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Abstract

Prior medical knowledge, like the relationships between diseases or treatments and their
corresponding risk factors are widely available in electronic health records (EHR), can be
generated by domain experts, and extracted from knowledge graphs. Although informative
for predictive modeling tasks, most of the patient-specific knowledge in EHR are not utilized
because of practical constraints on data availability or cost of acquiring the data to make
inferences. We present a method to learn from prior knowledge using a mixture–of–experts
model where gating probabilities are tuned by an adjacency matrix created using side
information available during training, like comorbidities, interventions, outcomes, vital
signs and laboratory measurements. The adjacency matrix of a nearest neighbor graph is
used to discover subgroups of intensive care unit (ICU) patients. Experts are shown to
specialize based on how patients are grouped in the adjacency matrix on two real-world
decision support tasks: predicting hemodynamic interventions and stratifying patients at
risk for developing a sustained period of hypoxemia. The proposed prior knowledge-guided
learning (PKL) model discovers clinically meaningful cohorts in patients with respiratory
compromise that match well known sub-phenotypes described in the literature.

1. Introduction

A long standing challenge in machine learning in healthcare is in combining the medical
knowledge of experts with data-driven insights from electronic health records (EHR). A
general methodology to capitalize on prior knowledge is critical in high-stakes decision
making domains like medicine where machine learning algorithms are proving increasingly
effective in a wide range of applications but are often data inefficient and fail to generalize
to new cases. This is largely driven by heterogeneity of the patient population. Individuals
within a subgroup share risk factors and have correlated outcomes, however, differences in
physiological traits across subgroups manifest as variations in the response to treatment,
prevalence of underlying diseases, and long-term outcomes.
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Prior knowledge can be derived from retrospective data to uncover a relationship be-
tween the observed risk factors (e.g. vital signs and laboratory measurements) and meta
features that encode the medical knowledge. By meta features, we refer to factors that char-
acterize subgroups of patients, that are correlated with the risk factors but are not available
to the model at inference time. A continuous risk prediction algorithm deployed on a bed-
side patient monitor, for example, may not have access to comorbidities, interventions, or
even the unit type – conditions that introduce heterogeneity to the patient population. A
heterogenous cohort gives rise to a multifaceted problem: 1) a single-task model trained on
a heterogenous cohort may not generalize well to subpopulations, 2) subpopulation-specific
models are data inefficient (small data leads to poor representation learning), and 3) the
subpopulation a patient belongs-to is typically unknown at inference time, which limits our
ability to choose a subpopulation-specific model.

The problem of learning from a diverse clinical population where side information is
available during training is often addressed in a multi-task learning (MTL) framework that
models sub-tasks along with the primary task to improve generalization (Caruana (1997);
Zhang and Yang (2018); Ruder (2017)). The sub-tasks are introduced to improve the
representation learning capacity of a model through a shared representation of the data for
each task. Sub-tasks are equivalent to the meta features described above and can include
future outcomes like ICD-9 diagnosis codes, ICU unit type, and interventions, among other
features that are not directly observed at evaluation time and are useful to the primary
task. Many current MTL models, however, optimize for objectives such as log-likelihood
in a multi-label classification problem, producing useful representations to improve model
performance on the primary task only as a side effect.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our work offers an alternative to the standard MTL setup by introducing an unsupervised
objective based on the adjacency matrix of a nearest neighbor graph that can encode any
number of sub-tasks without explicitly modeling each sub-task. Our prior knowledge guided
learning (PKL) framework utilizes the well known mixture-of-experts (MoE) model to tune
the gating network to assign similar patients to the same expert, which allows the experts to
specialize on parts of the data. We describe this general method to encode prior knowledge
into a neural network to achieve the following goals:

• Utilize knowledge in EHR that are not available to the model during evaluation.

• Enable cohort discovery by specializing on subgroups of similar patients. In contrast
to the Multi-Task Learning (MTL), we condition the expert models to specialize on
pre-defined subgroups. The shared data representation is explicitly controlled, and
a useful representation is learned by design rather than as a byproduct of solving a
multi-task classification problem.

We first use the PKL model to predict hemodynamic interventions like fluids, vaso-
pressors, and packed red blood cell (PRBC) transfusions in ICU patients to validate that
the PKL model can learn to cluster similar patients based on the adjacency matrix. We
constructed adjacency matrices using the patients ICU unit type and intervention type as
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meta features and show that similar patients are grouped to the same expert. We then
use the PKL model to discover clinically meaningful phenotypes in patients that develop
respiratory compromise as characterized by a sustained period of hypoxemia (oxygenation
index ≥ 25). Previous work using unsupervised latent class analysis of clinical trial data
had identified at least two distinct sub-phenotypes of acute respiratory distress syndrome
characterized by severe inflammation, shock, and metabolic acidosis (Calfee et al. (2018,
2014); Famous et al. (2017)). The PKL model with adjacency matrix derived from observed
risk factors like laboratory measurements and vital signs discovers similar phenotypes in
patients that develop respiratory compromise.

