those patients in the EuResist cohort and form their own
cluster.
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Figure 5: Expert chosen for recombinant patients and those with Subtypes B and C in
African cohort. Information transfer is possible for 68% of patients with subtype
C and 40% of recombinant subtypes. Information transfer is also possible for a
large proportion of subtype B patients that have significant overlap with patients
in the EuResist cohort. For the remaining patients, the local expert is preferred.

Interpreting the Bottleneck: IB determines that HIV subtype is an important
bottleneck parameter for transfer. Thus far, we showed that combining local and
transfer experts using a mixture-of-experts outperforms existing approaches for HIV therapy
selection. Here, we validate when the gating network chooses to switch between each expert,
as well as what information can be transferred from European populations when reasoning
about treatment effects for patients in Africa. We begin by performing an analysis of the
compressed representation learnt by the transfer IB expert. We examine the predominant
features of the clusters obtained. These results are shown in Figure 4 according to the
proportion of subtypes within in each cluster. Here, cluster (c) shows an enrichment of
patients with Subtype C in comparison to other subtypes. This subtype is more prevalent
in African population, while Subtypes B and A dominate the other populations. The IB
approach identifies this as relevant information as a basis to group patients and reason
about treatment effects. We also observe a fairly high number of recombinant strains
in cluster (c). We attribute this to the fact that many of the patients in the African
cohort experience therapy failures from drug resistance and have to undergo several therapy
switches to manage viral mutation. Clusters (a) and (f) are very similar in terms of their
distribution according to their subtype, however tend to differ along several other dimensions
such as age distribution and risk group.

Interpreting the Gating: Network learns to transfer when there exist similar
patients in European cohort. Here, we validate when knowledge transfer using CEIB
is necessary, by examining the choices made by our proposed mixture-of-experts model and
the features that contribute to the decisions made by the gating network. In particular,
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we find the mixture-of-experts has a preference for the kernel policy 37.2% of the time,
while choosing the IB expert 62.8% of the time. These proportions seem consistent with
the relative proportions of subtypes in the South African cohort. Specifically, the South
African cohort contains approximately 36% patients with Subtype C, 31% with Subtype
B and a remaining 23% of patients with recombinant forms. Table 2 shows a ranked list
of the most important features identified by our mixture-of-experts for predicting patient
outcomes. Overall, the model relies heavily on the subtype information, a few resistance
mutations and the viral load to reason about treatment effects.

Next, we analyse when the transfer expert is used for different subtypes. These results
are shown in Figure 5. We observe that the model makes use of the transfer expert for
68% of patients with Subtype C, 86% of patients with Subtype B, and 40% of patients
with recombinant forms. Of the patients with recombinant forms, the vast majority (72%)
of these patients have a recombinant strain involving Subtype C. Evidently for patients
of Subtype B within the African cohort, it is relatively straightforward to map to similar
patients from the European cohort and transfer the relevant information via the informa-
tion bottleneck. Interestingly however, it is also possible to perform such an information
transfer for a significant proportion of patients with Subtype C and recombinants involving
Subtype C. For the remaining patients, the kernel expert is the preferred approach. These
are patients with complex recombinants of multiple strains for whom distribution transfer
from the European cohort does not make sense. These patients also tend to experience sig-
nificantly more therapy failures and have higher viral loads. For these individuals, the only
alternative is to map to other patients within the African population that exhibit similar
response patterns.

Feature Wk

Quantile distance 0.4720
CD4+ count 0.1612
Viral load -0.4579

Viral strain 2.6179
History length 0.1724

RT67N -0.1161
RT 215YF -0.128

Table 2: Feature weights for gating function. RT67N and RT215YF are HIV mutations.
The patient subtype, quantile distance to similar patients, and viral load have the
largest weights.

Interpreting the Policy: Network learns policies that are consistent with cur-
rent therapy guidelines We compared the treatment policy produced by our approach
to existing WHO and IAS-USA clinical guidelines for treating HIV (Saag et al., 2018) to
assess how consistent these were. For the purposes of this analysis, we restricted our focus
to the adult patients (aged over 18) in the African cohort. We further classify whether
the learnt treatment policy follows a) the recommended regimen, b) an alternative regimen
that is not recommended but not in violation of the guideline or c) a regimen in violation
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of the guideline. Overall, we find that our policy observes the guidelines 73% of the time,
while suggesting an alternative treatment 15% the time. For the cases where an alternative
treatment is learnt, these treatments tend to comply with previous guidelines (Günthard
et al., 2016; Günthard et al., 2014), which have since been modified as a result of reformu-
lating drug compounds into simpler regimens for improved adherence. The remaining 12%
were patients with more complex recombinants, where our learnt treatments contained more
drug compounds than outlined by the guidelines to combat resistance. For these cases in
the African cohort, genetic sequencing would be crucial to reason about treatment effects.

