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Abstract

Disease progression models are important computational tools in healthcare and are used
for tasks such as improving disease understanding, informing drug discovery, and aiding in
patient management. Although many algorithms for time series modeling exist, healthcare
applications face particular challenges such as small datasets, medication effects, disease
heterogeneity, and a desire for personalized predictions. In this work, we present a disease
progression model that addresses these needs by proposing a probabilistic time-series model
that captures individualized disease states, personalized medication effects, disease-state
medication effects, or any combination thereof. The model builds on the framework of an
input-output hidden Markov model where the parameters are learned using a structured
variational approximation. To demonstrate the utility of the algorithm, we apply it to
both synthetic and real-world datasets. In the synthetic case, we demonstrate the benefits
afforded by the proposed model as compared to standard techniques. In the real-world
cases, we use two Parkinson’s disease datasets to show improved predictive performance
when ground truth is available and clinically relevant insights that are not revealed via
classic Markov models when ground truth is not available.

1. Introduction

Disease progression models are an important tool for understanding the characteristics and
progression trends of a wide variety of diseases. Applications of disease progression models
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include drug development (Mould, 2012), patient care management (Tangri et al., 2011),
and better understanding disease mechanisms (Lorenzi et al., 2019). Prediction tasks,
including disease progression as well as the occurrence of specific outcomes, is a critical
element of all of the latter. Disease progression modeling faces challenges that lead to
specific algorithmic requirements. Here, we highlight and discuss four specific challenges:
small datasets, a modeling goal of uncovering states, confounding of symptom presentation
due to medication effects, and a desire to personalize prediction. We discuss each of these
in more detail below.

e Small datasets. Often, the amount of data available for modeling tasks is limited
due to various causes such as the cost of acquiring the data, the enrollment burden
on patients, study attrition, and data privacy issues. These small datasets motivate
the incorporation of prior knowledge into the model structure.

o Uncovering disease states. In many scenarios, disease progression models aim
to both learn a quantitative model of future patient state along with salient disease
states. Although some diseases have clearly definable pathologic stages, such as in
cancer, many diseases do not have this characterization and discovering such stages
is an important research goal. These states can be used for downstream tasks such as
cohort generation and improved disease understanding.

e Confounding due to medication effects. The datasets used for disease progres-
sion modeling are often complicated by medication effects, particularly in settings
leveraging observational data. Medications may alter the symptoms of the patient,
the underlying disease state, or both.

e Personalized predictions. For heterogeneous diseases, there are many factors which
may impact a particular patient’s disease progression, necessitating the modeling of
personalized trajectories.

Disease progression models that address the aforementioned critical factors are partic-
ularly relevant for chronic diseases which are heterogeneous in both their manifestations
and progression. In this setting, simple predictors of future disease state are ineffective.
Parkinson’s disease (PD) is a useful case study for understanding the importance of dis-
ease progression modeling. PD is a chronic progressive neurodegenerative disorder with
heterogeneous symptoms that may affect both motor and non-motor function. Two clin-
ical subtypes of PD have been proposed (Zetusky et al., 1985), however the stability and
progression of these subtypes is not well understood (Simuni et al., 2016). There are no
medications that cure PD, however medications that improve quality of life by address-
ing common symptoms are available. The degree of response to medications, duration of
response, and tolerance of medications vary from patient to patient. Disease progression
models for PD would enable all of the benefits discussed above: improved disease under-
standing, patient care management, and drug development. PD is characteristic of many
chronic conditions (e.g. Alzheimer’s disease, diabetes, ALS) where no disease-modifying
therapeutics are available and is used to demonstrate our proposed approach.

The goal of the work is to model disease progression while taking medication effects and
personalized disease trajectories into account. Motivated by PD and many other conditions
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for which there are currently no disease-modifying therapeutics, we focus on the scenario
where medication does not alter the underlying disease but does alter the observations.

Generalizable Insights about Machine Learning in the Context of Healthcare

In this work, we propose a probabilistic disease progression modeling framework to address
the needs discussed above. Our models have the ability to account for personalized state
and medication effects while learning disease states. This enables us to model heterogeneity
in the disease population, a common characteristic of complex diseases. By carefully choos-
ing the model structure, the parameters of these models can be learned without access to
large datasets. Probabilistic models are particularly useful for disease progression modeling
when one of the goals is to learn underlying disease states. Probabilistic models also have
the ability to incorporate prior information, provide natural handling for missing data, and
enable parameter uncertainty calculations. Because of these advantages, our research fo-
cuses on adapting probabilistic time series models for disease progression modeling. We rely
on black-box variational inference and employ variational approximations that retain the
model structure to perform accurate learning and inference. We demonstrate our approach
on a synthetic dataset as well as two Parkinson’s disease datasets.