2. Related Work

This paper touches on several domains, including computational phenotyping with EHR,
multi-task learning, and mixture-of-experts (MoE). We briefly highlight relevant work in
relation to our proposed method for phenotyping with prior knowledge.

The goal of computational phenotyping is to discover subgroups of similar patients that
share an underlying disease mechanism and exhibit similar traits. The task of computational
phenotyping is analogous to unsupervised clustering using clinical risk factors to identify
subsets of patients that share similar physiological characteristics. One approach to pheno-
typing is to use the latent representation learned from a neural network to cluster patients
and assign meaning to the clusters (Lasko et al. (2013); Kale et al. (2015)). Schulam et al.
(2015) clusters time series of clinical markers using a hierarchical probabilistic model to un-
cover disease subtypes in patients with an autoimmune disease known to be heterogenous.
Suresh et al. (2018) proposed a two step solution to discover cohorts of patients with similar
traits by using an unsupervised clustering model to group patients then getting predictions
from a multi-task model for each subgroup, where the data representation is shared across
tasks. Our work starts with the same goal of discovering cohorts of patients with similar
phenotypes but our proposed PKL model learns to phenotype in an end-to-end learning
framework.

Recently, Harutyunyan et al. (2019) observed there is correlation between many clinical
prediction tasks, including mortality, length of stay, decompensation and diagnosis predic-
tion. They used a MTL framework to learn a shared representation for all tasks and predict
outcomes using a single forward pass of a neural network by optimizing for an overall loss
that was the weighted sum of task-specific losses. MTL introduces inductive bias in the
form of sub-tasks which causes the model to prefer hypotheses that explain more than one
task. On specific problems, MTL has better performance than single-task learning (STL)
and generally leads to solutions that generalize better as a result of the inductive trans-
fer (Ruder (2017)). A common neural architecture for MTL is hard parameter sharing
where hidden layers are shared across tasks, while keeping several task-specific output lay-
ers (Caruana (1997); Baxter (1997)). We use this particular instantiation of MTL as a
benchmark to compare against PKL.

MoE models are ensemble learners where experts specialize on parts of the data and
predictions from each expert is combined with mixing probabilities generated by a gating
network (Jacobs et al. (1991); Jordan and Jacobs (1994)). MoE appears in many different
guises, including conditional computation (Bengio et al. (2016)), and may be unified under
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the concept of multiplicative interactions, which can induce inductive bias in practical
scenarios such as when multiple streams of information are fused (Jayakumar et al. (2019)).
Shazeer et al. (2017) recently described an end-to-end learning framework for a large number
of experts where the gating network and experts are learned together using backpropagation.
We utilize this learning scheme to train the PKL model.

Another related approach is stratified models, which build distinct predictive models for
each setting of one or more categorical variables. For example, Tuck et al. (2019) augment
a standard stratified model loss with a regularization term that encourages model param-
eters to vary smoothly with respect to a similarity derived from the categorical features.
These models, however, require an a-priori categorization (clustering) of the data, whereas
the proposed PKL model uses softer nearest neighbor information derived from a graph
adjacency matrix.

3. Methods

3.1. Mixture-of-Experts

The Mixture-of-Experts (MoE) consists of K ”expert networks” f1...fK , and a ”gating
network” G whose output is a sparse K-dimensional set of probabilities that sum to 1.
Figure 1 shows a schematic of the MoE network used to learn from prior knowledge. The
experts are neural networks each with their own parameters and described in detail in
section 3.3. Experts and the gating network can take different inputs, however, in practice
we use the same input x ∈ RD with D numerical features as input to each expert and gating
network. Given the output of the gating network G(x) and the output of the k-th expert
fk(x) for an input x, the output of the the MoE model can be written as the following:

ŷ = β0 +
K∑
k=1

G(x)kfk(x) (1)

where β0 = log p(y=1)
p(y=0) is the expected log-odds ratio over the population.

3.2. Learning from prior knowledge

The gating network comprises a fully connected layer, followed by a rectified linear unit
(ReLU) non-linearity, batch normalization, and another fully connected layer. A softmax
transformation generates gating probabilities over K experts.

Prior knowledge is encoded in an adjacency matrix A ∈ RB×B from a batch of B
samples, which is computed from a top-N nearest neighbor graph on M ”meta features”.
For example, in the experiments presented in this paper, meta features included ICU unit
type, future hemodynamic interventions, and the raw observations x themselves. For our
experiments we selected the 2-nearest neighbors to create the adjacency matrix. Our goal is
to have the gating network assign similar patients to the same expert with a high probability.
Therefore, given the batch gating probabilities P ∈ RB×K , PP T is an approximation of A
since the elements of PP T are close to 1 for patients assigned to the same expert. Note that
PP T is also the adjacency matrix of a graph on data samples whose edges are weighted by
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the inner product between gating probabilities. The similarity regularization term Lsimilarity

pushes the gating probabilities to group patients according to the adjacency matrix:

Lsimilarity = −tr(P TAP ) (2)

In this way, two data samples are encouraged to have similar gating probability profiles if
they are deemed similar by the prior knowledge graph.