6. Discussion

Figure 6: Information curve of I(Z; (T, Y )) against I(Z;X). The numbers on top of the
box plots indicate the dimensions of the compressed representation. We perform a
sufficient reduction of the covariate where the information curve stabilises. Based
on the reduced covariate, we can predict outcomes Y and perform OPE on the
learnt policy.

Tuning λ helps us understand whether information transfer is meaningful. The
selection of compression parameter λ is key to the performance of the IB approach. Ad-
justing λ allows us to explore a range of covariate representations by examining the mutual
information curves of I(Z; (T, Y )) against I(Z;X) such as in Figure 6. This is key to the
model’s interpretability as it enables us to examine a range of solutions from having a
completely insufficient representation at the start of the curve, to a completely sufficient
representation where the curve stabilises. Adjusting λ can also give us insights about when
information transfer is not helpful. Such a case would arise if our dataset contained co-
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variate information that could not be further compressed when reasoning about treatment
outcomes. In this instance, the information curve would appear relatively constant, while
the corresponding distributions of clusters would be fairly similar for varying values of λ.
In such a situation, no knowledge transfer should be necessary, and one should rather apply
a local approach to reason about outcomes.

Our approach may offer broader insights about when medical guidelines are
helpful. While our approach was used for treating patients with HIV, we believe it could
offer insights about applying existing therapy guidelines for various diseases to different
populations. Specifically, by fixing treatments according to various medical guidelines,
one could assess how outcomes change across different populations as well as identify the
information relevant to predicting these outcomes. Such analyses could reveal nuances about
when guidelines should be followed, which guidelines work for different types of patients, as
well as when they may be unhelpful. Together, these insights could lead to developing new
guidelines and better practices for treating populations with less resources.

7. Conclusion

While sequencing technologies have helped to advance HIV therapy in parts of Europe and
North America, these therapies have been less successful for managing HIV in Africa as a
result of the high viral heterogeneity and the costs associated with genetic sequencing. In
this paper, we introduced a novel mixture-of-experts approach to tackle this challenge; first,
we trained a transfer expert for identifying information that may be relevant to transfer
across different populations when reasoning about treatment effects; for cases where this
transfer is not possible, we trained a local expert for identifying within-population effects
that are useful to infer patient outcomes. In general, our approach is applicable to various
domains that suffer from similar problems with missing measurements, as well as scenarios
where we wish to evaluate existing treatment guidelines across different populations.

Limitations and Future Work An important assumption we made across all our mod-
els was the fact that confounding factors may be measured. In reality, there is no way to
check the validity of this assumption as there may be many factors that directly or indi-
rectly influence a patient’s outcomes. Hence future work could explore ways to relax this
assumption through explicit modelling of latent confounders. We also performed various
types of off-policy evaluation to evaluate the performance of the policies we learn. These
methods have different trade-offs and can have high-variance when there is little overlap
between the behaviour policy in the data and the evaluation policy. To address this issue,
future work could consider different strategies for evaluation that do not make use of impor-
tance weighting. In our work, we combined transfer and local experts here using a simple
linear combination gating network. Future work could use more sophisticated strategies for
combining these as well as how to incorporate some notion of uncertainty between patient
groups when performing information transfer.
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Summary statistics of patients from EuResist and African cohorts

EuResist Africa
Characteristics N (%) N (%)

Sex

Male 19743 (59.9) 1917(63.9)
Female 13216 (40.1) 1083(36.1)

Age at start

18− 30 757(2.3) 1245(41.5)
31− 40 3659(11.1) 993(33.1)
41− 50 8504(25.8) 378(12.6)
> 50 20040(60.8) 384(12.8)

Ethnicity

White 6724(20.4) 465(15.5)
Black 13975(42.4) 2 355(78.5)
Asian 890(2.7) 36(1.2)

Hispanic 2011(6.1) 30(1.0)
Other 9360(28.4) 114(3.8)

Risk

MSM 7613(23.1) 765(25.5)
Heterosexual 7185(21.8) 1449(48.3)

IDU 8801(26.7) 336(11.2)
Other 9361(28.4) 450(15.0)

Baseline CD4+ count

< 200 18985(57.6) 1926(64.2)
200− 349 8701(26.4) 393(13.1)
> 350 5274(16.0) 681(22.7)

Has AIDS at start 8965(27.2) 1947(64.9)

Baseline Log viral RNA

≤ 4 791(2.4) 462(15.4)
4− 5 13250(52.8) 366(12.2)
> 5 18919(57.4) 2172(72.4)

HIV Subtype

B 15853(48.1) 1080(30.6)
C 4977(15.1) 1092(36.4)

Recombinants 7185(21.8) 690(23.0)

Table 3: Summary statistics of patients undergoing ART between 1983 and 2016 in the
EuResist and African cohorts respectively.
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The History Alignment Model