2. A personalized and medication aware disease progression model

Our proposed model builds on the hidden Markov model (HMM). A hidden Markov model
describes sequential data through a series of transitions between latent states, with each
state describing distinct characteristics of the observed data instances. An HMM has two
primary components: (1) the transition model which describes the evolution of states over
time and (2) the observation model which describes the manifestation of the state in ob-
served space. Here, the latent states are denoted by z, with z; corresponding to patient
i’s full trajectory and z;; corresponding to an element in that trajectory at time ¢. Anal-
ogously, observations are denoted by x and medications are denoted by d. See Table 1 for
additional details of the mathematical notation.
In our work, we use a standard transition model,

Zi1 ~ Cat(ﬂ'), Zit | Zit—1 :j ~ Cat(Aj), (1)

where m € R, S mr=1and A€ REXEK K Aj = 1. Cat(-) indicates a categorical
distribution. An HMM with a Gaussian observation model is specified as x;; | ziy =
k ~ N(uk, Xk), where N (p, X) represents a multivariate Gaussian distribution with mean
p € RP and covariance ¥ € RP*P . Below, we present observation models to account for
systematic personalized and medication effects.

Medication-aware HMMs Assuming that medication information (d; ;) is available at
each time step along with the observed data x;;, the proposed observation model is

Tiy | zig =k, dig ~ Nk + vidit, Xi), (2)

where v, € RP*M where M is the number of medications. The additive structure models
state-specific deviations in the observed data from the disease state based on the presence
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of medication. The exact details of the implementation will depend on the expected impact
of the drug. For instance, if the medication effect is not a function of the medication dose,
d;; can be binary. Alternatively, the effect is scaled based on the dose. If the effect of
medication does not vary along the disease trajectory, the model can be altered such that
v, = v Vk.

For complex diseases, we expect medication responses to vary both among patients
and also within the same patient along with the severity of the disease. We can modify
Equation 2 to account for such effects by introducing state-specific effects for each patient,
Tip | zig = k,diy ~ N (g + vigdis, Xi). However, the large number of parameters v; ,
makes learning challenging in such a model. Indeed, we expect to observe most patients in
only a subset of all possible states, and inferences of v; ;, based on such data are likely to be
unreliable. To circumvent this problem, we propose an alternate model where we factorize
the medication effects into state-specific and patient-specific components,

Tig | zig =k, dig ~ N (g + (v +mg)dig, Xi). (3)

The state specific coefficients vy are shared across observations assigned to state k, while
m; is shared across all observations from patient ¢. Such a factorization allows us to share
statistical strength both between observations assigned to a common state and observations
belonging to the same patient, thus providing more reliable inferences of personalized state
specific medication effects.

Personalized HMMs To allow patients to deviate from the population at large, not as
a function of medication, we introduce patient specific latent variables r; € R to modify
the mean response of patient 1,

Tit ’ it = k ~ N(Mk + T, Ek). (4)

This enables personalization in how states might manifest in an individual.

It is natural to consider a more general variant that combines Equations 2 and 4 to
account for both medication independent heterogeneity in the population as well as person-
alized medication effects,

Tig | zig = ko dig ~ N (g + 75 + (o) +mg)dig, Si). (5)

For ease of exposition, we frame the following discussion and the description of our learning
algorithm in the context of this model (Equation 5) which subsumes the medication-aware
and personalized models. Learning and inference in the models described via Equations 2
and 4 are analogous.

Priors We place Gaussian priors on the personalized effects (m; and r;) and the state-
specific medication effects (vy)

m; NN(O,U,QTLID), Ty~ N(0,0’?ID), vV ~ N(0,0’EID). (6)

2
m

encode our prior belief that while heterogeneity among patients and between states exists,
the scale of this heterogeneity is small and the personalized effects do not deviate too far

. . . . . . 2
By employing zero mean Gaussian priors with appropriately chosen variances o, and o we
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Figure 1: The graph for the proposed model: z are the latent states, x are the observed
variables, d are observed medications, r are the personalized state effects, and
m are the personalized medication effects. ¢, and vy are parameters of the
observation model. A and 7 are parameters of the transition model.

N | Number of patients, indexed i € {1,..., N} A | Variational parameters

T | Number of time points, indexed ¢t € {1,...,T'} 0 | Model parameters

D | Dimensionality of the observations per time point 7 | Initial state distribution

K | Number of latent states A | State transition distributions
z | Observed clinical data v | State medication effects

z | Latent states ¢ | State parameters including
d | Observed medication data Ui, state means, and X,

m | Personalized medication effects state covariance

r

Personalized state effects

Table 1: Summary of notation used throughout the paper.

from the overall population. The prior over v regularizes its value and encourages the
model to use the personalized effects m; to explain the observed data.