Our two design goals for the gating network are 1) to favor sparse gating probabilities
to get experts to specialize on parts of the data and 2) to achieve non-uniform gating
probabilities to utilize all experts. We observe that the gating network tends to converge
to a state that over utilizes a few experts with high probabilities and therefore introduce
regularization terms that push the gating probabilities Pb = {pb1, ..., pbK} for sample b
to have a desired activation probability κ, similar to Bengio et al. (2016). The two loss
terms Lb and Le, activates each expert with probability κ in expectation over the data and
pushes experts to have a desired sparsity for each example. The final regularization term Lv

maximizes the variance of gating probabilities of each expert across the data and explicitly
discourages uniform gating probabilities:

Lb =
1

K

K∑
k=1

((
1

B

B∑
b=1

pbk)− κ)2 (3)

Le =
1

B

B∑
b=1

((
1

K

K∑
k=1

pbk)− κ)2 (4)

Lv = −(
1

B

B∑
b=1

var0{P}+
1

K

K∑
k=1

var1{P}) (5)

where vari is taking the variance along the i-th dimension of the matrix.
The gating network and expert models are trained end-to-end with gradient descent

using the Adam optimizer, learning rate 0.001, and batch size 512. For classification tasks,
we minimize the binary cross entropy along with the regularization terms:

L = LBCE(y, ŷ) + λp(Lb + Le) + λvLv + λsimilarityLsimilarity (6)

where λp = λv = 1, and λsimilarity = 0.01.

3.3. Expert model

Expert models can take any form. In this work, the k–th expert fk is a form of generalized
additive model with interactions (XGAM):

fk = β0 +
D∑

d=1

ud(xd) +
T∑
t=1

h(Et) (7)
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Figure 1: A) Illustrative example of a binary classification problem with three distinct sub-
groups. Similar samples from the same subgroup are connected by a black line.
B) Prior knowledge learning network uses a mixture-of-experts framework. The
known subgroups are encoded in an adjacency matrix. The probabilities from
the gating network are tuned with an unsupervised loss function to assign similar
patients to the same expert according to the adjacency matrix. C) Multi-task
learning models have shared hidden layers to transfer knowledge between tasks
and has one output network per task.

where xd is the d-th univariate feature and ud is a univariate first order linear spline basis
function. Et ∈ RH is an embedding vector of length H representing the leaf node of the
t-th decision tree in a gradient boosted decision tree model, like XGBoost. h(Et) ∈ R is a
linear transformation mapping the embedded vector representing the leaf node index of the
t-th decision tree to a scalar risk. The final prediction of the k-th expert is a sum of the
univariate risks and risks assigned to the leaf nodes of a boosted tree.

The univariate linear spline is formed by connecting linear segments and implemented
with ReLU functions:

ud(xd) =

Q∑
q=1

(wqReLU(xd − γq) + vqReLU(γq − xd)) (8)

where γ ∈ RQ are Q uniformly spaced knots. Inputs x are normalized in the range [0, 1] so
knots are equi-spaced in the range [0, 1]. w ∈ RQ and v ∈ RQ are free weights to be fitted
during training and controls the slope of the line between intervals.

We formulate the embedding matrix E similar to natural language processing where the
entities are mapped to a vector representation using a lookup table. Entities are derived
from leaf nodes in a trained XGBoost model with each leaf node assigned to a unique token
representing the decision path (e.g. [age>65 & lactate>2.5]). The boosting model was
trained for 200 rounds and depth–2 to capture pairwise interactions. Trees deeper than two
levels are difficult to visualize and we are interested in interpretable models that users can
understand the contribution of individual features in the model. The original boosted tree
model is not required after deployment as long as the raw feature values can be mapped to
tokens in the dictionary of decision paths.
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3.4. Multi-task learning

We constructed a multi-task learning network as a baseline. Figure 1 shows the model
architecture, which included shared layers and task specific layers, each composed of a
the following blocks: a linear layer, followed by a ReLU activation, batch normalization,
another linear layer, and a dropout layer. The input to the first shared layer is a linear
transformation of the embedded decision paths (h(E1), ..., h(ET )) from an XGBoost model,
as described above.

4. Cohort

The eICU dataset was used for the purposes of training and validating the hemodynamic and
respiratory models presented below (Pollard et al. (2018)). The full dataset is comprised of
3.3 million patient encounters from 364 hospitals across the United States. To ensure that
charting of hemodynamic intervention data (e.g., vasopressors, inotropes) were accurate
in the training and validation cohorts, we restricted our analysis to patients admitted to
select hospitals with reliable infusion and ventilation charting data. Specifically, we included
ward-years that charted ≥ 7 infusion drug entries per patient per day. Included patients
with ≥0.75 ventilation and airway records per patient per day in the patient care plan,
and either ≥10 entries per patient per day in respiratory charting tables in eICU database.
This filtering step reduced the initial dataset size to 1.4 million patient encounters from 54
hospitals. We selected patients ≥ 18 years old and did not have a DNR.