The history alignment model (Bogojeska et al., 2012) first constructs a resistance mutations
kernel to quantify the pairwise similarities between different therapy combinations. For-
mally, the kernel may be defined as follows. Let G denote the set of different drug groups,
and and uag and ua′g be the sets of resistance-relevant mutations for the drugs occurring in
drug group g ∈ G of the therapies a and a′, respectively. The pairwise similarity between
the drug-g mutations of the drug combinations a and a′ is then calculated using the Jaccard
index:

simg(a, a
′) =

|uag
⋂
ua′g|

|uag
⋃
ua′g|

, (6)

where | · | denotes set cardinality. We then derive the similarity km(a, a′) between the
therapies a and a′ by averaging the similarities of their corresponding drug groups:

km(a, a′) =
∑
g∈G

simg(a, a
′)

|G|
. (7)

The resistance mutations kernel is subsequently used together with the Needleman Wunsch
algorithm to deduce a kernel over patient histories. This kernel can subsequently be used
to perform non-parametric policy learning.

Additional Results and Experiments

Performance of training a POMDP (additional baseline): In addition to compar-
ing our proposed approach against using a kernel trained on the South African cohort and
an IB trained only on the South African cohort, we also tried to train a POMDP model
solely on the South African cohort. Note that it is not possible to train the POMDP on the
EuResist cohort and transfer this policy to the case where data are missing at test time,
since we would need these dimensions to estimate and update our belief state. As a result,
the performance of the POMDP is far worse since there is limited data to learn from and
training the model becomes difficult. We used a similar POMDP to the one of the experts
in the original mixture-of-experts model of (Parbhoo et al., 2017) with 20 states and Gaus-
sian emissions. Unfortunately, however since it is difficult to construct a POMDP using a
limited source of data, the POMDP does not perform well against the other models.

Performance of methods when training and testing on EuResist: We can perform
a similar experiment with training and testing only on the European cohort. All the base-
lines perform considerably better given the fact that the data set is well sized and genetic
information is available for all patients.

Performance of methods when training and testing on African cohort: Repeat-
ing the same experiments but while trying to train and test on African cohorts is significantly
worse for all baselines as the data set is limited in size. Specifically, all the methods that in-
volve training neural networks perform very poorly here as a result. Here a non-parametric
kernel estimate works best.
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Type Method DR IS WIS

Behaviour Policy 5.02 +− 1.18

Local Kernel 3.56 +− 1.42 1.27 +− 1.14 1.80 +− 1.07
CEIB 3.29 +− 1.13 3.80 +− 2.41 3.76 +− 2.19

POMDP (SA) -1.47 +− 2.38 -1.72 +− 2.71 -1.14 +− 2.08

Transfer Kernel 4.17 +−1.4 4.18 +−1.20 4.16 +−1.71
CEIB 6.29 +− 0.14 5.17 +− 0.38 5.27 +− 0.29

Mixture-of-Experts 5.28 +− 0.37 3.42 +−1.39 4.81 +− 1.25

Local + Transfer Ours 8.96 +− 0.39 10.64 +− 1.2 10.62 +−1.67

Table 4: Off-policy evaluation using importance sampling, weighted importance sampling
and doubly robust methods for different therapy selection models across the
African cohort. Overall, combining a local expert with an expert that performs a
transfer of the distribution of relevant covariate information for cases where data
are missing, produces the best outcomes.

Type Method DR IS WIS

Behaviour Policy 5.6 +− 1.18

Local Kernel 9.47 +− 1.5 5.61 +− 1.41 6.7 +− 1.36
CEIB 10.24 +− 1.18 11.61 +− 1.41 12.76 +− 1.51

POMDP 6.07 +− 2.46 4.81 +− 2.75 6.92 +− 1.78
Mixture-of-Experts 11.28 +− 0.21 12.42 +−1.19 11.83 +− 1.45

Ours 12.73 +− 0.39 10.79+− 1.2 11.71 +−1.38

Table 5: Off-policy evaluation using importance sampling, weighted importance sampling
and doubly robust methods for different therapy selection models across the Eu-
Resist cohort. Both the CEIB method and the combination of CEIB and Kernel
(Ours) produce the best outcome.

Type Method DR IS WIS

Behaviour Policy 5.02 +− 1.18

Local Kernel 5.56 +− 1.02 4.7 +− 0.28 4.23 +− 0.15
CEIB 1.29 +− 1.13 -3.80 +− 2.41 -3.76 +− 2.19

POMDP -1.47 +− 2.38 -1.72 +− 2.71 -1.14 +− 2.08
Mixture-of-Experts -2.17 +− 3.86 -1.05 +−1.03 0.17 +−0.5

Ours 3.96 +− 1.39 3.64 +− 1.66 3.82 +− 2.7

Table 6: Off-policy evaluation using importance sampling, weighted importance sampling
and doubly robust methods for different therapy selection models across the
African cohort. The kernel policy outperforms each of the other baselines here.
All the approaches do worse in comparison to the behaviour policy.
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