Equations 1, 5, and 6 completely describe our model. The model parameters are § =
{A, 7, g, Xk, g, 02,02} and the random variables are {z, z, m,7}. The resulting graphical
model is shown in Figure 1. We refer to it as the personalized input-output hidden Markov
model (PIOHMM) owing to its similarity to the input output HMM (IOHMM) (Bengio and
Frasconi, 1995)1.

1. To arrive at IOHMM from PIOHMM, set r; = 0, and m; = 0.
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3. Learning Algorithm

We use variational methods to learn the proposed model. We approximate the poste-
rior distributions over the local latent variables ({z;, mi,m}i]\il) with tractable variational
approximations and rely on point estimates for the global parameters (6). Our choice of
performing point inference for global parameters, those shared by more than one individual,
while inferring full distributions for local random variables is motivated by the expectation
that local variables which are only informed by a individual’s data would exhibit higher un-
certainty. We employ a structured variational approximation that retains the dependence
between z; and m;, r;, and also, crucially, the temporal structure within z;,

N
q(z,m,r | ZE,)\) = HQ(mz ‘ Amz)‘](rl | )\Tz)Q(Zl | xivmhri)v

N
Il
i

(7)

!
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q(mi | Mmy)q(ri | Ary)a(zi | wivmi,ﬁ‘)H (
=2

Tj,y My, Ti)v

where A are the variational free parameters. We use Gaussians with full covariances to
A

parameterize the variational distributions, q(m; | Am,;) 2 N (mi | fim,, Lim LTZ) and q(r; |
Ar)) 2N (75 | firg, L, ﬁTTZ), L. are lower triangular matrice, and use categorical distributions
for z; ;.

We minimize the Kullback-Leibler divergence between the variational approximation and
the true posterior as well as learn the model parameters, § by maximizing the corresponding

evidence lower bound (ELBO),
E(Qv )‘) = Eq(z,m,ﬂa:,/\) []Ilp(x, Z,m,r | 0)] + H[Q(Za m,r | z, )‘)]a (8)

where Hg(-)] = —E,[Ing(-)] is the entropy and the log joint distribution is (see Figure 1),

N N N
bup(a, .y |6) = 3 Inp(ms | 7h)+ 3 Inprs [ 8) + 3 nplein | 7+

N T
E E hlp zlt|z7,t 17 Zit—1 +§ E lnp x2t|zlt7 1t>mz>rz>vz”a¢z”)

i=1 t=2 =1 t=1
9)

and ¢Zi,z = {lu‘zi,t’ Ezi,t}'

We maximize the ELBO via coordinate ascent alternating between updates to varia-
tional parameters A and model parameters 6. Our structured variational approximation,
Equation 7, renders expectations required to compute the ELBO intractable. We deal with
this issue by using Monte Carlo approximations of the offending expectations and relying on
pathwise gradient estimators to differentiate through the sampling process. In particular,
we approximate,

Eqzomiriles (i | 20mi, 10, 0)] = < Y Byaifasmimms ro=r) [Ip(@i | 25, mi = mi, i = 15,0)],

|+~
1Mo

(10)
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where m? = IA/mZanl + fim,;, T = ﬁrieﬁi + fir; and €, ~ N(0,I) and €}, ~ N(0,I). Cru-
cially, we do not need to use a Monte Carlo approximation for evaluating the conditional
expectation in Equation 10. Instead we note that we can exactly compute the conditional
distribution q(z; | z;, m;,7;), using the forward-backward algorithm (Baum, 1972; Rabiner,
1989), a dynamic programming algorithm widely used to learn hidden Markov models, and
efficiently compute the conditional expectation by exploiting the Markovian dependencies
in the model. These operations are identical to those needed by standard expectation max-
imization training of HMMs (see appendix for additional details). Given the Monte Carlo
expectation we take a stochastic gradient ascent step to update the variational parameters
A (Kingma and Ba, 2015). Conditioned on A, maximizing the ELBO with respect to 6
can be done via fixed point updates (see appendix for details). The overall algorithm is
summarized in Algorithm 1.