4.1. Cohort & Data Selection for Hemodynamic Instability

Hemodynamic instability is broadly defined as perfusion failure from one or more eti-
ologies including circulatory shock or advanced heart failure. Hemodynamic instability
presents with low blood pressure and requires interventions including, vasopressors, fluids,
and packed red blood cells (PRBCs) in the case of blood loss. We predict the onset of
a significant hemodynamic intervention by dividing patients into stable and unstable co-
horts. Stable patients did not receive vasopressors and large volumes of fluids during their
ICU stay. Unstable patients received at–least one vasopressor during the ICU stay. These
patients ICU stays were further segmented into unstable and intervention periods. An inter-
vention segment started when any of the strong or weak intervention criteria was satisfied
(Eshelman et al. (2017), Conroy et al. (2016)).

• Strong interventions:

1. Administration of any quantity of any of the following inotropic and vasopressor
medications: Dobutamine, Dopamine, Epinephrine, Norepinephrine, Phenyle-
phrine, Vasopressin

2. Administration of Packed Red Blood Cells (PRBCs) in either of the following
dosages: 1) 800 cc PRBC over course of 24 hours 2) 500 cc PRBC in two hours
followed by fluid therapy

• Weak interventions:
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1. Administration of Fluid Therapy (colloid or crystalloid) in the following dosages:
700 cc in one hour, 1500 cc total in four hours, 2400 cc in eight hours, 3000 cc
in 12 hours, 500 cc twice in four hours

2. Administration of PRBCs in the following dosage: 500 cc PRBC not followed by
fluid therapy within the following 24 hours

The intervention segment continued until there was a gap of more then 12 hours in-
between consecutive vasopressors or fluids administrations. The unstable period was a
maximum of 24 hours before the start of an intervention but can also be less than 24 hours.
A patient can, therefore, have multiple unstable segments during the ICU stay and we use
all unstable segments in our model development. The last observation from 1-hour before
the intervention was used as a positive class sample and a random time from a stable patient
was selected as the negative class sample. We did not include any samples from the first 6
hours of the ICU stay.

The percentage breakdown of hemodynamically unstable patients by intervention cate-
gory were as follows: 71.9% strong interventions, 36.2% weak interventions, 15.7% PRBCs,
57.9% vasopressors. The cohort selection criteria resulted in 32,896 unstable events and
183,420 stable events (prevalence=18%). A stratified subsample of 20% of the data were
held out and reserved for testing of all algorithms, while the remaining 80% were used to
train all models.

We selected variables that are routinely acquired in the ICU, including vital signs, lab-
oratory measurements, and blood gas measurements. The full set of variables included:
age, heart rate, invasive and noninvasive systolic blood pressure, mean blood pressure,
temperature, noninvasive shock index (ratio of heart rate/systolic blood pressure), central
venous pressure, base excess, WBC, SaO2, AST, Bands, Basos, BUN, calcium, ionized cal-
cium, CO2, creatinine, EOS, glucose, hematocrit, hemoglobin, lactate, magnesium, PaCO2,
potassium, PTT, sodium, bilirubin, FiO2, PIP, and mean airway pressure. Variables were
forward filled up to 2 hours for heart rate, systolic blood pressure, and 26 hours for lab-
oratory measurements. We require at–least a heart rate and systolic blood pressure be
available for the calculation of a risk score during training.

4.2. Cohort & Data Selection for Respiratory Compromise

Patients with respiratory compromise experience disease progression at different rates largely
due to the heterogeneity of respiratory illness. Timely and accurate risk stratification in the
ICU can improve outcomes. We used a sustained period of hypoxemia as a marker for respi-
ratory compromise aimed to predict the onset of a sustained period of hypoxemia. Patients
with a sustained duration of oxygenation index ≥ 25 for six continuous hours with at least
two observations of oxygenation index during the period were considered hypoxemic. Com-
parator patients were invasively mechanically ventilated but never had oxygenation index
≥ 25 at any time during their ICU stay. Comparator patients did not have an ICD-9 code
for Congestive Heart Failure or Acute Respiratory Failure. We applied the same filtering
and data processing steps as described in section 4.1. The prevalence of hypoxemia based
on the above criteria was 11.8% in the eICU dataset.

We selected variables that are routinely acquired in the ICU, including vital signs,
laboratory measurements, and blood gas measurements. Since our task is to distinguish
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between respiratory events like hypoxemia onset from comparator patients who may or
may not have been on ventilation, we did not include ventilation features in the model
since that may be a strong confounder that easily separates the two classes. The full set of
variables included: age, heart rate, invasive and noninvasive systolic blood pressure, mean
blood pressure, temperature, noninvasive shock index (ratio of heart rate/systolic blood
pressure), central venous pressure, base excess, WBC, SaO2, AST, Bands, Basos, BUN,
calcium, ionized calcium, CO2, creatinine, EOS, glucose, hematocrit, hemoglobin, lactate,
magnesium, PaCO2, potassium, PTT, sodium, and bilirubin. We selected a random sample
from the comparator group and a sample 1-hour before the onset of hypoxemia from the
respiratory compromise group to train and validate the model.