Algorithm 1: Training procedure of PIOHMM
Input: Model p(D; ), variational approximations q(m; | Am), q(ri | A\r)
Output: Optimized model and variational parameters, 6, A
Initialize parameters {m, A, vk, g, Sk, 02,02} Vk € K;
Initialize variational parameters {7, L7, if, L} Vi € N
for 1,..., Njter do
Sample €, ~ N(0,I),e ~N(0,I) Vie N;
Set m$ = L, €5, + fum;, 7§ = Ly,€5, + fir, Vi€ N;
Use forward-backward algorithm to calculate q(z; | z;, m;, ;) Vi € N;
Update A"t <~ ADAM(A", L(\,0));
Use fixed point equations to update 6.
end

4. Related Work

Markov models are not the only class of models that have been considered for disease pro-
gression modeling. Several authors have considered Gaussian process (GP) models (Lorenzi
et al., 2019; Schulam and Saria, 2015; Futoma et al., 2016). GP models are convenient
in that they do not require samples to be observed at a fixed rate, are non-parametric
probabilistic models, and have been shown to be capable of personalization (Schulam and
Saria, 2015). However, GP based models are typically unable to discover discrete states of
a disease, one of the goals of our work. Similarly, deep learning methods have also been
proposed for disease progression modeling (Che et al., 2018; Eulenberg et al., 2017; Pham
et al., 2017). While these approaches are able to predict future clinical features, they also
do not discover discrete states of progression of a disease. Moreover, they typically need
large datasets often requiring tens of thousands of patients records, as is the case in the
cited works.

HMMs are well suited to disease progression modeling, particularly when there is an
interest in discovering stages of progression. Several studies have leveraged HMMs and
variations for disease progression modeling in the past, e.g. Jackson et al. (2003); Sukkar
et al. (2012); Guihenneuc-Jouyaux et al. (2000). Wang et al. proposed continuous time
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HMMs to model the progression of chronic disease. Sun et al. leveraged this approach
to develop an integrated Huntington’s disease progression model. However none of these
previous approaches model system inputs, such as medication, or account for heterogene-
ity in symptoms between patients in a cohort. Bengio and Frasconi proposed input-output
HMMs (IOHMM) as a way to model an observed control signal for a system. In an IOHMM,
the inputs influence the observed and/or latent variables. Our work extends IOHMMs to
account for medication independent patient heterogeneity while leveraging their ability to
model external inputs to account for non disease modifying medications. Altman (2007)
worked on extending HMM models to account for personalized effects and external inputs.
However, unlike us, they relied on Monte Carlo expectation maximization to learn these
models, which typically requires running a MCMC sampler within each expectation step
and is difficult to scale to both high dimensional data and number of patients. In con-
trast, our stochastic gradient variational inference approach easily scales along both these
dimensions. Finally, recent work by Alaa and van der Schaar (2019) proposes to relax the
first order Markovian assumption made by typical HMM based disease progression models
and personalize progression dynamics across patients. Our contributions are orthogonal, we
personalize HMM observation models rather than dynamics. A combination of these two
advances comprises an interesting future research direction.

5. Results

To demonstrate the algorithm, we apply it to three test cases: a synthetic dataset, a real-
world dataset of sensor data from Parkinson’s patients with labeling and a real-world dataset
of clinical data from Parkinson’s patients without labeling. In all three cases we demonstrate
that the proposed model outperforms other HMM variants.

5.1. Synthetic Data

We generate data by considering the following model. First, generate a sequence of latent
states governed by the distributions, z;1 ~ Cat(m), 2zt | zit—1 = j ~ Cat(A;). Then
generate observations using, z;; | zit = k ~ N (ug, Xi). For each sample 4, a personalized
offset is sampled, r; ~ Unif[—b,b]. Lastly, structured noise is added to the observation
% | @i,y ~ N(z;+r;,X7), where Xp is specified via a squared exponential kernel, x(t,t") =
% exp 7(’52;; oiy Note that this model is not exactly the same as the proposed model and
that when b = 0, the observed data is a noisy observation of an HMM with correlated noise.

To simplify the visualization of the results, the dimensionality of the observed data is
fixed to one and the number of latent states is two. 100 samples of length 20 are generated
as described above and experiments are performed for b = 0,1,5. The true state means are
0 and 2 and the state variance is 0.1. The results are shown in Figure 2. The experiment
demonstrates how the personalized HMM performs no worse than the HMM when person-
alized effects are not present, and is much better at recovering the state dynamics when
personalized effects are present. Because the HMMs is not able to capture personalized dif-
ferences, the model compensates by inflating the variance of the states and therefore does
a poor job of capturing state dynamics.
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Figure 2: Results for simulated data. The three rows correspond to different distributions
of r; ~ Unif[—b,b] and the four leftmost columns correspond to samples. The
rightmost column plots the inferred r; vs. the sample index. When there are no
personalized effects, the personalized and classic HMMs perform approximately
the same and the personalized model learns personalized parameters close to zero,
as shown in the last column. When a personalized offset does exist, the classic
HMM incorrectly assigns states and compensates for the personalization with
large variances, as shown in rows two and three. When personalized effects are
larger than state effects, a prior to regularize the state effects is appropriate. An
analysis of the inferred r; enables the practitioner to identify samples with large
deviations, which may be of special interest.

5.2. Application: Parkinson’s Disease

To demonstrate the approach on a real-world dataset, we apply the method to two datasets
of Parkinson’s disease patients. As noted in the introduction, Parkinson’s disease (PD) is
a chronic neurodegenerative disorder (Jankovic, 2008). PD is characterized by a variety of
motor and non-motor features and a definitive diagnostic test is not available. Typically
diagnosis depends on the presence of specific clinical features, namely rest tremor, rigid-
ity, bradykinesia, and/or postural instability (Jankovic, 2008; Postuma et al., 2015). The
heterogeneity of PD symptoms and progression is well-documented but poorly understood
(Zetusky et al., 1985; Kehagia et al., 2010). These features make the disease a good fit for
our method to learn a clinical representation of disease states as well as how these states
evolve in time.

In our first study, we demonstrate the algorithm for the problem of identifying freezing
of gait. Freezing of gait is a severe complication of PD resulting in falling, reduced mo-
bility, and increased disability. Identifying objective ways to accurately detect it thus has
important clinical implications. In this setting, we have access to ground truth labels from
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clinical annotators and the relevant states are known: standing, walking, and freezing. In
the second study, we apply the algorithm to the more general problem of discovering PD
disease states. We describe the resulting states in the context of the current PD literature.

5.2.1. CASE STUDY WITH LABELED STATES

Data Description As noted above, the goal of this study was to identify when a patient
is experiencing freezing of gait. The study uses the Daphnet Freezing of Gait Dataset, a
benchmark dataset which contains information from wearable acceleration sensors (Béachlin
et al., 2010). Ten patients are included in the dataset and each has 9 measurements:
horizontal forward, horizontal lateral and vertical acceleration from ankle, thigh and trunk
sensors. We follow the data processing procedure presented in Béchlin et al. (2010) and
transform overlapping time windows into the freeze index for each patient and sensor. T'wo
patients have no freezing of gait events and are removed from our study. The time trajectory
of each patient is then divided into training and testing sequentially with the first 400 time
steps (200 seconds) used for training and the subsequent 400 time steps used for testing.

Model Description For this application, we choose the observation model
Tig | zig =k ~ N (pe + ribg, Sp) (11)

which has personalized state effects. This is motivated by the original study which notes
that their detection model has variable performance due to the different walking styles of
the patient. There are three pre-defined states: standing, walking, and freezing of gait.
We do not expect personalized differences in standing, therefore we introduce a variable
b =1[0,1, 1], such that r; has no effect for one of the states. Note that beyond specifying b,
no special care is taken in initializing the model during training. A second model using a
classic hidden Markov model is also trained for comparison. This model has the observation
model

Tt ’ Zit = k~ N(Mk, Ek). (12)

Results The two models are compared using several metrics. The test log likelihoods
are -238181 and -238660 for the personalized and standard models, respectively, implying
the personalized model is better at describing the data. Figure 3 shows an example of the
freeze index for one sensor and the corresponding prediction for patient 9 along with model
metrics. The receiver operating curve is calculated for each model using the belief state of
the freezing state
p(zit = FOG ‘ wi,l:t)- (13)

The AUCs are 0.725 and 0.705 for the personalized and standard model, respectively, indi-
cating slightly better performance for the personalized model.

Qualitatively, the inferred personalized state effects, r;, can be used to identify outlier
patients, who may be of interest. Here, the largest r; corresponds to the patient with the
largest Hoehn and Yahr score, a measure of PD severity not used in model training.

5.2.2. CASE STUDY WITHOUT LABELED STATES

Data Description For this study, we use the Parkinson Progression Marker Initiative
(PPMI) dataset (Marek et al., 2011). PPMI is an observational, longitudinal, multi-center

10
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Figure 3: Results from the case study with labeled states. Moving from left to right, the
upper plot shows the freeze index for the ankle sensor acceleration in the vertical
direction. The lower plot shows the state prediction (dotted line) compared to
ground truth (solid line). Note that the ground truth labels do not differentiate
different tasks and only have information for freezing of gait (FOG) or no freezing
of gait. The right plot shows the receiver operator curve for the test data using
the personalized and standard hidden Markov models using the belief state for
the freezing state. The AUCs are 0.725 and 0.705, respectively.

study that enrolled 423 PD patients. PPMI collects clinical, imaging, and biospecimen sam-
ples. In this analysis, we focus on the clinical assessments, specifically those measured via
the Movement Disorder Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS)
(Goetz et al., 2008). The MDS-UPDRS is a four part assessment that contains a combina-
tion of patient reported- and physician-assessed measures. The four parts are: (I) non-motor
experiences of daily living, (IT) motor experiences of daily living, (III) motor examination,
and (IV) motor complications. Each item on the scale is rated from 0 (normal) to 4 (severe).
For our study, we do not use part IV therefore the observed data has 59 dimensions.