5. Results

5.1. Evaluation Approach/Study Design

We first present a validation of the effectiveness of including prior knowledge by comparing
models trained with (λsimilarity > 0) and without (λsimilarity = 0) the similarity loss term.
We found that patients in the stepdown unit were more hemodynamically stable than other
units - they had higher systolic blood pressure, lower heart rate, and were less likely to be
on invasive mechanical ventilation compared to the average patient in a Medical-Surgical
or Cardiac Care Unit. Therefore, we developed models with and without prior knowledge
about the unit type (Stepdown vs Other). As an additional validation experiment, we
repeat this exercise with the specific intervention type with the expectation that patients
given similar interventions should be assigned to the same expert. The number of experts
and meta features used to create the adjacency matrix are described in Table 1 and results
of the validation is presented in section 5.2.

Table 1: Meta features used to create the adjacency matrix for the stepdown and interven-
tion type models.

Condition Meta features Experts

Stepdown In Stepdown Unit, In Other Unit 3

Intervention type Strong intervention, Weak intervention, PRBC, Is Stable 4

Next we present a comparison between prior knowledge guided learning (PKL), multi-
task learning (MTL), and single task learning (STL) in section 5.3. At a high level, PKL
and MTL both utilize information tangentially related to the primary objective to improve
the performance on the metric we care about, which in the present study is accurately pre-
dicting the onset of a hemodynamic intervention. Therefore, in the MTL model we evaluate
performance on the primary task of classifying hemodynamic instability by jointly solving
auxiliary tasks, which includes predicting the intervention types (Pressors, Fluids, PRBC).
In contrast to MTL, which has multiple outputs, the PKL model encodes the intervention
type into the gating network and has a single output for the primary task. The STL model
uses only the inputs to predict the onset of hemodynamic intervention without any auxiliary
information.
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Finally, we turn to the task of cohort discovery in section 5.4. Patients with hypoxemia,
specifically those who develop acute respiratory distress syndrome (ARDS), exhibit signifi-
cant heterogeneity in their disease progression and benefit from ventilation settings tailored
to the severity of respiratory compromise. Previous work by Calfee et al. (2014) identified
subphenotypes of ARDS. We therefore, extracted a cohort of patients who had sustained
arterial hypoxemia in the ICU, many of whom go on to develop ARDS, and predicted the
onset of a sustained period of hypoxemia. We design an adjacency matrix using the risk
factors themselves (x) as meta features to group similar patients. We train a model with
the similarity constraint and treat each expert as a subgroup and analyze the physiological
characteristics and outcomes within each group to assign clinically meaningful descriptions
to each discovered phenotype.

To ensure a fair comparison, we use the same type of classifier and training procedure
in all experiments, the XGAM model is used as an expert and trained until validation AUC
did not increase for 15 consecutive epochs. Models were allowed to train for a maximum
of 100 epochs, although we found models typically converged in less than 50 epochs. All
results are presented on a held-out test set representing 20% of the data. Train and test
sets were stratified by patient so a single patient was represented in either the train or test,
not both. We report the area under the receiver-operator curve (AUC), average precision,
precision at the breakeven point (where precision equals recall), and specificity.

5.2. Validation of the Effectiveness of Encoding Prior Knowledge

The prior knowledge learning (PKL) model, if effective, should learn to cluster similar
patients in the adjacency matrix to the same expert. We also expect the naive unconstrained
mixture-of-experts (MoE) to have a uniform distribution of patients with the condition
assigned to each cluster. Indeed that is what we observe in Figure 2. The assignment of
stepdown unit patients is concentrated in one expert with the similarity constraint (PKL)
but uniform across the experts without a similarity constraint (MoE). Similarly, Figure 3
shows that experts specialize on intervention types when the intervention types are used as
meta features to create the adjacency matrix.

Figure 2: Percent of patients in Stepdown units and hemodynamically unstable. Colors
indicate experts. PKL groups Stepdown unit patients to the same expert and
MoE without the similarity constraints distributes Stepdown unit patients across
all experts.
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Figure 3: Percent of patients receiving pressors, fluids, or PRBC interventions in each ex-
pert. Colors indicate experts.

PKL MoE
0

20

40

60

80

100

%
 o

f P
re

ss
or

s P
at

ie
nt

s

PKL MoE
0

20

40

60

80

100

%
 o

f F
lu

id
s P

at
ie

nt
s

PKL MoE
0

20

40

60

80

100

%
 o

f P
RB

C 
Pa

tie
nt

s

PKL MoE
0

20

40

60

80

100

%
 o

f S
ta

bl
e 

Pa
tie

nt
s

5.3. Comparison with Multitask Learning

Table 2 compares the PKL model with a full-complexity MTL model (deep non-linear
interactions) and shows equivalent AUCs and slightly better positive predictive value in
classifying hemodynamic instability in a subgroup of the data: patients in the stepdown
unit. The PKL model was trained with stepdown unit as a meta feature (Table 1). The
MTL model was trained to classify patients in the stepdown unit as a subtask along with
the main task of predicting a hemodynamic intervention. We also find that including prior
knowledge into the model, either through the adjacency matrix of the PKL model or through
a multitask framework results in significantly better model performance compared to single
task model like the naive MoE without constraints.