Levodopa is the primary medication used to treat Parkinson’s disease and is thought
to have no disease-modifying effect (Verschuur et al., 2019). Levodopa is a dopaminergic
medication and is primarily used to treat motor symptoms. Levodopa may be administered
in concert with other medications such as a dopamine agonist, monoamine oxidase type B
inhibitor, or a catechol-O-methyl transferase inhibitor. In order to model the combination of
these drugs in a consistent manner, the levodopa equivalent daily dose (LEDD) (Tomlinson
et al., 2010) has been developed. LEDD information is provided in PPMI and used to model
medication effects in our study. Per the PPMI protocol, PD patients must not have started
medications at time of enrollment and initiate different medications at varying times over
the study, depending on specific patient characteristics. The dose as well as the response
changes over time. Medication effects are captured to some degree by motor examination
occurring prior to intake of levodopa or dopamine agonists, and repeated again 1-4 hours
after medication are taken. This process is referred to as ‘on-off’ testing.

11
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Figure 4: Scatter plots showing the per sample test log-likelihood (N=83) for the three
different Markov models. The number on the plot indicates the number of samples
that are above the diagonal line. These results show that the PIOHMM improves
upon both the IOHMM and HMM in terms of test log likelihood.

Model Description Based on domain understanding of Parkinson’s disease, we choose
the observation model

Tig | zig = kydig ~ N (e + (v +mi)di g, Xi). (14)

This model captures our prior beliefs that there are several unknown disease states whose
observations are impacted by medication use. We expect that the impact of medication
is a function of both the individual and the disease state. The transition matrix, A is
constrained to be upper triangular to enforce progressive disease states.

A full distribution of the number of visits per patient is available in the appendix; on
average, the patients have observations through 21 visits and a total of 12 observed visits.
This discrepancy is a result of the PPMI protocol, which increases the time between visits
as the time since enrollment increases. Because the protocol establishes a visit schedule
prior to patient enrollment, a missing at random assumption is reasonable. We note that it
is possible that patients deviate from their schedule based on their disease status but did
not find evidence to that effect and proceeded with an assumption of data that is missing
at random (see appendix for more detail). The time step is fixed to three months and any
missing values are marginalized. The dataset is divided into training and testing with 333
patients used for training and 83 patients used for testing. Patients with only one observa-
tion were excluded (N=7). To compare with the proposed PIOHMM, standard HMM and
IOHMM models are also developed. For all models, we use a 5-fold cross validation strategy
on the training data to select the number of states.

Results Figure 4 plots the test log-likelihood per patient for the three models. The
PIOHMM outperforms the other models, suggesting that the PIOHMM is a better model
for the data.

By modeling personalized-medication and state-medication effects, we hope to recover
relevant clinical latent states. To characterize the states, we perform a post-hoc analysis,
focusing on the primary clinical symptoms used for diagnosis: tremor, bradykinesia, rigidity
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Figure 5: Average of the subitems corresponding to primary PD symptoms from the state
means, pr. The subscores are calculated using the MDS-UPDRS as follows:
tremor, 2.10, 3.15-3.18, postural instability gait, 2.12-2.13, 3.10-3.12, bradykine-
sia, 3.4-3.8, 3.14, and rigidity, 3.3. The colors correspond to the range of severity
within each category (blue for the least severe and red for the most severe) and
are redundant with the value in the heatmap.

and postural instability /gait (PI/G). See Figure 5 for a summary. Note that the states are
ordered in terms of progression, e.g. state 1 cannot transition to state 0, state 2 cannot
transition to states 0 or 1, etc. State 1 is the most frequent state at enrollment and has the
lowest total MDS-UPDRS score. State 0 has no patients on medication. States 2 and 4 both
have moderate tremor and are primarily differentiated by which side of the body the disease
affects. State 6 has high tremor. States 3, 5, and 7 have increasingly severe gait issues.
Per the subtype methodology of Stebbins et al. (2013), which uses MDS-UPDRS subitems
to assign patients who are not on medication to tremor or PI/G subtypes, state 5 is PI/G
dominant, states 0-4 and 6 are tremor dominant, and state 7 is indeterminate. Unlike these
definitions, the learned disease states have more granularity and capture severity.

In addition to this static view of the learned states, we are also interested in how these
states evolve in time. Analysis of the transition probabilities, A, provides insight to expected
transition patterns. Using the Viterbi algorithm, marginalizing over the personalized effects,
we can also estimate the most probable sequence for each patient. As a demonstration of
how the model could be used, we predict whether a patient in the test dataset will be in a
tremor dominant or postural instability /gait dominant subtype based on the definitions of
Stebbins et al. (2013). To do this, we use the state assignment probabilities at study entry
and the transition matrix to calculate state assignment in one year. The probabilities at
one year are then used to calculate a weighted average of MDS-UPDRS subitems. Unlike
the states from our model, these literature subtypes are only defined for patients not on
medications, therefore only 24 of the 83 patients in the test set have the required information.
Using the model, 17 patients are correctly predicted. If instead we assume that patients
do not change subtypes from study entry, only 14 patients are correctly predicted. This
heterogeneity is supported by independent analysis of the PPMI data (Simuni et al., 2016).

We can also analyze the parameters that interact with medication to gain new insights.
Overall, facial expression, consistency of rest tremor, and body bradykinesia have the most
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positive response (i.e. largest decrease) as a function of LEDD, turning in bed and sleep
(sleep problems and daytime sleepiness) have the most negative response (i.e. largest in-
crease), and freezing has the smallest response (i.e. approximately no change). These
results are independently verified by ‘on-off’ paired testing that occurs elsewhere in the
PPMI dataset, data not used in the model. In that dataset, consistency of rest tremor had
the most positive response and freezing of gait was the least responsive (note that sleep
issues are not measured as part of the test). Issues regarding sleep have been documented
as a possible side effect of levodopa in PD in the past (Nausieda et al., 1982; Ferreira et al.,
2000). An analysis of the personalized effects shows that the change in score for turning
in bed has the greatest variability. The relationship between turning in bed and levodopa
has previously been studied and is thought to be responsive to levodopa therapy but not
always consistently (Steiger et al., 1996). It is interesting to note that this measurement in
the MDS-UPDRS is self-reported. These insights lead to interesting hypotheses to support
further investigation which would not have been otherwise revealed.

6. Discussion

Disease progression models are important computational tools in healthcare, however, they
face particular challenges as compared to general time series models. To address these
challenges, we propose a probabilistic model which is capable of accounting for personal-
ized state effects, personalized medication effects, state-based medication effects, or any
combination thereof while learning disease states. We refer to this model as a personalized
input-output hidden Markov model (PIOHMM). We demonstrate the model’s success on
synthetic and real-world datasets. The model is well-suited to the scenario where a disease
progresses heterogeneously and a characterization of disease states is a modeling goal.

Limitations While the proposed model is a reasonable first step several of its assump-
tions could be relaxed. First, the model as presented does not account for the effect of
demographic factors on the progression of the disease. When such information is available,
one way of incorporating it in the model would be to define the personalized effects to be
a function of the demographics, 7, = w’y;, where y; are the available demographics for
patient ¢. Next, we have chosen to model medications as only impacting the observation
model and not the transition model. This is motivated by the large number of complex
diseases which do not have disease-modifying therapeutics but do have medications to alle-
viate symptoms in patients. However, there may be scenarios where such an assumption is
inappropriate, for instance, when a disease modifying drug is available. We could adapt the
model to account for transition models that are a function of medication or other covariates,
for instance z;; | 2j4—1,di4—1 ~ Cat(S(A;d;¢—1)), where S(-) represents a softmax transfor-
mation. Such a medication or patient specific covariate conditioned transition model would
also relax the assumption that the disease dynamics, as specified by the HMM transition
matrix, is shared among all patients. Finally, it is possible that the medication effects are
not linear and that medication does not affect all disease measures but only a subset which
needs to be discovered from the data. In such situations, one could model non-linearity
through a non-linear basis function expansion and use an automatic relevance detection
(Bishop, 1999) or other sparsity inducing priors to infer the active medication effects.
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Appendix A. Forward-backward algorithm details

The application of the forward-backward algorithm follows the steps of the forward-backward
algorithm as applied to an HMM. We define

(zir) = plzis | i may i) = P(Tis - @ity Zi | My T)D(Ti g1, - - i | Zist, My T) (15)
p(x; | mi,ri)
Further, we define
a(zig) =p(@in .., Tit, Zig | My 75)
(16)
B(zit) = p(Tits1, - i | Zit, i, 1)
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a(zig) =p(Tin ..., Tit, Zie | M, 15) (17)

=p(zig -, M;)p(zi, i) (18)

= p(Tiz | zit,mi,m)p(:rm o Tig—1 | zig iy 1) p(zig | My i) (19)