Table 2: Model performance on stepdown unit subgroup. Prevalence=14%.
Model AUC AP PPV Sp

PKL 0.746 0.102 0.172 0.979
MTL 0.75 0.09 0.168 0.975
MoE 0.739 0.096 0.198 0.980

On patient subgroups with Pressors, PRBC, or Fluid interventions, Table 3 reveals the
need for careful inclusion of prior knowledge into the model. The primary task was to
predict the onset of a hemodynamic intervention, which includes the the intervention type
in the label. The subtasks are too similar to the main task to yield significantly better
performances on the intervention type subgroups. The PKL, MTL, and naive MoE model
without constraints all perform similarly well across all subgroups.

Finally, we compare the model performance between single-task (MoE), MTL, and PKL
models on the primary task of predicting hemodynamic interventions. Notably, the PKL
model performance is equivalent to the MTL model in predicting hemodynamic interven-
tions when using the intervention types as subtasks in the MTL formulation or encoding
the intervention types in the adjacency matrix in the PKL formulation (Table 4). The MTL
model includes deep non-linear interactions with a hidden state representation of the data
that is difficult to interpret. By contrast, the PKL and MoE models are trained with only
pairwise interactions to preserve interpretability as described in section 3.3. Therefore, it
is also noteworthy that the models perform equally well on this task despite the differences
in model complexity.
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Table 3: Model performance on intervention type subgroups at the breakeven point.
Model Intervention type AUC AP PPV Sp

PKL Pressors 0.892 0.586 0.551 0.957
PRBC 0.892 0.227 0.279 0.979
Fluids 0.723 0.140 0.202 0.960

MTL Pressors 0.889 0.578 0.55 0.957
PRBC 0.901 0.245 0.296 0.98
Fluids 0.721 0.128 0.195 0.959

MoE Pressors 0.890 0.584 0.551 0.957
PRBC 0.891 0.227 0.271 0.979
Fluids 0.725 0.136 0.200 0.960

Table 4: Predicting hemodynamic interventions. MTL and PKL have similar performance.

Model AUC AP PPV Sp

XGBoost 0.836 0.571 0.538 0.918
XGAM 0.839 0.575 0.543 0.919
MTL 0.843 0.586 0.552 0.921
MoE 0.844 0.586 0.553 0.921
PKL 0.844 0.587 0.555 0.921

5.4. Cohort discovery: Phenotypes of respiratory compromise

Patients with respiratory compromise experience disease progression at different rates largely
due to the heterogeneity of respiratory illness. Timely and accurate risk stratification in
the ICU can potentially improve outcomes. We explore phenotyping using the PKL model
where the adjacency matrix is designed using the raw feature values. Individuals that share
common physiological characteristics based on vital signs and laboratory measurements are
grouped into the same expert. This enables the model to discover cohorts within the data
that are pertinent to the task.

We trained a model with 4-experts using the raw feature inputs to group similar patients
into the same expert. The overall model AUC in predicting sustained hypoxemia was
0.948 (AP: 0.757, PPV: 0.693, Sp: 0.962). Table 5 characterizes the clinical outcomes for
patients in each phenotype discovered by the model. We adopt the term phenotype to
refer to experts in the PKL model where individual samples are assigned to the expert
with the highest gating probability. Phenotype 1 are stable patients with 1.2% of these
patients developing sustained hypoxemia. Phenotype 2 are also mostly stable patients
(6.2% develop sustained hypoxemia) but but are being measured with an invasive arterial
line (69.4%). Phenotype 3 and 4 contain 34.1% and 39.1% hypoxemia patients, respectively,
and represent the subgroup with the most severe outcomes including, days on invasive
mechanical ventilation, ICU length of stay, and hospital mortality.

We chose a simple method to demonstrate the utility of the PKL model to discover
cohorts by assigning patients to experts with the highest gating probability. Figure 4 shows
that Expert 2 gating probabilities had higher variability compared to other phenotypes —
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these were hard to classify patients with low BP but not respiratory compromise. Gating
probabilities for stable patients in Phenotype 1 had higher confidence and were easier to
classify.

Figure 4: Distribution of gating probabilities.
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We next wanted to understand the biological characteristics that distinguished each
phenotype. This type of analysis is particularly meaningful using the PKL model since
samples are grouped by the similarity of their vital signs and laboratory measurements.
We do this by examining the mean values of the variables used in the model for each
phenotype. Figure 5 shows the continuous variables for the four phenotypes discovered
by the PKL model, sorted by values in phenotype 1 - the most stable cohort. Phenotype
1 was characterized by high oxygen saturation, normal blood pressure, low lactate levels,
and normal pH. Phenotype 2 are patients with low blood pressure but otherwise normal
arterial blood gas variables. Phenotype 3 are patients with hemodynamic instability and
respiratory compromise. They have shock (low blood pressure, high heart rate, high shock
index), low hematocrit and hemoglobin counts, and exhibit signs of respiratory compromise
with high respiratory rate, low arterial oxygen saturation, and abnormally low pH and base
excess. Lactate and bicarbonate were normal in phenotype 3. Compared to phenotype
3, phenotype 4 had abnormally high PaCO2, high bicarbonate, elevated base excess, and
very low arterial oxygen saturation. In contrast to phenotype 3, phenotype 4 patients have
normal blood pressure, heart rate, hemoglobin, and hematocrit values suggesting phenotype
4 is not at risk of shock.