= p(@ig | Zip,mi, ra)p(Tiy - Tig1, Zig | My T) (20)

= p(Tit | 2it, mi7i) Z P(Ti - Tig—1, Zig—1, Zit | M4y T3) (21)
Zit—1

= (i | 2ig, miy75) Z P(Ti1 s Tit—1, Zit | Zig—1, i, 1i)D(Zig—1 | M, 73) (22)
Zit—1

=p(@ig | zigomi,ri) Y p(wia o wip |z, i, m)p(zig | zig1,mayra)p(zie1 | ma, i)

Zit—1
(23)
= p(l‘i,t | zi,tamiari) Z p($i,1 vy Lit—1y Zijt—1 | mia"'i)p(zi,t ’ Zi,tfhmiari) (24)
23 t—1
= p(ig | zigymisri) Y alzie—1)p(zic | 2ia-1) (25)
Zit—1
Similarly,
B(zit) = P(Tigr1, - Ti | Zig, Mis i) (26)
= Z P(Tip41s -+ BTy Zig1 | Zist, My T5) (27)
Zi i 41
= Z P(Tit1s - BT | Zigts Zigit1, M, 73)P(Ziyi41 | Zigt, My 1) (28)
Zi 141
= Z P(xi,t+1, <o i T | Zi,t+1ami77'i)p(zi,t+l | Zi,umz‘,?”i) (29)
Zit41

= > P@igs2 - Tix |z, mi r)p(@ia |z, ma r)p(zie |z mi, )

Zit+1
(30)
= > Blzir)p@ipi | zigpr,mi, r)p(zigsn | zig) (31)
Zi 441

The recursion is started using

k
o(zin) = p(z0)p(xis, | ziasdigmiri) = [ [{mep(ein | dig, opomirl} =5 (32)
k=1

and

ﬁ(zi’T) =1 (33)
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The objective function can be expanded and written

N K
L= ZZlnp(zz‘,l =k |m)q(zi1 =k | xi,mi,r)+
=1 k=1

1=
K T
Zzzlnp(zi,t =k | zit-1 =73, Aj)q(zir =k, zig—1 = J | Ti, mi, mi)+

K
k=1 j=1 t=2 i=1
N

—_

N
/lnp(mi | 02 ))q(m;)dm; + Z/lnp(ri | 02)q(r;)dri+
i=1

i=1

N K T

ZZ [//Zlnp(xi,t | zip = k, §r, vk, die, mi, i) q(mi)dmiq(ri)dri | q(zie = K | @i, mi, ri)—
i=1 k=1 t=1

N N

Z/q(ml) In g(m;)dm; —Z/q(ri)lnq(n)dm—

i=1 i=1

(34)
Appendix B. Fixed point updates
The equations for the parameter updates under the observation model
Tig | zig = k,dig ~ N (g + 13 + (vp +ms)dig, X) (35)

19



PIOHMM ror DPM

150 1

=

o

o
1

Count of patients
(%)) ~
o wu
Count of patients

100 A

50 A

N
(O]
1

o
L
o
I

0 5 10 15 20 25 30 0 5 10 15
Number of visits Number of observations

Figure 6: Distributions of the index of the last observed visit and the number of observations
per patient. Not all visits for a trajectory may be observed. The left histogram
represents the time point of the final observation for each patient in the training
set and the right histogram represents the number of observed visits. This is a
result of the observation protocol. The testing data is distributed similarly.

are shown below.
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Appendix C. Parkinson’s disease patient cohort
C.1. Data availability

Figure 6 shows the distribution of the number of visits per patient. On average, data is
observed up to visit 21, although each visit within the trajectory is not necessarily observed.
The average number of observations per patient is 12.
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Figure 7: Trends of total number of observations with various patient attributes. Time since
enrollment is strongly correlated with the total number of observations whereas
measures of disease state are not.

C.2. Missing data analysis

Although there is no robust test to confirm that data is not missing at random, empirical
evidence suggests this is not the case for the PPMI PD dataset. We show the trends in
number of total observations as a function of time since study enrollment as well as MDS-
UPDRS total and change in MDS-UPDRS total in Figure 7. If data were not missing at
random, we might hypothesize that patients who have high MDS-UPDRS total values at
last visit or patients who have large increases in MDS-UPDRS would have a small number
of visits due to study drop-out. For the most part, we do not observe any linear trend
(r? = 0.01 for total and 72 = 0 for change), whereas there is a strong linear trend in the
relationship between time since enrollment and number of visits (r? = 0.83). Although
inconclusive, we take this to imply that a majority of missingness is due to the study
protocol and not censoring or drop-out as a function of disease state.
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