To summarize the discovered phenotypes:

• Phenotype 1: Stable patients with normal physiology and low risk of developing hy-
poxemia

• Phenotype 2: Low blood pressure with invasive arterial line but no signs of respiratory
compromise.

• Phenotype 3: Severe subgroup with respiratory compromise and shock.

• Phenotype 4: Respiratory compromise but no-shock.

If we compare the supervised clustering provided by the PKL model to an unsupervised
gaussian mixture model (GMM), we clearly see the benefits of the supervised approach. Fig-
ure 6 shows the differences in standardized values of each continuous variable by phenotype
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Table 5: Clinical outcomes in phenotypes of respiratory compromise. The table shows
counts and percentage of samples in each phenotype for categorical variables, oth-
erwise median and interquartile range for numeric variables.

Characteristic Phenotype 1 Phenotype 2 Phenotype 3 Phenotype 4

Patients 14441 5028 3755 2665
Hypoxemia 175 (1.2) 327 (6.5) 1282 (34.1) 1042 (39.1)
Age (y) 66.0 (56.0, 75.0) 59.0 (50.0, 70.0) 60.0 (51.0, 69.0) 52.0 (40.0, 66.0)
ICU LOS (days) 1.1 (0.7, 2.2) 0.8 (0.5, 1.7) 2.0 (0.8, 4.5) 2.8 (1.1, 6.1)
Hospital Mortality 1343 (9.4) 764 (15.4) 1901 (51.3) 993 (37.7)
APACHE 64.0 (49.0, 85.0) 63.0 (47.0, 88.0) 91.0 (67.0, 118.0) 81.0 (58.0, 104.0)
Invasive ventilation (hours) 20.4 (9.6, 57.6) 17.8 (8.1, 50.7) 74.5 (26.5, 209.6) 112.2 (34.7, 311.8)
Invasive A-line 6318 (43.8) 3487 (69.4) 2056 (54.8) 1533 (57.5)
Sepsis ICD-9 386 (2.7) 177 (3.5) 454 (12.1) 289 (10.9)
Hypoxemia ICD-9 249 (1.7) 132 (2.6) 373 (9.9) 324 (12.2)
Trauma ICD-9 156 (1.1) 93 (1.9) 256 (6.8) 156 (5.9)
Respiratory failure ICD-9 146 (1.0) 212 (4.2) 925 (24.7) 826 (31.0)
Pneumonia ICD-9 949 (6.6) 345 (6.9) 849 (22.6) 727 (27.3)
COPD ICD-9 711 (4.9) 222 (4.4) 334 (8.9) 279 (10.5)
CHF ICD-9 35 (0.2) 33 (0.7) 191 (5.1) 215 (8.1)

for a GMM model with 4 clusters. Phenotype 3 is possibly the only clinically interesting
group because these patients exhibit signs of hypotension and shock with low blood pres-
sure, low hemoglobin and hematocrit, and high heart rate. However, we don’t observe a
group with clear signs of respiratory compromise like in the PKL model. Comparing Figure
5 with Figure 6 shows that phenotypes discovered with the PKL model are more clinically
meaningful with a group of patients that have poor oxygenation exhibited by low SaO2
and high PaCO2. The phenotypes discovered by the PKL model are clearly separated into
a stable group (phenotype 1), a group with poor perfusion (phenotype 2), a group with
poor oxygenation (phenotype 4), and a severely ill group with both poor perfusion and
oxygenation (phenotype 3). The unsupervised approach does not capture these clinically
meaningful phenotypes.

6. Discussion

We presented an approach to encode prior knowledge into a neural network and demon-
strated that experts specialize according to the meta features used to design the adjacency
matrix. Our method is an alternative to MTL with the gating network of a mixture-of-
experts model learning clinically meaningful representation of the data through deliberate
clustering, in contrast to MTL where useful representations are learned only as a side effect
of solving a multi-label classification problem. We assume that only the primary task is rel-
evant in the MTL framework and the sub-tasks are only used to improve the representation
learning capacity of the network.

Why does PKL work? To understand why PKL works, we need to examine the under-
lying mechanisms. PKL is a mixture-of-experts with a regularization on the gating network
to approximate a specified adjacency matrix. 1) MoEs with sparse gating probabilities en-
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Figure 5: Differences in standardized values of each continuous variable by phenotype in
the PKL model. Values are scaled to have mean zero and unit standard deviation.
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courage localization by allocating a new case to a small number of experts. The experts are
considered local in that the contribution of one expert is decoupled from the other experts,
although the weights of all experts are learned through joint optimization – learned globally,
acts locally. With the added adjacency matrix regularization, the assignment of samples
to experts is further localized based on prior knowledge (see Stepdown unit experiments in
Section 5.2). 2) PKL is a form of multilevel modeling that learns risk functions on sub-
groups of the data (i.e. random effects (Gelman and Hill (2006)), stratified models (Tuck
et al. (2019))). A practical example: blood oxygenation of 100% is expected in ventilated
patients with high FiO2 and a model would typically learn to assign high risk to SpO2 at
100%. However, non-ventilated patients would be considered healthy with SpO2 at 100%
and should be assigned a low risk. When ventilation status is used to stratify patients in
the adjacency matrix, experts in the PKL model would learn separate weights for SpO2 on
the ventilated and non-ventilated groups, similar to classic multilevel modeling.
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Figure 6: Gaussian Mixture Model unsupervised clustering. Differences in standardised
values of each continuous variable by phenotype. Values are scaled to have mean
zero and unit standard deviation. Compare with PKL model in Figure 5.
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Phenotyping The respiratory phenotypes discovered by the PKL model in section 5.4
represent groups of patients that share similar physiological traits. The underlying disease
heterogeneity is reflected in the percent of patients with hypoxemia in each phenotype. Ta-
ble 5 shows that patients with Phenotype 4 are more likely to develop hypoxemia (39%),
compared to the less severe Phenotypes 2 (6.5%) and 3 (34.1%). The phenotypes discovered
by the PKL model reflect the known subphenotypes of ARDS, which are characterized by
shock and metabolic acidosis (Calfee et al. (2018, 2014); Famous et al. (2017)). Compar-
ing ICD-9 codes between Phenotypes 3 and 4 show high prevalence of sepsis patients in
Phenotype 3 and higher prevalence of hypoxemia, respiratory failure, and pneumonia in
Phenotype 4. Sepsis often manifests with physiological signs of shock. Figure 5 reinforces
the distinction between Phenotypes 3 and 4, specifically, Phenotype 3 is characterized by
low hemoglobin, hematocrit, high heart rate, and low blood pressure – signs of lack of
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perfusion. In contrast Phenotype 4 patients have normal hematocrit, hemoglobin, blood
pressure, and heart rate suggesting the underlying disease mechanism may be unrelated to
perfusion.

Embedding Decision Paths from Boosted Trees The expert model we used com-
bines gradient boosted decision trees (GBDT) with neural networks. GBDT algorithms,
like XGBoost and LightGBM, are ensemble models of decision trees, which are trained
in sequence. In each iteration, GBDT learns the decision trees by fitting the negative
gradients (also known as residual errors). The decision paths to leaf nodes represent an
interpretable and discriminative rule set that we find are very powerful features. For ex-
ample, αI[xage > τage]I[xlactate > τlactate] represents a depth–2 tree along the decision path
selecting age and lactate, where τ is a learned threshold and α is the risk assigned to the
interaction. α is typically the value at the terminal leaf node of a decision tree. There are
2MT potential decision paths leading to a terminal node for a GBDT model trained with T
rounds of boosting and depth–M trees. We treat each decision path as a categorical entity
and embed these entities in a neural network to re-learn the risks (α) at the terminal nodes.
The learning procedure maintains the interpretability of tree based models but uses neural
network components to refine the risk values assigned to each leaf node in the original trees.

By treating the learned decision paths as features, α effectively assigns a risk to each
leaf node of the decision tree, similar to Wang et al. (2018). This procedure is unlike model
stacking, which uses predictions from a base model to train subsequent models (Sill et al.
(2009)). Embedding decision paths is also unlike decision tree distillation, which attempts
to represent the leaves as nodes on a neural network (Ke et al. (2019)). Also in contrast
to He et al. (2014), where leaf indices were treated as categorical variables in a logistic
regression, we treat the decision paths as part of a vocabulary to be embedded in a multi–
dimensional space. Embedding the decision paths reveals intrinsic continuity of the data by
putting similar decision paths close to each other (Guo and Berkhahn (2016)). Maintaining
a growing vocabulary of decision paths also enables transfer learning across tasks, which is
particularly useful in the small–data setting. In practice, we see consistent gains in model
performance over the original GBDT model from which the decision paths were extracted
and we find significant improvement over training neural networks with the raw inputs.

Future work A possible future direction would be to use clinicians to derive rules that
can be used as meta features to stratify patients for a truly hybrid expert-augmented ma-
chine learning model. The gating network would learn to imitate clinician knowledge in
subgrouping patients while the expert networks specialize on the task within each sub-
group. Another extension of this work is to the time series domain by using a recurrent
neural network as the gating network to encode the clinical time series.

Limitations The number of experts in the MoE model is a nuanced hyperparameter
and one of the areas this work can be improved upon is a more rigorous method to select
the number of experts. Additionally, we take the argmax of the gating probabilities as a
pseudo-cluster assignment, which has some limitations. Specifically, on difficult cases where
the gating probabilities are uniform and the gating network is uncertain about the cluster
assignment. An alternative to the softmax gating is the noisy top-K gating introduced
in Shazeer et al. (2017) which can solve this problem. We experimented with the noisy
top-K gating and found that it can be easily substituted-in for the softmax gating. By
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setting the number of selected experts to 1 will force the gating network to select a single
expert for each sample. This extreme specialization through hard partitioning comes at the
cost of worse model performance compared to the soft partitioning given by the softmax
transformation. Although the lower bound on model performance using XGAM experts is
the accuracy given by the XGBoost baseline.
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